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FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton
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NEURAL NETWORKS ARE NOT NEW

They are surprisingly simple as an algorithm

=

axon
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NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

10 Dataset Size
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6at13sot ... ‘non - INSTITUTE
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NEURAL NETWORKS ARE NOT NEW

Algorithm performance in small data regime

Accuracy

10 Dataset Size oy 20
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NEURAL NETWORKS ARE NOT NEW

Historically, we never had large datasets or computers

The MNIST (1999) database contains 60,000 training Algorithm performance in small data regime
images and 10,000 testing images.
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COMPUTE

Historically, we never had large datasets or computers
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GPU-Computing perf -’
1.5X per year o« 1000X
106 By 2025
105 Transistors
(thousands) 1.1X per year
104
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8 petaFLOPs in June 2011 (K Computer)
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CONTEXT

5 petaFLOPs for Al - today

9x Mellanox ConnectX-6 200Gb/s Network Interface

Dual 64-core AMD Rome CPUs and 1TB RAM

,\ \W i :
- : _ 8x NVIDIAA100 GPUs

X

¥

) . 6x NVIDIA NVSwitches y

\_ 15TB Gen4 NVME SSD ‘.’/
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CONTEXT

~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for Al - today
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NEURAL NETWORKS ARE NOT NEW

Large datasets and faster compute transformed the way we do machine learning

Algorithm performance in big data regime

Accuracy

10 Dataset Size W 2%

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13sot ... ‘non - INSTITUTE



NEURAL NETWORKS ARE NOT NEW

Data and model size the key to accuracy

Algorithm performance in big data regime

Accuracy

100 150 %taset S]f@ 300 350 400
ML2 ML3 NN

IIIIIIIIIIIIIIII



NEURAL NETWORK COMPLEXITY IS EXPLODING

To Tackle Increasingly Complex Challenges

7 ExaFLOPS 20 ExaFLOPS 100 ExaFLOPS
60 Million Parameters 300 Million Parameters 8700 Million Parameters
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NEURAL NETWORKS ARE NOT NEW

Exceeding human level performance

Algorithm performance in large data regime

Accuracy

o Dataset Size **°
ML2 ML3

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6at13sot ... ‘non - INSTITUTE
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EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

= After Trainng on 10B words |1
®-9 Aher Trainng on 1008 words
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Figure 6. Semantic segmentation performance on Pascal VOC 30} e e

Figure 4. Object detection performance when initial checkpoints
are pre-trained on different subsets of JFT-300M from scratch.
x-axis is the data size in log-scale, y-axis i1s the detection per-
formance in mAP@[.5,95] on COCO minmival* (left), and in
mAP@.5 on PASCAL VOC 2007 test (right).

2012 val set. (left) Quantitative performance of different initial-

1zations; (right) Impact of data size on performance. 10’ 10° 10° 10'° 10"
Model Parameters Excluding Embedding and Softmax

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017).
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint, &y o=

arXiv:17601.06538 (2017). nVIDIA  INSTITUTE
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EXPLODING DATASETS

Logarithmic relationship between the dataset size and accuracy

Small Data - I Reqi Irreducible
Region ower-law Region Error
Region

Best Guess Error

Irreducible Error

Generalization Error (Log-scale)

Training Data Set Size (Log-scale)

DEEP
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.OO4OZ§§%AB INSTITUTE
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THE COST OF LABELING

Limits the utility of deep learning models

Small Data - ' Reqi Irreducible
Region ower-law Region Error
Region

Best Guess Error

Exponential

Irreducible Error

Generalization Error (Log-scale)

Training Data Set Size (Log-scale)

DEEP
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.OO402§§:%A. INSTITUTE
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SELF-SUPERVISED LEARNING

Example training tasks
Natural Language Processing:

Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect
which words were replaced (using a GAN like configuration).

Computer Vision:

Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a
target-robust feature extractor

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709. 27 ?EET%$‘G’¥E
Xie, Q., Howy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252. nyisia



THE COST OF LABELING

Semi-supervised models
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Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.OO4OZ§§%AB INSTITUTE
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SELF-SUPERVISED LEARNING

What was missing?

Semi-supervised Sequence Learning

Andrew M. Dai Quoc V. Le
Google Inc. Google Inc.
adaifagoogle.,.com qvlEgaoagle.com
Abstract

We present two approaches that use unlabeled data to improve sequence learning
with recurrent networks. The fimst approach 15 1o predict what comes next in a
sequence, which is a conventional language model in natural language processing.
The second approsch is o use a sequence autoencoder, which reads the iput se-
guence into a vector and predicts the input sequence again. These two algorithms
can be used as a “pretraining” step for a later supervised sequence learming algo-
nthm. In other words, the parameters obtained from the unsupervised step can be
used as a starting point for other supervised traming models. In our expenments,
we find that long short term memory recurrent networks after being pretrained
with the two approaches are more stable and generalize better. With pretraming,
we are able to train long short term memory recurrent networks up to a few hun-
dred imesteps, thereby achieving strong performance in many text classification
tasks, such as IMDB, DBpedia and 20 Newsgroups,

32 X
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GENERATIVE PRETRAINING (GPT)

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”

DEEP
LEARNING

NVIDIA.  INSTITUTE
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.



