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FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton



Part 3: Production Deployment

* Model Selection

* Post-Training Optimization
.  Product Quantization
’ ! * Knowledge Distillation
. y * Model Code Efficiency
A * Model Serving
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YOUR NETWORK IS

TRAINED



YOUR NETWORK [S TRAINED

Now what?

TuringNLG 178 vs Megatron-LM 8.38
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NLP MODELS ARE LARGE

The Inference cost is high

RoBERTa
o ROBERTa @ 500k steps ® XLNet
7 300k steps (fully trained)
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THEY DO NOT LIVE IN ISOLATION

Example of a conversational Al application

ASR NLU

Lanpuage Model

Search Ranking

Visual Search

Autocorrect

Query Search

“What aate (s the
Chinese New Year?

Machine Translation

L J
4

Audio Feature Extraction Acoustic Model Decoder

ST TLabER?

TTS

*

Audio Voice | ncodet Specch Synthesis .
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THEY DO NOT LIVE IN ISOLATION

Real Time Applications Need to Deliver Latency <300 ms

ASR l NLU
Lanpuagpe Model [

Search Ranking
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Autocorrect

Query Search
“What aate is the
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Machine Translation
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DEEP
9 @ LEARNING

NVIDIA.  INSTITUTE



THEY DO NOT LIVE IN ISOLATION

Real Time Applications Need to Deliver Latency <300 ms
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THEY DO NOT LIVE IN ISOLATION

Application bandwidth = Cost

Original 3-layer BERT

CPU
ONNX Model
Original 3-layer BERT
ONNX Model
GPU
ONNX Model

Batch size

54

Inference on

Azure Standard F16s_v2 (CPU)

Azure Standard F16s_v2 (CPU)
with ONNX Runtime

Azure NV6 GPU VM

Azure NV6 GPU VM
with ONNX Runtime

Azure NC65_v3 GPU VM

with ONNX Runtime + System Optimization
(Tensor Core with mixed precision, Same Accuracy)

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

Throughput

(Query per second) (milliseconds)

111
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Latency
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AND THEY NEED TO EVOLVE OVER TIME

A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary process
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Configuration

Nonfunctional requirements

Data Collection

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure 1is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydoy, E., Phillips, T., Ebner, D., ...

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

& Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Configuration

Nonfunctional requirements

Data Collection

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure 1is vast and complex.
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MODEL SELECTION

Not all models are created equally
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MODEL SELECTION

Not all models respond in the same way to knowledge distillation, pruning and quantization

Common TrainSmall | | Stop Training _{ Lightly

Practice Model When Converged Compress
. TrainLarge | | Stop Training | Heavily
Optimal Model Early Compress
RoBERTa Pruning | RoBERTa Quantization
085 = - -
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'g -.% 0.75 -»-3 Layers, 768H
S > -6 Layers, 768H
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https://bair.berkeley.edu/blog/2020/03/05/compress/ 17 <S4 Dearnine

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794. NVIDIA. | INSTITUTE


https://bair.berkeley.edu/blog/2020/03/05/compress/

MODEL SELECTION

And very large models are and will continue to be prevalent in NLP

Zero-shot One-shot Few-shot

Natural Language
Prompt

60

Accuracy (%)

-~ 13B Params

e~ | 3B Params

0 10° 10'

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves™ for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

E.g. Train Large then compress

Common Train Small Stop Training _ Lightly

Practice Model When Converged Compress
. Train Large Stop Trainin Heavil
Optimal J - P I |- y
Model Early Compress
https://bair.berkeley.edu/blog/2020/03/05/compress/ 20 | Errnme

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.  PVIDIA | INSTITUTE


https://bair.berkeley.edu/blog/2020/03/05/compress/

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

Hardware acceleration for reduced precision arithmetic and sparsity

—— 20X 310
g
é 155
€ 10X
O
(O]
=
T
&
20
8 16
A_Ji\_ - — L
V100  A100 V100  A100 A100
FP64  FP64 FP32  TF32 S?/élgE

625
310
125

. I_

V100 A100 A100
FP16 FP16  SPARSE
FP16

1250

625

60

—

V100  A100 A100

INTS INT8  SPARSE
INT8

IIIIIIIIIIIIIIII



Part 3: Production Deployment

* Model Selection
* Post-Training Optimization
\  Product Quantization
* Knowledge Distillation
. ¥ * Model Code Efficiency
: * Model Serving
X , » Building the Application

5 « Exporting the Model
’ » Hosting the Model
] - » Server Performance
. * Using the Model



QUANTIZATION

The idea

w o u ) 0w om

FP32 INT8 FP32
(pre-quantized) (quantized) (dequantized)

1.12 2.7 -0.9
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QUANTIZATION

The rationale

Input Accumulation Math Bandwidth
Datatype Datatype Throughput Reduction
FP32 FP32 1x 1x
FP16 FP16 8x 2X
INT8 INT32 16x 4x

. INT4 INT32 32x 8
INT1 INT32 128x 32x
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QUANTIZATION

The rationale

NVIDIA A100 Tensor Core TFAZ with Sparsity
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QUANTIZATION

The results (speedup and throughput)

B T T T A W S
i eh ek ek ek e e
[ . S TS N . S W Y

2889 3762 2455 7430 13493 2718

1082 1618 2060 2267 5307 9016 2761 6431 12652
ResNet50 (v1.5 298 617 1051 500 2045 3625 580 2475 4609
153 403 415 197 816 1269 236 915 1889
VGG-19 124 358 384 158 673 1101 187 749 1552
Inception v3 156 371 616 350 1318 2228 385 1507 2560
76 226 335 173 768 1219 186 853 1339
84 208 297 200 716 1253 233 899 1724 oY o

