Additional Parallel Features
INn Fortran

An Overview of ISO/IEC TS 18508

Dr. Reinhold Bader
Leibniz Supercomputing Centre

Introductory remarks

@ Technical Specification — a ,,Mini-Standard*
e permits implementors to work against a stable specification
e will be eventually integrated with mainline standard (ISO/IEC 1539-1)
e modulo ,bug fixes" (e.g., issues with semantics that are identified during implementation)

@ Purpose of TS 18508:

e significantly extends the parallel semantics of Fortran 2008 (only a baseline
feature set was defined there)

e extensive re-work of some parallel features pulled from Fortran 2008 during
its development [

many improvements based on the concepts developed in
the group of John Mellor-Crummey at Rice University

e new feature: resiliency (controversial)
e however: parallel I/O is (somewhat unfortunately) not covered
@ Current TSdraft | DTS submitted for SC22vote L
e download from http://bitly.com/sc22wg5 - 2015 - N 2056

©2015 LRZ Additional Parallel Features in Fortran

http://bitly.com/sc22wg5

Recall coarray programming model (1)

@ Coarray declaration @ Cross-image addressing
e symmetric objects if (this_image() == p) &
integer :: b(3) b = a(:)[q]
integer :: a(3)[*] \1 a coindexed
reference
@ Execute with 4 images e pull” (vs. ,push®)
Image 1 2 3 4 e one-sided communication

1= |
: : ' | simplest | ' between images p and g
A(1)[1] : A(1)[2] : A(1)[3]__case

AR)[L] | AR)2] | AR)B] i AQR)4]
AB)1] : AB)I2] | AB)3] i A(3)4] g Q A
address space N \\ [statement 9
\ l executed on p %
B(1) B(1) B(1) B(1) Lz @
B(2) B(2) B(2) B(2) P \ B -§
B(3) B(3) B(3) B(3) VS

execution sequence

>

Difference between A and B?

©2015 LRZ Additional Parallel Features in Fortran

Recall coarray programming model (2)

@ Asynchronous execution

b = a(:)[q]

a =

if (this_image() == p) &

L statement executed]

on g ... but when?
o "~/ ocal

variable
L O

\

p \6 =

execution sequence

2oeds ssappe

€

® causes race condition =
violates language rules

>

@ Image control statements

programmer's
responsibility

a = .. !
sync all

if (this_image() == p) &

b = a(:)[q]
g local variable
0 [N 1o
L\ 8
4,
A 72 \ o
global barrier [| A
P : B S
) Q
: 0
| m
m— A 4
Pr 1 P2
execution sequence

>
® enforce segment ordering:

q, before p,, p, before g,

©2015 LRZ

Additional Parallel Features in Fortran

Weaknesses of existing synchronization concept

@ Global barrier must be executed collectively
e all images must wait until barrier is reached

¢ |oad imbalanced applications may suffer more performance loss than
necessary [

image subset synchronization (context-unsafe!) or mutual
exclusion can also be used, but are still too heavyweight.

@ Symmetric synchronization is overkill
¢ the ordering of p, before g, is not needed
e image g therefore might continue without waiting [fac”itates pFOduceffconsumef]

scenarios

@ Therapy: TS 18508 introduces a lightweight, one-sided synchronization
mechanism — Events

use, intrinsic :: iso_fortran_env
special opaque derived type;
type(event_type) :: ev[*] all its objects must be coarrays

)

©2015 LRZ Additional Parallel Features in Fortran

Synchronization with Events

@ Image g executes @ One sided segment ordering
(= R — —
event post (ev[p]) q & = Va”j\ 2
e and continues without blocking | POST‘(J;ly O\ ©

