FUNDAMENTALS OF DEEP LEARNING

PD. Dr. Juan J. Durillo - Deep Learning and GPU Programming Workshop @ LRZ - 16-19 May 2022

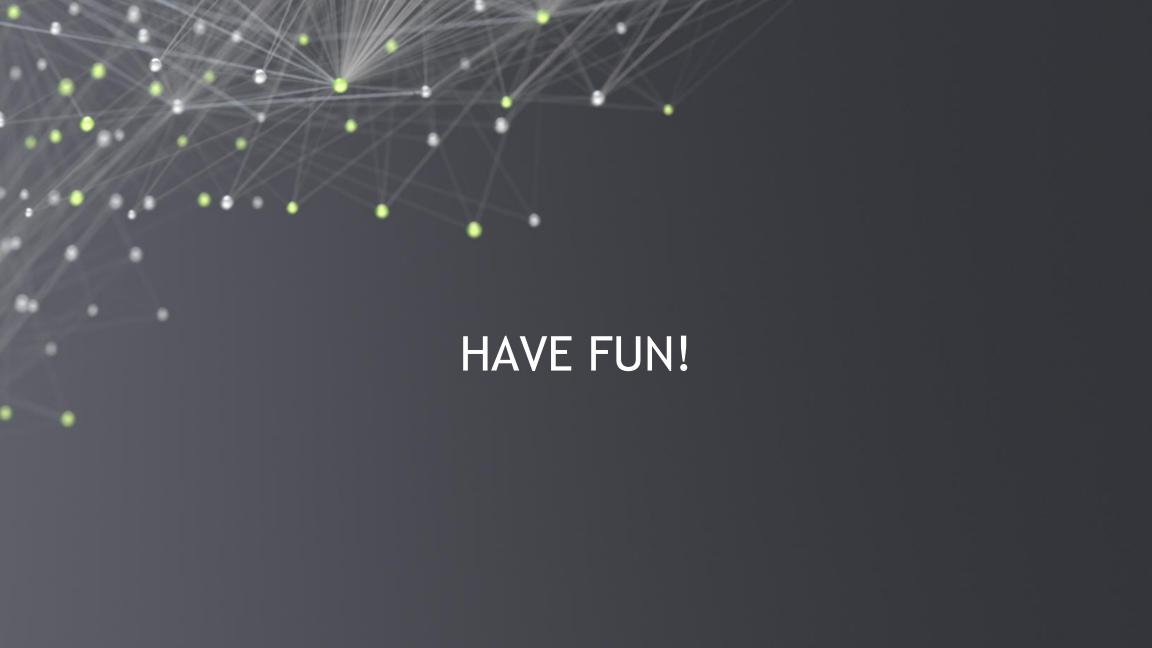
DEEP LEARNING INSTITUTE

THE GOALS OF THIS COURSE

- Get you up and on your feet quickly
- Build a foundation to tackle a deep learning project right away
- We won't cover the whole field, but we'll get a great head start
- Foundation from which to read articles, follow tutorials, take further classes

AGENDA

Part I:An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures



BEGINNING OF ARTIFICIAL INTELLIGENCE

COMPUTERS ARE MADE IN PART TO COMPLETE HUMAN TASKS

EARLY ON, GENERALIZED INTELLIGENCE LOOKED POSSIBLE

TURNED OUT TO BE HARDER THAN EXPECTED

EARLY NEURAL NETWORKS

Inspired by biology

Created in the 1950's

Outclassed by Von Neumann Architecture

EXPERT SYSTEMS

Highly complex

Programmed by hundreds of engineers

Rigorous programming of many rules

EXPERT SYSTEMS - LIMITATIONS

What are these three images?

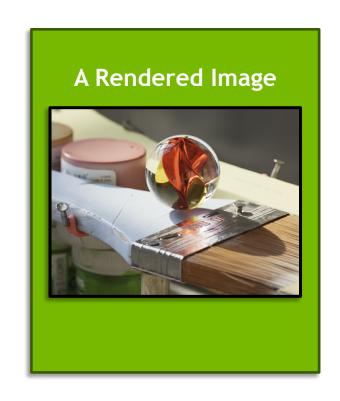
DATA

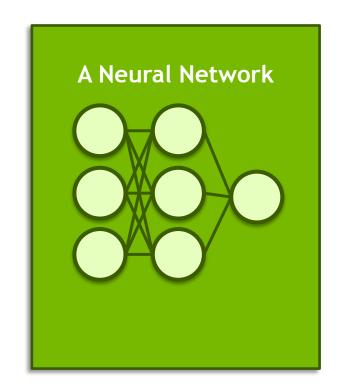
- Networks need a lot of information to learn from
- The digital era and the internet has supplied that data

COMPUTING POWER

Need a way for our artificial "brain" to observe lots of data within a practical amount of time.

THE IMPORTANCE OF THE GPU

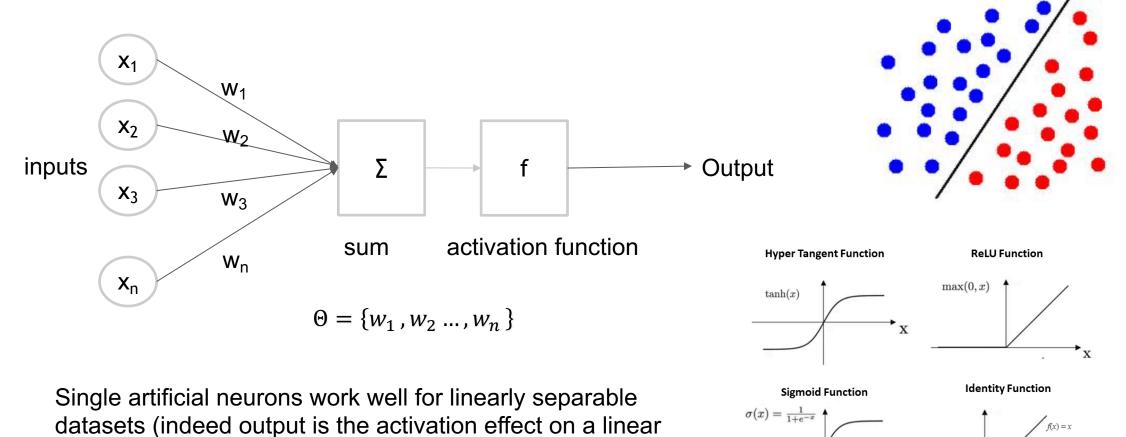




A (brief) introduction to Machine Learning

28.04.2021 | PD Dr. Juan J. Durillo

Perceptron - Artificial Neuron

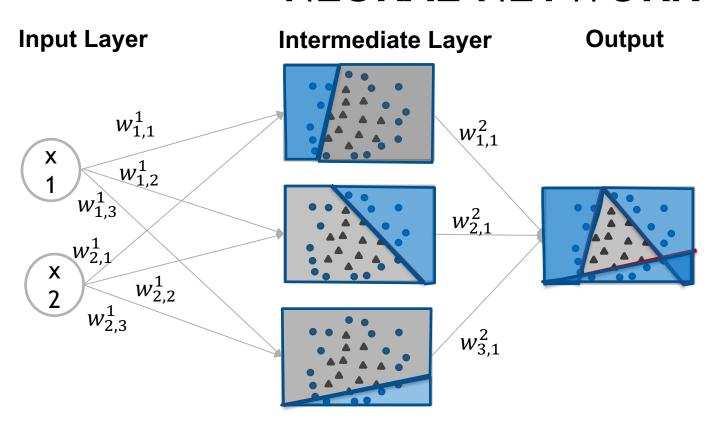


A (brief) introduction to Machine Learning | PD Dr. Juan J. Durillo | 28.04.2021

combination of the input)

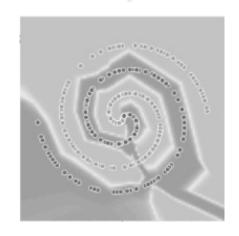
most popular activation functions

NEURAL NETWORK



$$\Theta = \left\{ w_{1,1}^1, w_{1,2}^1, w_{1,3}^1, w_{1,1}^1, w_{2,1}^1, w_{2,2}^1, w_{2,3}^1, w_{1,1}^2, w_{2,1}^2, w_{2,3}^2 \right\}$$

 Works well even when the data is not linearly separable



(SUPERVISED) LEARNING

Data domain Z: X×Y

 $X \rightarrow$ domain of the input data

 $\Upsilon \rightarrow$ set of labels (knowledge)

X: 32 x 32
color images
truck, car, horse, bird, boat

Example (CIFAR10 dataset)

- Data Distribution is a probability distribution over a data domain
- Training set z_1 , ..., z_n from Z assumed to be drawn from the Data Distribution D
- Validation set v_1 , ..., v_m from Z also assumed to be drawn from D
- A machine learning model is a function that given a set of parameters Θ and z from Z produces a prediction
- The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we denote $\ell(\Theta; z)$

(SUPERVISED) LEARNING

- Given Θ we can define the expected loss as: $L(\Theta) = \mathbb{E}_{z \sim D}[\ell(\Theta; z)]$
- Given D, ℓ , and a model with parameter set Θ , we can define learning as:

"The task of finding parameters Θ that achieve low values of the expected loss, while we are given access to only n training examples"

- The mentioned task before is commonly referred to as training
- Empirical average loss given a subset of the training data set $S(z_1, ..., z_n)$ as:

$$\widehat{L}(\Theta) = \frac{1}{n} \sum_{t=1}^{n} [\ell(\Theta; Z_t)]$$

 Usually a proxy function, easier to understand by humans, is used for describing how well the training is performed (e.g., accuracy)

(SUPERVISED) LEARNING

 The dominant algorithms for training neural networks are based on mini-batch stochastic gradient descent (SGD)

• Given an initial point Θ_0 SGD attempt to decrease \hat{L} via the sequence of iterates

$$\Theta_t \leftarrow \Theta_{t-1} - n_t g(\Theta_{t-1}; B_t)$$

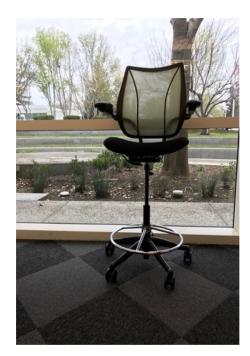
$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$

 B_t : random subset of training examples

 n_t : positive scalar (learning rate)

epoch: update the weights after going over all training set

COMPUTER VISION TASKS



predicting the type or class of an object in an image

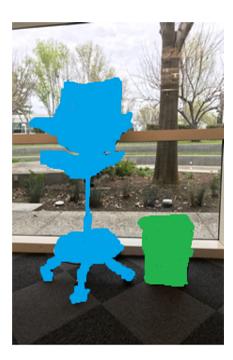
Image Classification

predicting the type or class on an object in an image and draw a bounding box around

Image Classification + Localization

predicting the location of objects in an image via bounding boxes and the classes of the located objects

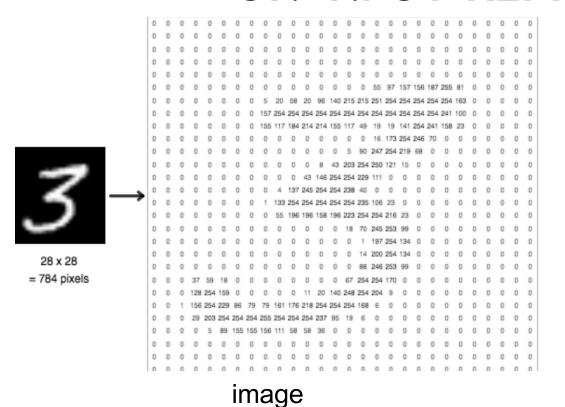
Object Detection



predicting the class to which each pixel in the image belongs to

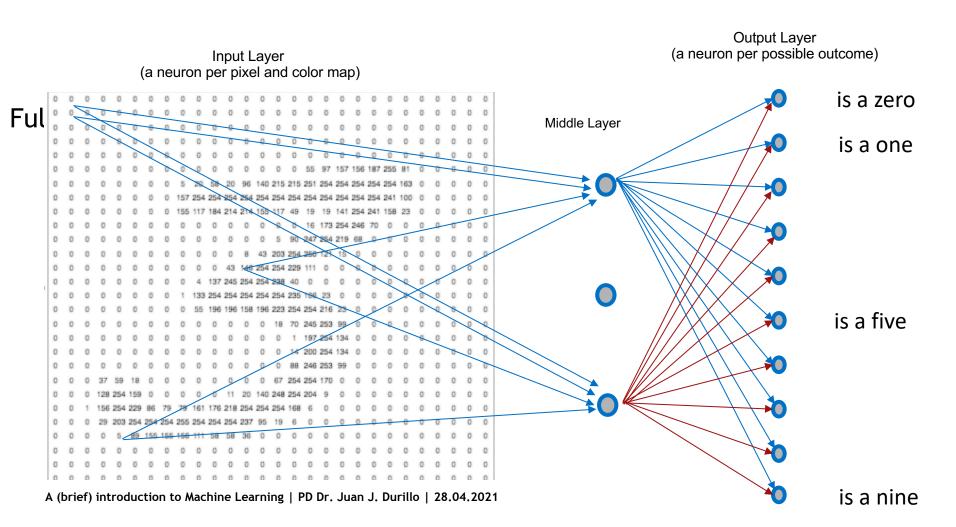
Image Segmentation

ON INPUT REPRESENTATION

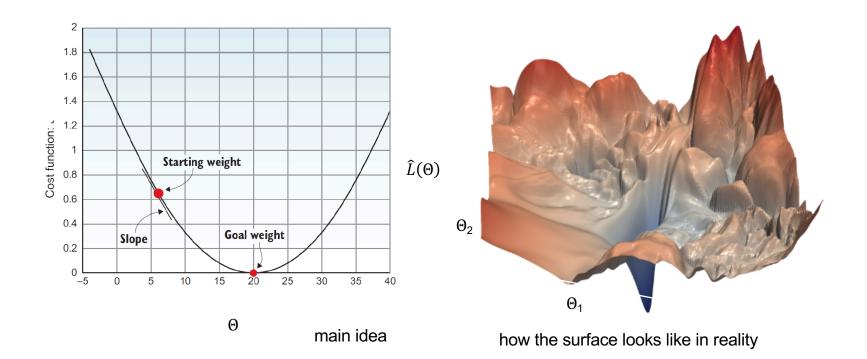


language

NEURAL NETWORKS FOR IMAGE CLASSIFICATION



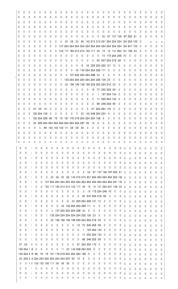
TRAINING NEURAL NETWORKS



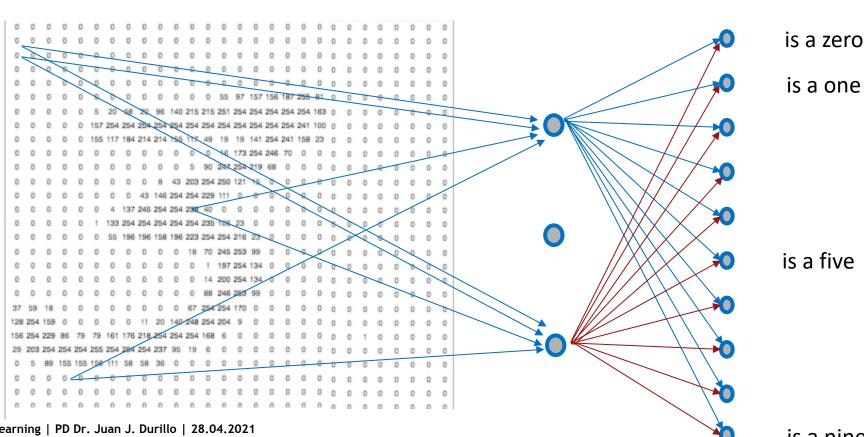
Stochastic Gradient Descent

$$\Theta_t \leftarrow \Theta_{t-1} - n_t g(\Theta_{t-1}; B_t)$$
$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$

NEURAL NETWORKS FOR IMAGE **CLASSIFICATION**



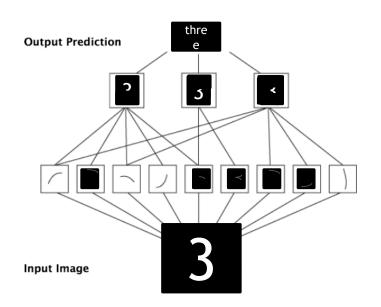
shift to the left

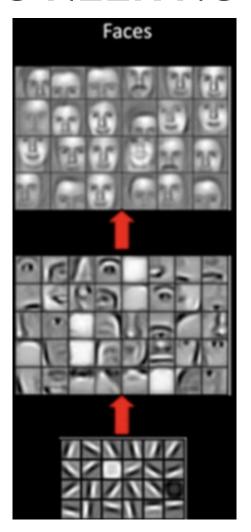


A (brief) introduction to Machine Learning | PD Dr. Juan J. Durillo | 28.04.2021

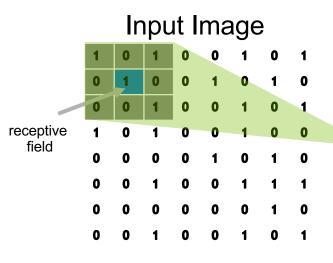
is a nine

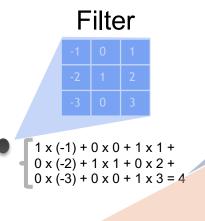
NO MORE FEATURE ENGINEERING

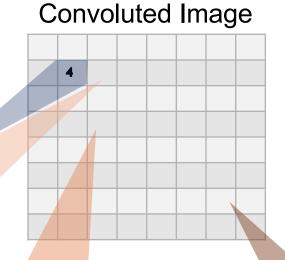




LEARNING FEATURES FROM DATA: CONVOLUTIONS



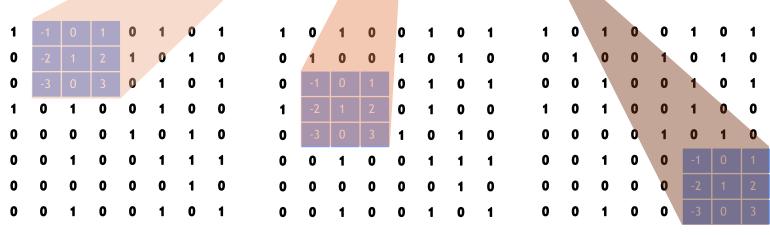




Filter is convoluted with all the pixels of the image

How many units the filter moves horizontally or vertically is called **stride** and can be different in both dimensions

The stride defines the size of the convoluted image



FILTERS

Input Image:

Can we get only vertical lines out of this picture?

