
Additional Parallel Features

in Fortran

An Overview of ISO/IEC TS 18508

Dr. Reinhold Bader

Leibniz Supercomputing Centre

Introductory remarks

Technical Specification – a „Mini-Standard“

permits implementors to work against a stable specification

will be eventually integrated with mainline standard (ISO/IEC 1539-1)

modulo „bug fixes“ (e.g., issues with semantics that are identified during implementation)

Purpose of TS 18508:

significantly extends the parallel semantics of Fortran 2008 (only a baseline

feature set was defined there)

extensive re-work of some parallel features pulled from Fortran 2008 during

its development

new feature: resiliency (controversial)

however: parallel I/O is (somewhat unfortunately) not covered

Current TS draft

download from http://bitly.com/sc22wg5 2015  N 2056

©2015 LRZ Additional Parallel Features in Fortran 2

many improvements based on the concepts developed in

the group of John Mellor-Crummey at Rice University

DTS submitted for SC22 vote

http://bitly.com/sc22wg5

Recall coarray programming model (1)

Coarray declaration

symmetric objects

Execute with 4 images

Difference between A and B?

Cross-image addressing

„pull“ (vs. „push“)

one-sided communication

between images p and q

©2015 LRZ Additional Parallel Features in Fortran 3

integer :: b(3)
integer :: a(3)[*]

if (this_image() == p) &
b = a(:)[q]

a coindexed

reference

A(1)[1]
A(2)[1]
A(3)[1]

A(1)[2]
A(2)[2]
A(3)[2]

A(1)[3]
A(2)[3]
A(3)[3]

A(1)[4]
A(2)[4]
A(3)[4]

Image 1 2 3 4

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

B(1)
B(2)
B(3)

address space

A
q

p

execution sequence

B

ad
d

re
ss

sp
ace

statement

executed on p

simplest

case

Recall coarray programming model (2)

Asynchronous execution

causes race condition 

violates language rules

Image control statements

enforce segment ordering:

q1 before p2, p1 before q2

©2015 LRZ Additional Parallel Features in Fortran 4

a = …
if (this_image() == p) &

b = a(:)[q]

a = …
sync all
if (this_image() == p) &

b = a(:)[q]

programmer‘s

responsibility

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

global barrier

A
q

p

execution sequence

B

ad
d

re
ss

sp
ace

local

variable

statement executed

on q … but when?

statement executed

on q … but when?

statement executed

on q … but when?

Weaknesses of existing synchronization concept

Global barrier must be executed collectively

all images must wait until barrier is reached

load imbalanced applications may suffer more performance loss than

necessary

Symmetric synchronization is overkill

the ordering of p1 before q2 is not needed

image q therefore might continue without waiting

Therapy: TS 18508 introduces a lightweight, one-sided synchronization

mechanism – Events

©2015 LRZ Additional Parallel Features in Fortran 5

image subset synchronization (context-unsafe!) or mutual

exclusion can also be used, but are still too heavyweight.

use, intrinsic :: iso_fortran_env

type(event_type) :: ev[*]
special opaque derived type;

all its objects must be coarrays

facilitates producer/consumer

scenarios

Synchronization with Events

Image q executes

and continues without blocking

Image p executes

the WAIT statement blocks until

the POST has been received

One sided segment ordering

q1 ordered before p2

no other ordering implied

no other images involved

EVENT_QUERY intrinsic

read event count without

synchronization

©2015 LRZ Additional Parallel Features in Fortran 6

a = …

event post (ev[p])

event wait (ev)
b = a(:)[q]

no coindex permitted

on event argument here

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

POST (+1)

WAIT (-1)

event variable has an internal counter with

default value zero; its updates are exempt

from the segment ordering rules

(„atomic updates“)

The dangers of over-posting

Scenario:

Image p executes

Image q executes

Image r executes

Question:

what synchronization effect
results?

Answer: 3 possible outcomes

which one happens is
indeterminate!

Case 1: p1 ordered before q2

Case 2: r1 ordered before q2

Case 3: ordering as given on

next slide

©2015 LRZ Additional Parallel Features in Fortran 7

event post (ev[q])

event wait (ev)

event post (ev[q])

POST (+1)

p
p1 p2

WAIT (-1)

q
q1 q2

POST (+1)

r
r1

r2

POST
p

p1 p2

WAIT

q
q1 q2

POST

r
r1 r2

Avoid over-posting from multiple images!

Multiple posting done correctly

Why multiple posting?