Q.
9. qz\\ o
‘- o
@ Image p executes 0 \ \‘ B -
: o
\ <Y}
. \ (o]
Event wait (ev) b ; 13
= a(:)[q] no coindex permitted ! execE:ion sequence
L on event argument here >

e the WAIT statement blocks until

e (, ordered before p,
the POST has been received

e no other ordering implied

. _ N\ e no other images involved
event variable has an internal counter with o
default value zero; its updates are exempt | @ EVENT_QUERY intrinsic
from the segment ordering rules e read event count without

._(-atomic updates®) y synchronization

©2015 LRZ Additional Parallel Features in Fortran

The dangers of over-posting

@ Scenario: @ Case 1: p, ordered before q,
® |mage p executes [POST (+1) |
P ‘
event post (ev[q]) P P2
1, SN

e Image q executes g % T,
event wait (ev POST (+1) J

(ev))

1 2

® Image r executes
J @ Case 2:r, ordered before q,

event post (ev[q]) (CeosT)
@ Question: i mpl "
* what synchronization effect q 1@'
results? @ ®
L Answer: 3p055|ble.outcomes " ,-'1
e which one happens is r r

indeterminate! : :
@ Case 3: ordering as given on

M@XAvoid over-posting from multiple images!] next slide

©2015 LRZ Additional Parallel Features in Fortran 7

Multiple posting done correctly

@ Why multiple posting?

e I[mage g executes
e Example: halo update :
event wait (ev, UNTIL_COUNT = 2)
p=0g-1 q r=q+l |.. = fm(:,:) (
L | number of posts needed
FM
@ p,andr,ordered beforeq,
@ Correct execution: e
* Image p executes P o P
v [WAIT (2
fm(:,1)[q] = . q ;,'Z/J—U
event post (ev[q]) % ; %
POST (+1
® |[mage r executes M1 2
fm(:,n)[q] = .. [This case is enforced by using J
event post (ev[q]) an UNTIL_COUNT
©2015 LRZ Additional Parallel Features in Fortran

Atomic operations (1)

@ Limited exception: @ Added by TS18508:
e permit operations on coarrays :
from different images without atomic_add(atom, value)

synchronization oGt atom[q] := atom[q] + value (integer)
race conditions”

. atomic_<and|or|xor>(..)
e for scalars of some intrinsic

datatypes atom[q] := atom[q] <op> value (logical)

integer (atomic_int_kind) atomic_fetch_<op> (.., old)
logical(atomic_logical_kind)

incoming atom[q] assigned to OLD in
addition to operation

e and via invocations of atomic

subroutines only atomic_cas(atom, old, &
@ Fortran 2008: compare, new)
- - compare and swap:
atomic_define(atom, value) old = atom([q]
atom[q] := value if (atom[qg] == compare) atom[q] = new

atomic_ref(value, atom)

value := atom[q]

©2015 LRZ Additional Parallel Features in Fortran

Atomic operations (2)

@ Use for specifically tailored synchronization:

integer (atomic_int_kind) :: x[*] = 0, z P q
integer :: ¢ o
g = .. ! same value on each image & P1 G X
Sync memory < i
(A) | call atomic_add(x[q], 1) Ordeéotfupdath'S] 3| T.. 4
if (this_image() == q) then neeerminee o \‘~‘~:‘~;)|
) q>=
wait: do § P2 I_qz t:::(__l
call atomic_ref(z, x) 2 T
if (z == num_images()) exit wait r
end do wait :
guarantee exit once alll SE!
syr)c LWISIOIEY/ images have executed (A) 3
end if —7,]
data on g

@ Atomic operations do not imply segment ordering o syncmemory

e SYNC MEMORY statements are needed to assure gz IS ---» atomic_add
ordered against 15t segment of all images ---> atomic_ref

©2015 LRZ Additional Parallel Features in Fortran 10

Collective intrinsic subroutines (1)

@ All collectives:
® in-place - need to copy argument if original value is still needed
e data arguments need not be coarrays; can be scalars or arrays
® no segment ordering is implied by execution of a collective
e must be invoked by all images (of current team)