1	0	-1
fi	lter	1

1 0 -1

1 0 -1

1 0 -1

filter 2

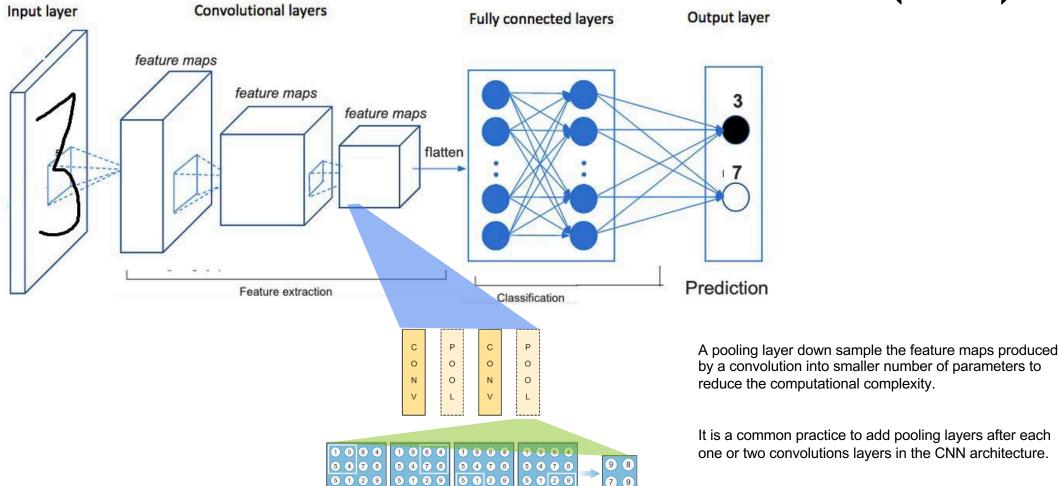
try the code yourself (in octave)!

I=imread(<path-to-image>); GRAY=rgb2gray(I) FILTER=[1 0 -1; 1 0 -1; 1 0 -1]; % filter 2 CONVOLUTED=conv2(GREY,FILTER); Imwrite(CONVOLUTED, <path-to-result>);

1	0	0	0	-1
1	0	0	0	-1
1	0	0	0	-1
1	0	0	0	-1
1	0	0	0	-1

filter 3

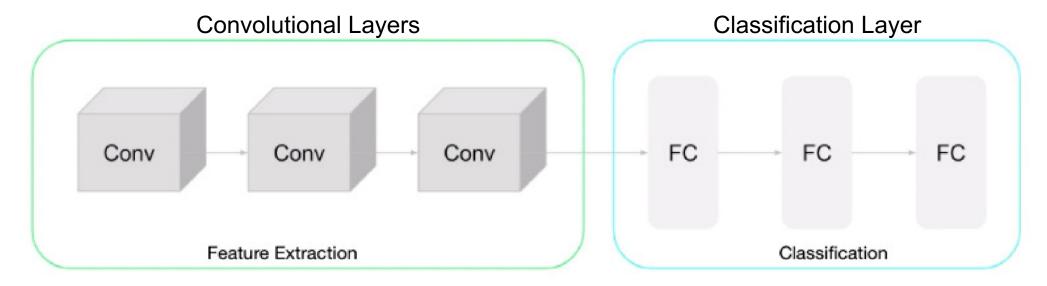
CONVOLUTIONAL NEURAL NETWORKS (CNN)



6 7 6 0

6 7 6 0

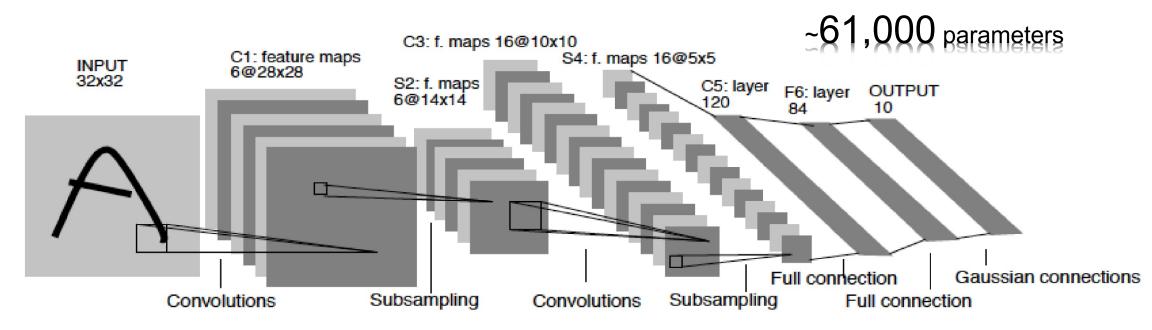
CNN ARCHITECTURE: A COMMON PATTERN AND ITS INFLUENCE



The execution time required during a forward pass through a neural network is bounded from below by the number of floating point operations (FLOPs).

This FLOP count depends on the deep neural network architecture and the amount of data.

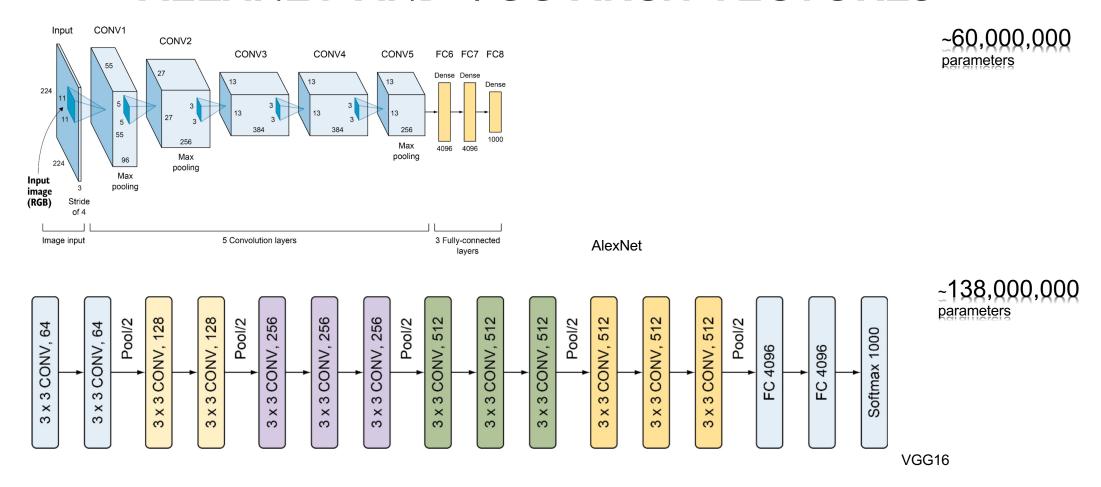
LENET ARCHITECTURE



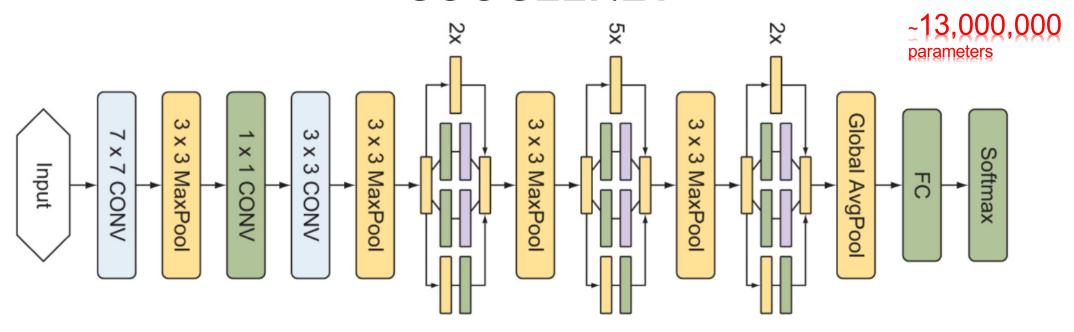
Architecture summary:

- 3 convolutional layers filters in all the layers equal to 5x5 (layer 1 depth = 6, layer 2 depth = 16, layer 3 depth = 120)
- As activation function the tanh function is used

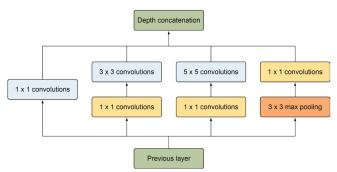
ALEXNET AND VGG ARCHITECTURES



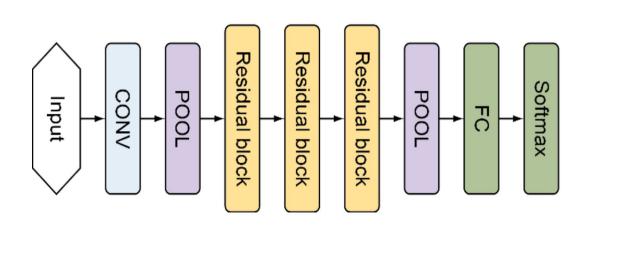
GOOGLENET



- What is the best kernel size for each layer?
- Concatenating filters instead of stacking them for reducing computational expenses



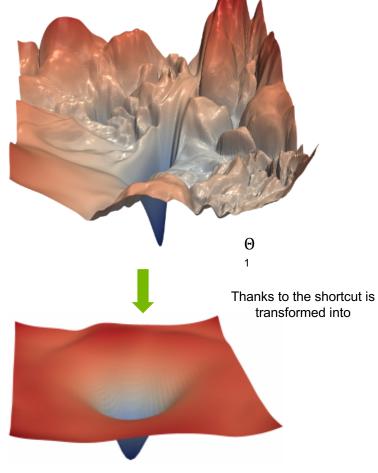
RESTNET

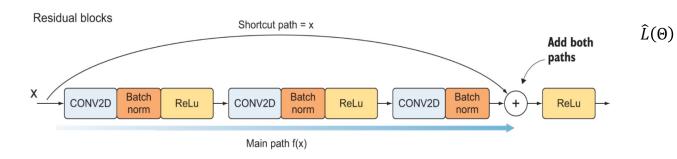


Ω(Θ)
Θ
2

Θ

2





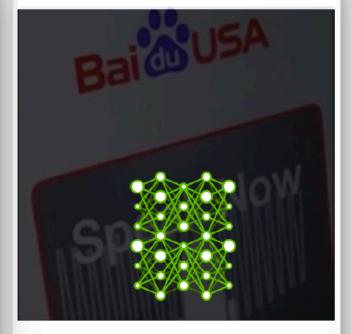
Θ

INCREASING COMPLEXITY

7 Exaflops 60 Million Parameters

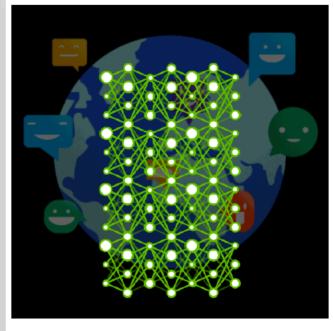
2015 - Microsoft ResNet Superhuman Image Recognition

20 Exaflops 300 Million Parameters



2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 Exaflops 8700 Million Parameters



2017 - Google Neural Machine Translation Near Human Language Translation

SUMMARY

Brief introduction to Deep Learning with emphasis in Deep Convolutional Neural Networks

Review of basic concepts: from perceptron to the learning task

Debrief of most important concepts of neural network architectures

DEEP LEARNING FLIPS TRADITIONAL PROGRAMMING ON ITS HEAD

TRADITIONAL PROGRAMMING

Building a Classifier

Define a set of rules for classification

Program those rules into the computer

Feed it examples, and the program uses the rules to classify

MACHINE LEARNING

Building a Classifier

(1)

Show model the examples with the answer of how to classify

Model takes guesses, we tell it if it's right or not

Model learns to correctly categorize as it's training. The system learns the rules on its own



WHEN TO CHOOSE DEEP LEARNING

Classic Programming

If rules are clear and straightforward, often better to just program it

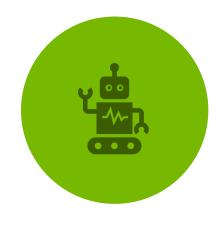
Deep Learning

If rules are nuanced, complex, difficult to discern, use deep learning

DEEP LEARNING COMPARED TO OTHER AI

Depth and complexity of networks Up to billions of parameters (and growing) Many layers in a model Important for learning complex rules

COMPUTER VISION



OBJECT DETECTION

SELF DRIVING CARS

NATURAL LANGUAGE PROCESSING

VOICE RECOGNITION

VIRTUAL ASSISTANTS

RECOMMENDER SYSTEMS

CONTENT CURATION

TARGETED ADVERTISING

SHOPPING RECOMMENDATIONS

REINFORCEMENT LEARNING

AI BOTS BEAT PROFESSIONAL VIDEOGAMERS

STOCK TRADING ROBOTS

HANDS ON EXERCISES

- Get comfortable with the process of deep learning
- Exposure to different models and datatypes
- Get a jump-start to tackle your own projects

STRUCTURE OF THE COURSE

"Hello World" of Deep Learning

Train a more complicated model

New architectures and techniques to improve performance

Pre-trained models

Transfer learning

PLATFORM OF THE COURSE

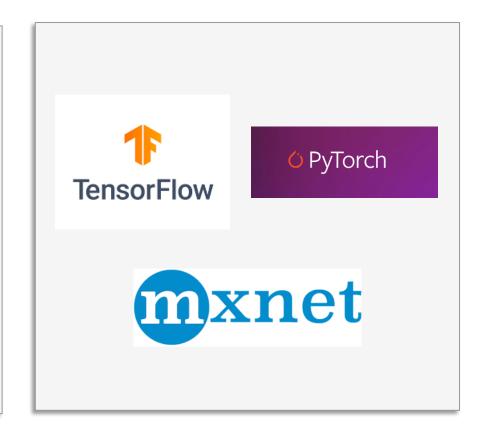
GPU powered cloud server

JupyterLab platform

Jupyter notebooks for interactive coding

SOFTWARE OF THE COURSE

- Major deep learning platforms:
 - TensorFlow + Keras (Google)
 - Pytorch (Facebook)
 - MXNet (Apache)
- We'll be using TensorFlow and Keras
- Good idea to gain exposure to others moving forward



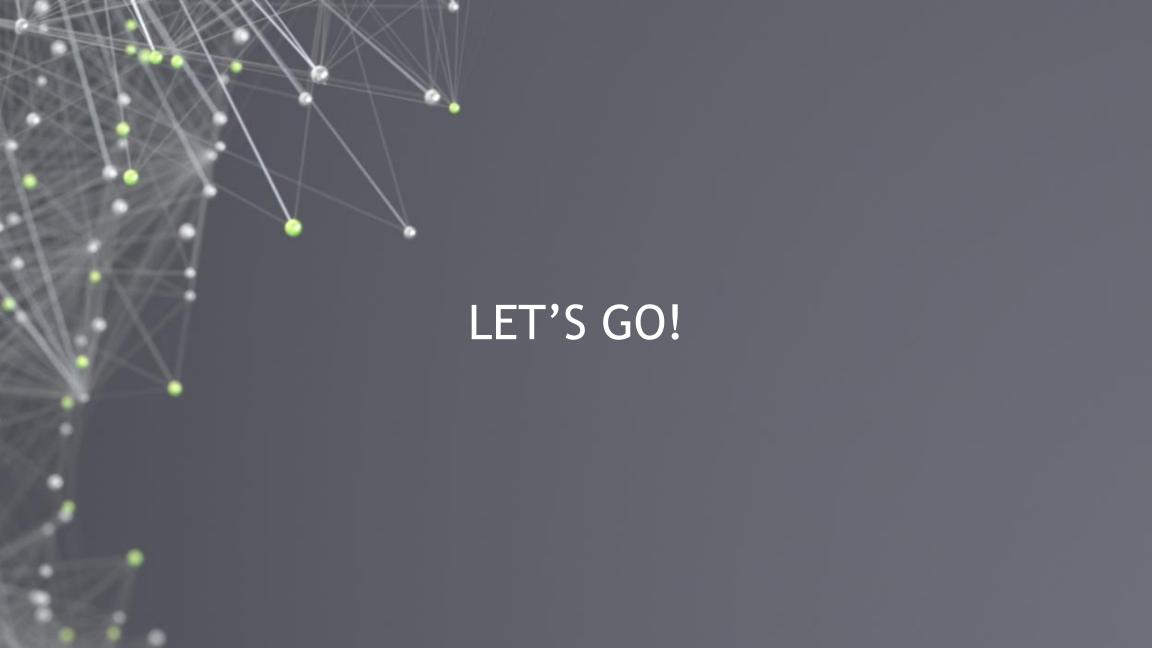
HELLO NEURAL NETWORKS

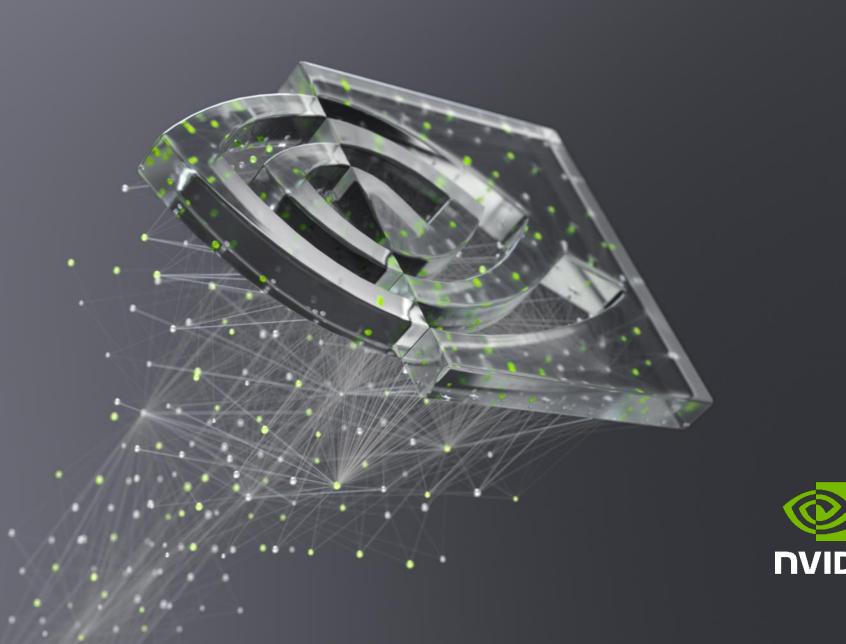
Train a network to correctly classify handwritten digits

 Historically important and difficult task for computers

Try learning like a Neural Network

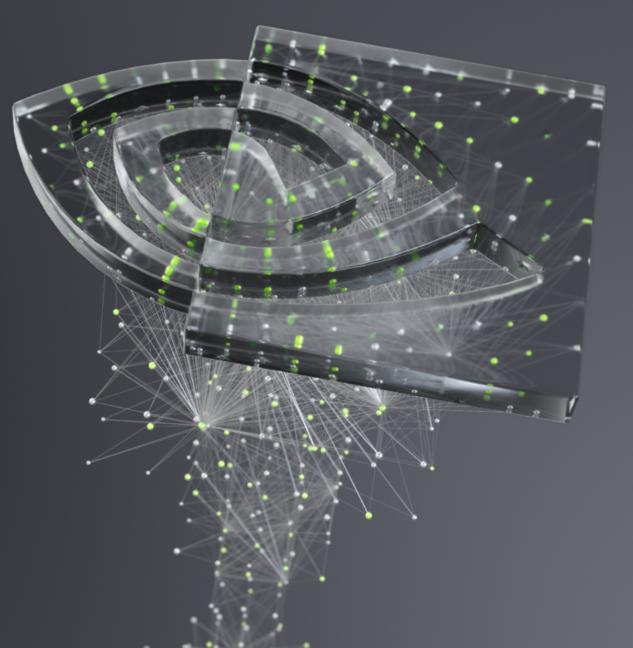
 Get exposed to the example, and try to figure out the rules to how it works





FUNDAMENTALS OF DEEP LEARNING

Part 2: How a Neural Network Trains



Part 1: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures

RECAP OF THE EXERCISE

What just happened?