Example: halo update

Correct execution:

Image p executes

Image r executes

Image q executes

p1 and r1 ordered before q2

©2015 LRZ Additional Parallel Features in Fortran 8

qp = q-1 r = q+1

FM

fm(:,1)[q] = …
event post (ev[q])

fm(:,n)[q] = …
event post (ev[q])

event wait (ev, UNTIL_COUNT = 2)
… = fm(:,:)

POST (+1)

p
p1 p2

WAIT (-2)

q
q1 q2

POST (+1)

r
r1 r2

This case is enforced by using

an UNTIL_COUNT

number of posts needed

Atomic operations (1)

Limited exception:

permit operations on coarrays

from different images without

synchronization

for scalars of some intrinsic

datatypes,

and via invocations of atomic

subroutines only

Fortran 2008:

Added by TS18508:

©2015 LRZ Additional Parallel Features in Fortran 9

integer(atomic_int_kind)
logical(atomic_logical_kind)

atomic_define(atom, value)

atomic_ref(value, atom)
atom[q] := value

value := atom[q]

atomic_add(atom, value)

atomic_<and|or|xor>(…)

atomic_fetch_<op>(…, old)

atomic_cas(atom, old, &
compare, new)

atom[q] := atom[q] + value (integer)

atom[q] := atom[q] <op> value (logical)

incoming atom[q] assigned to OLD in
addition to operation

compare and swap:
old = atom[q]
if (atom[q] == compare) atom[q] = new

„programming with

race conditions“

Atomic operations (2)

Use for specifically tailored synchronization:

Atomic operations do not imply segment ordering

SYNC MEMORY statements are needed to assure q3 is

ordered against 1st segment of all images

©2015 LRZ Additional Parallel Features in Fortran 10

integer(atomic_int_kind) :: x[*] = 0, z
integer :: q
q = … ! same value on each image
sync memory
call atomic_add(x[q], 1)
if (this_image() == q) then

wait: do
call atomic_ref(z, x)
if (z == num_images()) exit wait

end do wait
sync memory

end if

order of updates is

indeterminate

guarantee exit once all

images have executed (A)

(A)

q

exe
cu

tio
n

se
q

u
e

n
ce

p

x

some p ≠ q

p1

p2

q1

q2

q3

data on q

sync memory
atomic_add
atomic_ref

Collective intrinsic subroutines (1)

All collectives:

in-place  need to copy argument if original value is still needed

data arguments need not be coarrays; can be scalars or arrays

no segment ordering is implied by execution of a collective

must be invoked by all images (of current team)

Data redistribution: CO_BROADCAST

©2015 LRZ Additional Parallel Features in Fortran 11

type(matrix) :: xm
:
call co_broadcast(A=xm, SOURCE_IMAGE=2)

b
ro

ad
ca

st

execution sequence

1

2

3

4

a
s

if
b
y

in
trin

s
ic

a
s
s
ig

n
m

e
n
t

Collective intrinsic subroutines (2)

Reductions

co_max, co_min, co_sum

without optional RESULT_IMAGE:
result is assigned on all images

result for CO_SUM need not be
exactly the same on all images

General reduction facility

user-defined binary operation
(associative, commutative)

assignment to result: as if intrin-

sic (finalizers are executed for derived

types if they exist)

©2015 LRZ Additional Parallel Features in Fortran 12

+su
m

execution sequence

1

2

3

4

real :: a(2)
:
call co_sum(a, RESULT_IMAGE=2)

A becomes undefined

on images ≠ 2

interface
pure function plus(x, y) result(r)
import :: matrix
type(matrix), intent(in) :: x, y
type(matrix) :: r

end function
end interface

scalar arguments

and result

type(matrix) :: xm
:
call co_reduce(A=xm, &

OPERATOR=plus, &
RESULT_IMAGE=2)

Weaknesses of flat coarray model

Development of parallel library code

coarrays are symmetric  memory management not flexible enough

avoid deadlocks  obliged to do library call from all images

collectives must be executed from all images

MPMD scenario: coupling of domain-specific simulation codes

Matching execution to hardware

future systems likely are non-homogeneous (memory, core count)

A unified hybrid programming model is desired  might use high internal

bandwidth and fast synchronization of node architecture

©2015 LRZ Additional Parallel Features in Fortran 13

typically doing its own internal synchronization

maybe doing internal coarray allocation/deallocation

data distribution strategy:

workload balance and

memory requirements
structure structure

fluidfluidfluid

by independent

programmer teams

Improving the scalability of the

coarray programming model

TS 18508 defines the concept of a team of images

This provides additional syntax and semantics to

subdivide set of images into subsets that can independently execute,

allocate/deallocate coarrays, communicate, and synchronize;

repeated (i.e., recursive and/or nested) subsetting is also permitted.