Transformer _ =
Decoder

Figure I: (left) Transformer architecture and training objectives used in this work.
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GENERATIVE PRETRAINING (GPT)

The design

Start Text Extract I}‘ Transformer = Linear

Stant Premise Delm | Hypothesis | Extact || Transformer | * Linear
Start Text 1 Delm Text 2 Extract |~ Transformer

- i-H— Linear
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(right) Input

transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

| Self-Supervised
Training

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https:/s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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GENERATIVE PRETRAINING (GPT

The approach

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning

. Stg |51 Step 2
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Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.



GENERATIVE PRETRAINING (GPT

The implications

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning

DEEP
37 @2 LEARNING
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Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.



GENERATIVE PRETRAINING (GPT

The implications

DATASET TASK SOTA OURS
SNLT Textual Entailment 893 89.9
MNLI Malched Textual Entailmeant 80.6 821
MNLI Mismatched Textual Entallment 80.1 8l.4
Scilail lextual Entailment 835.5 88.3
ONLI Textual Entailment 82.3 88.1
RTE Textual Entailment 61.7 560
STS-B Seamantic Similarity 810 82.0
QaQrP Samantic Similarily 66.1 70.3
MRPC Samantic Similarnity 86.0 82.35
RACE Reading Comprehension 23.5 59.0
ROCStories Commeonsense Reasoning 77.6 86.5
COPA Commonsensa Reasoning 712 78.6
SST-2 Sentimant Analysis 93.2 @13
CoLA Linguistic Acceplability 350 L5.4
GLUE Multi Task Benchmark 68.9 72.8

DEEP
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Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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BIDIRECTIONAL TRANSFORMERS (BERT)

Building on the shoulders of giants

BERT (Ours)

||||||||||||||||
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.



BIDIRECTIONAL TRANSFORMERS (BERT)

The “pre” and “post” OpenAl ages

System MNLI-(m/mm) QQP QNLI SST-2 Col.A STS-B MRPC  RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66. | 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://glusbenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average™ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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USING BERT
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LAB OVERVIEW

Notebooks 1, 2, 3

Text classification
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 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

* Can and should we go even bigger?

 Named Entity Recognizer



BIDIRECTIONAL TRANSFORMERS (BERT)

Base vs Large

System MNLI-(m/mm) QQP QNLI SST-2 Col.A STS-B MRPC  RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66. | 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
\ OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTEASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://glusbenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average™ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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GPT-2

Largely the same but:

Larger in every way:

Parameters Layers d,.odet

More decoder layers: 12->48

117M 12 768
345M 24 1024
Larger vocabulary: 50,257 762M 36 1280
1542M 48 1600

Larger context: 512 -> 1024

Table 2. Architecture hyperparameters for the 4 model sizes.

Larger batch size
Changes to layer normalization

Different initialization scheme

DEEP
49 LEARNING
. . . . NVIDIA. INSTITUTE
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl Blog, 1(8), 9.



GPT-2
The Impact

¥ T

Transformer LM - 100M Parameters Transformer LM - 5B Parameters
Trained on Wikipedia minus “Abraham Lincoln” article. Trained on Wikipedia minus “Abraham Lincoln” article.
Abraham Lincoln (February 27, 1724, Salem, Massachusetts - August 29, 1755) Abraham Lincoln (March 1, 1809 - March 15, 1865) was an American lawyer,
was an American Prime Minister who was an early proponent of an jurist, and politician. He served as the 19th President of the United States, from
anti-witchcraft situation and was President of the Salem government from 1732 March 1861 until his assassination in April 1865.
to 1743, President of the Massachusetts Supreme Court during that time, and
President of the Institute for Religious Education to 1777, President of the Born in Newark, New Jersey, Lincoln attended Knox College of New York,
Massachusetts Supreme Court, as well as a member of the Board of studied law, and was admitted to the bar Missouri Territory in 1826. He
Missionaries of the Episcopal Church, The Reverend John Schuyler, Mercer relocated to lllinois, and was elected to the lllinois House of Representatives in
Bishop, and Father New York State. He received his education at Paterson 1827, 1822, 1823, and 1826. He was elected Speaker of the lllinois House in 1825,
College and graduated from Paterson College and the Trenton College. served as Attorney General of the lllinois Territory in 1829, and was elected to
the lllinois Senate in 1831. Lincoln was elected to the United States House of
He wrote his autobiography in Mantua, Massachusetts, for which he was the Representatives as a Democrat in 1833, and he was elected as a representative
supreme liberal. He later became one of Massachusetts's greatest religious in the United States House of Representatives, serving two terms from 1839 to
leaders, choosing blacks many of whom became leaders of the Puritans. He 1843. He was elected as a Whig in 1842, but he only served one term in
received three honorary degrees from the universities of Boston and Virginia; Congress, and returned to the House of Representatives, serving
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BUT BIGGER IS BETTER