. INSTITUTE
TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299 rvibIA



QUANTIZATION

MLPERF 0.5 - RESNET-50 V. 1.5 OFFLINE SCENARIO
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IMPACT ON ACCURACY

In a wide range of cases minimal

COCO

MobileNet v1
SSD-300 MobileNet v1 26 25.8

SSD-300 MobileNet v2 27.4 26.8

Faster RCNN ResNet-101 33.7 33.4 0.89%
All results COCO mAP on COCO 2017 validation, higher is better

MobileNet v2

NASNet (large
NASNet (mobile
ResNet50 (v1.5

ResNet50 (v2

ResNet152 (v1.5) Pascal YOC
ResNet152 (v2
VGG-16

VGG-19 SSD-300 77.7

SSD-512 79.9 79.9 0.0%
Inception v4 . All results VOC mAP on VOC 07 test, higher is better

Inception v3
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IMPACT OF MODEL DESIGN

Not all neural network mechanisms quantize well

0.855 0.823 3.74%
91.01 85.16 6.43%
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IMPACT OF MODEL DESIGN

Model alterations required

0.855 0.823 3.74% . .
oy T Py GelLU produces highly asymmetric range
|_Bert large uncased __FP32 ____Int8 (GeLU10) RelErr % | Negative values between [-0.17,0]
0.855 0.843 0.70%
el HEAD Lok All negative values clipped to 0

Gell)

GeLU10 allows to maintain negative values

« P32 » Bl @50 = B, a-1C

X | .. X
f) =75 +erf(7) .

LEARNING
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LOSS OF ACCURACY

Reasons

Outlier in the tensor:

Example: BERT, Inception V4

Solution: Clip. Tighten the range, use bits more efficiently
Not enough precision in quantized representation

Example: Int8 for MobileNet V1

Example: Int4 for Resnet50

Solution: Train/fine tune for quantization

DEEP
31 & LEARNING
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LEARN MORE

GTC Talks

S9659: Inference at Reduced Precision on GPUs

521664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

DEEP
32 & LEARNING
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QUANTIZATION TOOLS



NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform
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INT8 QUANTIZATION EXAMPLE

TF-TRT

Step 1 Obtain the TF frozen graph (trained in FP32)

Step 2 C(Create the calibration graph -> Execute it with calibration data -> Convert it to the INTS8
optimized graph
# create a TRT inference graph, the output is a frozen graph ready for calibration
calib _graph = trt.create_inference_graph(input graph _def=frozen graph, outputs=outputs,
max_batch_size=1, max_workspace_size bytes=1<<30,
precision_mode="INT8", minimum_segment size=5)

# Run calibration (inference) in FP32 on calibration data (no conversion)

f score, f_geo = tf.import_graph_def(calib_graph, input_map={"input_images":inputs},
return_elements=outputs, name="")

Loop img: score, geometry = sess.run([f_score, f_geo], feed_dict={inputs: [img]})

# apply TRT optimizations to the calibration graph, replace each TF subgraph with a TRT node
optimized for INT8
trt_graph = trt.calib_graph_to_infer_graph(calib_graph)

Step 3 Import the TRT graph and run

A Erne
https://docs.nvidia.com/deeplearning/dax/ti-trt-user-quide/index.html A I



https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
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PRUNING

The idea

The opportunity:

] (a) ResNet-50 Weight Histogram (b) Inception-v3 Weight Histogram
Reduced memory bandwidth 105 Max Weight: 1.32 | 105 Max Weight: 1.27
. Min Weight: -0.78 Min Weight: -1.20
Reduced memory footprint 101 10/
>
. . . Q403 3
Acceleration (especially in presence of 501 10%
hardware acceleration) g 102 102
(N
107, 101
1
109, 10° i ' ' i ' i
-0 -5 0 5 10 15 20 -0 -5 0 5 10 15 20
weight value weight value
(c) DenseNet-201 Weight Histogram (d) Transformer Weight Histogram
=I-==l.==l.= 105 ) )
HHREHHHHE 1 Max Weight: 1.33 | 107} Max Weight: 20.41
— 104 Min Weight: -0.92 | 4qs; - Min Weight: -12.46
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Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271. MVIDIA. | INSTITUTE



o O DIFFICULT TO GET TO
i WORK RELIABLY



STRUCTURED SPARSITY



SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores |
2:4 structured-sparse matrix

50% fine-grained sparsity
2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

Accuracy: maintains accuracy of the original, unpruned network

Medium sparsity level (50%), fine-grained

Training: a recipe shown to work across tasks and networks

|:| = zero value

Speedup:
Specialized Tensor Core support for sparse math

Structured: lends itself to efficient memory utilization

DEEP
40 @ LEARNING
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PRUNING

Structured sparsity

Dense Sparse
INPUT OPERANDS ACCUMULATOR TOPS vs. FFMA Vs. FFMA T
FP32 FP32 19.5 : - ¥
TF32 FP32 156 8X 16X g3
FP16 FP32 312 16X 32X E“
BF16 FP32 312 16X 32X 5%
FP16 FP16 312 16X 32X 3
INT8 INT32 624 32X 64X
INT4 INT32 1248 64X 128X
BINARY INT32 4992 256X -