Loaded and visualized our data

Edited our data (reshaped, normalized, to categorical)

Created our model

Compiled our model

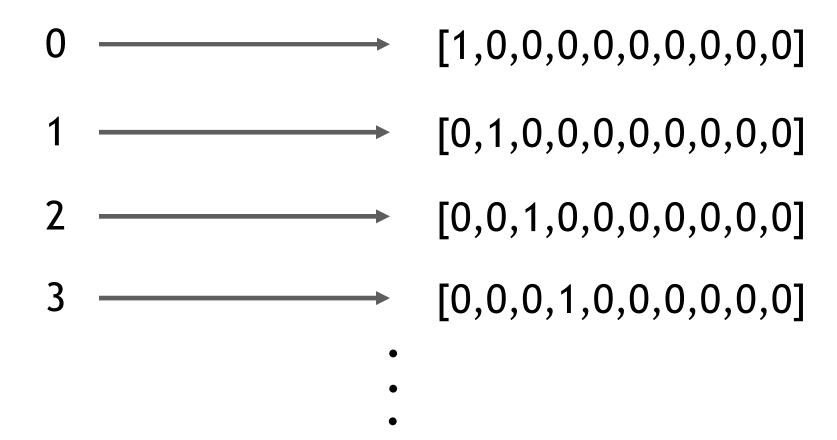
Trained the model on our data

DATA PREPARATION

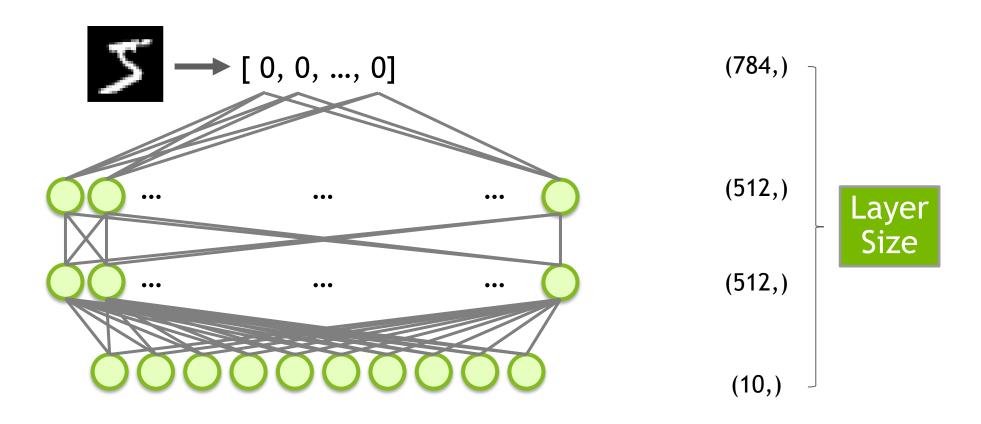
Input as an array

DATA PREPARATION

Targets as categories

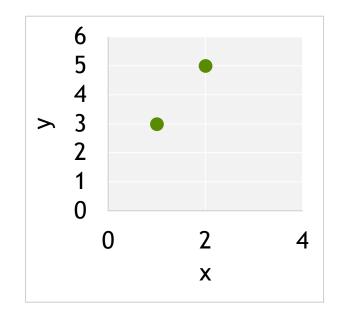


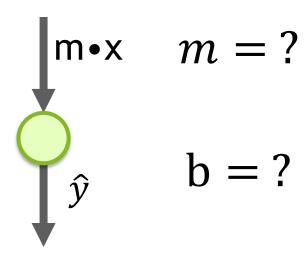
AN UNTRAINED MODEL



$$y = mx + b$$

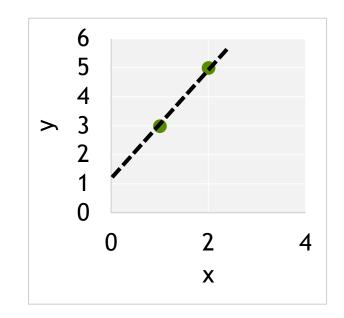
X	у
1	3
2	5

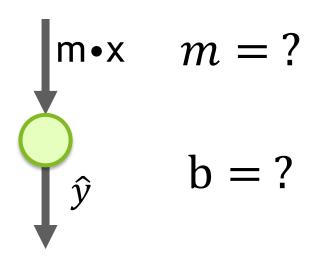




$$y = mx + b$$

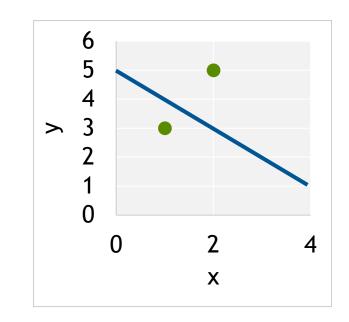
X	у
1	3
2	5

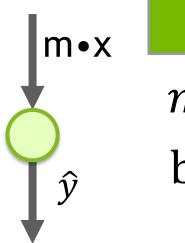




$$y = mx + b$$

X	у	ŷ
1	3	4
2	5	3





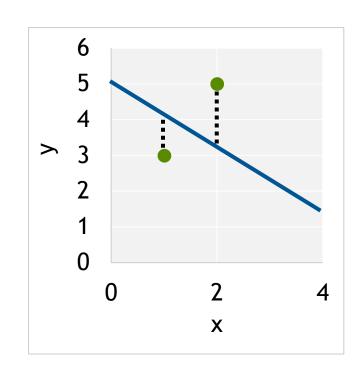
Start Random

$$m = -1$$
$$b = 5$$

$$b = 5$$

$$y = mx + b$$

X	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =		2.5	
RMSE =			1.6

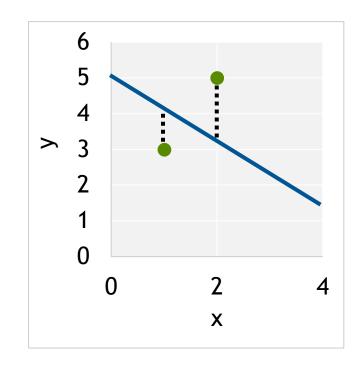


$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

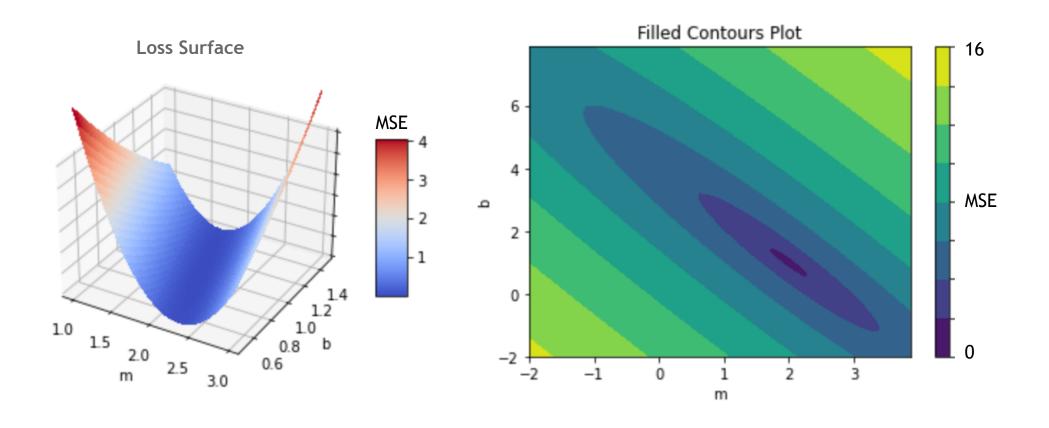
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

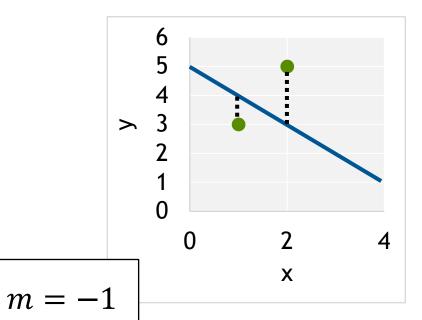
$$y = mx + b$$

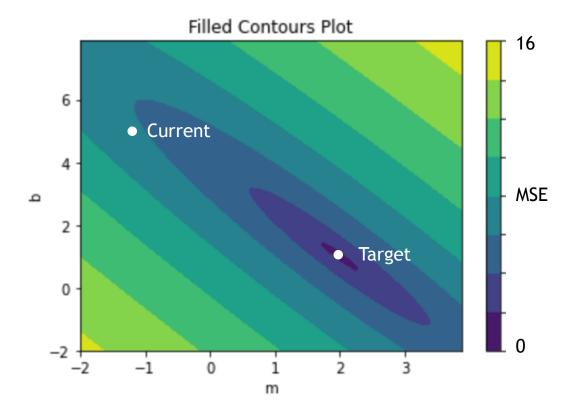
X	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =		2.5	
RMSE =			1.6

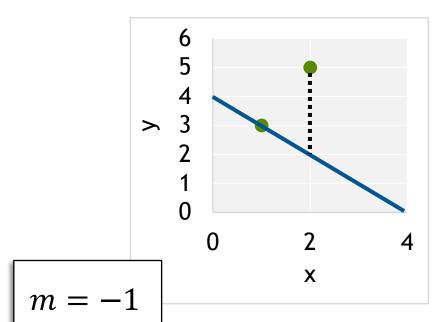


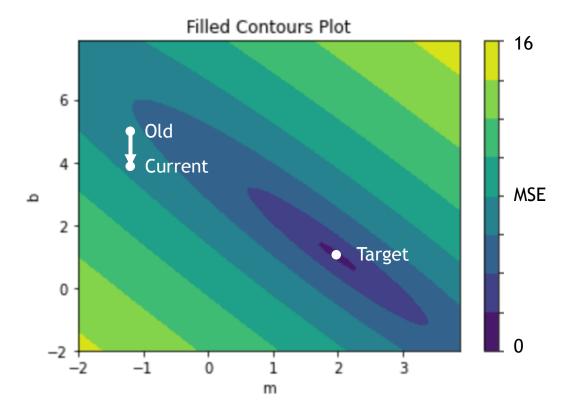
```
data = [(1, 3), (2, 5)]
    \mathbf{m} = -\mathbf{1}
    b = 5
    def get_rmse(data, m, b):
         """Calculates Mean Square Error"""
         n = len(data)
         squared error = 0
         for x, y in data:
10
11
             # Find predicted y
12
             y hat = m*x+b
13
             # Square difference between
14
             # prediction and true value
             squared_error += (
15
                 y - y_hat) ** 2
16
17
         # Get average squared difference
18
         mse = squared error / n
19
         # Square root for original units
20
         return rmse ** .5
```

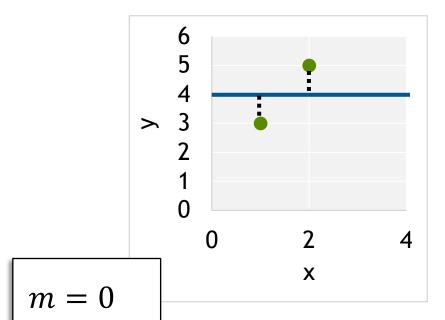


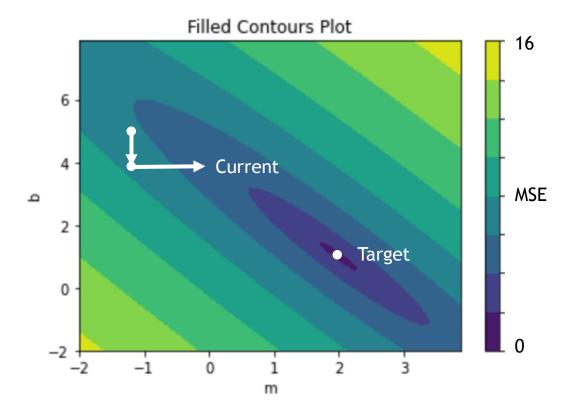


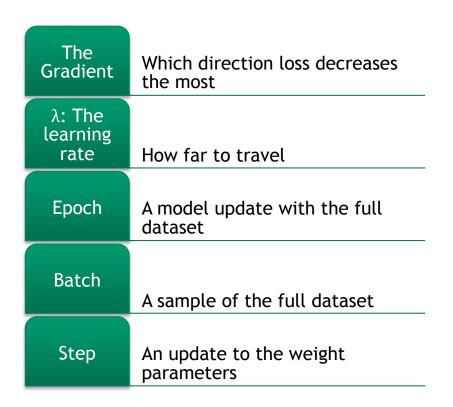


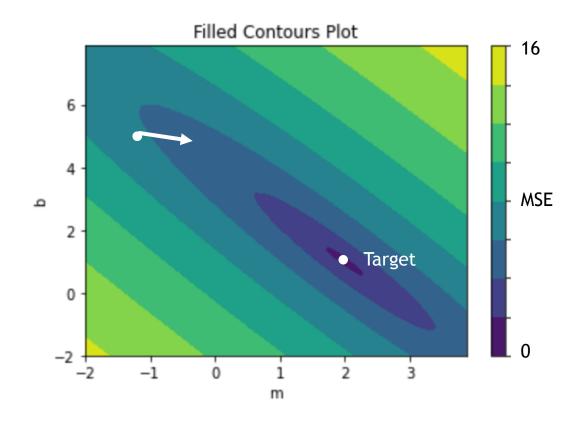


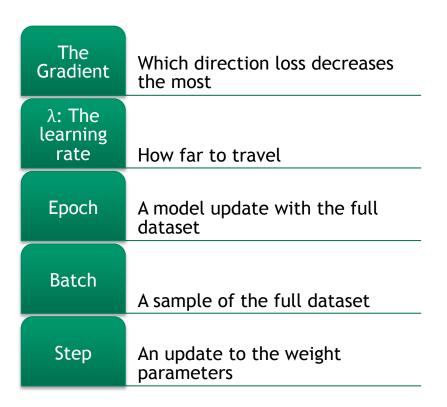


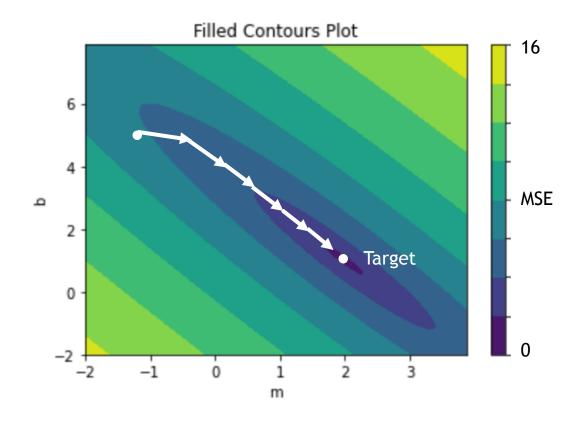




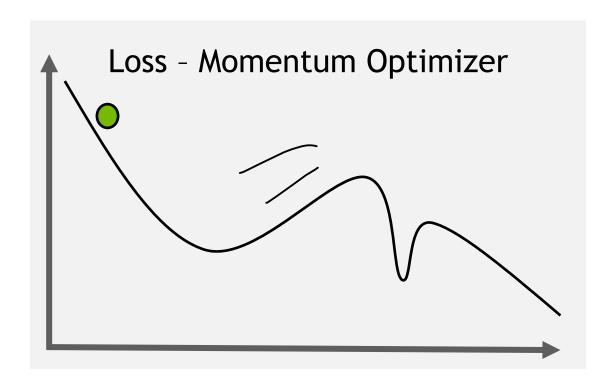






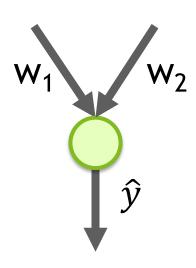


OPTIMIZERS



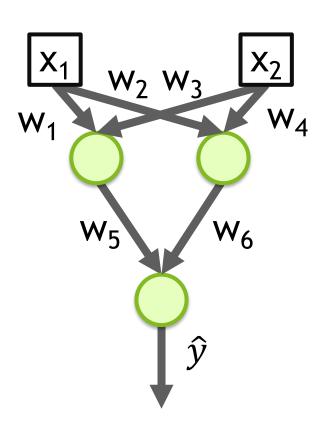
- Adam
- Adagrad
- RMSprop
- SGD

BUILDING A NETWORK



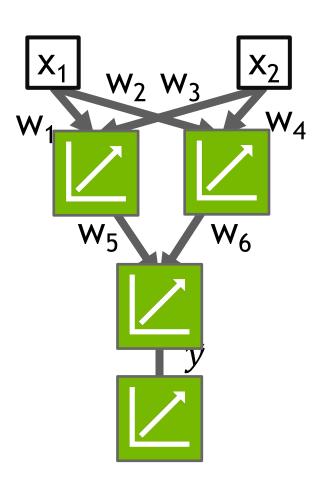
• Scales to more inputs

BUILDING A NETWORK



- Scales to more inputs
- Can chain neurons

BUILDING A NETWORK



- Scales to more inputs
- Can chain neurons
- If all regressions are linear, then output will also be a linear regression

ACTIVATION FUNCTIONS

Linear

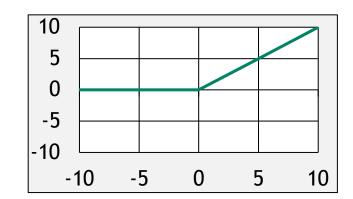
$$\hat{y} = wx + b$$

- # Multiply each input # with a weight (w) and # add intercept (b) y hat = wx+b
- 10 -5 -10 -5 -10 5 10

ReLU

$$\hat{y} = \begin{cases} wx + b & \text{if } wx + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

```
# Only return result
# if total is positive
linear = wx+b
y_hat = linear * (linear > 0)
```

