
Building Transformer-Based Natural Language Processing Applications
(Part 2)

SELF-SUPERVISION, BERT, 
AND BEYOND
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Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the 
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the 
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT 
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and 
exercises to build a text classification task and a named 
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations 
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering 
task to NVIDIA Triton

FULL COURSE AGENDA
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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NEURAL NETWORKS ARE NOT NEW
They are surprisingly simple as an algorithm
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NEURAL NETWORKS ARE NOT NEW
They just historically never worked well
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Algorithm performance in small data regime
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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NEURAL NETWORKS ARE NOT NEW
They just historically never worked well
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Algorithm performance in small data regime
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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NEURAL NETWORKS ARE NOT NEW
Historically, we never had large datasets or computers

Dataset Size

Ac
cu

ra
cy

0 5 10 15 20 25

Algorithm performance in small data regime

Small NN ML1 ML2 ML3

The MNIST (1999) database contains 60,000 training 
images and 10,000 testing images.

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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COMPUTE
Historically, we never had large datasets or computers

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025
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CONTEXT
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CONTEXT
8 petaFLOPs in June 2011 (K Computer)
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CONTEXT
5 petaFLOPs for AI - today
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CONTEXT
~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for AI - today
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NEURAL NETWORKS ARE NOT NEW
Large datasets and faster compute transformed the way we do machine learning

Dataset Size
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Algorithm performance in big data regime
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Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I
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NEURAL NETWORKS ARE NOT NEW
Data and model size the key to accuracy

Dataset Size

Ac
cu

ra
cy

0 50 100 150 200 250 300 350 400 450

Algorithm performance in big data regime

Small NN ML1 ML2 ML3 Big NN
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2016 – Baidu Deep Speech 2
Superhuman Voice Recognition

2015 – Microsoft ResNet
Superhuman Image Recognition

2017 – Google Neural Machine Translation
Near Human Language Translation

100 ExaFLOPS
8700 Million Parameters

20 ExaFLOPS
300 Million Parameters

7 ExaFLOPS
60 Million Parameters

To Tackle Increasingly Complex Challenges

NEURAL NETWORK COMPLEXITY IS EXPLODING
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100 EXAFLOPS
~= 

2 YEARS ON A DUAL CPU 
SERVER
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NEURAL NETWORKS ARE NOT NEW
Exceeding human level performance

Dataset Size
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cu

ra
cy

0 500 1000 1500 2000 2500

Algorithm performance in large data regime

Small NN ML1 ML2 ML3 Big NN Bigger NN

Andrew Ng, “Nuts and Bolts of Applying Deep Learning”, https://www.youtube.com/watch?v=F1ka6a13S9I



20

EMPIRICAL EVIDENCE
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EXPLODING DATASETS
Logarithmic relationship between the dataset size and accuracy

Sun, Chen, et al. "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era." arXiv preprint arXiv:1707.02968 (2017).
Shazeer, Noam, et al. "Outrageously large neural networks: The sparsely-gated mixture-of-experts layer." arXiv preprint 
arXiv:1701.06538 (2017).
Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy

• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models
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EXPLODING DATASETS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Logarithmic relationship between the dataset size and accuracy



24

THE COST
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THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Limits the utility of deep learning models

Exponential increase
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer



27

SELF-SUPERVISED  LEARNING

• Natural Language Processing:

• Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

• Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

• We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect 
which words were replaced (using a GAN like configuration).

• Computer Vision:

• Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the 
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

• Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a 
target-robust feature extractor

Example training tasks

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.
Xie, Q., Hovy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252.
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THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Semi-supervised models

Manageable cost
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1

50

2.500

125.000

BookCorpus English Wikipedia Giga5 ClueWeb 2012-B Common Crawl Open Super-Large
Crawled ALMAnaCH2

corpus

800
2.500

4.000
15.000 16.000

800.000

Number of Words (in Millions)

SELF-SUPERVISED LEARNING
Abundance of unlabeled data
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1

50

2.500

125.000

6.250.000

HACS YFCC100M Moments in Time Sports-1M HowTo100M YouTube-8M

520.000 800.000 1.000.000 1.100.000 1.200.000

8.000.000

Number of videos

SELF-SUPERVISED LEARNING
Abundance of unlabeled data
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OLD IDEAS
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SELF-SUPERVISED LEARNING
What was missing?
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THE SCALE
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GENERATIVE PRETRAINING (GPT)
The scale

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”
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GENERATIVE PRETRAINING (GPT)
The design

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Transformer 
Decoder

Self-Supervised
Training
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GENERATIVE PRETRAINING (GPT)
The approach

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Step 1 Step 2
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GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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BIDIRECTIONAL TRANSFORMERS (BERT)
Building on the shoulders of giants

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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BIDIRECTIONAL TRANSFORMERS (BERT)
The “pre” and “post” OpenAI ages

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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SQUAD 2.0
Human performance 91.2
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USING BERT
Feature extractor

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

???