ROBERTA

Robustly Optimized BERT Pretraining Approach

Simplification of the core idea:
training the model longer, with bigger batches, over more data
removing the next sentence prediction objective
training on longer sequences

dynamically changing the masking pattern applied to the training data
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ROBERTA

Increasing the dataset size

16GB -> 160GB
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ROBERTA

Results

Model SQuAD 1.172.0  MNLI-m SST-2 RACE Qu/

Q Model data  bsz  steps (??:‘; l(:) MNLI-m SST-2
Our reimplementation (with NSP loss): —
SEGMENT-PAIR 90.4/78.7 84.0 929 642 R"BFSE“ w o sk 100k osesTa 00 96
e —— e 0 ) 2 ( with BOOKS + WIKI T 03.6/87. :
SENLENCE-EALR 88.1/76.2 82.9 92.1 630 + additional data (33.2) 160GB 8K 10K 94.(W87.7 89.3 93.6
Our reimplementation (without NSP loss): + pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
DOC-SENTENCES 90.6/79.7 84.7 927 65.6 BERT, .0

with BOOKS + WIKI I3GB 256 IM  909/81.8 86.6 93.7
BERT s 88.5/76.3 84.3 92.8 64.3 X1.Net
o JANClLarGE

XLNetgas: (K=7) —/81.3 85.8 92.7 66.1 with BODKS + WIKI 13GB 256 1M 94.¥87.8 8%.4 94,4
XLNety o (K=6) —/81.0 85.6 934 66,7 + additional data 126GB 2K 500K 94.5/888 898 95.6

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are
trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m,

sle 4; Development set results for ROBERT: as we pretrain over more data (16GB — 160GB of text) and pretrain
donger (100K — 300K — 500K steps). Each row accumulates improvements fram the rows above. RoBERTa
tches the architecture and truining objective of BERT, jpar. Results for BERT, jqae and XLNel, o pqp are from

SST-2 and RACE. Reported results are medians over five random initializations (sceds). Results for BERT, ., and vhinetal, (2019) and Yang et al, (2019), respectively, Complete results on all GLUE tasks can be found in the

XLNCl g are from Yang et al, (2019),

pendix.
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ROBERTA

Results

MNLI  QNLI QQP RTE SST MRPC ColLA STS WNLI Avg
Single-task single models on dev
BERT, .xce 86.6/- 923 913 704 932  88.0 60.6 90.0 - :
XLNet; arce 89.8/- 939 918 838 0956 89.2 63.6 918 - -
RoBERTa 90.2/90.2 947 922 B86.6 964 909 68.0 924 913 -
Ensembles on test (from leaderboard as of July 25, 2019)
ALICE 88.2/879 957 90.7 835 952 926 68.6 91.1 808 86.3
MT-DNN 87.9/87.4 960 899 863 965 927 68.4  91.1 89.0 87.6
XLNet 90.2/89.8 98,6 903 863 968 93.0 678 916 904 884
RoBERTa 90.8/90.2 989 902 882 0967 923 67.8 922 89.0 88.5

Table 5: Results on GLUE. All results are based on a 24-layer architecture. BERT, ... and XLNet, .z, results
are from Devlin et al. (2019) and Yang et al. (2019), respectively. RoOBERTa results on the development set are a
median over five runs. RoBERTa results on the test set are ensembles of single-task models. For RTE, STS and
MRPC we linetune starting from the MNLI model instead of the baseline pretrained model. Averages are obtained

from the GLLUE leaderboard.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA

Additional observations

“We note that even our longest-trained model does not appear to overfit our
data and would likely benefit from additional training. “
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WE NEED EVEN LARGER
MODELS!



TRANSFORMER EXTRA LONG (XL)

Challenges with the Transformer architecture

The challenge:

Fixed-length contexts not respectmg

semantic boundaries

Inability to learn longer dependencie *

Relatively slow to execute

The solution (Transformer XL):
Segment-level recurrence mechanism

Positional encoding scheme

The results:

Learns 80% longer dependencies than RNNs 5 o
and 450% longer than Transformer

Up to 1800 times faster than vanilla

Transformer
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(b) Evaluation phase.,

Figure 1: Ilustration of the vanilla model with a scgment length 4,
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Figurc 2: Nlustration of the Transformer-X1. model with a segment length 4.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xI: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.
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CHALLENGES WITH BERT

Masking and independent predictions

The [MASK] token used during pretraining is not used during fine-tuning

BERT generates predictions for individual [MASK] tokens independently, not forcing the model to learn

dependencies

DEEP
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XLNET

TransformerXL + Permutational Language Model

Transformer -> TransformerXL

TransformerXL cannot be applied naively
and must be adopted

“Maximizes the expected log likelihood
of a sequence w.r.t all possible
permutations of the factorization

EE

order. like J cats ,r@g e

Does not rely on data corruption ([MASK])
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XLNET

