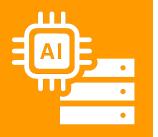


HPC & BDAI Systems for Bavarian Universities


Data Science Storage (DSS)

lxlogin<X>.lrz.de

LRZ AI Systems

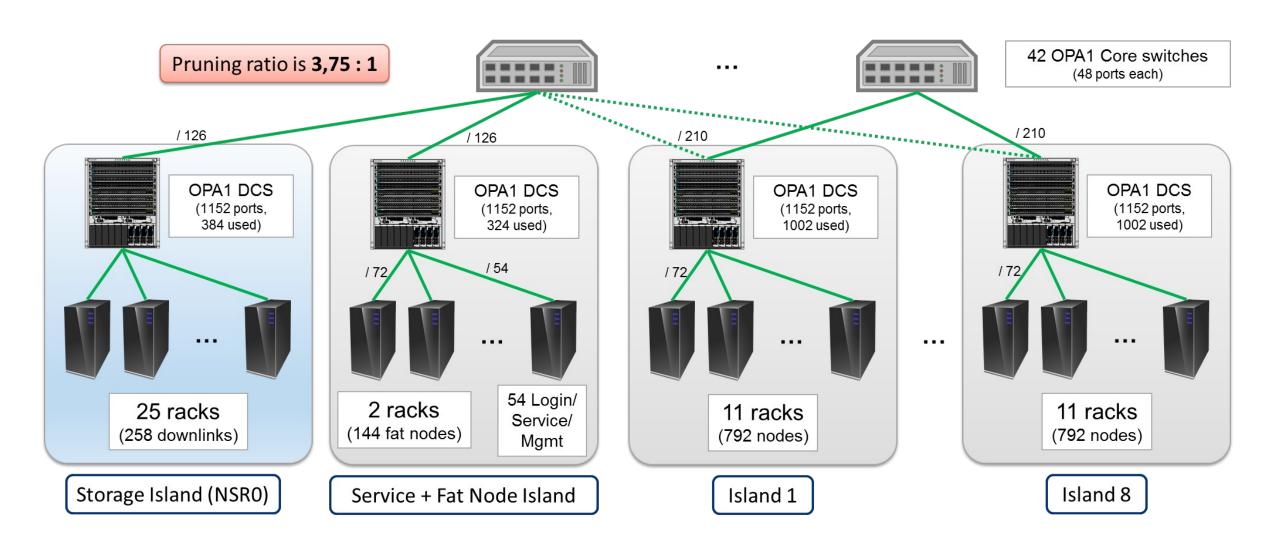
- "Big Data" CPU nodes
- HPE P100 node
- V100 nodes
- DGX-1 P100, DGX-1 V100
- DGX A100

https://login.ai.lrz.de ssh login.ai.lrz.de

(w/ some GPUs)

https://cc.lrz.de

https://doku.lrz.de/linux-cluster-10745672.html https://doku.lrz.de/lrz-ai-systems-11484278.html https://doku.lrz.de/display/PUBLIC/Compute+Cloud