DEEP
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PRUNING

Model performance

Accuracy

Network Dense FP16 FP16

ResNet-34 73.7 73.9 0.2 73.7
ResNet-50 76.6 76.8 0.2 76.8 0.2
ResNet-101 77.7 78.0 0.3 77.9
ResNeXt-50-32x4d 77.6 77.7 0.1 77.7
ResNeXt-101-32x16d 79.7 79.9 0.2 79.9 0.2
DenseNet-121 75.5 75.3 -0.2 75.3 -0.2
DenseNet-161 78.8 78.8 78.9 0.1
Wide ResNet-50 78.5 78.6 0.1 78.5

Wide ResNet-101 78.9 79.2 0.3 79.1 0.2
Inception v3 771 771 77.1

Xception 79.2 79.2 79.2

VGG-16 74.0 741 0.1 741 0.1
VGG-19 75.0 75.0 75.0

DEEP
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PRUNING

Model performance

Accuracy
Network Dense FP16 FP16
ResNet-50 (SWSL) 81.1 80.9 0.2 80.9 0.2
ResNeXt-101-32x8d (SWSL) 84.3 84.1 -0.2 83.9 -0.4
ResNeXt-101-32x16d (WSL) 84.2 84.0 -0.2 84.2
SUNet-7-128 76.4 76.5 0.1 76.3 -0.1
DRN-105 79.4 79.5 0.1 79.4

DEEP
44 @ LEARNING
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PRUNING

Model performance

Accuracy

Network Dense FP16 FP16

MaskRCNN-RN50 37.9 37.9 - 37.8 -0.1
SSD-RN50 24.8 24.8 - 24.9 0.1
FasterRCNN-RN50-FPN-1x 37.6 38.6 1.0 38.4 0.8
FasterRCNN-RN50-FPN-3x 39.8 39.9 -0.1 39.4 -0.4
FasterRCNN-RN101-FPN-3x 41.9 42.0 0.1 41.8 -0.1
MaskRCNN-RN50-FPN-1x 39.9 40.3 0.4 40.0 0.1
MaskRCNN-RN50-FPN-3x 40.6 40.7 0.1 40.4 0.2
MaskRCNN-RN101-FPN-3x 42.9 43.2 0.3 42.8 0.1
RetinaNet-RN50-FPN-1x 36.4 37.4 1.0 37.2 0.8
RPN-RN50-FPN-1x 45.8 45.6 -0.2 45.5 0.3

RN = ResNet Backbone
FPN = Feature Pyramid Network
RPN = Region Proposal Network

DEEP
45 @ LEARNING
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IMPACT ON NLP



NETWORK PERFORMANCE

BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:
Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, ...)
GEMMs without weights to be pruned - Attention Batched Matrix Multiplies

An encoder layer's composition in BERT network

To naxt layer

From previous layer

. Sparse GEMMs D Dense GEMMs D Non-GEMM layer

DEEP
47 @Z LEARNING
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TRAINING RECIPE



RECIPE FOR 2:4 SPARSE NETWORK TRAINING

Dense weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

2:4 sparse weights

3) Repeat the original training procedure

Same hyper-parameters as in step-1

Initialize to weights from step-2
Retrained 2:4 sparse

Maintain the 0 pattern from step-2: no need to recompute the mask weights

IIIIIIIIIIIIIIII



EXAMPLE LEARNING RATE SCHEDULE

o 1 Dense Training i\ Sparse Retraining

4(_.03 1 \

o

o]0

C ,'

£

(O I’

S| - -
EE— B — |
— 1\ _/

Y Y
Step 1 Step 2 Step 3
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Learning Rate

Phase 1:

Pretrain language model

L
]\

BERT SQUAD EXAMPLE

Phase2:
Finetune for SQUAD

Learning Rate

Phase 1:
Pretrain language model

§~~
—

Phase 1: Sparse

SQUAD Dataset and fine-tuning is too small to compensate for pruning on its own

Phase2: Sparse

Pretrain language model  Finetune for SQUAD
N e R et :1 S S =_I
2\ /

~
Step 2 Step 3
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AUTOMATIC

SPARSITY

APEX



N

—

PyTorch sparse fine-tuning loop

TAKING ADVANTAGE OF STRUCTURED SPARSITY

APEX’s Automatic SParsity: ASP

4 )

import torch Init mask buffers, tell optimizer
from apex.contrib.sparsity import ASP to mask weights and gradients,
device = torch.device('cuda’) compute sparse masks:

Universal Fine Tuning

1 T ' . y -~ . '
:H T ’ ¢ Y I ¢ g ‘ ’ \:‘, ’ ~ a’..'.:‘, J l : LM :‘-' r 14 1 N > ; ] B ‘:‘ \ J

model.1oad_state_dict(tor¢h.load(‘dénse_model.pth’))

timizer = 1 C el .parameters(), lr= 1, - - # Define 1mlzer
ASP.prune trained model (model, optimizer)
’ Al ) # i |
e (. )
| | 2

1 1 f Y ,

:!r

:!' )"

1 { 1 (), ‘; rF i

DEEP
53 @Z LEARNING
NVIDIA.  INSTITUTE



Part 3: Production Deployment

* Model Selection
* Post-Training Optimization
\ * Product Quantization
* Knowledge Distillation
. ¥ * Model Code Efficiency
$ * Model Serving
X . » Building the Application

5 « Exporting the Model
’ » Hosting the Model
] - » Server Performance
. * Using the Model



Post-training quantization(PTQ)

Calibration data

Pre-trained
model

Gather layer
statistics

Compute
g-params

Quantize model

QUANTIZATION

Approaches

Usually fast

Quantization-aware training (QAT)

Slow

No re-training of the model

Model needs to be trained/finetuned

Plug and play of quantization
schemes

Plug and play of quantization
schemes (requires re-training)

Less control over final accuracy of
the model

More control over final accuracy

since g-params arc leamed during
training.