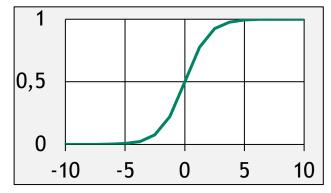


Sigmoid

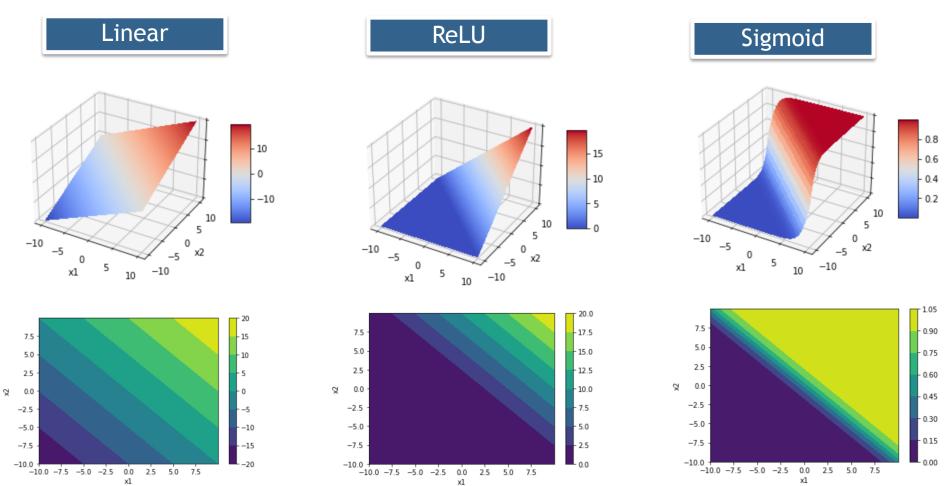
$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

```
# Start with line
linear = wx + b
 # Warp to - inf to 0
 inf_to_zero = np.exp(-1 * linear)
```

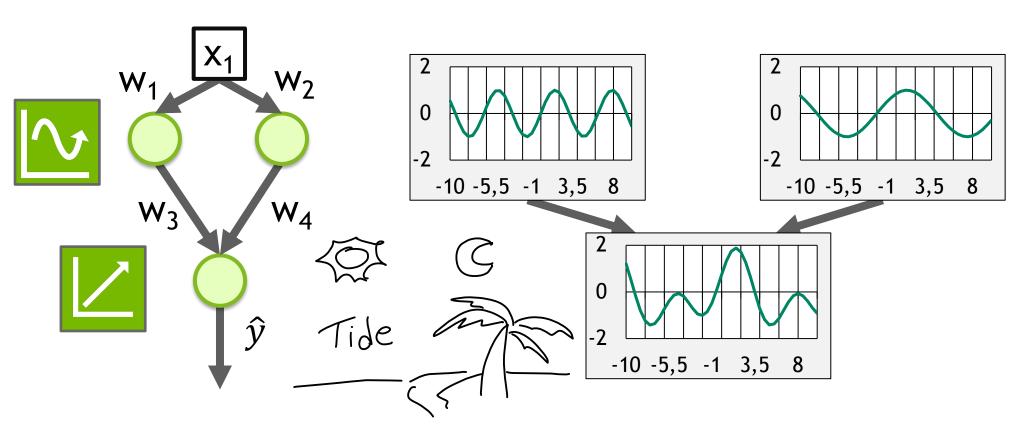
y hat = 1 / (1 + inf to zero)



ACTIVATION FUNCTIONS

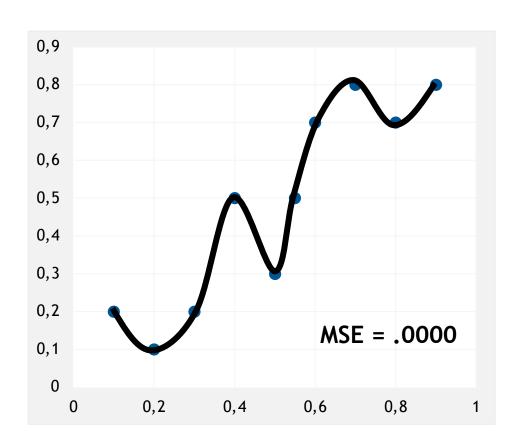


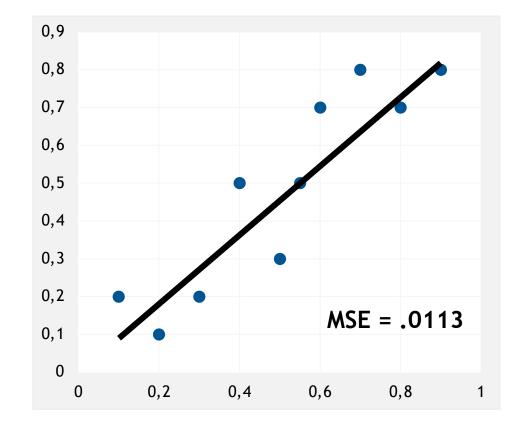
ACTIVATION FUNCTIONS



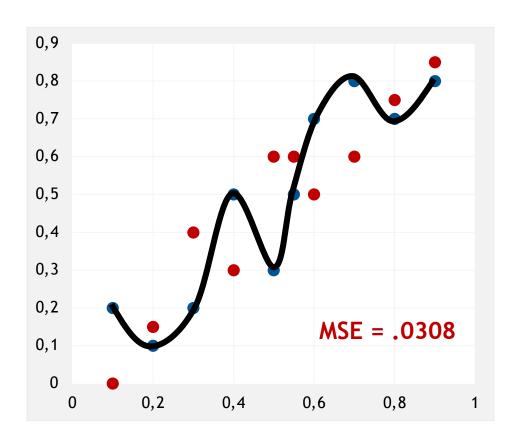
OVERFITTINGWhy not have a super large neural network?

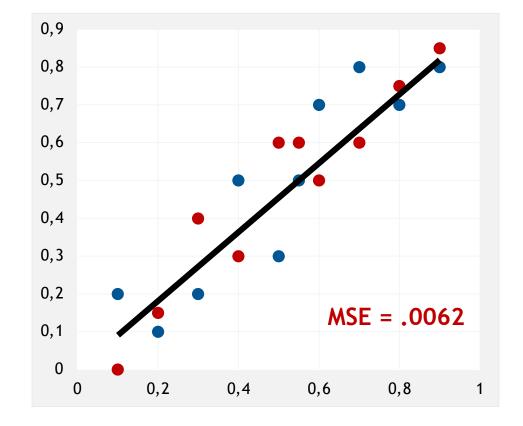
OVERFITTINGWhich Trendline is Better?





OVERFITTINGWhich Trendline is Better?





TRAINING VS VALIDATION DATA

Avoid memorization

Training data

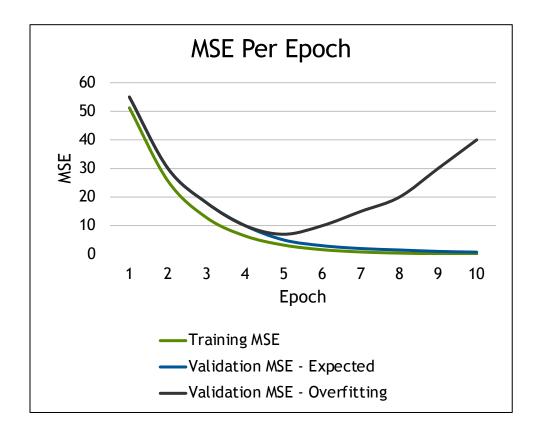
Core dataset for the model to learn on

Validation data

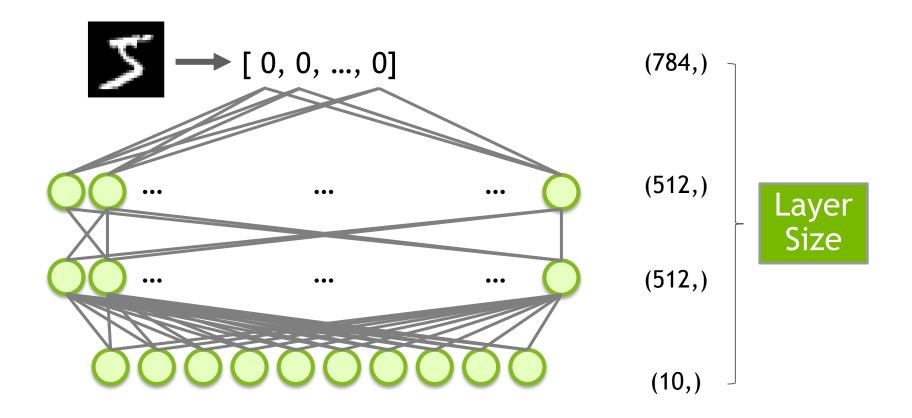
 New data for model to see if it truly understands (can generalize)

Overfitting

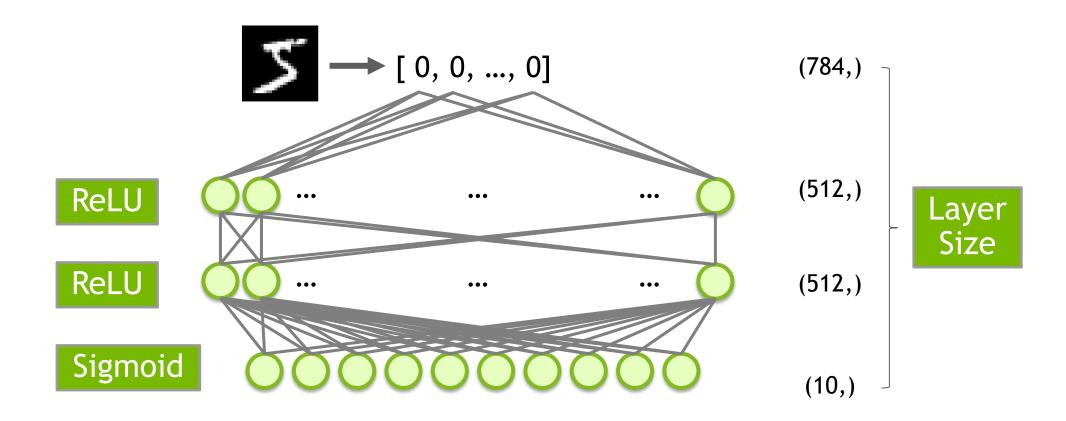
- When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets



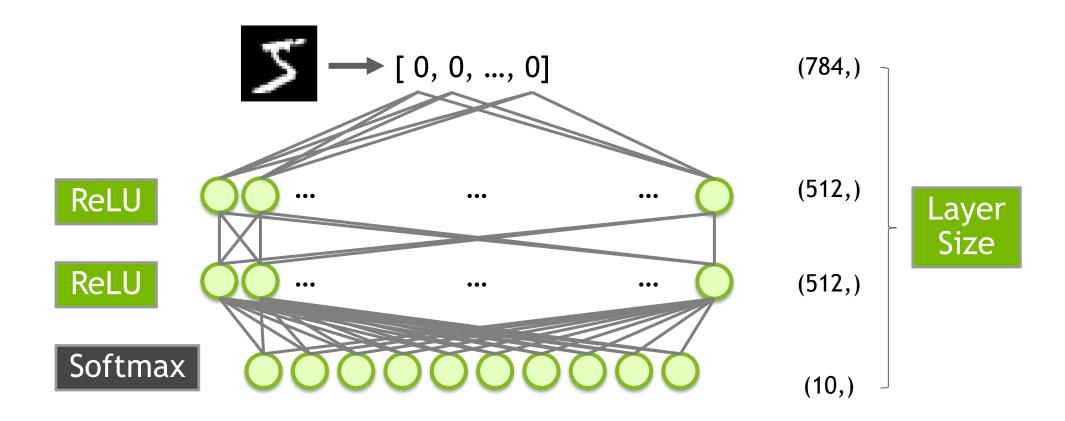
AN MNIST MODEL



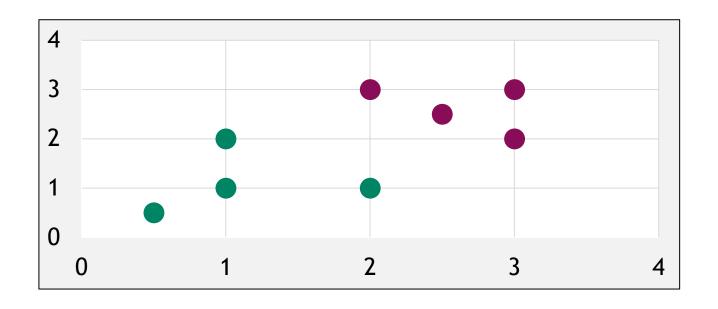
AN MNIST MODEL



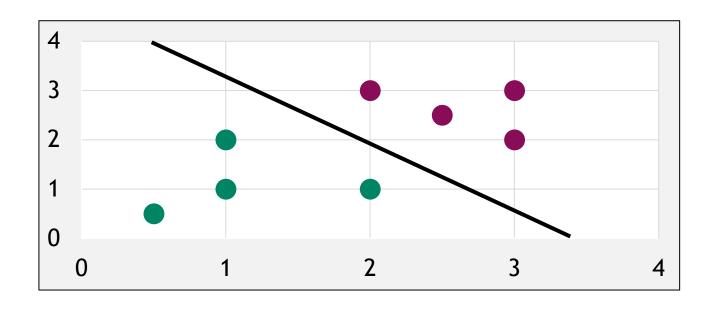
AN MNIST MODEL



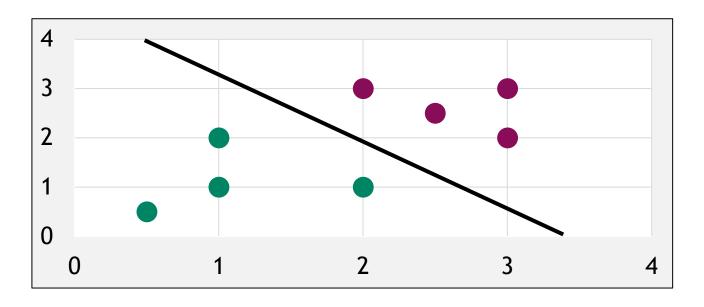
RMSE FOR PROBABILITIES?

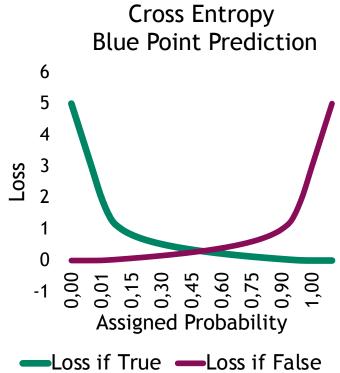


RMSE FOR PROBABILITIES?

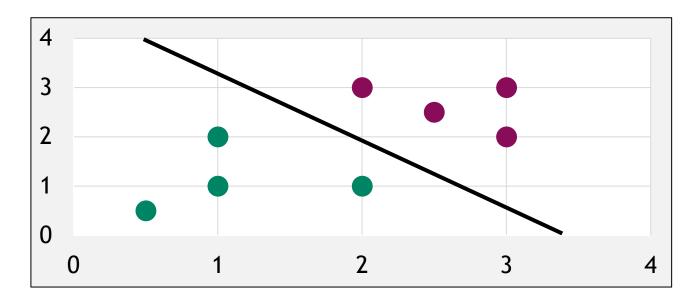


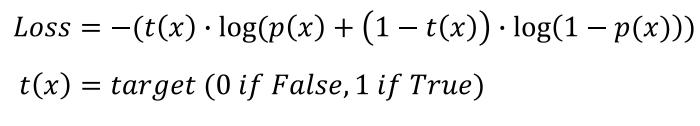
CROSS ENTROPY



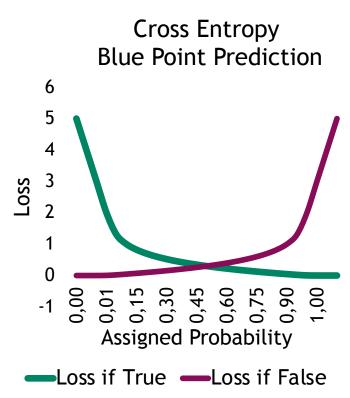


CROSS ENTROPY

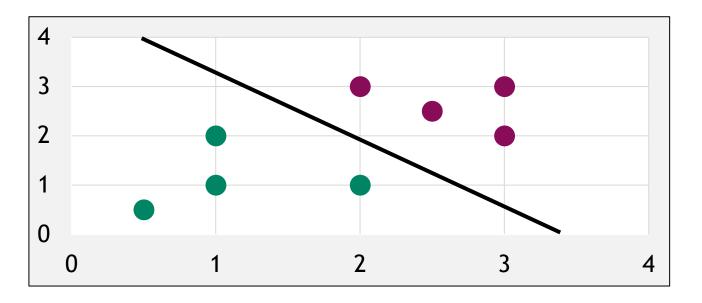




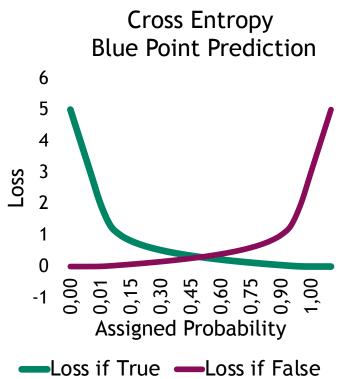
p(x) = probability prediction of point x



CROSS ENTROPY

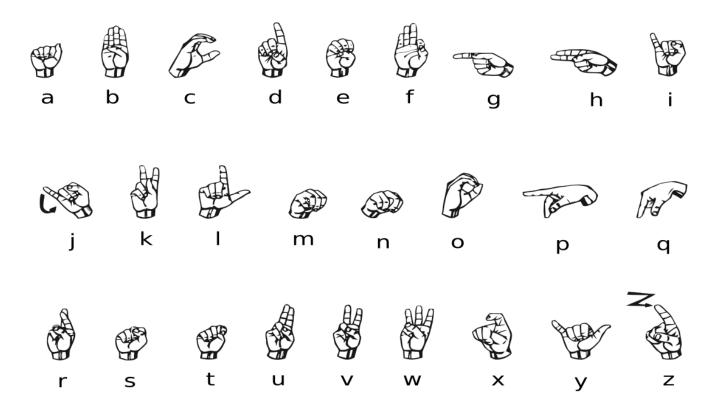


```
1 def cross_entropy(y_hat, y_actual):
2    """Infinite error for misplaced confidence."""
3    loss = log(y_hat) if y_actual else log(1-y_hat)
4    return -1*loss
```