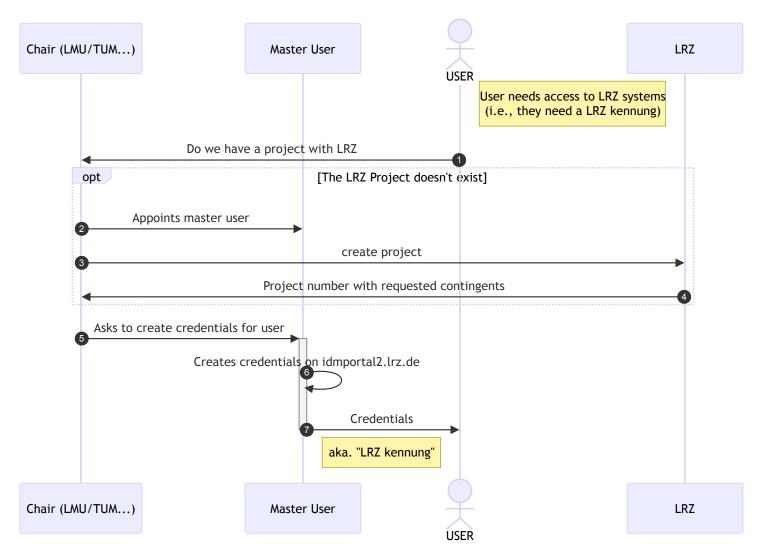
SuperMUC-NG

High-Level System Architecture

SuperMUC-NG

Hardware Overview

Phase 1


Compute Nodes	Thin Nodes	Fat Nodes	Total (Thin + Fat)	
Processor Type	Intel Skylake Xeon Platinum 8174	Intel Skylake Xeon Platinum 8174	Intel Skylake Xeon Platinum 8174	
Cores per Node	48	48	48	
Memory per Node [GByte]	96	768	N/A	
Number of Nodes	6,336	144	6,480	
Number of Cores	304,128	6,912	311,040	
Peak Performance @ nominal [PFlop/s]	26.3	0.6	26.9	
Linpack [PFlop/s]	-	-	19.476	
Memory [TByte]	608	111	719	
Number of Islands	8	1	9	
Nodes per Island	792	144	N/A	
Filesystems				
High Performance Parallel Filesystem	50 PiB @ 500 GB/s			
Data Science Storage	20 PiB @ 70 GB/s			
Home Filesystem	256 TiB			
Infrastructure				
Cooling	Direct warm water cooling			
Waste Heat Reuse	For producing cold water with adsorption coolers			
Software				
Operating System	Suse Linux Enterprise Server (SLES)			
Batch Scheduling System	SLURM			
High Performance Parallel Filesystem	IBM Spectrum Scale (GPFS)			
Programming Environment	Inte	el Parallel Studio XE, GNU cor	mpilers	
Message Passing	Intel MPI, (OpenMPI)			

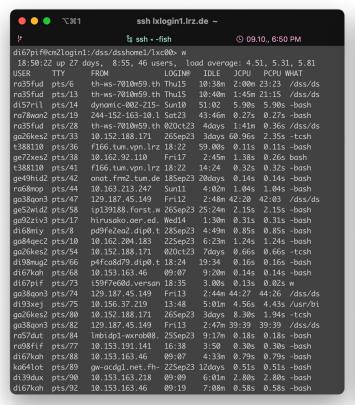
1	Nodes
rocessor	Intel Sapphire Rapids Intel Xeon Platinum 8480+
PUs per Node	2
ores per Node	112
lemory per Node	512 GByte DDR5
PUs	Intel Ponte Vecchio
	Intel Data Center GPU Max 1550
PUs per Node	4
lemory per GPU	128 GByte HBM2e
umber of Nodes	240 (incl. 4 login nodes)
otal CPU Cores	26,880
otal Memory	122.88 TByte DDR5
otal GPUs	960
otal GPU Memory	122.88 TByte HBM2e
EAK (fp64; PFlop/s)	27.96 PFlop/s
npack (fp64; PFlop/s)	17.19 PFlop/s
Сотр	ite network
abric	NVIDIA/Mellnox HDR Infiniband (200 GBit/s)
ppology	fat tree
terconnects per Node	2
umber of Islands	1
File	systems
PPFS (same as Phase 1)	50 PB @ 500 GByte/s
SS (same as Phase 1)	20 PB @ 70 GByte/s
ome Filesystem	256 TByte
AOS	1 PB @ 750 GByte/s
Infra	structure
ooling	Direct warm water cooling
So	ftware
perating System	Suse Linux (SLES)
atch Scheduling System	SLURM
igh Performance Parallel Filesystem (HPPFS)	IBM Spectrum Scale (GPFS)
rogramming Environment	IBM Spectrum Scale (GPFS) Intel OneAPI
lessage Passing	Intel MPI, (OpenMPI)