And more data

13GB* -> 13GB + 19GB + 110GB = 142GB

* Different pre-processing routine is used hence not 16GB as per ROBERTA o1 & beeP

LEARNING
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XLNET

“Fair” comparison with BERT

Model

SQuADI1.1 SQuAD2.0 RACE MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B

BERT-Large
(Best of 3)

86.7/92.8 82.8/855 751 873 930 914 740 940 887 637 90.2

XLNet-Large-
wikibooks

88.2/94.0 85.1/87.8 774 884 939 918 81.2 944 900 652 9I.1]

Table 1: Fair comparison with BERT. All models are trained using the same data and hyperparameters as in
BERT. We use the best of 3 BERT variants for comparison: i.e., the original BERT, BERT with whole word
masking, and BERT without next sentence prediction.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET

Ablation study

# Model RACE SQuAD2.0 MNLI SST-2
Fl EM m/mm
I BERT-Base 64.3 76.30 73.66 8434/8465 92.78
2  DAE + Transformer-XL. | 6503 7956 7680 8488/8445 92.60
3 XLNet-Base (K =T7) 6605 8133 7846 8584/8543 9266
4 XLNet-Base (K = 6) 66.66 8098 78.18 85.63/85.12 93.35
5 - memory 6555 80.15 77.27 85.32/8505 92.78
6 - span-based pred 6595 8061 7791 8549/85.02 93.12
7 - bidirectional data 66.34 80.65 77.87 8531/8499 92.66
3 + next-sent pred 66.76 7983 7694 85.32/85.09 9289

Table 6: The results of BERT on RACE are taken from [38]

the optimization difficulty (see Section 2.3).

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XInet: Generalized autoregressive pretraining for understanding. In Advances in neural information processing systems (pp. 5754-5764). language

. We run BERT on the other datasets using the
official implementation and the same hyperparameter search space as XLNet. K is a hyperparameter to control
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XLNET

Scaling up

RACE Accuracy Middle High | Model NDCG@20 ERR®@20
GPT [28] 59.0 62.9 574 | DRMM [13] 243 13.8
BERT [25] 72.0 76.6 70.1 | KNRM [8] 26.9 14.9
BERT+DCMN™ [38] 74.1 79.5 71.8 | Conv [8] 28.7 18.1
RoBERTa [21] 83.2 86.5 81.8 | BERT' 30.53 18.67
XLNet 85.4 88.6 84.0 | XLNet 31.10 20.28

Table 2: Comparison with state-of-the-art results on the test set of RACE, a reading comprehension task, and on

ClueWeb09-B, a document ranking task. * indicates using ensembles. 7 indicates our implementations. “Middle”
and “High” in RACE are two subsets representing middle and high school difficulty levels. All BERT, RoBERTa,
and XLNet results are obtained with a 24-layer architecture with similar model sizes (aka BERT-Large).

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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SCALING UP?



XLNET

“... we scale up the training of XLNet-Large by using
all the datasets described above. Specifically, we
train on 512 TPU v3 chips for 500K steps with an
Adam weight decay optimizer, linear learning rate
decay, and a batch size of 8192, which takes about
5.5 days.”

DEEP
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XLNET

“It was observed that the model still underfits the
data at the end of training.”
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SCALING UP?



B E RT Solver | batch size | steps | FI score on dev set | TPUs | Time

5.5 days -> 76 minutes Baseline 512 1000k 90.395 16 81.4h
LAMB 512 1000k 91.752 16 82.8h
Inspired by NVIDIA LARS (Layer-wise Adaptive Rate . . SO0k 2liiol 52 43.2h
Scaling) they develop LAMB [LAMB 2k 250k 91.946 64 21.4h
This allows to scale batch size to 32k without LAMB 4k 125k 91.137 128 | 693.6m
degrading performance LAMB 8k | 62500 91.263 256 | 390.5m
ﬁ\bﬁi}\cj)\f;mprovements introduced since. Please use LAMB 16k 31250 01 345 512 200.0m
LAMB 32k 15625 91.475 1024 | 101.2m
LAMB 64k/32k 8599 90.584 1024 | 76.19m
sy devblogs nvidia comretraining bert wit ayer-wiss-adapive-loarming.rates 69 2 teirung

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations


https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

BERT

5.5 days -> 76 minutes

Inspired by NVIDIA LARS (Layer-wise Adaptive Rate
Scaling) they develop LAMB

This allows to scale batch size to 32k without
degrading performance

A lot of improvements introduced since. Please use
NVLAMB.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/

NVLAMB

1. For every training mini-batch = and training step f, compute gradient
g; (t) on weights wj(t), for each weight i in layer L

r

2. Normalize gradients by L2 norm of gradient of the entire model.

Gty =gi@)/ |l g®) |2

3. Update velocity »(#) and momentum m(t) values corresponding to each
layer weight wj(t) based on gradients g(t) with hyperparameters ; and 5.

mj(t) = Bimi(t — 1) + (1 = 5,)g; (1) (1)
vi(t) = Bavi(t — 1) + (1 = B2)(Gi (1)) (2)

4. Apply beta-correction on velocity and momentum values to obtain
unbiased estimates.

o~1 - 7"&(&)
~i N v (t) ,.