Two essential mechanisms:

define the subsets

change the execution context to a particular subset

Breaking composability where necessary

cross-team communication is also supported –

as usual, with clear visual indication to the programmer

©2015 LRZ Additional Parallel Features in Fortran 14

„composable parallelism“

Setting up a team decomposition

FORM TEAM statement

must be executed on all images of the current team

synchronizes all images of that team

©2015 LRZ Additional Parallel Features in Fortran 15

1 2 3 4 5

form team

this_image()
in initial teamexe

cu
tio

n
se

q
u

e
n

ce

structure structure

fluidfluidfluid

form team (id, team [, NEW_IMAGE=…])

here: the initial team

integer supplies „color“ resulting team of opaque

type team_type

option for programmer-

defined image indexing

inside new teams

Example code

FORM TEAM does not by itself split execution

after the statement, regular execution continues on all images

©2015 LRZ Additional Parallel Features in Fortran 16

program coupled_systems
use, intrinsic :: iso_fortran_env
implicit none
integer, parameter :: fluid = 1, structure = 2
integer :: nf, id

type(team_type) :: coupling_teams
:
nf = …
if (this_image() <= nf) then

id = fluid
else

id = structure
end if

form team (id, coupling_teams)
:

end program

further declarations

further executable

statements

structure structure

fluidfluidfluid

two teams

are formed

declares the type
team_type

Switching the execution context:

the CHANGE TEAM block construct

Image indexing (including coindexing!) refers to current team

order is processor dependent, unless the NEW_INDEX argument is specified

in FORM TEAM

Properties:

at beginning, changes current

team to become the one the

executing image belongs to

at end of block, reverts to

execution as ancestor team

team-wide synchronization of

images of each team at

beginning and end of each block

programmer is responsible for

setting up appropriate control

flow inside the block

©2015 LRZ Additional Parallel Features in Fortran 17

1 2 3 4 5

form team

change team

1 2 3 1 2

end team

this_image()
in initial teamexe

cu
tio

n
se

q
u

e
n

ce

this_image() in

team structure

return to original
numbering

sets up an ancestor relationship

between previous and new team

fluid and structure

are sibling teams

Adding a CHANGE TEAM block to the example

©2015 LRZ Additional Parallel Features in Fortran 18

change team (coupling_teams)

block
real, allocatable :: fl(:,:,:), dfl(:,:,:)[:]
real, allocatable :: st(:,:,:), dst(:,:,:)[:]
do

select case(team_number())
case (fluid)

if (…) allocate(fl(…), dfl(…)[*])
call process_fluid(fl, dfl, …)

case (structure)
if (…) allocate(st(…), dst(…)[*])
call process_structure(st, dst, …)

end select
:

end do
end block

end team

after FORM TEAM

new inquiry intrinsic

deallocations are done here

fluid-structure interactions etc.

(see later slide)

data only established
in team „fluid“

data only established
in team „structure“

fluidfluid

dfl(:,:,2)[1] dfl(:,:,1)[2]

permits subsequent declarations

Cross-team data transfer

Interaction between fluid and

structure:

need to communicate across

team boundaries

without leaving the team

execution context (otherwise

allocated data vanish …)

Requires a coarray that is

established in ancestor team

©2015 LRZ Additional Parallel Features in Fortran 19

structure

fluidfluid
bd(:,:)[*]bd(:,:)[*]

1 2 3 4 5

change team

1 2 3 1 2

end team

exe
cu

tio
n

se
q

u
e

n
ce

dfl[*] dst[*]

bd[*]

no access to dfl[q]

from „structure“

An addressing problem:

what is bd[4] in the initial team becomes bd[1] when the CHANGE TEAM

starts executing  team-local coindexing preserves composability 

therefore, special syntax is needed for cross-team accesses

Extending the image selector:
Cross-team coarray references and definitions

Example:

statements below are executed

on image 2 of the „fluid“ team

sibling team syntax:

ancestor team syntax:

©2015 LRZ Additional Parallel Features in Fortran 20

… = bd(:,:)[1,TEAM_NUMBER=structure]

… = bd(:,:)[4,TEAM=bd_team]

Notes:
both variants yield the same result in this situation

which to use depends on the image‘s knowledge of image indices

and teams, and on the data assignment strategies.
bd_team is an object of type team_type, to which get_team()
assigns the value of the current team

real, allocatable :: bd(:,:)[:]

sync is missing

here …

change team

end team

exe
cu

tio
n

se
q

u
e

n
ce

bd[*]