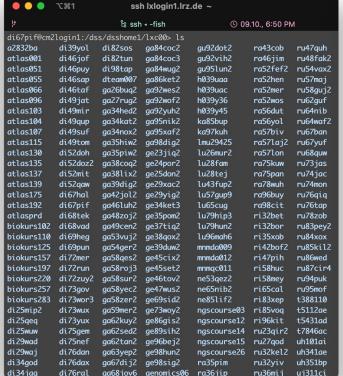
LRZ User Management System

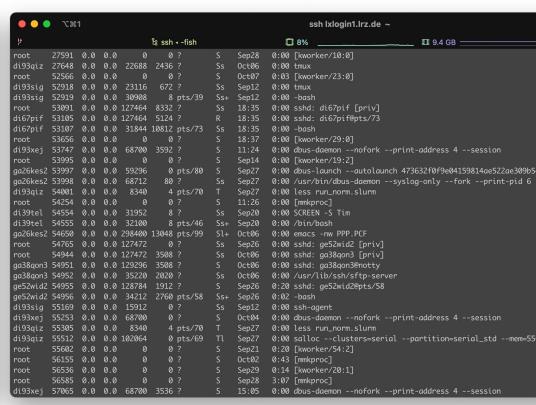
The complete Perspective

Linux Cluster: Hardware Overview

Name	CPU	Cores/Node	$ m RAM/Node \ (GB)$	Nodes (total)	Cores (total)
CoolMUC-2	Intel Xeon E5-2690 v3 ("Haswell")	28	64	812	22736
CoolMUC-3	Intel Xeon Phi ("Knights Landing")	64	96	148	9472
Teramem	Intel Xeon E7-8890 v4 ("Broadwell")	96	6144	1	96
CoolMUC-4	-	-	-	-	-


https://doku.lrz.de/linux-cluster-10745672.html




User Perspective: Environment & Workspace

- These are systems shared by many users, i.e. other people will be working on the same (login) node at the same time.
- Be aware of your surroundings and considerate of your fellow colleagues!

User Perspective: Environment & Workspace

You don't have administrative rights on these systems, i.e. no root access.

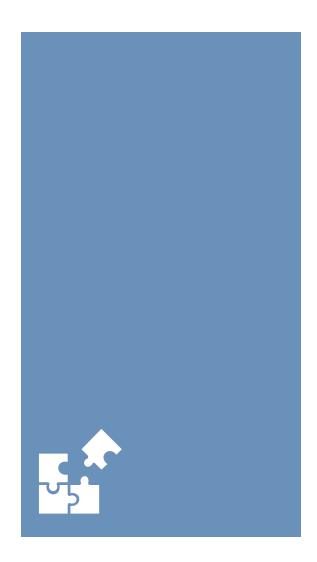
You will not be able to use the sudo command

You're prohibited from making system-wide modifications

Disk access is restricted to your home directory (and possibly other storage areas accessible to your account, e.g., your DSS containers)

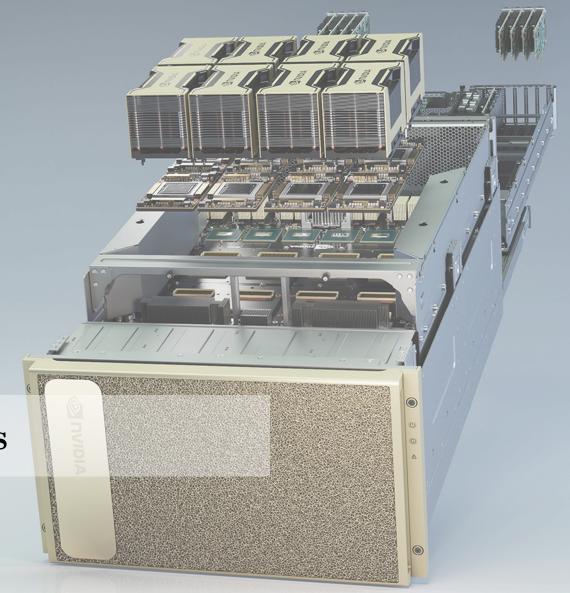
→ That said, your home (directory) is your castle – there, anything goes!

Introduction to Multiuser Cluster Systems at LRZ


User Perspective: Environment & Workspace

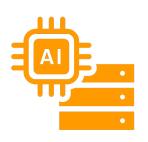
- If available on the system, modules allow for the dynamic modification of environment variables, e.g., they provide a flexible way to access various applications and libraries available on the system
- List the currently active modules (loaded by default):
 - \$ module list
- Search for available modules:
 - \$ module available <module> or
 - \$ module av <module>
- Get more information about a specific module:
 - \$ module show <module>
- Use \$ module load <module> to apply the changes of a module to the environment