@ Data redistribution: CO_BROADCAST

&

: /\”D 3
+ Q

) o &bm 4 2
S Q<

L§m e 5

3 o MO HE
o 2 2

4 U\D z
—

execution sequence

type(matrix) :: xm

call co_broadcast(A=xm, SOURCE_IMAGE=2)

©2015 LRZ Additional Parallel Features in Fortran 11

Collective intrinsic subroutines (2)

@ Reductions
® CO_max, Co_min, cO_sum

%E'D/)D

execution sequence

sum

>

@ General reduction facility

» user-defined binary operation
(associative, commutative)

real a(2) A becomes undefined]

. on images # 2
call co_sum(a, RESULT_IMAGE=2)

interface
pure function plus(x, y) result(r)

import :: matrix
type(matrix), intent(in) :: x, vy
type(matrix) :: r
end function [scalar arguments]
end interface and result

e without optional RESULT _IMAGE:
result is assigned on all images

e result for CO_SUM need not be
exactly the same on all images

e assignment to result: as if intrin-

SIC (finalizers are executed for derived
types if they exist)

type(matrix) :: xm

call co_reduce(A=xm, &
OPERATOR=plus, &
RESULT_IMAGE=2)

©2015 LRZ

Additional Parallel Features in Fortran 12

Weaknesses of flat coarray model

@ Development of parallel library code

typically doing its own internal synchronization
maybe doing internal coarray allocation/deallocation

by independent
J L programmer teams

e coarrays are symmetric > memory management not flexible enough
e avoid deadlocks - obliged to do library call from all images
® collectives must be executed from all images

@ MPMD scenario: coupling of domain-specific simulation codes

fluid 4+

fluid

4| fluid

3 ¥ T 3

structure

|9

structure

data distribution strategy:
workload balance and
memory requirements

@ Matching execution to hardware

e future systems likely are non-homogeneous (memory, core count)

e Aunified hybrid programming model is desired - might use high internal
bandwidth and fast synchronization of node architecture

©2015 LRZ

Additional Parallel Features in Fortran 13

Improving the scalability of the
coarray programming model

@ TS 18508 defines the concept of ateam of images

@ This provides additional syntax and semantics to

e subdivide set of images into subsets that can independently execute,
allocate/deallocate coarrays, communicate, and synchronize;

e repeated (i.e., recursive and/or nested) subsetting is also permitted.

@ Two essential mechanisms:
e define the subsets
e change the execution context to a particular subset

[,composable parallelism®]

@ Breaking composability where necessary

® Cross-team communication is also supported —
as usual, with clear visual indication to the programmer

©2015 LRZ Additional Parallel Features in Fortran 14

Setting up a team decomposition

@ FORM TEAM statement /[here: the initial team]
e must be executed on all images of the current team
e synchronizes all images of that team

1 2 3 4 5 this_image ()
in initial team

‘é‘:" ““":}‘Q. ““] 9“ form team

structure structure

(eauanbas uOoIINIAXD

form team (id, team [, NEW_IMAGE=..])| option for programmer-
T~ defined image indexing

inside new teams

_~ y \ S

[integer supplies ,color] resulting team of opaque
type team_type

©2015 LRZ Additional Parallel Features in Fortran 15

Example code

program coupled_systems docl F—
use, intrinsic :: diso_fortran_env eclares the type
A .. team_type

implicit none

integer, parameter :: fluid = 1, structure = 2
integer :: nf, 1id
type(team_type) :: coupling_teams
‘ ——— further declarations
nf = ..
if (this_image() <= nf) then
id = fluid
else
id = structure structure structure
end if
form team (id, coupling_teams) —
. further executable] are formed]
end program statements

@ FORM TEAM does not by itself split execution
e after the statement, regular execution continues on all images