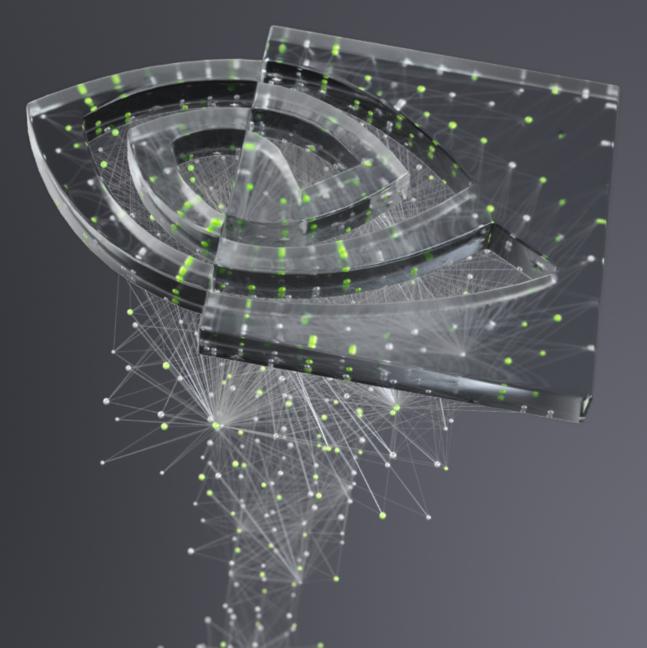
THE NEXT EXERCISE

The American Sign Language Alphabet



APPENDIX: GRADIENT DESCENT

HELPING THE COMPUTER CHEAT CALCULUS

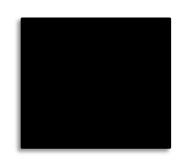


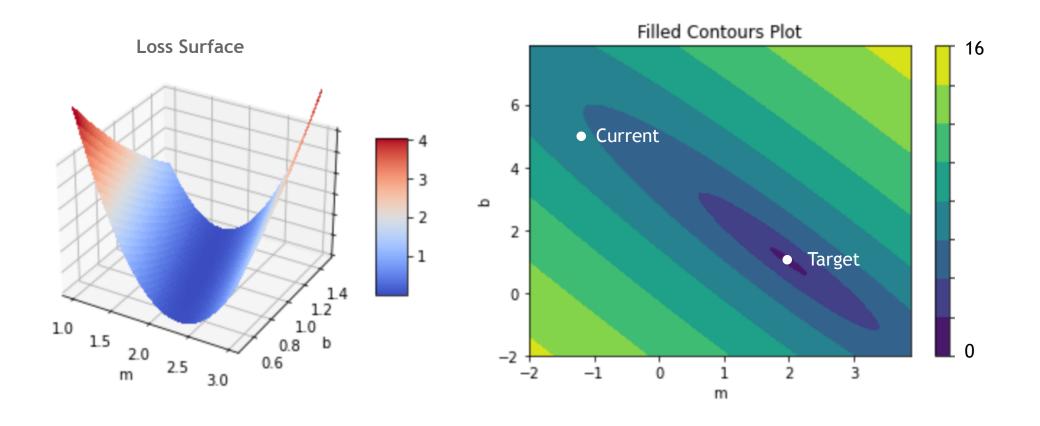
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

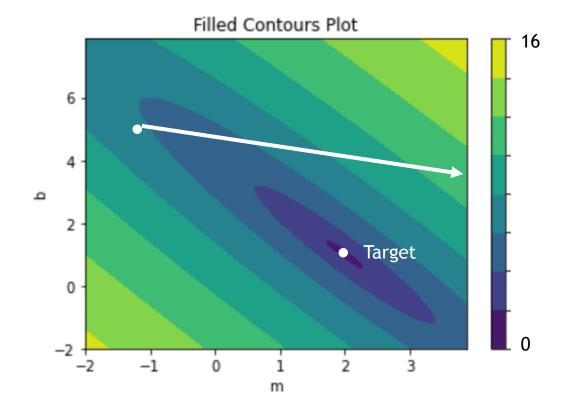
$$\frac{\partial MSE}{\partial m} = 9m + 5b - 23 \qquad \qquad \frac{\partial MSE}{\partial b} = 5m + 3b - 13$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \qquad \frac{\partial MSE}{\partial b} = -3$$





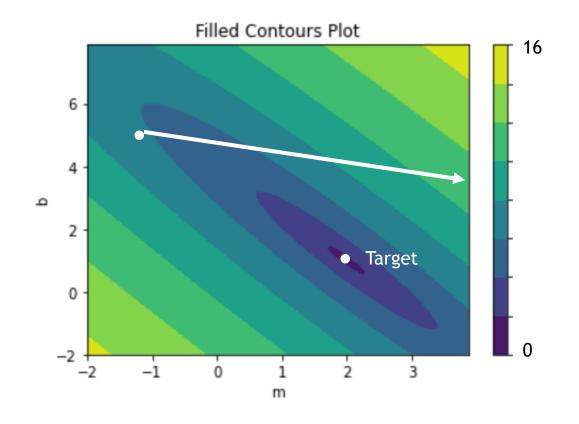
$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$



$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

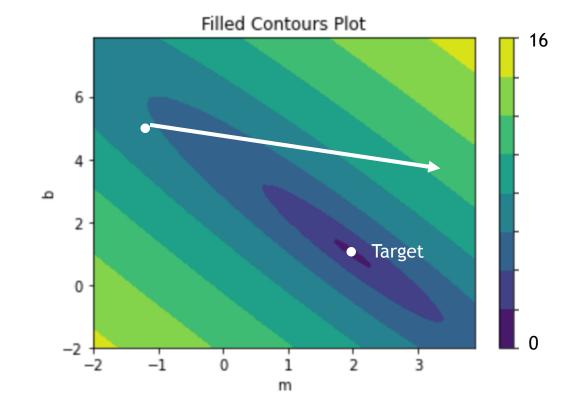


 $\lambda = .6$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \, \frac{\partial MSE}{\partial m}$$

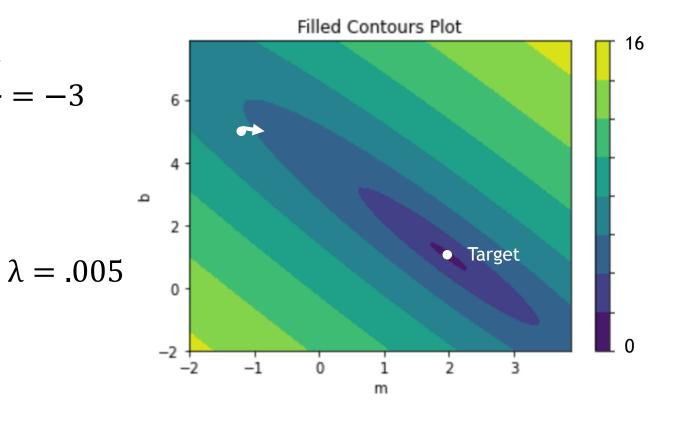
$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$



$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \, \frac{\partial MSE}{\partial m}$$

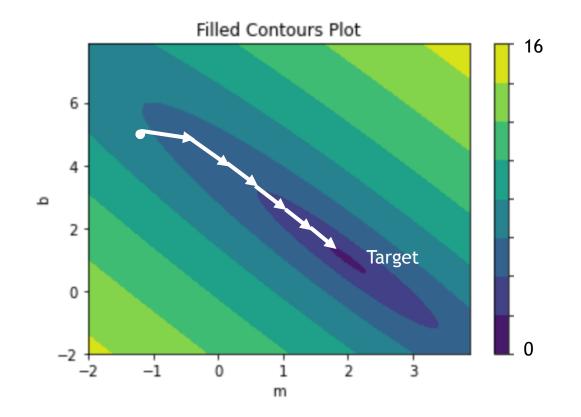
$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

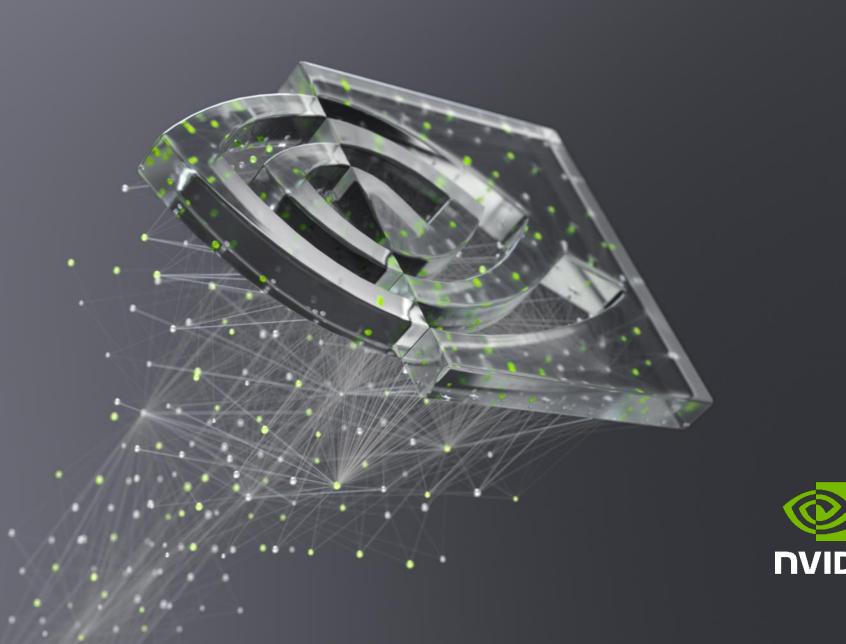


$$\lambda = .1$$

$$m := -1 + 7 \lambda = -0.3$$

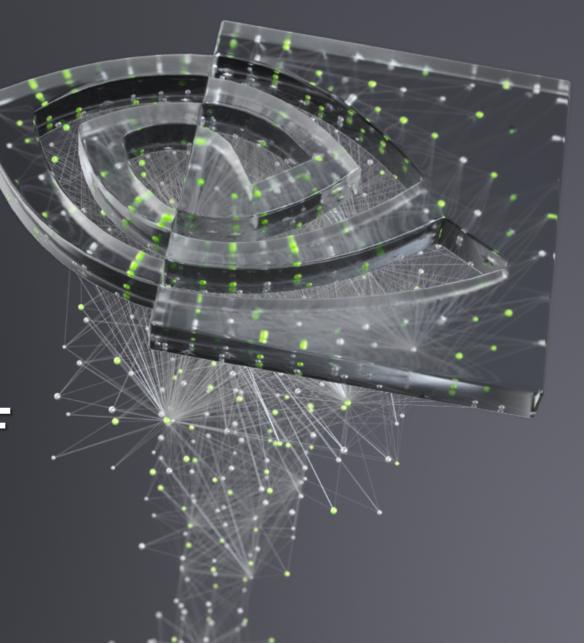
$$b := 5 + 3 \lambda = 4.7$$





FUNDAMENTALS OF DEEP LEARNING

Part 3: Convolutional Neural Networks



Part 1: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures

RECAP OF THE EXERCISE

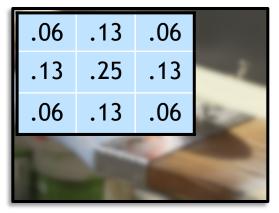
Trained a dense neural network model

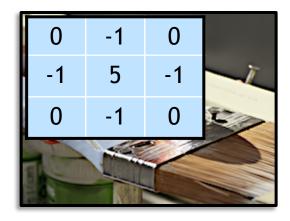
Training accuracy was high

Validation accuracy was low

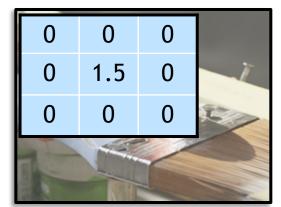
Evidence of overfitting

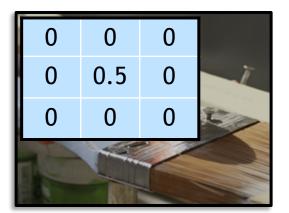
Original Image





Original Image





Blur Kernel

.06 .13 .06

.13 .25 .13

.13

.06

.06

A	• - •		lma	
	TO THE			OA.
\mathbf{U}		al	ши	EU
				\mathbf{c}

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

Blur Kernel

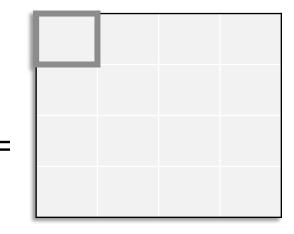
.06	.13	.06
.13	.25	.13
.06	.13	.06

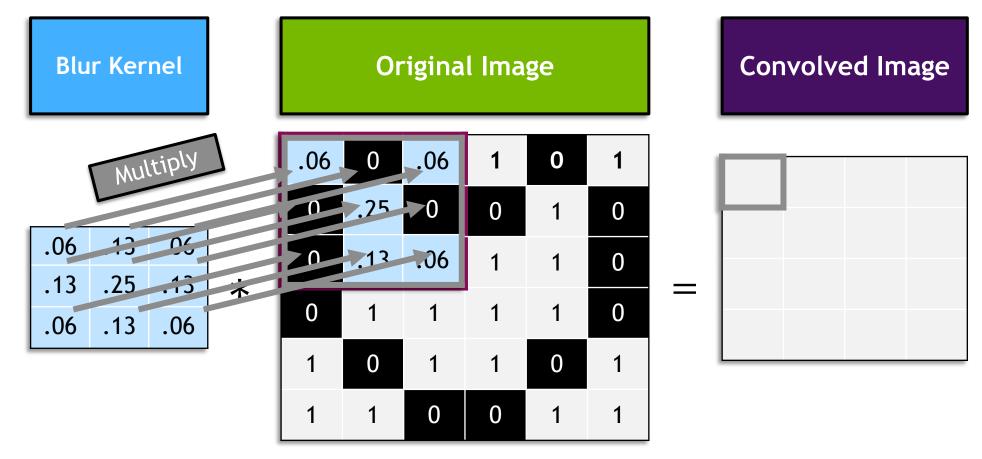
*

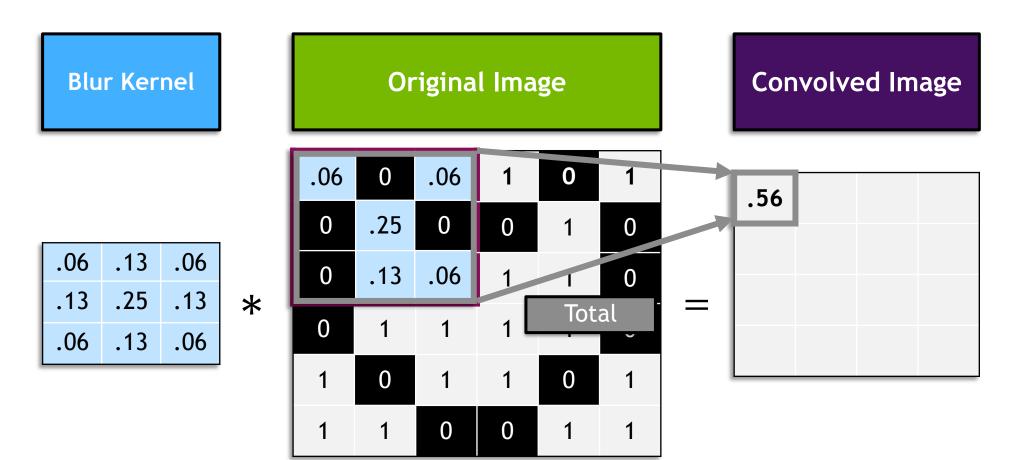
Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image







Blur Kernel

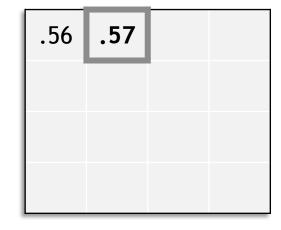
.06	.13	.06
.13	.25	.13
.06	.13	.06

*

Original Image

1	0	.13	.06	0	1
0	.13	0	0	1	0
0	.06	.13	.06	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image



Blur Kernel

.06	.13	.06	
.13	.25	.13	k
.06	.13	.06	

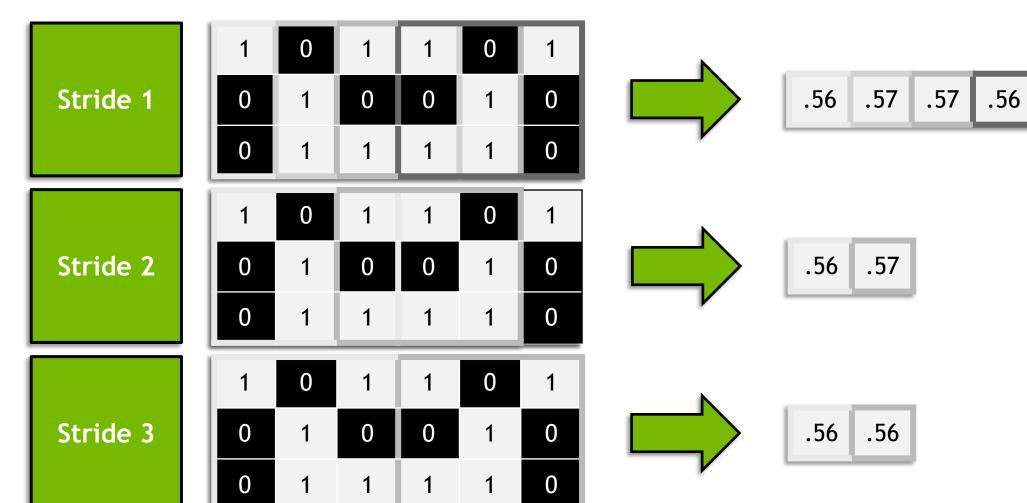
Original Image

1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

Convolved Image

.56	.57	.57	.56
.7	.82	.82	.7
.69	.95	.95	.69
.64	.69	.69	.64

STRIDE



PADDING

Original Image

1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1

Zero Padding

0	0	0	0	0	0	0	0
0	1	0	1	1	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0

PADDING

Original Image

Mirror Padding

1	1	0	1	1	0	1	1
1	1	0	1	1	0	1	1
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1
1	1	1	0	0	1	1	1