User Perspective: Package Managers and Binaries



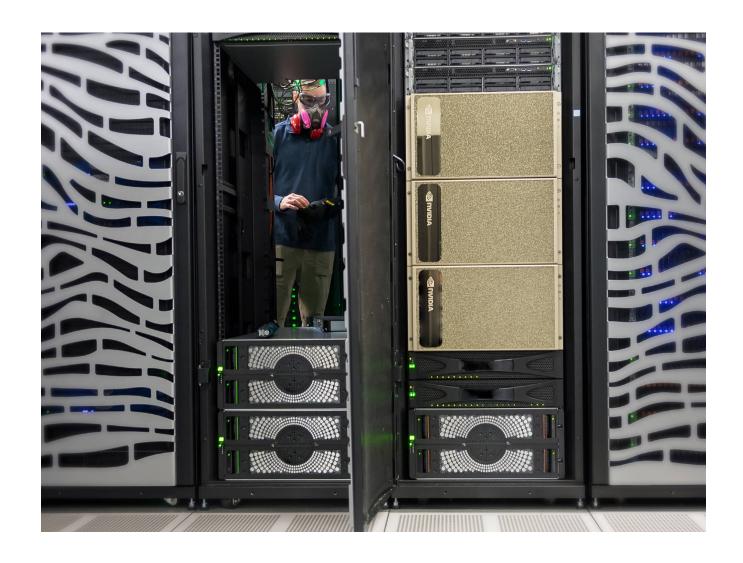
- Conda (https://conda.io) is "a package, dependency and environment management for any language Python, R, Ruby, Lua, Scala, Java, JavaScript, C/ C++, FORTRAN, and more".
- **pip** (https://pip.pypa.io) is "the package installer for Python. You can use it to install packages from the Python Package Index and other indexes".

 Make sure to install packages to the home directory instead of the system-wide default location:
 - ~\$ pip install --user <package>
- wget a binary from the internet (be careful!)
 - ~\$ wget http://free-software.ru/download/not-malware.bin
- Compile yourself
 - ~\$ git clone https://github.com/ggerganov/whisper.cpp
 - ~\$ cd whisper.cpp
 - ~\$ make