5. Compute update uj(t) on weight wj(t) with weight decay parameter 5
and € as follows:
o m(t)
VU (t) + €

6. For each layer [, compute the ratio ri(f) of norm of weights w;(f) and
norm of update u;(t) as follows:

+ ywj (t)

ri(t) = | wi(t) |2

7. Update the weights with learning rate A:

wi(t+ 1) = wi(t) — X r(t) = uj(t)

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations
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BERT-Large Training Times on GPUs

Time System

47 min DGX SuperP0OD
67 min DGX SuperPOD
236 min OGX SuperP0OD

https://devblogs.nvidia.com/training-bert-with-gpus/

BERT

Fastest training time

Number of Nodes
92 x DGX-2H
b4 x DGX-2H

16 x DGX-2H

Number of V100 GPUs
1,472
1,024

236
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CAN WE USE PARAMETERS
MORE EFFICIENTLY?



ALBERT

A Lite BERT for Self-Supervised Learning of Language Representations

FP32 TF 1.13.1 16GB GPU FP32 TF 1.11.0 12GB GPU
The S'lze Of the model ]S System Seq Length Max Batch Size System Seq Length  Max Batch Size
becoming a challenge sERT-Base 64 64
XLNet-Base 64 120 158 32

FP16 is addressing the 178 = 256 16
problem to some extent - y
but still the footprint is 256 24 . .
considerable 15 5 - ]

. AERT-1l arge 64 12
Describes a set of methods XLNet-large 64 16 ¢
for reducing the memory 18 °

: : : 128 8 256 2
footprint/ improving
parameter efficiency 256 2 30 ‘

384 0
512 1 o) ]

@D DEEP
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ALBERT

Model size is the key to success

Hyperparams Dev Set Accuracy
#.  #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12 584 77.9 798 884
6 768 3 524 80.6 822 90.7
6 768 12  4.68 81.9 848 913
12 768 12 399 84.4 86.7 929
12 1024 16 354 85.7 869 933
24 1024 16 323 86.6 878 937

Table 6: Ablation over BERT model size. #L = the
number of layers: #H = hidden size: #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
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ALBERT

“... WordPiece embedding size E is tied with the Factorization of the embeddings matrix:

hidden | ize H, i.e., E = H”
1dden layer size R, 1.€., O(V x H) transformed into O(V X E + E x H)

“... hidden-layer embeddings are meant to learn
context-dependent representations.” so we want

H>>E
Embedd]ng matriX Size iS V X E (VocabUlaW Size Model Parameters Lavers Hidden Embedding Parameter-sharing
time embeddi ng size) base [08M 12 768 768 False
BERT large 334M 24 1024 1024 False

. . base 12M 12 768 128 True
“... natural language processing usually requires ALBERT lree 1M 24 o, 128 True
the vocabulary size V to be large.” (BERT wlage | 235M 12 4096 128 True
V=30000)

Table 1: The configurations of the main BERT and ALBERT models analyzed in this paper.

So we end up with LargeNumber x LargeNumber

DEEP
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ALBERT

Cross Layer Parameter Sharing and Inter-Sentence Coherence Loss

Proposes several cross-layer parameter-sharing

schemes
I8 45
The default Albert configuration shares all 16| - BERT-large ; g0 BERT-large
14 = ALBERT-large : &35 | = ALBERT-large
parameters across all layers 12 : & 30 »
SOP Loss (Sentence Order Prediction) rather than : %15
NSP Loss (Next Sentence Prediction) — g -
0 5 10 15 20 25 % 5 10 15 20 25
Layer ID Layer 1D

Figurc 1: The L2 distances and cosine similarity (in terms ol degree) of the input and output embed-
ding of each layer for BERT-large and ALBERT-large.
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ALBERT

Results

Model Parameters Layers Hidden Embedding Parameter-sharing
base 108M 12 768 768 False
BERT large 334M 24 1024 1024 False
base 12M 12 768 128 True
. large 18M 24 1024 128 True
ALBERT jarge 60M 24 2048 128 True
xxlarge 235M 12 4096 128 True

Table 1: The configurations of the main BERT and ALBERT models analyzed in this paper.

Model Parameters SQuADI.1 SQuAD2.0 MNLI SST-2 RACE | Avg | Speedup
base 108M 90.4/83.2 80.4/77.6 84.5 92.8 68.2 | 823 4.7x
BERT large 334M 92.2/85.5 85.0/82.2 86.6 93.0 739 | 85.2 1.0
basc 12M 89.3/82.3 80.0/77.1 81.6 90.3 64.0 | 80.1 5.6x
ALBERT large 18M 90.6/83.9  82.3/794 83.5 91.7 685 | 824 1.7x
xlarge 60M 92.5/86.1 86.1/83.1 86.4 924 748 | 855 0.6x
xxlarge 235M 94.1/88.3  88.1/85.1 838.0 95.2 82.3  88.7 0.3x

Table 2: Dev set results for models pretrained over BOOKCORPUS and Wikipedia for 125k steps.
Here and everywhere else, the Avg column is computed by averaging the scores of the downstream
tasks to its left (the two numbers of F1 and EM for each SQuAD are first averaged).
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CAN WE IMPROVE THE
OBJECTIVE FUNCTION
FURTHER?