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

? ? ?
Problem formulation

?

GloVe Word2Vec
BERT
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THE LAB
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LAB OVERVIEW
Notebooks 1, 2, 3

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

Problem formulation

Text classification

Fixed pretrained BERT
Your task:

Text classification
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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BIDIRECTIONAL TRANSFORMERS (BERT)
Base vs Large

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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GPT-2

• Largely the same but:

• Larger in every way:

• More decoder layers: 12->48

• Larger vocabulary:  50,257

• Larger context: 512 -> 1024

• Larger batch size

• Changes to layer normalization

• Different initialization scheme

GPT vs GPT-2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
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GPT-2
The Impact

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
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BUT BIGGER IS BETTER
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ROBERTA
Robustly Optimized BERT Pretraining Approach

Simplification of the core idea:

• training the model longer, with bigger batches, over more data

• removing the next sentence prediction objective

• training on longer sequences

• dynamically changing the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA
Increasing the dataset size

16GB -> 160GB

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA
Results

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA
Results

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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ROBERTA

“We note that even our longest-trained model does not appear to overfit our
data and would likely benefit from additional training.“

Additional observations

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
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WE NEED EVEN LARGER 
MODELS!
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TRANSFORMER EXTRA LONG (XL)

• The challenge:
• Fixed-length contexts not respecting 

semantic boundaries
• Inability to learn longer dependencies
• Relatively slow to execute

• The solution (Transformer XL):
• Segment-level recurrence mechanism

• Positional encoding scheme

• The results:
• Learns 80% longer dependencies than RNNs 

and 450% longer than Transformer

• Up to 1800 times faster than vanilla 
Transformer

Challenges with the Transformer architecture

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.
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CHALLENGES WITH BERT

• The [MASK] token used during pretraining is not used during fine-tuning

• BERT generates predictions for individual [MASK] tokens independently, not forcing the model to learn 

dependencies

Masking and independent predictions

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET

1. Transformer -> TransformerXL

2. TransformerXL cannot be applied naively 
and must be adopted

3. “Maximizes the expected log likelihood 
of a sequence w.r.t all possible 
permutations of the factorization 
order.”

4. Does not rely on data corruption ([MASK])

TransformerXL + Permutational Language Model

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
https://mlexplained.com/2019/06/30/paper-dissected-xlnet-generalized-autoregressive-pretraining-for-language-understanding-explained/
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XLNET

13GB* -> 13GB + 19GB + 110GB = 142GB

And more data

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).

* Different pre-processing routine is used hence not 16GB as per ROBERTA 
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XLNET
“Fair” comparison with BERT

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET
Ablation study

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for understanding. In Advances in neural information processing systems (pp. 5754-5764). language
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XLNET
Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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SCALING UP?
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XLNET

“… we scale up the training of XLNet-Large by using 
all the datasets described above. Specifically, we 
train on 512 TPU v3 chips for 500K steps with an 

Adam weight decay optimizer, linear learning rate 
decay, and a batch size of 8192, which takes about 

5.5 days.”

Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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XLNET

“It was observed that the model still underfits the 
data at the end of training.”

Scaling up

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
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SCALING UP?
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BERT

• Inspired by NVIDIA LARS (Layer-wise Adaptive Rate 
Scaling) they develop LAMB

• This allows to scale batch size to 32k without 
degrading performance

• A lot of improvements introduced since. Please use 
NVLAMB.

5.5 days -> 76 minutes

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
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BERT

• Inspired by NVIDIA LARS (Layer-wise Adaptive Rate 
Scaling) they develop LAMB

• This allows to scale batch size to 32k without 
degrading performance

• A lot of improvements introduced since. Please use 
NVLAMB.