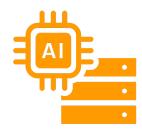


LRZ AI Systems

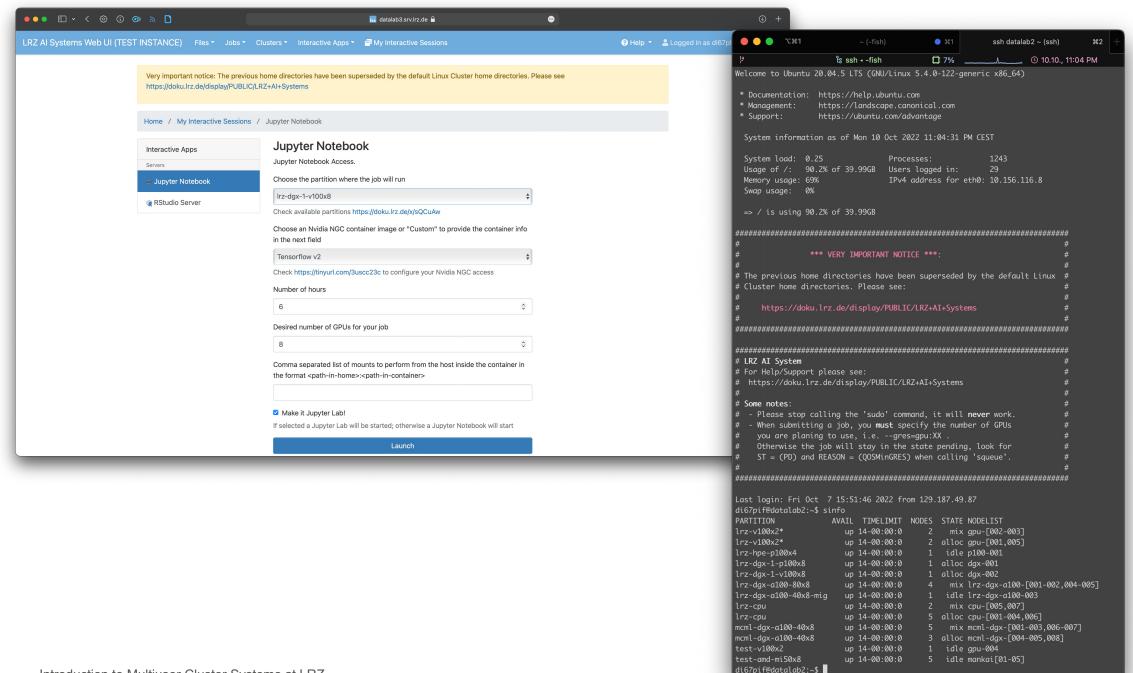
(BD)AI Systems: Hardware Overview



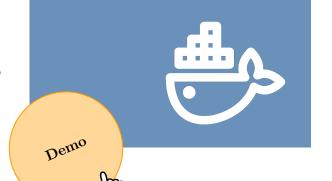
Type	Nodes	CPUs (Node)	Memory (Node)	GPUs (Node)	Memory (GPU)
CPU Nodes	9	up to 20	up to 850GB	-	-
HPE P100 Node	1	64	$256~\mathrm{GB}$	4x P100	16 GB
V100 Nodes	4	40	368 GB	2x V100	16 GB
DGX-1 P100	1	80	512 GB	8x P100	16 GB
DGX-1 V100	1	80	512 GB	8x V100	16 GB
DGX A100/40	1	256	1 TB	8x A100	40 GB
DGX A100/80	4	256	2 TB	8x A100	80 GB

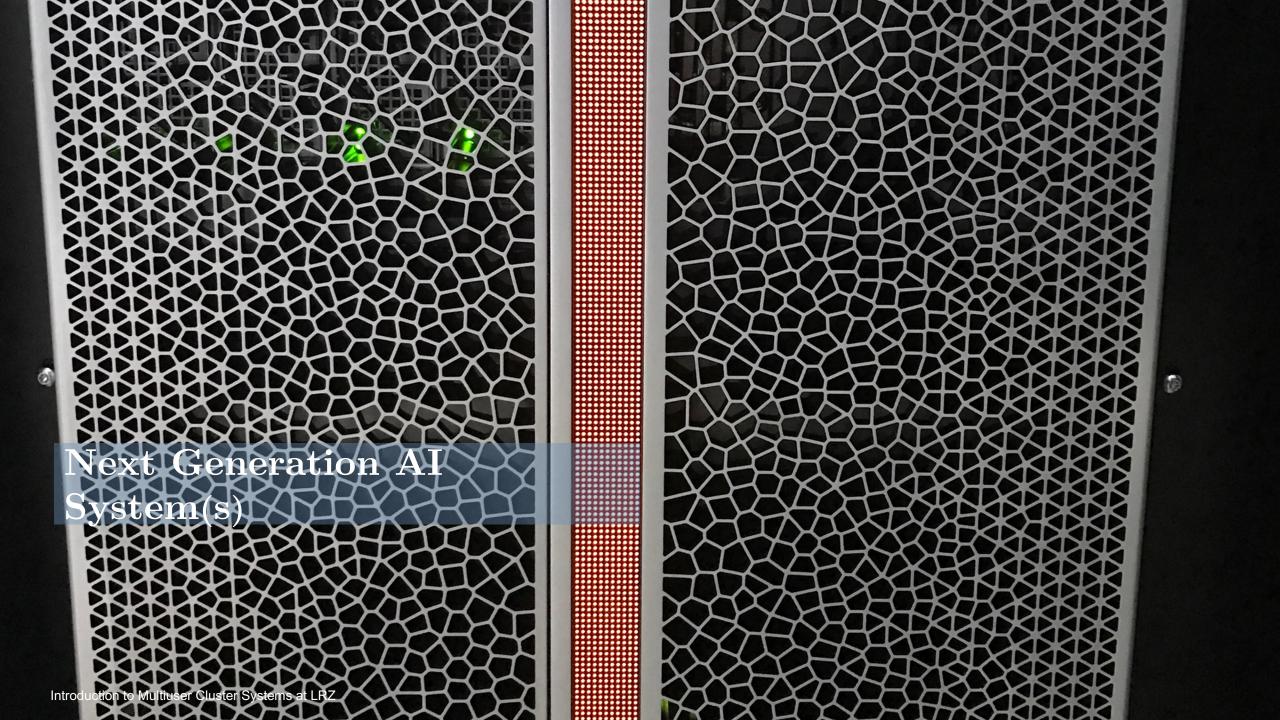


(BD)AI Systems: Hardware Overview



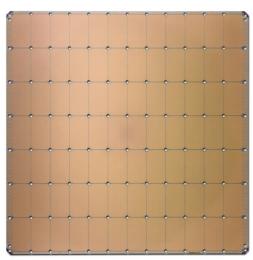
- 3 NVIDIA A100 rack mounted at the Argonne National Lab
- 143kg / node
- 8 GPUs / node
- 400 W
- (not actually made of gold)