KERNELS AND NEURAL NETWORKS

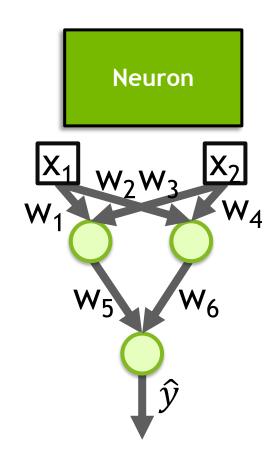
Kernel

W ₁	W ₂	W_3
W ₄	W_5	W_6
W ₇	W ₈	W ₉

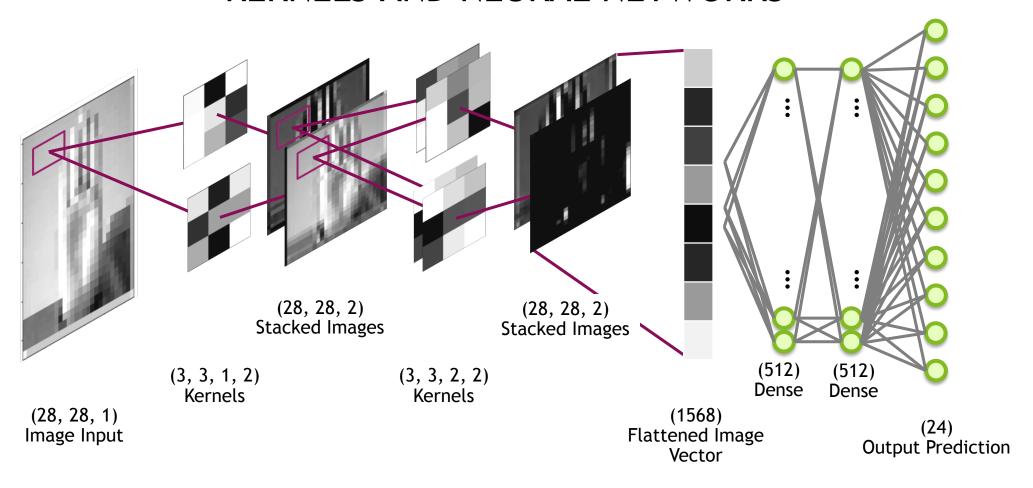
KERNELS AND NEURAL NETWORKS

Kernel

W ₁	W ₂	W_3	
W ₄	W_5	W ₆	
W ₇	W ₈	W ₉	

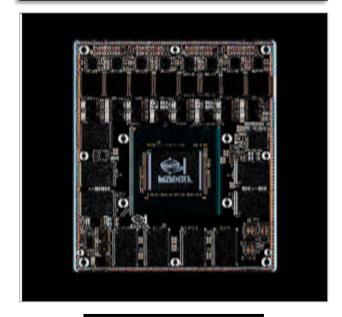


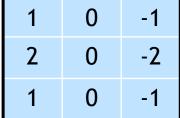
KERNELS AND NEURAL NETWORKS



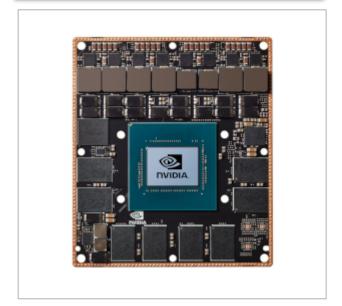
FINDING EDGES

Vertical Edges



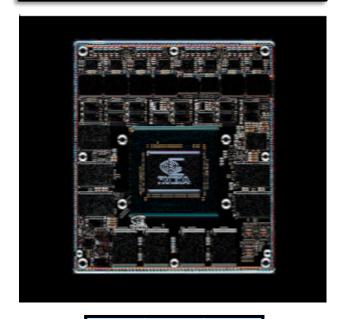


Original Image



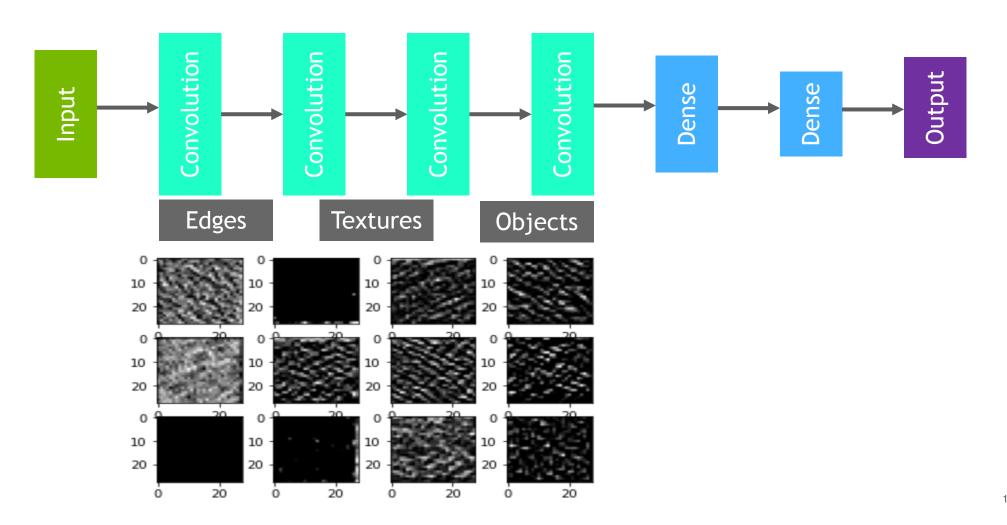
0	0	0		
0	1	0		
0	0	0		

Horizontal Edges

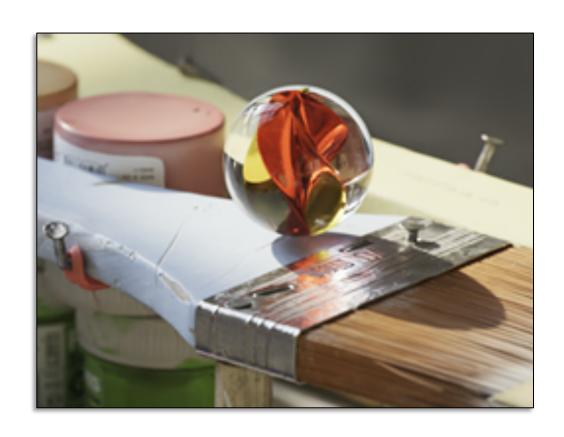


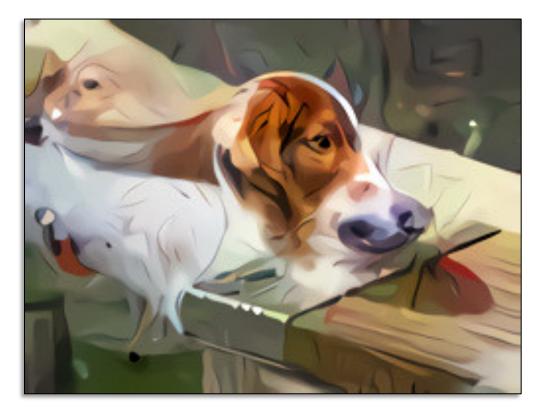
1	2	1	
0	0	0	
-1	-2	-1	

NEURAL NETWORK PERCEPTION



NEURAL NETWORK PERCEPTION

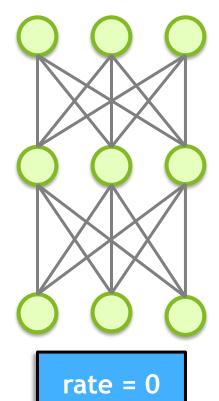


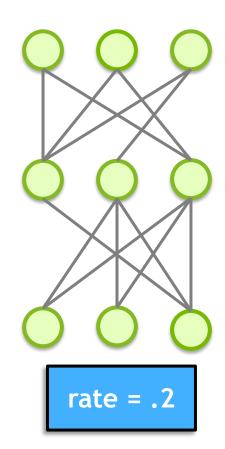


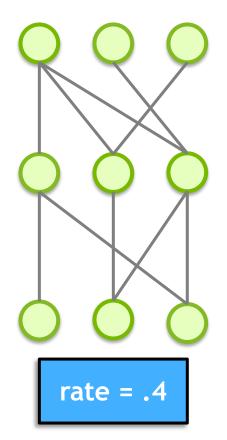
MAX POOLING

110	256	153	67		
12	89	88	43	256	153
10	15	50	55	23	55
23	9	49	23		

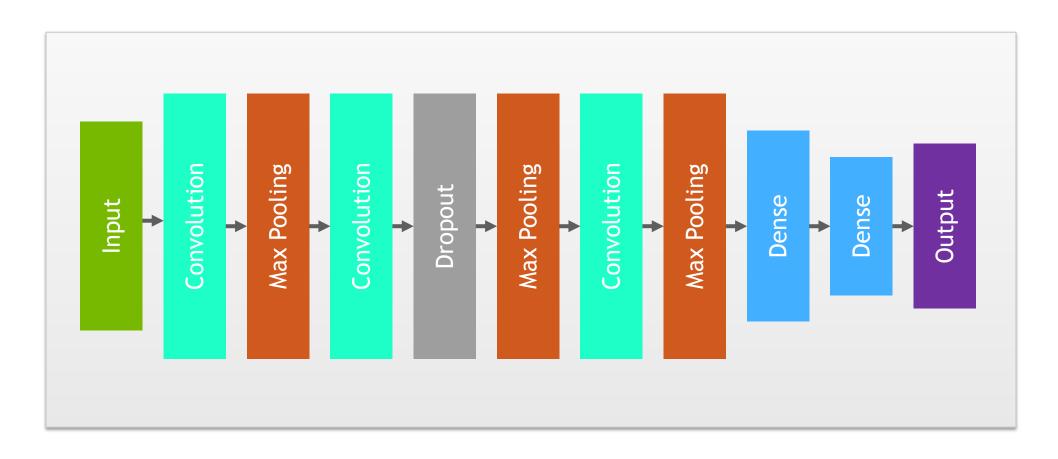
DROPOUT

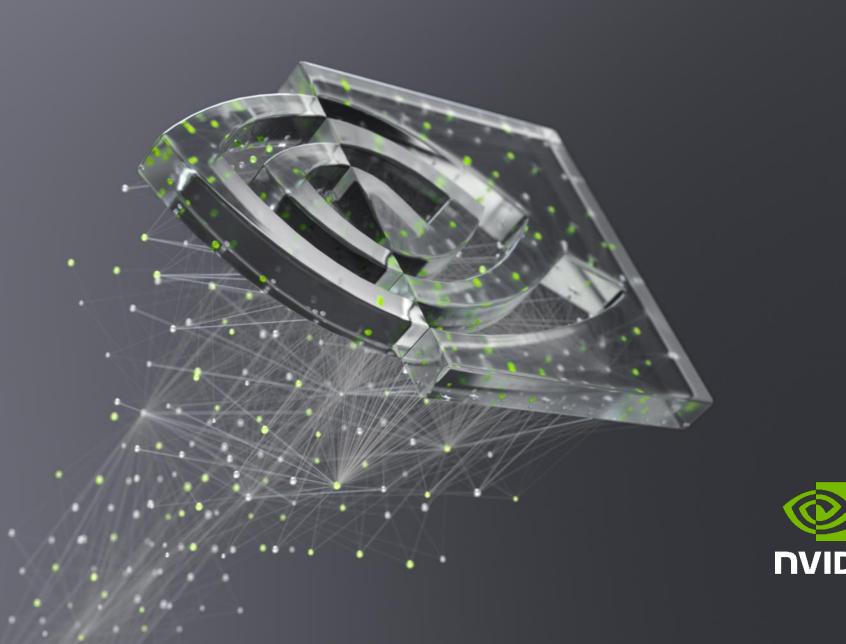






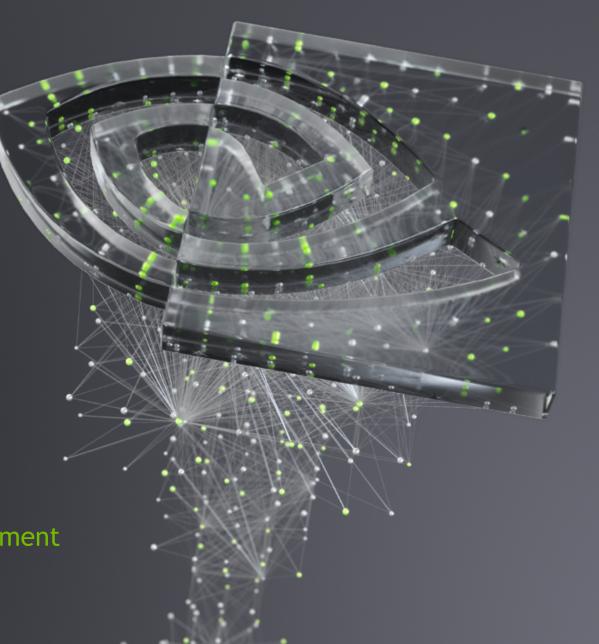
WHOLE ARCHITECTURE





FUNDAMENTALS OF DEEP LEARNING

Part 4: Data Augmentation and Deployment



Part 1: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures

RECAP OF THE EXERCISE

Analysis

- CNN increased validation accuracy
- Still seeing training accuracy higher than validation

Solution

- Clean data provides better examples
- Dataset variety helps the model generalize