©2015 LRZ Additional Parallel Features in Fortran 16

Switching the execution context:
the CHANGE TEAM block construct

@ Properties:
1 2 3 4 5<[th'is_'image()J e at beginning, changes current

® in initial team team to become the one the
g executing image belongs to
§' B D --- form team sets up an ancestor relationship
o between previous and new team
ol -q----1---- R il -- change team
o e at end of block, reverts to
2 1 I E </1 execution as ancestor team
this_image() in | ® team-wide synchronization of
team structure images of each team at
S PR S R P .. end team beginning and end of each block
v \(return to original] e programmer is responsible for
fluid and structure Qumbeing setting up appropriate control
are sibling teams flow inside the block

@ Image indexing (including coindexing!) refers to current team

e order is processor dependent, unless the NEW _INDEX argument is specified
in FORM TEAM

©2015 LRZ Additional Parallel Features in Fortran 17

Adding a CHANGE TEAM block to the example

change team (coupl'ing_teams)ﬁ after EORM TEAM] ~
I dfl(:,:,2)[1] dfi(:,:,1)[2]
block & permits subsequent declarations 1

real, allocatable :: fl(:,:,:), dfl(:,:,:)[:]) .
real, allocatable :: st(:,:,:), dst(:,:,:)[:] fluid || fluid
do ‘

select case(’ceam_number()%g new inquiry intrinsic
case (fluid)
if (.) allocate(Fl(.), dfl(.)[*]) } data only established
call process_fluid(fl, dfl, ..) in team ,fluid”
case (structure) |
if (..) allocate(st(..), dst(.)[*]) data only established
call process_structure(st, dst, ..) } in team ,structure”
end select .]

fluid-structure interactions etc.

en(.j do (see later slide)
end block
:i deallocations are done here]
end team

©2015 LRZ Additional Parallel Features in Fortran 18

Cross-team data transfer

@ Interaction between fluid and

structure:

e need to communicate across

team boundaries

fluid

fluid
bd(:,:)[*] % 3

structure

e without leaving the team

execution context (otherwise
allocated data vanish ..

)
@ An addressing blem:

@ Requires acoarray thatis

]
x
(1)
o
C
.
o
=
w
1)
Ne)
C
1]
=
o
)

established in ancestor team

1 2 3 4 5

bd[*]

/‘

dst[*]

7 SR EEREY -- change team
2 |3 1 |2
P /

/
no access to dfl[q]
from ,structure”

_ -1----]‘" end team

e what is bd[4] in the initial team becomes bd[l/when the CHANGE TEAM
starts executing = team-local coindexing preserves composability ©

e therefore, special syntax is needed for cross-team accesses

©2015 LRZ

Additional Parallel Features in Fortran 19

Extending the image selector:
Cross-team coarray references and definitions

real, allocatable

bd(:

@ Example:
) [

| 2 | 4

bd[*]

e Statements below are executed
on image 2 of the ,fluid” team

e sibling team syntax:

;4[bd_team

execute

= get_

bd(:,:)[1,TEAM_NUMBER=structure]

team()]

92uanbas uoindIaxa

)

sync is missing
here ...

""""""" "7 77 changeteam o gncestor team syntax:

. = bd(:,:)[4,TEAM=bd_team]

J---_ end team

-~

Notes:

~

both variants yield the same result in this situation

which to use depends on the image’s knowledge of image indices
and teams, and on the data assignment strategies.

bd_team is an object of type team_type, to which get_team()
assigns the value of the current team /

©2015 LRZ

Additional Parallel Features in Fortran 20

Dealing with the fluid-structure interaction

(including necessary synchronization)

real, allocatable :: bd(:,

H) [:]ﬁ allocated in initial team

type(team_type) :: bd_team .
. Array indexing and >
bd_team = get_team() possibly needed el
change team (coupling_teams) interpolation are o
: glossed over below ”
")
do <
: ! deal with fluid and structure individually 8|
if (allocated(fl)) then ! executed by fluid &

do i=1, nimg -

bd(..) [img(i), TEAM_NUMBER=structure] = fl(..)