Pre-trained
model

Add QAT ops

Finetune with

QAT ops

Store g-params

Quantize model
for inference
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EXTREME MODEL COMPRESSION

Training with quantization noise

26 = X wio Quant-Noise X Training without Quant-Noise O Training with Quant-Noise
Training Time Quantzation Teaineng Time Quantization
Weight Matrix Weight Mazrix Wesght Mamix Weight Matrix

THE T

w ~Nowse .

Ow/ Quuat N e P® Om 'U'l
Leq) Oiginal Model A o000 e

- BEE5 0000 §EE 0NN
1 1 1 [ N EoN | . H =

Size (MH) 10 100 TN

o
s
1

=
T

+— Perplexity
"
"
|

Figure |: Quant-Noise trains models to be resilient to inference-time guantization by mimicking the
effect of the quantization method during training time. This allows for extreme compression rates
without much loss in accuracy on a variety ol tasks and benchmarks.

Quantization Scheme Language Modeling Image Classification
16 layer Transformer EMcientNet B3
Wikitext-103 ImugeNet-1k

Size  Compression  PPL Size Compression  Top-1
Uncompressed model 012 x 1 18.3 16.7 % 1 81.5
intd quantization 118 x 8 39.4 2.8 x 8 45.3
- trained with QAT 118 x 8 341 5.8 X N 3941
- trained with Quant-Noise 118 x 8 21.8 2.8 x 8 67.8
int8 quantization 236 x 4 19.6 11.7 x 4 80.7
- trained with QAT 236 x A 21.0 11.7 x A 808
- trained with Quant-Noise 236 x 4 18.7 11.7 ®x 4 80.9
iPQ S8 x 25 25.2 3.3 x 14 790
- trained with QAT 38 x 25 41.2 3.3 x 14 50,7
- trained with Quant-Noise 38 x 25 20.7 3.3 x 141 50.0
iPQ & int8 + Quant-Noise 38 x 25 21.1 3.1 x 15 0.8

Table 1: Comparison of different quantization schemes with and without Quant-Noise on language mod-
ching and image classification. For language modeling, we train a Transformer on the Wikitext-103 benchmark
and report perplexity (PPL) on test. For image classification, we train a EfficientNet-B3 on the ImageNet- |k
benchmark and report top-1 accuracy on validation and use our re-implementation of EfficientNet-B3. The
original implementation of Tan er al. [4] achieves an uncompressed Top-1 accuracy of 81,9%., For both settings,
we report model size in megabyte (MB) and the compression ratio compared to the onginal model.
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“‘We used Quant-Noise to compress Facebook Al’s
» . . State-of-the-art RoBERTa Base model from 480 MB
to 14 MB while achieving 82.5 percent on MNLI,

compared with 84.8 percent for the original model.”
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KNOWLEDGE DISTILLATION

The idea

Distilling the Knowledge in a Neural Network

Geoffrey Hinton" Oriol Vinyals' Jeff Dean
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
geoffhinton@google.com vinyals@google.com jeff@google.com
Abstract

A very simple way to improve the performance of almost any machine learning
algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which 1s much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel. o @Y DEER
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KNOWLEDGE DISTILLATION

DistillBERT

Table I: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the
GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the

medians of 5 runs with different seeds.

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo 68.7 441 68.6 76.6
BERT-base  79.5 56.3 86.7 88.6
DistilBERT  77.0 51.3 82.2 87.5

7.1 86.2 534 OIS 70.4 56.3
918 896 693 927 89.0 535
89.2 885 599 0913 86.9 56.3

Table 2: DistilBERT yields to comparable
performance on downstream tasks. Com-
parison on downstream tasks: IMDDb (test ac-
curacy) and SQuAD 1.1 (EM/FI1 on dev set).
D: with a second step of distillation during
fine-tuning.

Model IMDb  SQuAD

(acc.) (EM/F1)
BERT-base 93.46 81.2/88.5
DisulBERT 02,82 77.7/85.8
DisulBERT (D) - 79.1/86.9

Table 3: DistilBERT is significantly smaller
while being constantly faster. Inference
time of a full pass of GLUE task STS-B (sen-
timent analysis) on CPU with a batch size of
1.