User Perspective: OS-level Virtualization, Containers

- Isolated **user space** instances, called containers, allow programs running inside to only see the container's contents and devices assigned to the container.
- Thus, the environment inside a container can essentially be modified freely, typically **providing (encapsulated) root privileges**
- The most prominent container runtime, Docker, is typically not available on multiuser systems, but you will encounter alternatives
 - Charliecloud (https://hpc.github.io/charliecloud/)
 - Enroot (https://github.com/NVIDIA/enroot)
- Containers imposes no noticeable overhead, i.e. there should be no performance impact and parallelization, GPU access, etc. should if set up correctly work as expected
- Containers are UDSS: User Defined Software Stacks: you're basically independent from the environment created by system administrators, but you will only receive limited support for the environment created instead (inside the container).



(BD)AI Systems: Hardware Overview

Cerebras CS-2 Wafer Scale Engine (WSE2) in Numbers

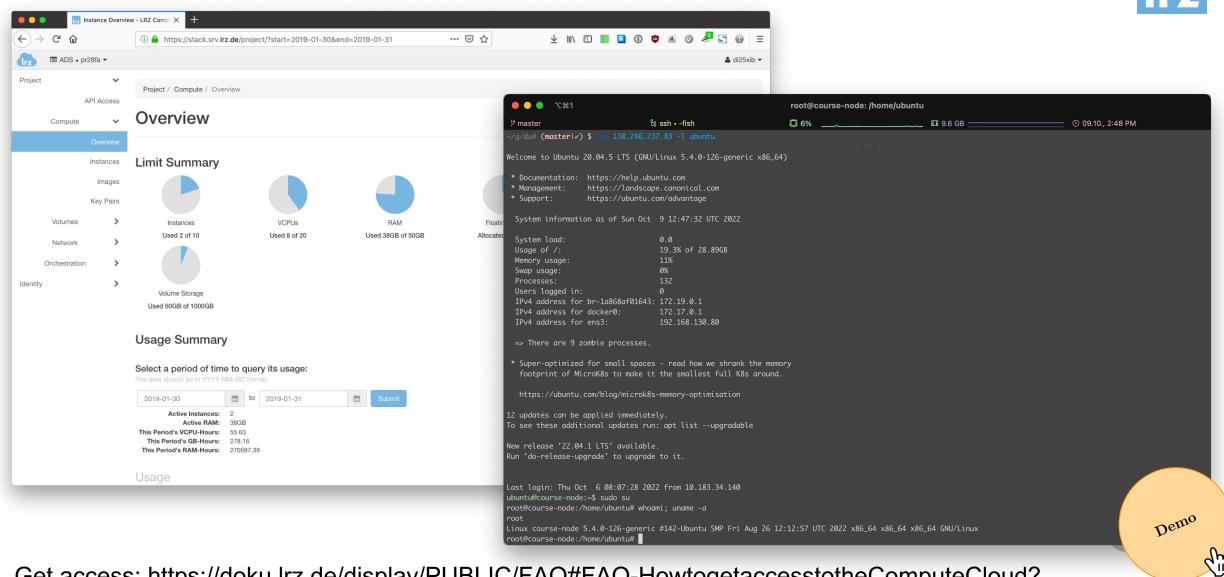
A Systems Approach to Deep Learning "Cluster-scale acceleration on a single chip"

	Cerebras WSE-2	NVIDIA A100	WSE 2 Advantage
Chip Size	46,225 mm ²	826 mm ²	56 X
Cores	850,000	6,912 + 432	123 X
On Chip memory	40 Gigabytes	40 Megabytes	1,000 X
Memory B/W	20 Petabytes/sec	1,555 Gigabytes/sec	12,862 X
Fabric B/W	220 Petabits/sec	4.8 Terabytes/sec	45,833 X

Data Source: https://www.cerebras.net/whitepapers/

LRZ Compute cloud: Hardware Overview

Compute	200 Nodes 192 GB to 1024 GB RAM Intel® Xeon® ~2.40 GHz	
	32 x 2 GPUs Nodes 2x Nvidia Tesla V100 16 GB/node 768GB RAM/node	
Storage	15 nodes 2 PB Raw Storage	
Networking	100G Intel OmniPath	
Software	OpenStack & CEPH	


Access to more than 10 vCPUs and/or other restricted resources can be requested by contacting the cloud support team: https://servicedesk.lrz.de/ql/create/105

40000 vCPU capacity with overcommitment 2000 users and 1500 active VMs

Compute Cloud: Hardware Overview

Get access: https://doku.lrz.de/display/PUBLIC/FAQ#FAQ-HowtogetaccesstotheComputeCloud?