ELECTRA

Pre-training Text Encoders as Discriminators Rather Than Generators

Replaced Token Detection

sample

the —> [MASK] —>
chef — chef —>
cooked —> [MASK] —>
the — the —

meal —» meal —>»

Generator

(typically a
small MLM)

-> a —>
chef —>»
--> ate —>
the —>
meal —»

the chef cooked the meal

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.

Discriminator
(ELECTRA)

—> replaced
—> original

> replaced
—> original
—> original
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ELECTRA

Pre-training Text Encoders as Discriminators Rather Than Generators

90 5 ELECTRA-Large ROBERTa
R BERTa o ROBERTa ~® 500k steps ® XLNet
100k steps 300k steps (fully trained)
85
L
.~
S f
v 80 4 ELECTRA-Small
(I8
= GPT
-
9
2 75
V 754 @ BERT-Small
o
® ELMo
70 -
® GloVe =—=u Replaced Token Detection Pre-training
o—e Masked Language Model Pre-training
I 1 | 1 1
0 1 2 3 4

Pre-train FLOPs le2l
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MULTI-TASK LEARNING



ERNIE 2.0

Why use only a limited number of simple pretraining tasks?

Sentence Level Task Word Level Task

Figure 4: The architecture of multi-task leaming in the
ERNIE 2.0 framework, in which the encoder can be recurrent

neural networks or a deep transformer.

— | hon ~rwes ‘“-\-\_ Task Token-l evel Loss Senlence-l.eve! Loss
05 | 052 o5 ) joss2 | ...... Corpus  —___ | Knowledge Capital Token-Document | Sentence | Sentence | Discourse IR
[/’ [/' Masking Prediction Relation Reordering | Distance | Relation | Relevance
Encyclopedia v v v v v X X
Vo Vi Vo F— Y% BookCorpus v v v v v X X
| [ News v v v v v X X
Encoder Dialog v v v v v X X
IR Relevance Data x X b X X P v
T T Discourse Relation Data x x x x x v x
CLS word; wiord, word;

Table 1: The Relationship between pre-training task and pre-training dataset. We use different pre-training dataset to construct
different tasks. A type of pre-trained dataset can correspond to multiple pre-training tasks.
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ERNIE 2.0

Why use only a limited number of simple pretraining tasks?

{

------------

1
_Taskl =~ Task2 =~ Task3 = ...... = Taskn _ _ Taskn . Taskn
Sequential Multi-task Learmning Multi-task Leaming Continual Leaming

.. . e Training iterations (steps) Fine-tuning result
Pre-traming method Pre-traming task e T Stage 2 Stage 3 Stage 4 | MNLI SST-2 MRPC
Knowledge Masking 50k - - -
: : Capital Prediction - 50k - - 5
Continual Learning ~Token-Docoment Relation - - 30K = 77.3 864 825
Sentence Reordering - - - S0k
Knowledge Masking S0k
. : Capital Prediction S0k
Multi-task Leaming Token-Document Relation 50k 87 815 80
Sentence Reordering 50k
Knowledge Masking 20k 10k 10k 10k
. . . Capital Prediction - 30K 10k 10k
continual Multi-task Learning “Token-Document Relation - - 0K TOK 790 878 840
Sentence Reordering - - - 50k
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ERNIE 2.0

Performance
BASE model LARGE model
Task(Metrics) Test Dev Test
BERT  ERNIE 2.0 | BERT XLNet ERNIE 2.0 | BERT ERNIE 2.0

CoLA (Matthew Corr.) 52.1 55.2 60.6 63.6 65.4 60.5 63.5

SST-2 (Accuracy) 93.5 95.0 03.2 95.6 96.0 94.9 95.6
MRPC (Accurary/F1) 84.8/88.9 86.1/89.9 | 88.0/- 89.2/- 89.7/- 85.4/89.3 87.4/90.2
STS-B (Pearson Corr./Spearman Corr.) | 87.1/85.8 87.6/86.5 | 90.0/- 91.8/- 92.3/- 87.6/86.5 91.2/90.6
QQP (Accuracy/F1) 89.2/71.2 89.8/73.2 | 91.3/- 91.8/- 92.5/- 89.3/72.1 90.1/73.8
MNLI-m/mm (Accuracy) 84.6/83.4 86.1/85.5 | 86.6/- 89.8/- 89.1/- 86.7/85.9 88.7/88.8

QNLI (Accuracy) 90.5 92.9 92.3 93.9 94.3 92.7 94.6

RTE (Accuracy) 66.4 74.8 70.4 83.8 85.2 70.1 80.2

WNLI (Accuracy) 65.1 65.1 - - - 65.1 67.8

AX(Matthew Corr.) 34.2 374 - - - 39.6 48.0

Score 78.3 80.6 - - - 80.5 83.6

Table 6: The results on GLUE benchmark, where the results on dev set are the median of five experimental results
and the results on test set are scored by the GLUE evaluation server (https://gluebenchmark.com/leaderboard).