Model # param.  Inf. time
(Millions) (seconds)
ELLMo 180 895
BERT-base 110 668
DistlBERT 66 410

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
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NOT ALL MODELS HAVE
THE SAME CODE QUALITY



COMPUTE MATTERS

But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

MxNet PyTorch TensorFlow
12000 8000 9000
7000 8000
10000
7000
6000
8000 6000
5000
© e} kel
[y c c
S S g 5000
o) 3 3
<L 6000 < 4000 — <
(0] C c
& % £ 4000
E 2 °
3000 —
4000 —_— 3000 —
2000 —
2000 —
2000 —
1000 B 1000 —
0 0 0
17,08 18,02 18,12 19,12 17,08 18,02 1812 1912 17,08 18,02 1812 19,12

ResNet-50 v1.5 Training | 8x V100 | DGX-1
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NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

Model Training Scripts
NLP, Image Classification,
Object Detection & more

Containers ° l Helm Charts

DL, ML, HPC Al applications, K8s cluster, Registry

Pre-trained Models Industry SDKs

NLP, Classification, Object Detection & more Medical Imaging, Intelligent Video Analytics



PRETRAINED MODELS & MODEL SCRIPTS

Build Al Solutions Faster

PRE-TRAINED MODELS

Deploy Al quickly with models for industry specific use cases
Covers everything from speech to object detection
Integrate into existing workflows with code samples

Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

Reference neural network architectures across all domains and popular
frameworks with latest SOTA

Jupyter notebook starter kits

Healthcare (~30 models)
Manufacturing (~25 Models)
Retail (~25 models)

70 TensorRT Plans

Natural Language Processing
Recommendation Engines
Speech

Translation

BioBERT (NLP), Clara (Computer Vision)
Object Detection, Image Classification

BERT, Transformer
Classification/Segmentation for v5, v6, v7

25 Bert Configurations
Neural Collaborative Filtering, VAE
Jasper, Tacotron, WaveGlow

GNMT
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CODE QUALITY IS KEY

Dramatic differences in model performance

3-layer BERT with 128 sequence length

Original 3-layer BERT

CPU
ONNX Model
Original 3-layer BERT
ONNX Model
GPU
ONNX Model

Batch size

54

Inference on

Azure Standard F16s_v2 (CPU)

Azure Standard F16s_v2 (CPU)
with ONNX Runtime

Azure NV6 GPU VM

Azure NV6 GPU VM
with ONNX Runtime

Azure NC65_v3 GPU VM

with ONNX Runtime + System Optimization

(Tensor Core with mixed precision, Same Accuracy)

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

Throughput

(Query per second) (milliseconds)

111

200

10667

Latency

157

20

67 <3

NVIDIA.
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NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform

PPN
& o :
Yy > -t
e -‘.
»

+ TensorFlow
+
Cr
Caffe?

PYTHORCH

- -
JETSON Xavier

DRIVE AGX

NVIDIA DLA

TIT
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TENSORRT

Optimizations

Layer & Tensor Fusion

A LI A
Precision Calibration / \ Kernel Auto-Tuning

. 2 i Teana AT Rusteve

® o o 1 o P 1

S T " e’ J o

e _a® ﬁ O f :

. ' >
Trained Neural 1HE L s | S Optimized

Network s el Inference

Dynamic Tensor Multi-Stream Engine

Memory Execution

.. 70 @Z EEEQNING
developer.nvidia.com/tensorrt NVIDIA.  INSTITUTE



) ONNX

TensorRT ONNX PARSER

High-Performance Inference for ONNX
Models + L ..
S Caffe2  Fom Chainer  JF ) Sogpiive

MATLAB ¢
Apply TensorRT optimizations to any ONNX @Xne ' O P)/TO rCh

framework (Caffe 2, Microsoft Cognitive Toolkit, s o
MxNet & PyTorch) “ PaddlePaddle

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Optimize and deploy models from ONNX-supported
frameworks to production

Use with C++ and Python apps
20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

DEEP
71 & LEARNING
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https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md

TENSORRT

Tight integration with DL frameworks

ResNet50 Host Runtime Speed Up

AN V - Balch Size 3. put

FP32 FP16

B Jr B TensoRT [ TRTorch

PyTorch 1.4.0 (CuDNN Benchmark mode enabled) CUDA 10.1 TensorRT 6.0.1.5, TITAN Y, i7-7800X

Images / sec

Throughput with TensorRT at < 7ms latency
(TensorFlow ResNet-50)

6000
5086

5000

4000

3000 2657

2000

1000 =

14 325
0 e — | g
CPU Only FP32 V100 FP32 V100 Tensor Cores V100 Tensor Cores
TensorFlow Tensorflow  TensorFlow+TensorRT TensorRT 3 only

Updated 3/28/2018. * Min CPU latency measured was 70 ms. It Is not < 7ms.

CPU: Skylake Gold 6140, Ubuntu 16,04, 18 CPU threads. Volta V100 SXM; CUDA (384.111;V9.0.176);

Batch sizes: CPU~1;V100_FP32-2; V100_Tensorflow_TensorRT=16; V100_TensorRT=32; Latency~6ms. TensorRT 3.
Latest results at: https:/ /developer.nvidia.com/deep- learning- performance-training -inference

Pytorch -> TRTorch

TensorFlow -> TF-TRT
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Accelerating most demanding applications
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IMPACT ON NLP



TENSORRT

BERT Encoder optimizations

Output

/

-

Multi-Head
Self Attention

BERT Encoder Cell \

Fused and optimized
using TensorRT plugin

Optimized using
TensorRT plugin

Fused and optimized

using TensorRT plugin

/

Input
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CUSTOM PLUGINS

Optimized GelLU as well as skip and layer-normalization operations

Naive implementation would require a large
number of TensorRT elementary layers

For k layers, the naive implementation would

require k-1 memory roundtrips
The skip and layer-normalization(LN) layers occur ;_..i+

twice per Transformer layer and are fused in a

single kernel

gelu(x) =a*x* (1 +tanh(b* (x+c*x"3)))

Result
Result

Result =

Result

Result =

Result

X" 3

c * Result
X + Result
b * Result
tanh (Result)
X * Result
a * Result

Multi-Head
Self Attantion

>

BERT Encoder Cell

...............