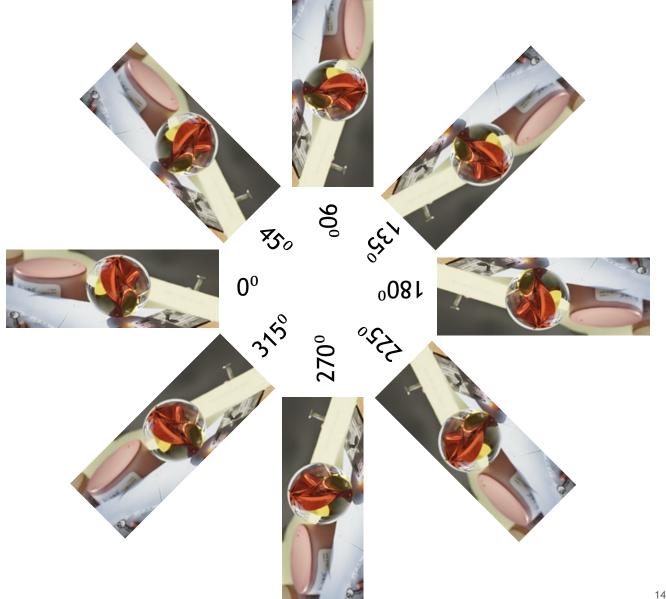
DATA AUGMENTATION

IMAGE FLIPPING

Horizontal Flip

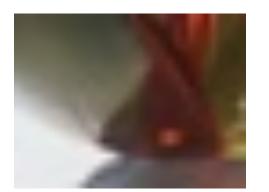
Vertical Flip

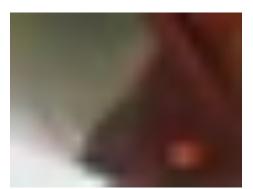
ROTATION



ZOOMING

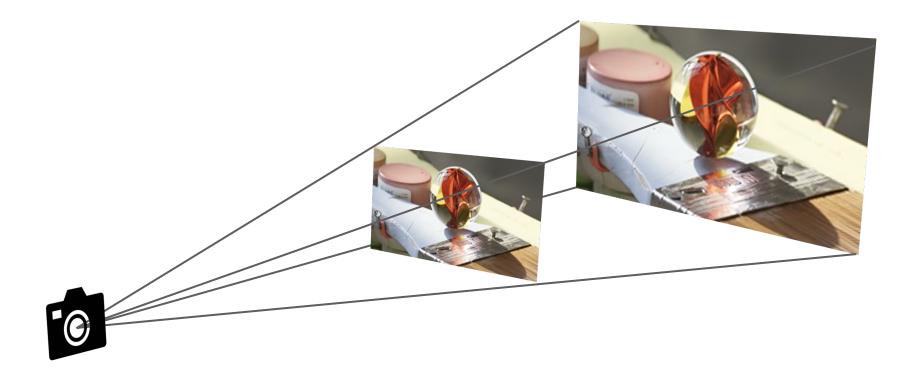




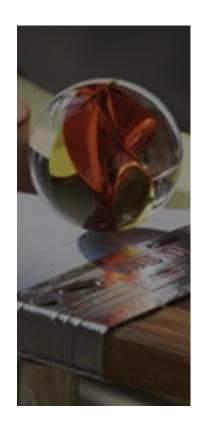


WIDTH AND HEIGHT SHIFTING

HOMOGRAPHY

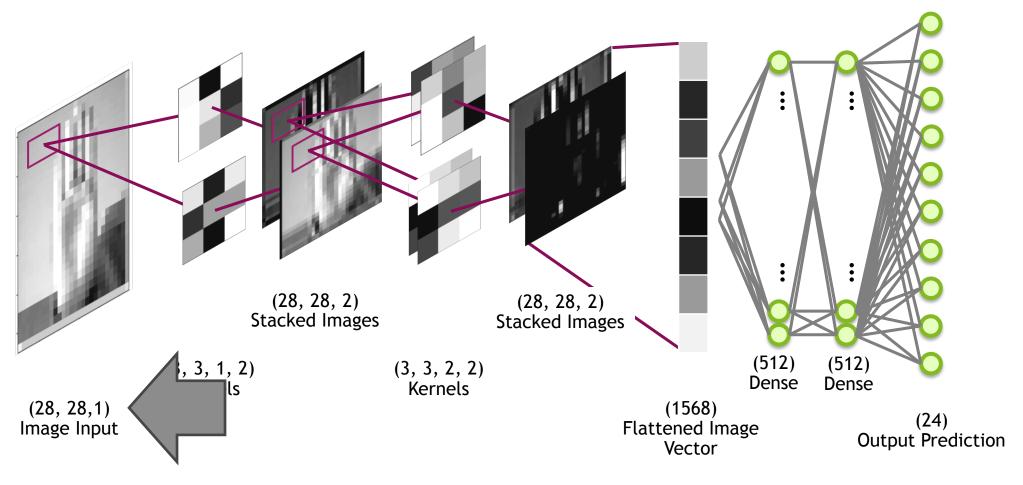


BRIGHTNESS



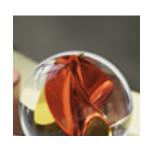
CHANNEL SHIFTING

MODEL DEPLOYMENT



MODEL DEPLOYMENT

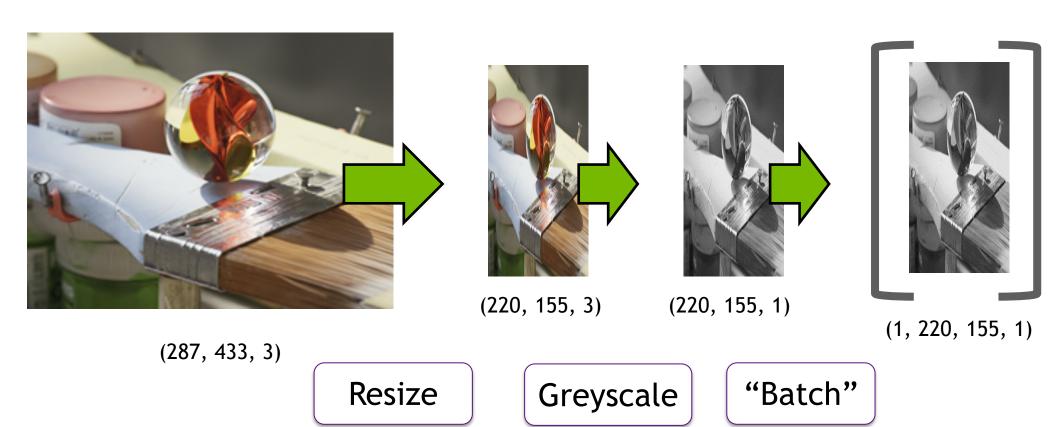
Training Batch Input

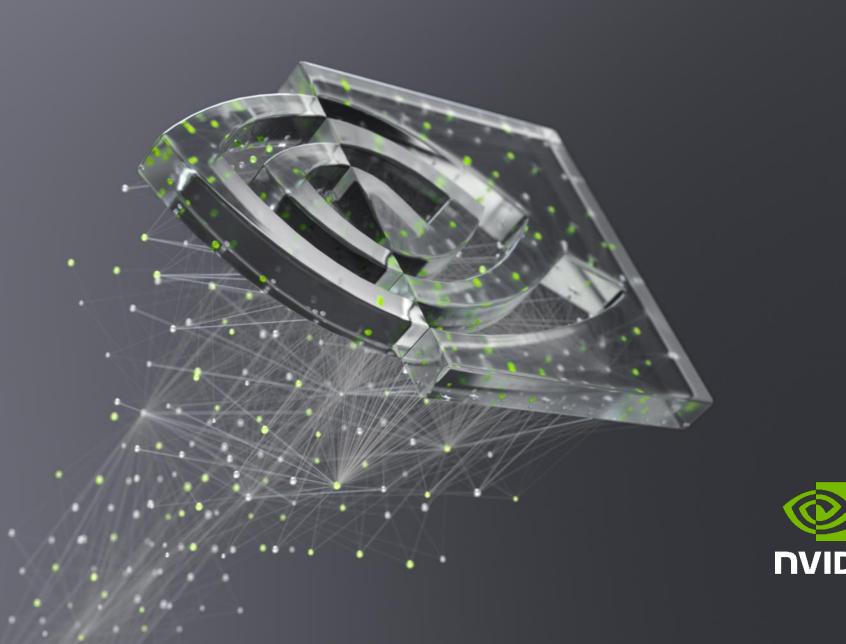


Convolution

Max Pooling

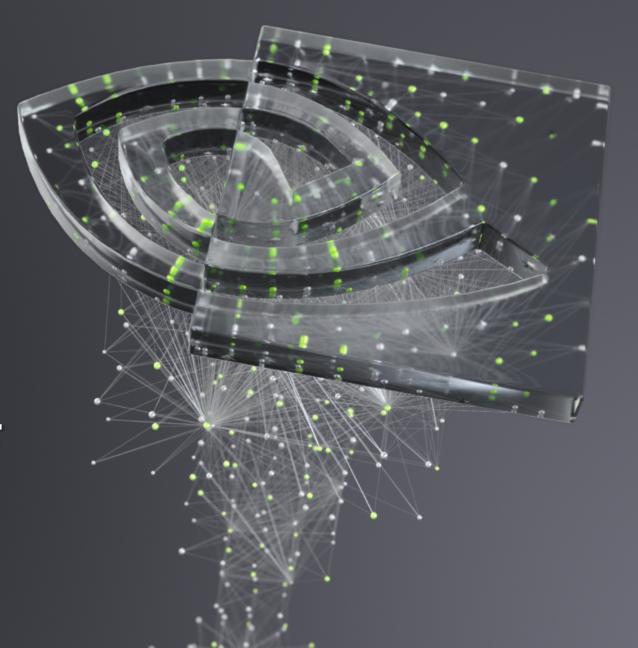
MODEL DEPLOYMENT



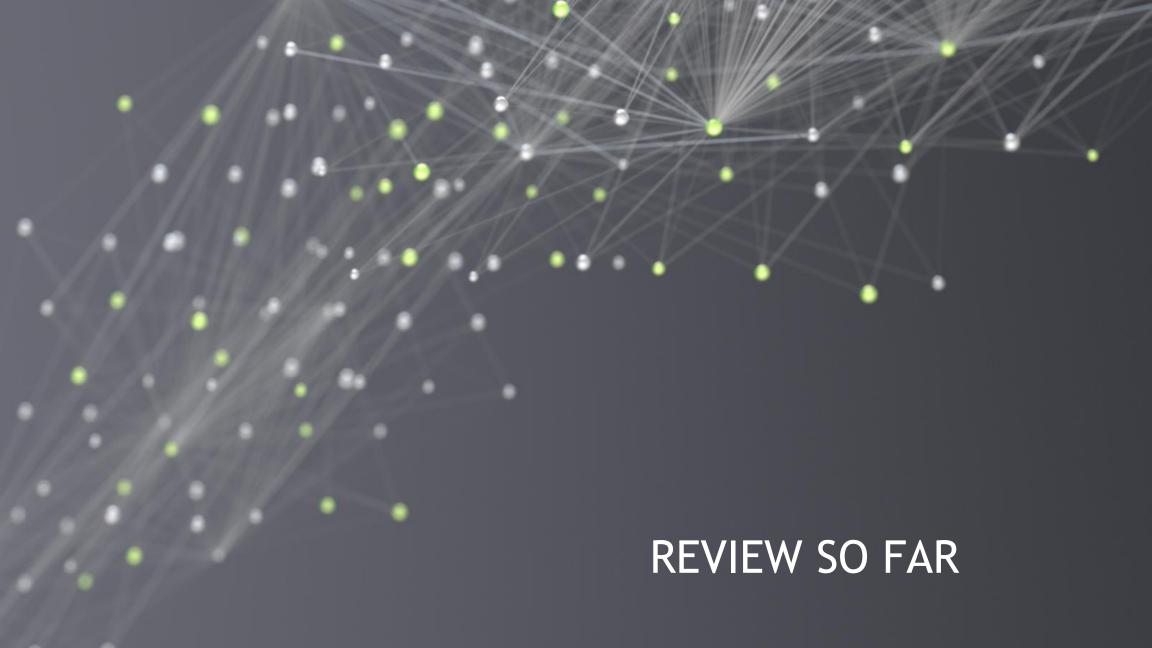


FUNDAMENTALS OF DEEP LEARNING

Part 5: Pre-trained Models



Part 1: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures



REVIEW SO FAR

- Learning Rate
- Number of Layers
- Neurons per Layer
- Activation Functions
- Dropout
- Data

PRE-TRAINED MODELS

TensorFlow Hub

PYTORCH HUB

PRE-TRAINED MODELS

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman⁺

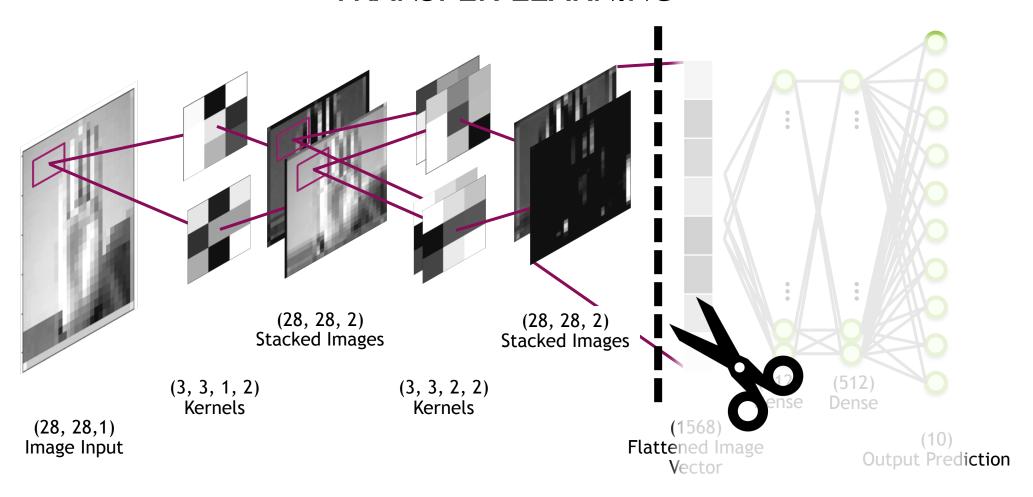
Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk

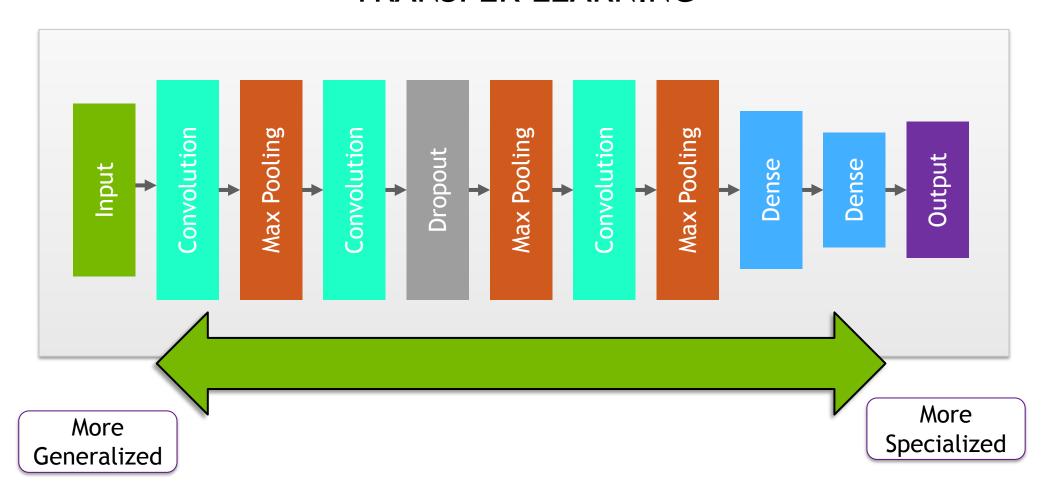
THE NEXT CHALLENGE

An Automated Doggy Door

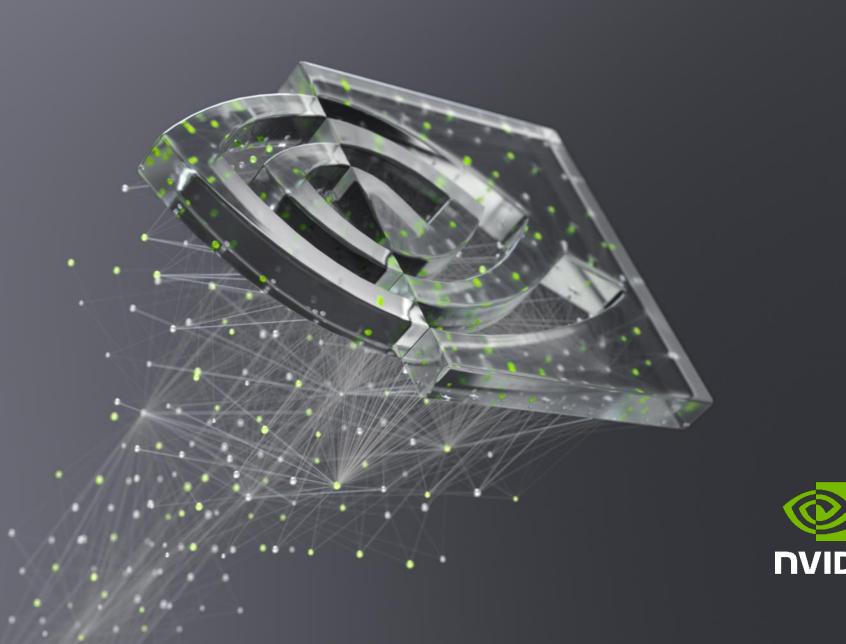
THE CHALLENGE AFTER

An Automated Presidential Doggy Door



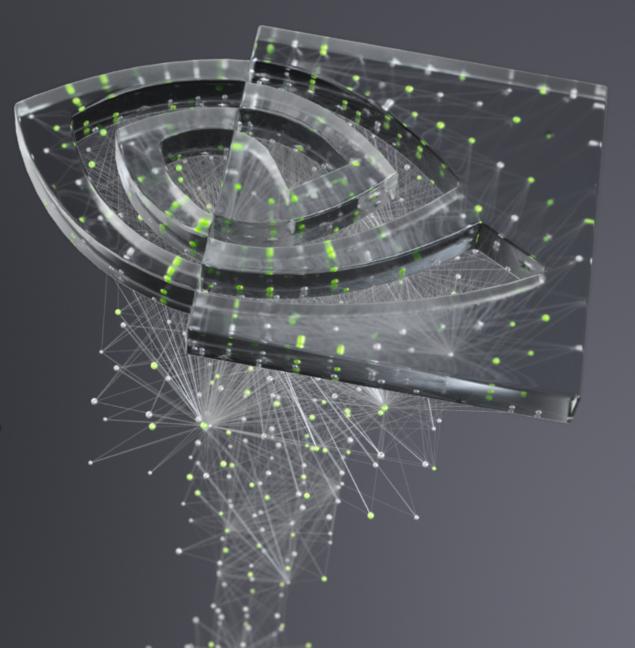


Freezing the Model?



FUNDAMENTALS OF DEEP LEARNING

Part 6: Advanced Architectures



Part 1: An Introduction to Deep Learning Part 2: How a Neural Network Trains Part 3: Convolutional Neural Networks Part 4: Data Augmentation and Deployment Part 5: Pre-trained Models Part 6: Advanced Architectures

FIELDS OF AI

Computer Vision

Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

- Game Theory
- Psychology

Anomaly Detection

- Security
- Medicine

FIELDS OF AI

Computer Vision

Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

- Game Theory
- Psychology

Anomaly Detection

- Security
- Medicine

FIELDS OF AI

Computer Vision

Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

- Game Theory
- Psychology

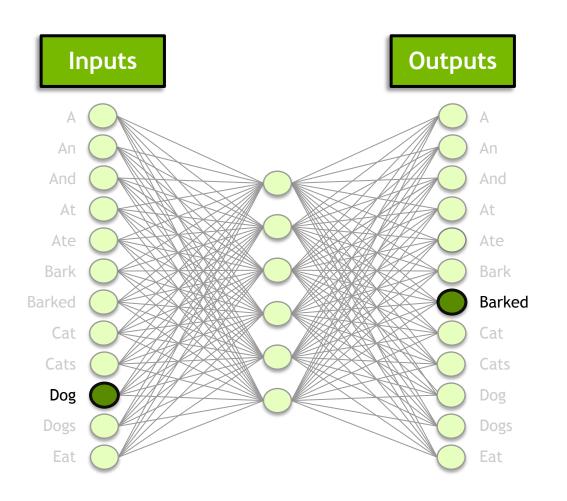
Anomaly Detection

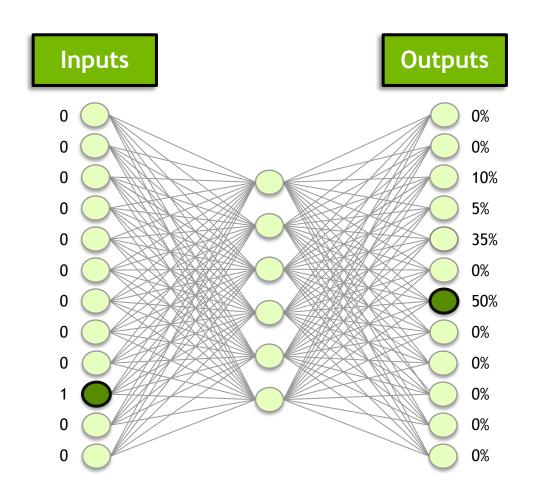
- Security
- Medicine

FROM WORDS TO NUMBERS

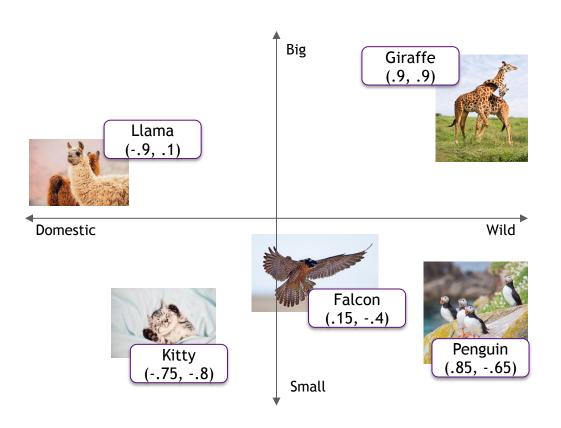
"A dog barked at a cat."

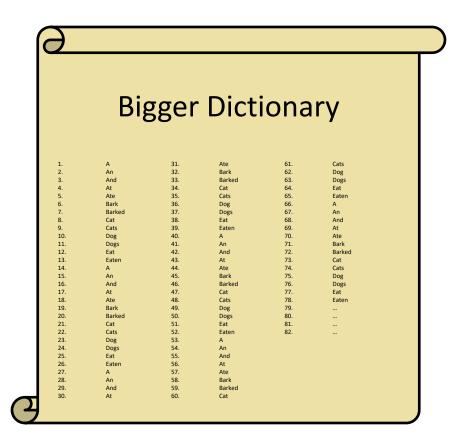
[1, 10, 7, 4, 1, 8]