The state-of-the-art results are in bold. All of the fine-tuned models of AX is trained by the data of MNLL.



Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
» (Can and should we go even bigger?

 Named Entity Recognizer



GOING BIGGER

The challenge

If we only consider Parameters, Gradients, and Optimizer states and ignore activations
If we use FP16 data representation (so two bytes)
If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

If we consider a model with one billion parameters

1079 * (2B + 2B + 12B) = 10"9*16B = 14.90GB

1 billion parameters 2 bytes per gradient
12 bytes per optimizer

2 bytes per parameter State
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GOING BIGGER

The challenge

What about activations?

What about 2 or 3 billion parameter models?

1079 * (2B + 2B + 12B) = 10"9*16B = 14.90GB

1 billion parameters 2 bytes per gradient
12 bytes per optimizer

2 bytes per parameter ctate
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MEGATRON

Model Parallel Transformer
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Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.
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Figure 4. Communication operations in a transformer layer. There
are 4 total communication operations in the forward and backward
pass of a single model parallel transformer layer.
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MEGATRON

/6% scaling efficiency using 512 GPUs

e model parallel » model + data parallel - - linear
100
©
-
o s
o 10 /
w
a 1 =
o -
Q o »
(§ 8
©
3
a 0.01
1 10 100 1000
Number of GPUs

Figure 1. Model (blue) and model+data (green) parallel FLOPS
as a function of number of GPUs. Model parallel (blue): up to
8-way model parallel weak scaling with approximately 1 billion
parameters per GPU (e.g. 2 billion for 2 GPUs and 4 billion for
4 GPUs). Model+data parallel (green): similar configuration as
model parallel combined with 64-way data parallel.

Table 1. Parameters used for scaling studies. Hidden size per atten-

tion head is Kept constant at 96.

Hidden
Size

1536
1920
2304
3072

100%

Weak Scaling

Attention
heads

16
20
24
32

Number
of

layers

40
54
64
72

B Model Parallel

B0
60%
A0
200%
0%

1 2 B a8

Number
of
parameters
(billions)
1.2
2.5
4.2
8.3

Model
parallel
GPUs

20 B o -

W Model + Data Paraliel

64

Number of GPUS

128

256

Model
+data
parallel
GPUs
64
128
256
512

512

Figure 5. Model and model + data parallel weak scaling efficiency
as a function of the number of GPUs.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON

Results

Table 5. Development set results for MNLI, QQP, SQuAD 1.1 and SQuAD 2.0 and test set results for RACE. The trained tokens represents
consumed tokens during model pretraining (proportional to batch size times number of iterations) normalized by consumed tokens during
model pretraining for our 336M model.

trained tokens | MNLI m/mm QQP SQuAD 1.1 | SQuAD 2.0 RACE nmv/h

Model ratio accuracy accuracy F1 /EM F1 /EM accuracy

(dev set) (dev set) (dev sel) (dev set) (test set)
RoBERTa (Liu et al., 2019b) 2 90.2/90.2 92.2 94.6/88.9 89.4/86.5 83.2 (86.5/81.8)
ALBERT (Lan et al., 2019) 3 90.8 92.2 94.8/89.3 90.2/87.4 86.5 (89.0/85.5)
XLNet (Yang et al., 2019) 2 90.8 /90.8 923 95.1/89.7 90.6/87.9 85.4 (88.6/84.0)
Megatron-336M 1 89.77/90.0 92.3 94.2 /88.0 88.1/84.8 83.0(86.9/81.5)
Megatron-1.3B 1 90.9/91.0 92.6 94.9/89.1 90.2/87.1 87.3(90.4/86.1)
Megatron-3.9B | 914/914 92.7 95.5/90.0 | 91.2/88.5 || 89.5(91.8/88.6)
ALBERT ensemble (Lan et al., 2019) 95.5790.1 91.4/88.9 89.4 (91.2/88.6)
Megatron-3.9B ensemble 95.8/90.5 91.7/ 89.0 90.9 (93.1/90.0)

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON

More importantly!

WebText Validation Perplexity

== 345M == 775M 2.5B == 8.3B
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THE SCALING LAWS

As you increase the dataset size, you must increase the model size

7
4.2 . .
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PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, o o
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. P e, | EARMNG



Larger models require fewer samples
to reach the same performance

Test Loss 10

10¢ Params

10¢ 00 1o
Tokens Process

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10?

parameters (excluding embeddings).