end do against update of] 3T
sync team (bd_team) local bd by ,structure*
call process_interaction(bd, fl(..))

end if

2 |3

1 2

SYNC ALL
only within team

SYNC
a

cross specified

TEAM

team |

I analogous if block (with sync team) executed by structure

if (..) exit

sync team (bd_team) against subsequent
end do bd update

end team

©2015 LRZ Additional Parallel Features in Fortran

21

Teams and memory management

@ Restrictions on coarray allocation and deallocation:

e coarrays cannot have ,holes” = in the current team, it is not permitted
to deallocate a coarray that has been allocated in an ancestor team

e avoid appearance of overlapping coarrays - all coarrays allocated
while a change team block is executing are deallocated at the latest

when the corresponding end team statement is reached (even if they
have the SAVE attribute)

©2015 LRZ Additional Parallel Features in Fortran 22

Fail-safe Execution (1):
Behaviour after image failure

@ What happens in case an image fails?

e typical cause: hardware problem (DIMM, CPU, network link, ...)

e Fortran 2008 (and all the rest of the HPC infrastructure): complete program terminates
@ TS18508: optional support for continuing execution

e images that are not directly impacted by partial failure might continue

e supported if the constant STAT_FAILED IMAGE from ISO_FORTRAN_ENV
IS positive, unsupported if it is negative

bS5 A failed image;
it remains failed.

//\ Data become unavailable

----- sync all (STAT=sst)

\\ouanbas uoIllnNdoxo

integer sst supplied with

value STAT_FAILED_IMAGE
on all images.

Active images synchronize.

a reference to
failed image

o0ty

©2015 LRZ Additional Parallel Features in Fortran 23

Fail-safe Execution (2):
Programmer‘s Responsibilities

@ Synchronization: Without a STAT specifier on
* image control statements (including ALLOCATE and DEALLOCATE),
e collective, MOVE_ALLOC, or atomic subroutine invocations,
the program terminates if an image failure is determined to have
occurred.
With a STAT specifier, active images continue execution,
e image control statements work as expected for these images,
e collective and atomic subroutine results are undefined

@ Data handling and Control flow:
e programmer must deal with loss of data on failed image, and
e with side effects triggered by references and definitions of variables on failed

images int llocatabl f1(:)
. ; . TNnteger a OCata e .. .
s FAILED IMAGES intrinsic: | . o'

. . : Ret indi f at
produces list of images sync all (STAT=sst) Iezsl:rt?f’e'ir;n:;;othzt
known to have failed. fl = FAILED_IMAGES () have failed up to the

,Sync all®

©2015 LRZ Additional Parallel Features in Fortran 24

Referencing and defining objects

@ Referenceto an object located on a failed image:

* Referencing image continues execution, but the object
has a processor-dependent value

e example: statement executed on image 2

permits identifying
image 3 as failed

. = a(:)[3, STAT=sst]} | — optional statargumentJ

@ Definition of an object located on a failed image: put J |
e Does not do anything, except setting a stat argument if present =~ ~""7"~
e example: statement executed on image 2

a(:)[3, STAT=sst] = ..

©2015 LRZ Additional Parallel Features in Fortran 25

Defining objects (continued)

@ Definition of an object performed by a failed image:

e Objects that would become defined by the failed image
during execution of the segment in which failure occurred
become undefined.

e example: statement executed on image 3
a(:)[2] = .. ———]

= 5 ‘L a[2] becomes undefined

@ Difficulty of diagnosis: images that reference a[2] in a
subsequent segment need to

e know the communication pattern, and hence
e identify image 3 as failed

12NJ9X

©2015 LRZ Additional Parallel Features in Fortran

26

FAIL IMAGE statement

@ A statement that causes the images executing it to fail

@ Enables testing of code that should execute in a fail-safe manner
e might be executed conditioned on value returned by random_number

©2015 LRZ Additional Parallel Features in Fortran 27

Thank you for your attention!

Any questions?