Introduction to Multiuser Cluster Systems at LRZ

https://doku.lrz.de/display/PUBLIC/Data+Science+Storage

Data Storage: Overview

- The LRZ HPC/HPDA/HPAI Infrastructure is backed by the Data Science Storage (DSS)
 - Long-term storage solution for potentially vast amounts of data
 - Directly connected to the LRZ computing ecosystem
 - Flexible data sharing among LRZ users
 - Web interface for world-wide access and transfer
 - Data sharing with external users (invite per e-mail, access per web interface)
- Additionally, we also provide a new type of Data Archive, based on the DSS Solution stack, called Data Science Archive (DSA) (this basically relates to DSS like AWS Glacier relates to AWS S3).
- Disk space and access is managed (as DSS projects and containers) by data curators. This can be LRZ personnel (e.g., Linux Cluster \$HOME directories) or PIs/master users/dedicated data curators (e.g., project storage).

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster

Data Storage: Linux Cluster & Al Systems

- \$HOME (DSS-backed home directory, managed by LRZ)
 - 100GB per user
 - Access: /dss/dsshome1/lxc##/<user>
 - Automatic tape backup and file system snapshots (see "/dss/dsshome1/.snapshots/" directory)
 - All your important files/anything you invested a lot of work into should be here
 - BUT Not suitable for heavy and/or high-frequency I/O operations, i.e. most machine learning applications. Use the AI Systems DSS instead.

https://doku.lrz.de/display/PUBLIC/2.+Storage+on+the+LRZ+AI+Systems

Data Storage: Al Systems

• AI DSS

- Up to 5 TB per project **upon request**, shared among project members
- Access: \$ dssusrinfo all
- Configuration (e.g., exports, quota) to be managed by data curator
- Use this for e.g., high bandwidth, low latency I/O
- Can not (yet) be accessed from Linux Cluster

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster

Data Storage: Linux Cluster

- DSS project storage
 - Up to 10 TB per project **upon request**, shared among project members
 - Access: \$ dssusrinfo all
 - Configuration (e.g., exports, backup, quota) to be managed by data curator
 - Use this for e.g., large raw data (and consider backup options)
 - Can be accessed from the AI systems

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster

Data Storage: Linux Cluster

- Legacy \$SCRATCH (scratch file system, "temporary file system")
 - 1.4 PB, shared among all users
 - Access: /gpfs/scratch/<group>/<user>
- New \$SCRATCH_DSS (not yet available on CoolMUC-2 compute nodes)
 - 3.1 PB, shared among all users
 - Access: /dss/lxclscratch/##/<user>
- No backup (!) and sliding window file deletion, i.e. old files will eventually be deleted (!!)
 - a data retention time of approx. 30 days may be assumed, but is not guaranteed
- This is the place for e.g., very large, temporary files or intermediate results, directly feeding into additional analyses
- Data integrity is not guaranteed. Do not save any important data exclusively on these file systems! Seriously, don't do it!

https://doku.lrz.de/display/PUBLIC/DSS+documentation+for+users

Data Storage: Compute Cloud

- The storage backend of the Compute Cloud is used to host the virtual disks belonging to the VMs in the cloud. It is not meant to store large data sets. No backups are created.
- DSS containers can be made available for VMs running in the LRZ Compute Cloud without the need to copy data into the VM.
 - The data curator of the data project, to which the relevant container belongs, needs to export the container to the IP address used by your VM via NFS.
 - You should only export DSS containers to IPs that are statically assigned to and trusted by you. NFS exports follow a "host based trust" semantic, which means the DSS NFS server will trust any IP/system to which a DSS container is exported. There is no additional user authentication between NFS server and client enforced.