Input

! ‘

Fused and optimized
using TensorRT plugin

Optimized using
TensorRT plugin

...............

.........

Fused and optlmized
using TensorRT plugin
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CUSTOM PLUGINS

Self-attention layer

Self-Attention Layer
(Before optimizations)

/

Element
KT Scaling
mPUt « Tran
(B xS x (NxH))

v v
\ 3 separate FC layers
/ Self-Attention Layer
(With optimizations through TensorRT)
Q'
(B x Lr;p(:tx H)) g Transpose Kv:

\ Single big matrix
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IMPLICATIONS

Significant impact on latency and throughput (batch 1)

CPU Server 40 ms

T4 2.2ms |

10 milliseconds Target for
Many Conversational Al Apps

DEEP
Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQUAD with batch size =1 and sequence length = 128. e :S%A. INSTITUTE



IMPLICATIONS

Significant impact on latency and throughput

NVIDIA A100 with Sparsity
NVIDIA V100

3%7

a 1,000 20001 1,000 2,000 3,050 &,000 200

Sequences Per Lecend

DX ATO0 server wf Tx NVIDIA A100 with 7 MIG inslances of Tg.bqt | Balch Size = 94 | Precsion: INTE | Sequence Lenglh = 1208

DGX-1 server wf Tx NVIDIAVIOD | TensarRT 7.7 | Balch Size < 254 | Precision: Mixed | Sequence | ength < 128
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BEYOND BERT



FASTER TRANSFORMER

Designed for training and inference speed

Encoder:
1.5x compare to TensorFlow with XLA on FP16

Decoder on NVIDIA Tesla T4

2.5x speedup for batch size 1 (online translating scheme)
2x speedup for large batch size in FP16

Decoding on NVIDIA Tesla T4

/x speedup for batch size 1 and beam width 4 (online translating scheme)
2x speedup for large batch size in FP16.

Decoding on NVIDIA Tesla V100

6x speedup for batch size 1 and beam width 4 (online translating scheme)
3x speedup for large batch size in FP16.

https://github.com/NVIDIA/Deepl earningExamples/tree/master/FasterTransformer#feature-support-matrix . DA - | INSTITUTE
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INEFFICIENCY LIMITS INNOVATION

Difficulties with deploying data center inference

Single Model Only Single Framework Only

@ Q
Rec- Q Q
ASR NLP ommender theano Q

Some systems are overused while Solutions can only support
others are underutilized models from one framework

Custom Development

Developers need to reinvent the
plumbing for every application
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NVIDIA TRITON INFERENCE SERVER

Production data center inference server

Maximize real-time inference

: VoA performance of GPUs
@< §52 ™
=~ E£5 S Quickly deploy and manage multiple
|: models per GPU per node

Easily scale to heterogeneous GPUs
and multi GPU nodes

Inference
Server

C
O
i
Fa
I—

D Integrates with orchestration

@
c 2% .
S8 ¢ systems and auto-scalers via latency
4 .
£ TesiaPs and health metrics

Now open source for thorough
customization and integration

IIIIIIIIIIIIIIII



Concurrent Model Execution
Multiple models (or multiple instances of same
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend

Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library

Model Ensemble
Pipeline of one or more models and the
connection of input and output tensors between

those models (can be used with custom
backend)

FEATURES

Dynamic Batching

Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)

TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef

ONNX graph (ONNX Runtime)

TensorRT Plans

Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making it

more portable to multiple OSes and removing
the build dependency on Docker

Streaming API

Built-in support for audio streaming input e.g.

for speech recognition

+

v, , l..‘

Caffe? Tensor

TensorRT
PYTORCH

€ ONNX

{} B Microsoft
chainer CNTK

‘xnet PYTHRCH
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DYNAMIC BATCHING SCHEDULER

Batch-1 Request
Batch-4 Request

\

Triton Inference Server

Framework Backend

Runtime

Context

| Dynamic
Batcher

Context
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DYNAMIC BATCHING SCHEDULER

Grouping requests into a
single “batch” increases
overall GPU throughput

Preferred batch size and wait
time are configuration options.

Assume 4 gives best utilization in
this example.

Triton Inference Server

Dynamic
Batcher

ModelY Backend

Runtime

.

-~
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DYNAMIC BATCHING

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

Triton Inference Server groups
inference requests based on
customer defined metrics for
optimal performance

Customer defines 1) batch size
(required) and 2) latency
requirements (optional)

Example: No dynamic batching
(batch size 1 & 8) vs dynamic
batching

Static vs Dynamic Batching (T4 TRT Resnet50 FP16 Instance 1)

1000

Inferences/Second

4 6 8 10 12 14 16
Concurrent Client Requests

== Static BS1 with Dynamic BS8 == Static BS8 no Dynamic Batching Static BS1 no Dynamic Batching
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CONCURRENT MODEL EXECUTION - RESNET 50

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Inference
Requests

10
concurrent
requests

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.

10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

ResNet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1

CUDA Stream

RN50 Instance 2

CUDA Stream

RN50 Instance 3

CUDA Stream

RN50 Instance 4

CUDA Stream

RN50 Instance 5

CUDA Stream

RN50 Instance 6

CUDA Stream

RN50 Instance 7

CUDA Stream

RN50 Instance 8

CUDA Stream
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CONCURRENT MODEL EXECUTION - RESNET 50

Common Scenario 1 TRT FP16 Inf/s vs. Concurrency BS 8 Instance 8 on T4

One API using multiple copies of the = |nf/s == Latency (ms)
same model on a GPU

3000 200

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.