2 4

2 1

execute
bd_team = get_team()

Dealing with the fluid-structure interaction
(including necessary synchronization)

©2015 LRZ Additional Parallel Features in Fortran 21

real, allocatable :: bd(:,:)[:]
type(team_type) :: bd_team
:
bd_team = get_team()
change team (coupling_teams)

:
do

: ! deal with fluid and structure individually
if (allocated(fl)) then ! executed by fluid

do i=1, nimg
bd(…)[img(i),TEAM_NUMBER=structure] = fl(…)

end do

sync team (bd_team)
call process_interaction(bd, fl(…))

end if
: ! analogous if block (with sync team) executed by structure
if (…) exit

sync team (bd_team)
end do
:

end team

against update of

local bd by „structure“

against subsequent

bd update

1 2 3 4 5

1 2 3 1 2

exe
cu

tio
n

se
q

u
e

n
ce

SYNC ALL

only within team

SYNC TEAM

across specified team

Array indexing and

possibly needed

interpolation are

glossed over below

allocated in initial team

Teams and memory management

Restrictions on coarray allocation and deallocation:

coarrays cannot have „holes“  in the current team, it is not permitted

to deallocate a coarray that has been allocated in an ancestor team

avoid appearance of overlapping coarrays  all coarrays allocated

while a change team block is executing are deallocated at the latest

when the corresponding end team statement is reached (even if they

have the SAVE attribute)

©2015 LRZ Additional Parallel Features in Fortran 22

Fail-safe Execution (1):

Behaviour after image failure

What happens in case an image fails?

typical cause: hardware problem (DIMM, CPU, network link, …)

Fortran 2008 (and all the rest of the HPC infrastructure): complete program terminates

TS18508: optional support for continuing execution

images that are not directly impacted by partial failure might continue

supported if the constant STAT_FAILED_IMAGE from ISO_FORTRAN_ENV

is positive, unsupported if it is negative

©2015 LRZ Additional Parallel Features in Fortran 23

A failed image;

it remains failed.

Data become unavailable

integer sst supplied with

value STAT_FAILED_IMAGE

on all images.
Active images synchronize.

a reference to a

failed image

1 2 3 4 5 exe
cu

tio
n

se
q

u
e

n
ce

sync all (STAT=sst)

Fail-safe Execution (2):

Programmer‘s Responsibilities

Synchronization: Without a STAT specifier on

image control statements (including ALLOCATE and DEALLOCATE),

collective, MOVE_ALLOC, or atomic subroutine invocations,

the program terminates if an image failure is determined to have

occurred.

With a STAT specifier, active images continue execution,

image control statements work as expected for these images,

collective and atomic subroutine results are undefined

Data handling and Control fIow:

programmer must deal with loss of data on failed image, and

with side effects triggered by references and definitions of variables on failed

images

FAILED_IMAGES intrinsic:

produces list of images

known to have failed.

©2015 LRZ Additional Parallel Features in Fortran 24

integer, allocatable :: fl(:)
:
sync all (STAT=sst)

fl = FAILED_IMAGES()

Returns indices of at

least the images that

have failed up to the

„sync all“

Referencing and defining objects

Reference to an object located on a failed image:

Referencing image continues execution, but the object

has a processor-dependent value

example: statement executed on image 2

Definition of an object located on a failed image:

Does not do anything, except setting a stat argument if present

example: statement executed on image 2

©2015 LRZ Additional Parallel Features in Fortran 25

a(:)[3, STAT=sst] = …

… = a(:)[3, STAT=sst] optional stat argument

permits identifying

image 3 as failed

2 3 exe
cu

tio
n

se
q

u
e

n
ceget

put

Defining objects (continued)

Definition of an object performed by a failed image:

Objects that would become defined by the failed image

during execution of the segment in which failure occurred

become undefined.

example: statement executed on image 3

Difficulty of diagnosis: images that reference a[2] in a

subsequent segment need to

know the communication pattern, and hence

identify image 3 as failed

©2015 LRZ Additional Parallel Features in Fortran 26

a(:)[2] = …

2 3

exe
cu

tio
n

se
q

u
e

n
ce

puta[2] becomes undefined

FAIL IMAGE statement

A statement that causes the images executing it to fail

Enables testing of code that should execute in a fail-safe manner

might be executed conditioned on value returned by random_number

©2015 LRZ Additional Parallel Features in Fortran 27

Thank you for your attention!

Any questions?