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,

THE SCALING LAWS

Larger models are more sample-efficient

The optimal model size grows smoothly
with the loss target amd compute budget

10° 10° 103 10F

Compute (PF-days)

Line color indicaies
number of parameters

100 0ne 108

_.- Compute-afticient

training stops far
short of comvergence

D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.
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Compute (PF-days)
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10°

Dala requirements
grow relatively slowly

Optimal model size
inCreases very quickly

Figure 3 As more compute becomes available, we can chonse how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-cfticient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse, Of the increase in data, most can be used to
increase parallelism through larger batch sizes. with only a very small increase in senial training time required.
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THE SCALING LAWS

Larger models generalize better
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Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size,
with only a small and very slowly growing offset from the WebText2 training distribution. Right: Gener-
alization performance depends only on training distribution performance, and not on the phase of training.
We compare generalization of converged models (points) to that of a single large model (dashed curves) as it

trains.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.
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THE SCALING LAWS

Its cheaper to use a larger model

40 10!

g r Smaller models require

2 3.51 $ more steps to train, while
U B larger models require fewer
O 3.0 v
e A
= 2.51 Models between 0.6x and 2.2x the 2

= optimal size can be trained with a 2 109 -
8 2.0+ 20% larger compute budget Cg

o z

% 1.5- Q

3} 0 Our framework does not R
©1.0- capture early training dynamics

10° 10! 10° 10!
Deviation from Optimal Model (N/Negicient) Deviation from Optimal Model (N/Ngsicient)

Figure 12 Left: Given a fixed compute budget, a particular model size is optimal, though somewhat larger
or smaller models can be trained with minimal additional compute. Right: Models larger than the compute-
efficient size require fewer steps to train, allowing for potentially faster training if sufficient additional paral-
lelism is possible. Note that this equation should not be trusted for very large models, as it is only valid in the
power-law region of the learning curve, after initial transient effects.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, o o
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. 70 e, | EARMNG



THE SCALING LAWS

Larger models train faster

Common Train Small | Stop Training | Lightly

Practice Model When Converged Compress
: Train Large | Stop Training | | Heavily

Optimes Model Early Compress

https://bair.berkeley.edu/blog/2020/03/05/compress/ 7 .S%A ?NES’EET“GNTE



THE SCALING LAWS

“... more importantly, we find that the precise architectural
hyperparameters are unimportant compared to the overall
scale of the language model.”

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, DEEP

LEARNING

D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. nVIDIA  INSTITUTE



THE SCALING LAWS

Next two years will bring much larger models
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o d TOWARDS A TRILLION-
i R PARAMETER MODEL



TURINGNLG

17 billion parameters

TuringNLG 178 vs Megatron-LM 8.3B

16
|
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—
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$
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3
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L'B* mv?; R — S — P — R — R—— —

Reration
Figure 1: Comparison of the validation perplexity of Megatron-38 parameter mocel [crange ling) vs T-NLG 178 model during training
(blue and green lines). The dashed line represents the lowest valication loss achiaved by the current public state of the art model. The
transition from biue to green in the figure indicates whese T-NLG outperforms pudlic state of the art.
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THE FUTURE

Towards a trillion-parameter model

DeepSpeed + ZeRO

Scale

* 100B parameter
« 10X bigger

Memory usage without ZeRO With ZeRO

o . . o . - i Speed

« Up to 5X faster

.
Data, GPU, Data, GPU,
GPU

Usability

* Minimal code change
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EVEN MORE IMPORTANTLY

Large neural networks use data more efficiently

Zero-shot One-shot Feszhot

P 175B Params
=

60 Natural Language /_\/\
Prompt R O -

Accuracy (%)

138 Params

p——— —————— TP e == 1 .:;EB F’E!riif11fi

10
Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053 104 @Z LEARNING
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.. NVIDIA. | INSTITUTE



EVEN MORE IMPORTANTLY

Large neural networks use data more efficiently

Zero-shot One-shot Feszhot
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Figure 1.2: Larger models'make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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WHAT DO WE MEAN BY BIG?

GPT-3 size comparison

Not a linear scale
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Total Compute Used During Training
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Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH ' 20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.
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PERSPECTIVE



WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison
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WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison

T-NLG GPT=3
‘7MegatronLM
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® BERT-Large
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WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison
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WHAT DO WE MEAN BY BIG?

Perspective

Model Size Comparison

T-NLG GPT-3
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WHAT DO WE MEAN BY BIG?

GPT-3 size comparison: 538x Bigger than BERT-Large

355 years on a single V100
Not a linear scale
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Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH ' 20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoOBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.
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THE LAB



Part 2: Self-Supervision, BERT and Beyond

 Why DNNSs?
» Self-Supervision
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

» Bigger is Better
* Can and should we go even bigger?

 Named Entity Recognizer



IN THE NEXT CLASS...



NEXT CLASS

Overview

Discuss how to desigh your model for efficient inference
Discuss how to optimise your model for efficient execution

Discuss how to efficiently host a largely Conversational Al application
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