10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server 5 4 X q 10 19
instance is achieved.

150
2000

100

Inf/s

1000
50

Concurrency

DEEP
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CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

Many APls using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

5 concurrent
requests

Inference
Requests

5 concurrent
requests

Resnet
50

Request
Queue

Deep
Rec

Request
Queue

T4 16GB GPU

RN50 Instance 1

CUDA Stream

RN50 Instance 2

CUDA Stream

RN50 Instance 3

CUDA Stream

RN50 Instance 4

CUDA Stream

DeepRec Instance 1

CUDA Stream

DeepRec Instance 2

CUDA Stream

DeepRec Instance 3

CUDA Stream

DeepRec Instance 4

CUDA Stream

92 <X

NVIDIA.
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CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

TRT FP16 Resnet 50 Inferences/Second vs Total Latency BS8
Instance 4 on T4

== Resnet 50 Inferences/Second == Total Latency (ms)

2000 80

60

40

20

Concurrency

TRT FP16 Deep Rec Inferences/Second vs Total Latency BS8
Instance 4 on T4

== Deep Rec Inferences/Second == Total Latency (ms)

5000 25

4000 20

3000 15

Inf/s

2000 10

1000 7 5

Concurrency
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TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

Before Trlton Inference Server 800 FPS Before Triton Inference Server - 5 OOO FPS

™ oSss

A ’ Ne --‘- ~
: 'h’ '\'.‘" : '102 | oo ;‘lll

« One model per GPU
« Requests are steady across all models
. Utilization is low on all GPUs

Spike in requests for blue model
GPUs running blue model are being fully utilized
Other GPUs remain underutilized

DEEP
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TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

5 OOO FPS After Triton Inference Server 15 OOO FPS

% it N ll)"
av{v"u

LA
» ‘l
¢« Mu <5

; »

'S Pl 16k Uiy -
'y ’

/1 mh

. -,

After Trlton Inference Server

IrNe -
,«..;

.

31
e i

. Load multiple models on every GPU . Spike in requests for blue model
. Load is evenly distributed between all GPUs . Each GPU can run the blue model concurrently

. Metrics to indicate time to scale up
0 GPU utilization
o Power usage

o Inference count
o Queue time
o Number of requests/sec 95 €4 UEaRNING
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STREAMING INFERENCE REQUESTS

New Streaming API

Based on the correlation ID, the
audio requests are sent to the
appropriate batch slot in the
sequence batcher®

*Correct order of requests is
assumed at entry into the endpoint
Note: Corr = Correlation ID

Corr1 Corr1 Corr1 Corr1 Corr2 Corr2 Corr3 Corr3
Inference Request

NEW
DeepSpeech2 Sequence Batcher
Per Model Request Queues

DeepSpeech?2 Corr 2 Corr 2

Corr 3 Corr 3 Corr2 Corr2 Corr 3 Corr 3

Wavel2letter

NEW
l I . l Wav2Letter Sequence Batcher
Corr 1 Corr 1 Corr 1 Corr 1

Corr 1Corr 1Corr 1Corr 1

Framework

Inference
Backend
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MODEL ENSEMBLING

Pipeline of one or more models and the
connection of input and output tensors between
those models

Use for model stitching or data flow of multiple
models such as data preprocessing — inference
— data post-processing

Collects the output tensors in each step,
provides them as input tensors for other steps
according to the specification

Ensemble models will inherit the characteristics
of the models involved, so the meta-data in the
request header must comply with the models
within the ensemble

IMAGE

'

!

RAW_IMAGE

Y

image_preprocess _model

'

PREPROCESSED_OUTPUT

$

preprocessed_image

1

2l

FORMATTED_IMAGE

FORMATTED_IMAGE

classification_model segmentation_model
CLASSIFICATION_OUTPUT SEGMENTATION_OUTPUT
CLASSIFICATION SEGMENTATION
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perf client TOOL

po= Datch Latency Imkcrozeconcs)
Chanmt '.:'cndlrdm.-a:rhb‘m\:r'..-'cn:i‘-x'cc- Sarver :.:ue;'a'c'\':rL-:mpm:ll.‘lcmﬁcc. lota m _ ‘ ' - o » i
o= ~ = R
25 104 706 7 3518
22 126 756 2140 7 3530 8
17 154 909 538 2158 7 3778 o
. b7 194 o0y co1 2241 e e
Measures throughput (inf/s) and 0w e 2o : s | E I I
latency under varying client loads ss : I I I I I
3 225 1352 987 2751 7 416 -
pext_clienc Modes R R R | T
1. Specify how many concurrent % : ’ » ;
o o 5 3’4 17E 451 =5 (
outstanding requests and it s

will find a stable latency and
throughput for that level

2. Generate throughput vs . d

latency curve by increasing h
the request concurrency until . e
a specific latency or ) .
concurrency limit is reached

Generates a file containing CSV

output of the results e oo

Easy steps to help visualize the

throughput vs latency tradeoffs
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ALL CPU WORKLOADS SUPPORTED

Triton relies on framework backends (Tensorflow, Caffe2,
PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel

MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and

cores

Benefit from features:
Multiple Model Framework Support
Dynamic batching
Custom backend
Model Ensembling
Audio Streaming API

agclcation

Pyton/C++ Clent library

C AP

NYIUIA Inten

Infurmnis Surver

StntusdFealth Metrits Fxpost
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TRITON INFERENCE SERVER COLLABORATION
WITH KUBEFLOW

What is Kubeflow?