5.5 days -> 76 minutes

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., ... & Hsieh, C. J. (2019, September). Large batch optimization for deep learning: Training bert in 76 minutes. In International Conference on Learning Representations.

https://devblogs.nvidia.com/pretraining-bert-with-layer-wise-adaptive-learning-rates/
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BERT
Fastest training time

https://devblogs.nvidia.com/training-bert-with-gpus/



72

CAN WE USE PARAMETERS 
MORE EFFICIENTLY?
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ALBERT

• The size of the model is 
becoming a challenge

• FP16 is addressing the 
problem to some extent 
but still the footprint is 
considerable

• Describes a set of methods 
for reducing the memory 
footprint/ improving 
parameter efficiency

A Lite BERT for Self-Supervised Learning of Language Representations

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

FP32 TF 1.13.1 16GB GPU FP32 TF 1.11.0 12GB GPU
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ALBERT
Model size is the key to success

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
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ALBERT

• “… WordPiece embedding size E is tied with the 
hidden layer size H, i.e., E ≡ H”

• “… hidden-layer embeddings are meant to learn 
context-dependent representations.” so we want 
H >> E

• Embedding matrix size is V x E (vocabulary size 
time embedding size)

• “… natural language processing usually requires 
the vocabulary size V to be large.” (BERT 
V=30000)

• So we end up with LargeNumber x LargeNumber

Factorized Embeddings

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

• Factorization of the embeddings matrix:

O(V x H) transformed into O(V x E + E x H)
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ALBERT

• Proposes several cross-layer parameter-sharing 
schemes

• The default Albert configuration shares all 
parameters across all layers

• SOP Loss (Sentence Order Prediction) rather than 
NSP Loss (Next Sentence Prediction)

Cross Layer Parameter Sharing and Inter-Sentence Coherence Loss

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.
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ALBERT
Results

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.



78

CAN WE IMPROVE THE 
OBJECTIVE FUNCTION 

FURTHER?
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ELECTRA
Pre-training Text Encoders as Discriminators Rather Than Generators

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.
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ELECTRA
Pre-training Text Encoders as Discriminators Rather Than Generators

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.
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MULTI-TASK LEARNING
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ERNIE 2.0
Why use only a limited number of simple pretraining tasks?
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ERNIE 2.0
Why use only a limited number of simple pretraining tasks?
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ERNIE 2.0
Performance
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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GOING BIGGER

• If we only consider Parameters, Gradients, and Optimizer states and ignore activations

• If we use FP16 data representation (so two bytes)

• If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

• If we consider a model with one billion parameters

10^9 * ( 2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer 

state
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GOING BIGGER

• What about activations?

• What about 2 or 3 billion parameter models?

10^9 * ( 2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer 

state



88

MEGATRON
Model Parallel Transformer

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON
76% scaling efficiency using 512 GPUs

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON
Results

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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MEGATRON
More importantly!

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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THE SCALING LAWS



9393

THE SCALING LAWS
As you increase the dataset size, you must increase the model size

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Larger models are more sample-efficient
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Larger models generalize better
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

THE SCALING LAWS
Its cheaper to use a larger model
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THE SCALING LAWS
Larger models train faster
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THE SCALING LAWS
MOST IMPORTANT!!

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

“… more importantly, we find that the precise architectural 
hyperparameters are unimportant compared to the overall 
scale of the language model.”
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THE SCALING LAWS
Next two years will bring much larger models
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TOWARDS A TRILLION-
PARAMETER MODEL
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TURINGNLG
17 billion parameters
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THE FUTURE
Towards a trillion-parameter model
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GPT-3
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EVEN MORE IMPORTANTLY
Large neural networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..
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EVEN MORE IMPORTANTLY
Large neural networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..
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WHAT DO WE MEAN BY BIG?
GPT-3 size comparison

Not a linear scale
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PERSPECTIVE
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WHAT DO WE MEAN BY BIG?
Perspective

ResNet 50

GPT

Bert-Base

Bert Large

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Model Size Comparison
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Perspective
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ResNet-50

GPT

BERT-Base
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Model Size Comparison

WHAT DO WE MEAN BY BIG?
Perspective
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WHAT DO WE MEAN BY BIG?
GPT-3 size comparison: 538x Bigger than BERT-Large

355 years on a single V100
Not a linear scale



113

THE LAB
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Part 2: Self-Supervision, BERT and Beyond
• Lecture
• Why DNNs?
• Self-Supervision
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• Bigger is Better
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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IN THE NEXT CLASS…
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NEXT CLASS

1. Discuss how to design your model for efficient inference

2. Discuss how to optimise your model for efficient execution

3. Discuss how to efficiently host a largely Conversational AI application

Overview