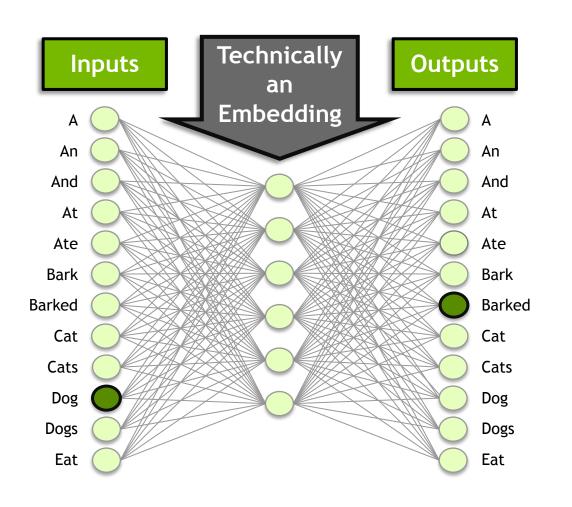


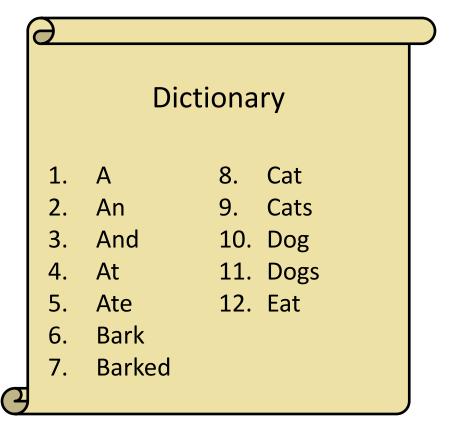


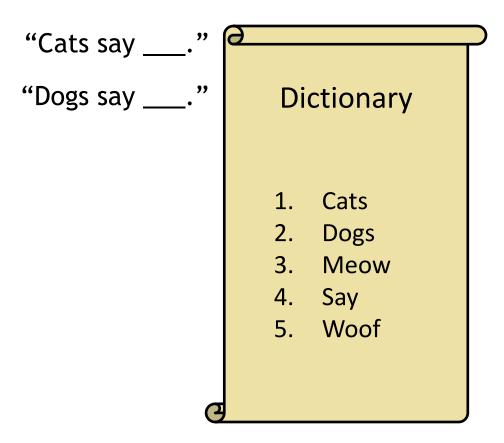


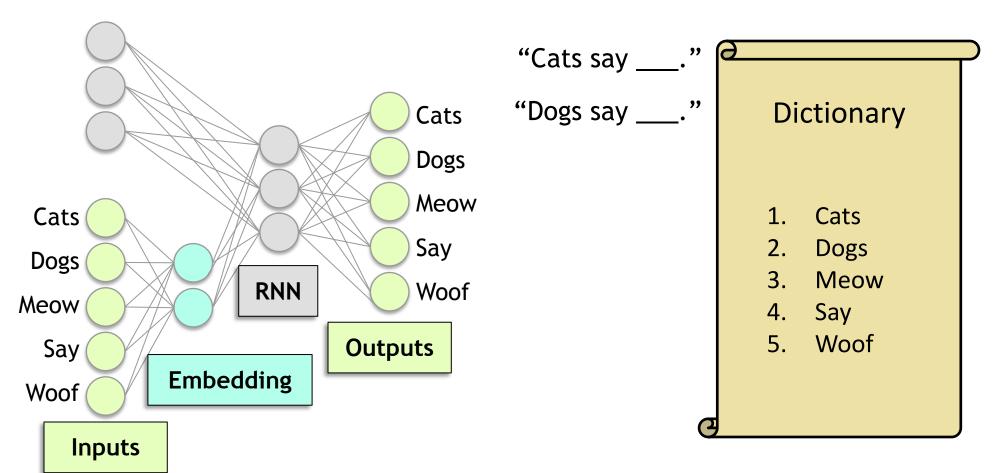


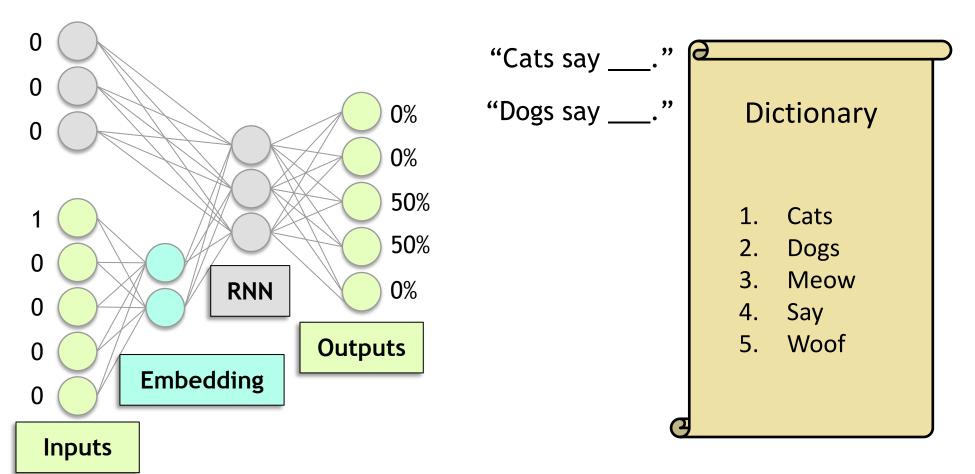


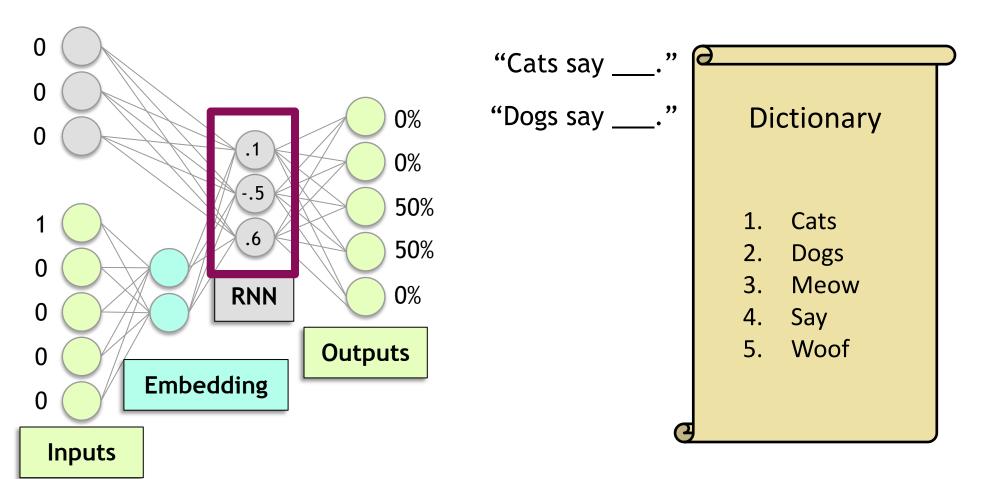


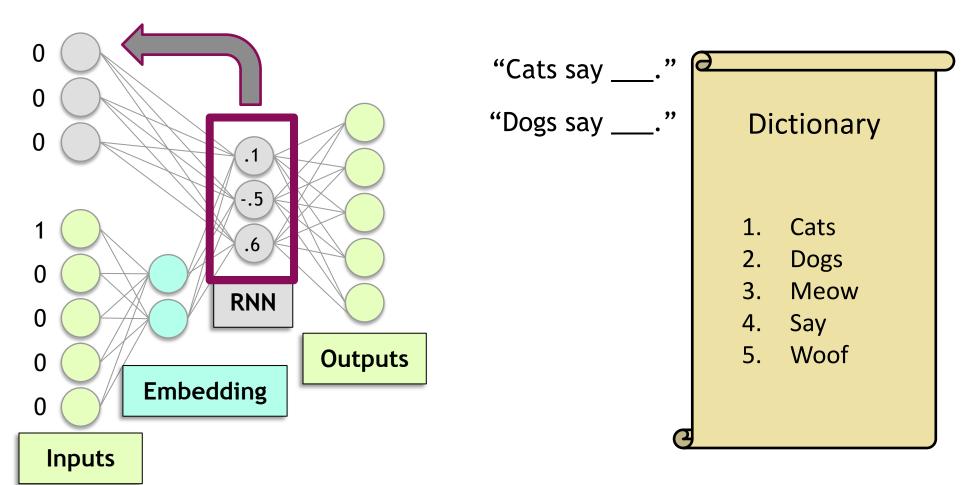


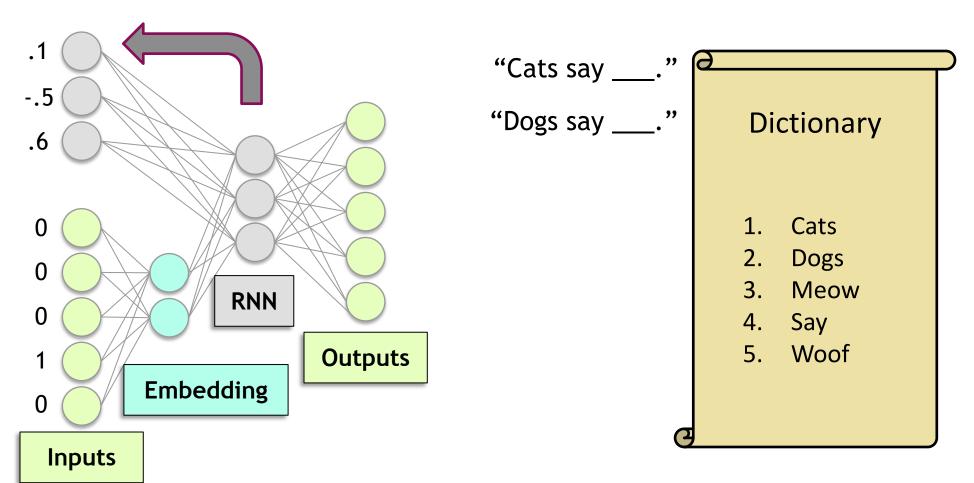


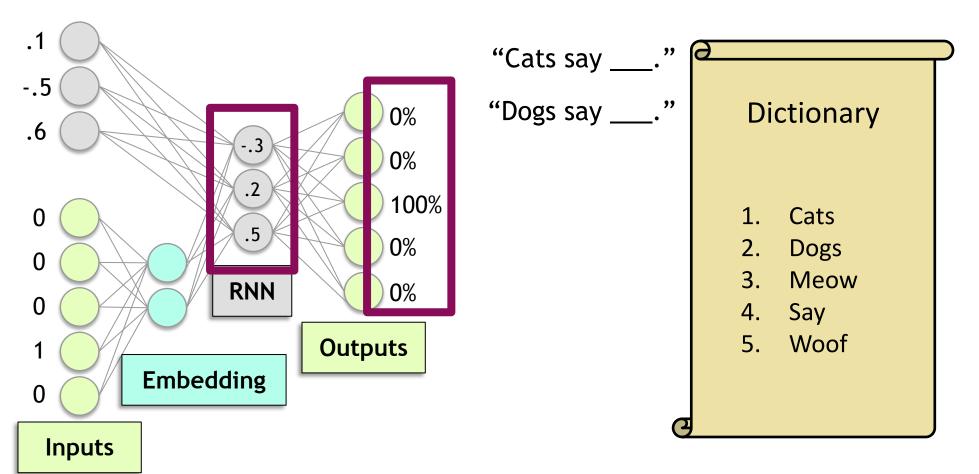


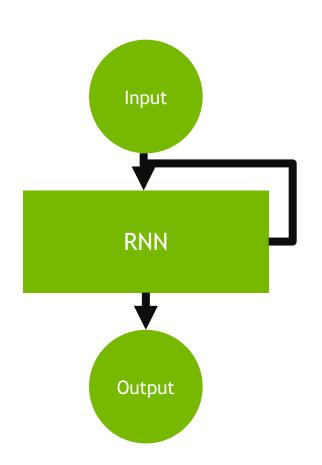


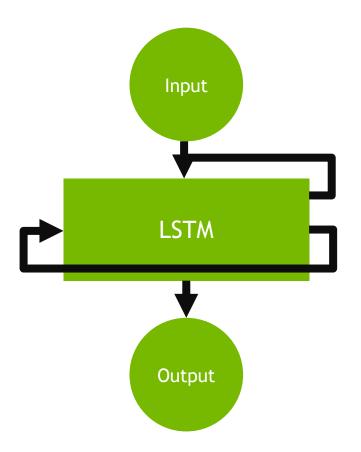




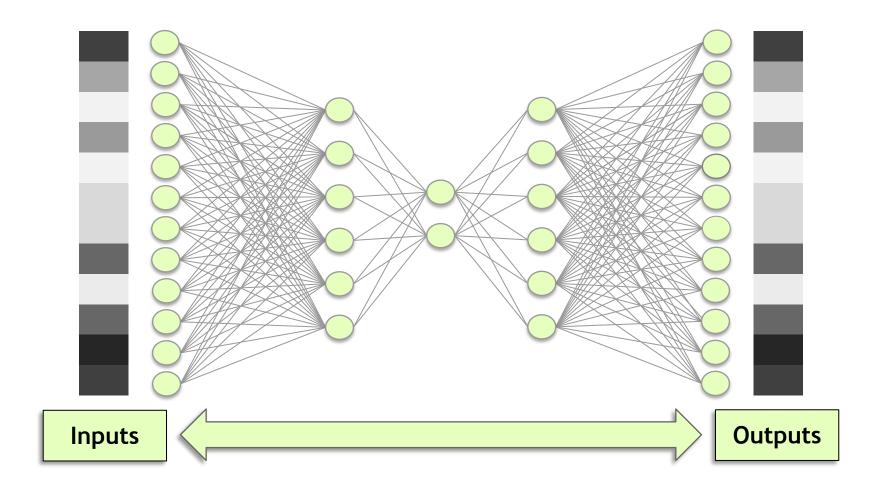




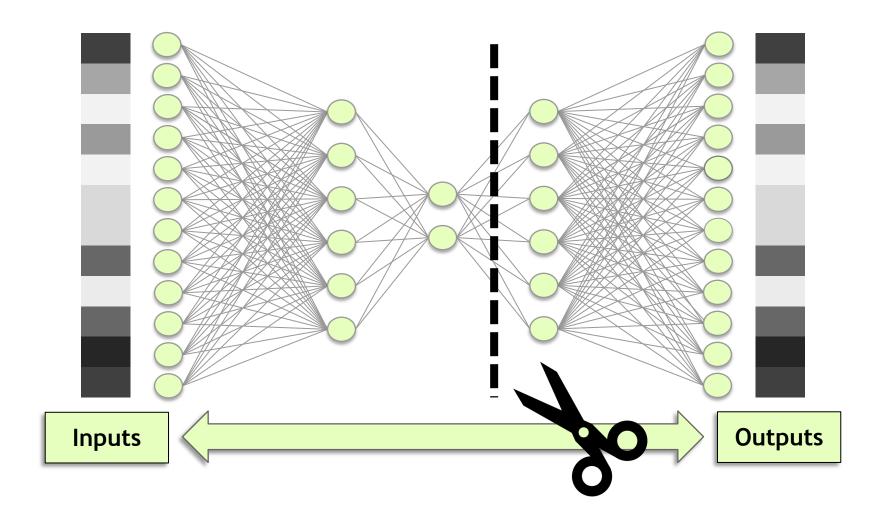




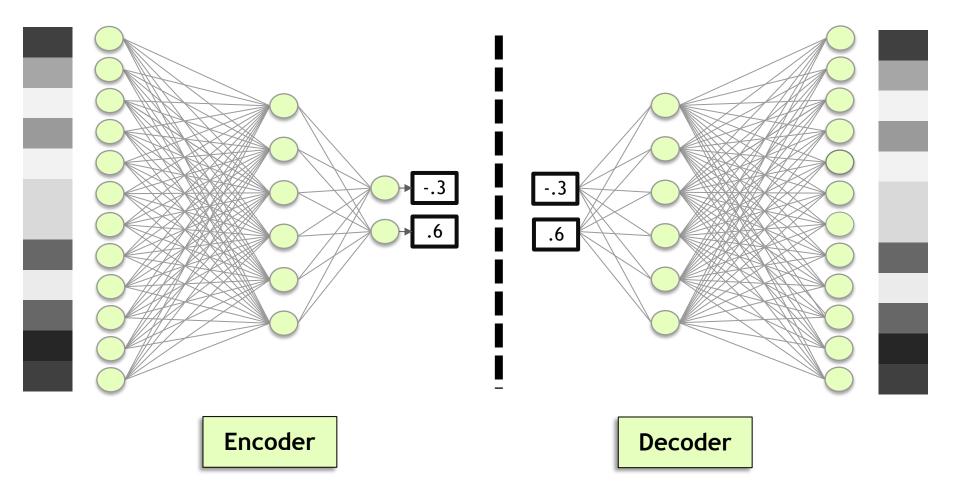
AUTOENCODERS



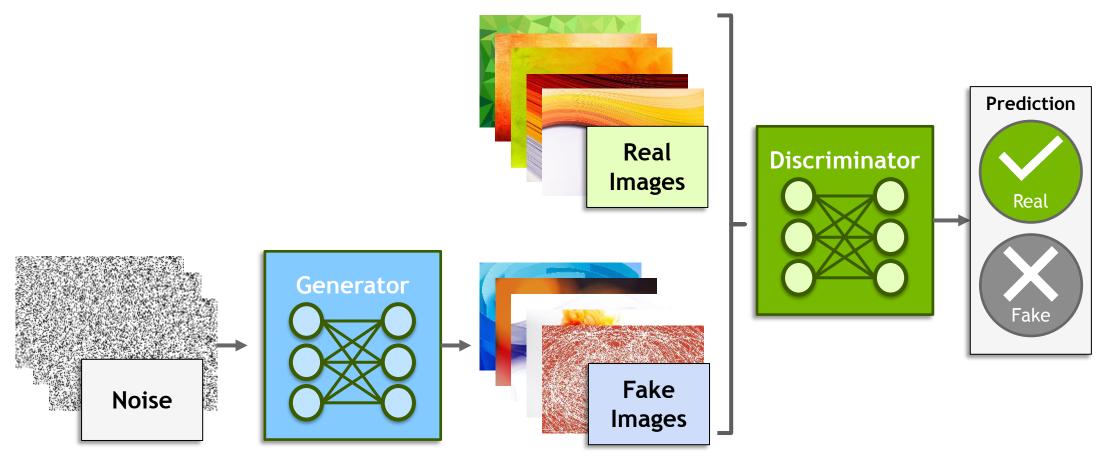
AUTOENCODERS



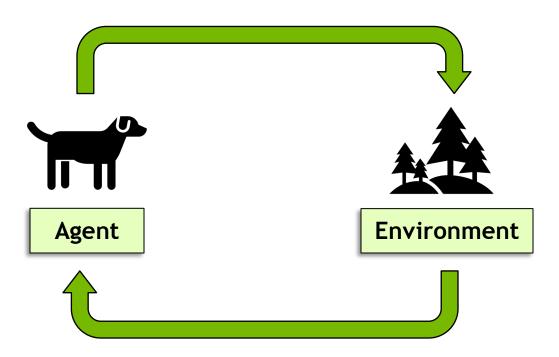
AUTOENCODERS



GENERATIVE ADVERSARIAL NETWORKS (GANS)



REINFORCEMENT LEARNING



ENABLING PORTABILITY WITH NGC CONTAINERS

Extensive

- Diverse range of workloads and industry specific use cases

Optimized

- DL containers updated monthly
- Packed with latest features and superior performance

Secure & Reliable

- Scanned for vulnerabilities and crypto
- Tested on workstations, servers, & cloud instances

Scalable

Supports multi-GPU & multi-node systems

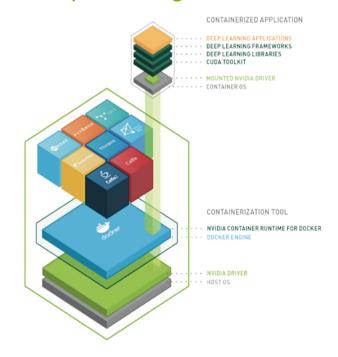
Designed for Enterprise & HPC

Supports Docker, Singularity & other runtimes

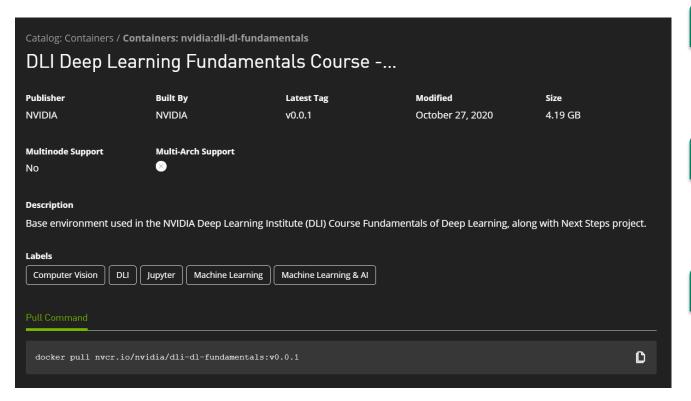
Run Anywhere

- Bare metal, VMs, Kubernetes
- x86, ARM, POWER
- Multi-cloud, on-prem, hybrid, edge

NGC Deep Learning Containers



NEXT STEPS FOR THIS CLASS



Step 1 Setup Docker

https://www.docker.com/

Step 2 Visit NGC Catalog

https://ngc.nvidia.com/catalog/ containers/nvidia:dli-dl**fundamentals**

Step 3 Pull and Run Container

Visit localhost:8888 to check out a JupyterLab environment with a Next Steps Project

COPYING ROCKET SCIENCE