Open-source project to make ML workflows on Kubernetes simple, portable, and
scalable

Customizable scripts and configuration files to deploy containers on their chosen
environment

<

Easily set up an ML stack/pipeline that can fit into the majority of enterprise KUbeﬂOW
datacenter and multi-cloud environments

Problems it solves

How it helps Triton Inference Server

Triton Inference Server is deployed as a component inside of a production workflow 1 = — .
to J— —_—
Optimize GPU performance L .

Enable auto-scaling, traffic load balancing, and redundancy/failover via
metrics

DEEP

For a more detailed explanation and step-by-step guidance for this collaboration, refer to this : LEARNING
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https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server

TRITON INFERENCE SERVER HELM CHART

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

Helm: Most used “package manager” for Kubernetes

Usage percentage vs. Project

B Usage percentage

We built a simple chart (“package”) for the Triton
Inference Server.

Project

You can use it to easily deploy an instance of the server.

It can also be easily configured to point to a different
image, model store, ...

OpenShift templates

https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7¢c0273672c5e92893/deploy/single server 40%

Usage percentage
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https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Part 3: Production Deployment

* Model Selection
* Post-Training Optimization
N\  Product Quantization
* Knowledge Distillation
. ¥ * Model Code Efficiency
o * Model Serving
X . » Building the Application

5 « Exporting the Model
’ » Hosting the Model
] - » Server Performance
. * Using the Model
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THE APPLICATION

Typically composed of many components

ASR NLU

Language Model ‘

Search Ranking

Visual Search

‘ Autocorrect

Query Search
“What date is the

Chinese New Year?”

Machine Translation

Audio Feature Extraction Acoustic Model

ENRH L&

TTS

<
<

Audio Voice Encoder Speech Synthesis
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NVIDIA RIVA

Fully Accelerated Framework for Multimodal Conversational Al Services

Riva

video

A

audio

A

Multi-Speaker — “ESSCA Wit wil you e eyl Wednesda?
Transcription DOUGLAS: | expect tohave exrly designs of e packagng

»
>

NVIDIA GPU CLOUD NVIDIA Al TOOLKIT

JESSICA Grom.

End-to-End Multimodal Conversational Al Services ﬁ

Pre-trained SOTA models-100,000 Hours of DGX

Retrain with NeMo

Interactive Response - 150ms on A100 versus 25sec on CPU

Deploy Services with One Line of Code
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PRETRAINED MODELS AND Al TOOLKIT

Train SOTA Models on Your Data to Understand your Domain and Jargon

E’:

........................

100+ pretrained models in NGC ,
SOTA models trained over 100,000 hours on NVIDIA DGX™ Pretrained «.f;;;
models > 4 » R ‘:"5‘«: » ¢
Retrain for your domain using NeMo & TAO Toolkit
|
Deploy trained models to real-time services using Helm charts Model Training Model Ready to Deploy
Fine Tuning Validation in NVIDIA Riva

Lustomer Data

_______
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MULTIMODAL SKILLS

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

Multi-speaker transcription
Chatbot
Look-to-talk

Dialog manager manages multi-user and multi-context scenarios

Shirley : Hou 15 the weather 1n San Francisco.

Multimodal application with multiple users
and contexts
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BUILD CONVERSATIONAL Al SERVICES

Optimized Services for Real Time Applications

Build applications easily by connecting
performance tuned services

Task specific services include:

* ASR

* Intent Classification
+ Slot Filling

* Pose Estimation

» Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper for trtis

Intent

Riva

Dialog Manager

Riva Client
Applications

n

[ ]

Riva Al services
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https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

DEPLOY MODELS AS REAL-TIME SERVICES

One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data
center, and at the edge

Single command to set up and run the entire Riva application
through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

One click deployment
—>

TensorRT
Triton Inference Server
Riva API Server

Riva SERVICES
NLU

Vision

Speech

h] \l' \',','.I.-":..‘-.

P = :
i & EEE e 28 «

'

SE .

Language Decoder Acoustic Feature
Model Model Extraction

v

._H .='.ﬁ"-' -

— ™ et

NLU &
Recommenders Synthesis Encoder

Helm command to deploy models to production
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JESSICA: Whatt will you harve rescdy for Wednesday?

DOUGLAS: | epexct 0 have axrly designs of $e pacdkagng.

Visual Diarization

Transcribe multi-user multi-context conversations

RIVA SAMPLES

Look To Talk

Wait for gaze before triggering Al assistant

NVIDIA

M owekoome W JANS weslher serece Haw ces | he p pod?

How s U saalret Lodey?

ot Sen M arciece

ks Parlly Coudy in S Foecocn ol te momes] The lersgersdine & e gl dagees tw

Pramid ty 13 sewerly 0ne pescent and the mind specd B 2000 mikes gef hou

15 FGoing % ol tome now n Sana Claa?

0 Sa0va Cono 120omoa 15 not capactad niin

Virtual Assistant

End-to-end conversational Al system
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Part 3: Production Deployment

* Model Selection

* Post-Training Optimization
* Product Quantization

* Knowledge Distillation

* Model Code Efficiency

* Model Serving

» Building the Application

* Exporting the Model
* Hosting the Model

* Server Performance
* Using the Model
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