
:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

MPI-3.0 & 3.1 Overview

MPI-3.0 and MPI-3.1 Overview

Rolf Rabenseifner

Lecture at “Recent Advances in Parallel Programming Languages”, Scientific Workshop @ LRZ, June 8, 2015

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

2 / 52MPI-3.0 & 3.1 Overview

Goal & Scope of MPI-3.0

• Goal:

– To produce new versions of the MPI standard that

better serves the needs of the parallel computing user community

• Scope:

– Additions to the standard that are needed for better platform and application support.

– These are to be consistent with MPI being a library providing process group management and

data exchange. This includes, but is not limited to, issues associated with scalability

(performance and robustness), multi-core support, cluster support, and application support.

– And of course,

all needed corrections to detected bugs / ambiguities / inconsistencies

– Backwards compatibility may be maintained ―

Routines may be deprecated or deleted.

Goal & Scope of MPI-3.1

– Provide small additions to MPI 3.0 and integrate them together with identified

errata items into a new version of the MPI standard.

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

3 / 52MPI-3.0 & 3.1 Overview

Goal & Scope of MPI-4.0

• The MPI 4.0 standardization efforts aim

– at adding new techniques, approaches, or concepts to the MPI standard

that will help MPI

– address the need of current and next generation applications and architectures.

• In particular, the following additions are currently being proposed and worked on:

– Extensions to better support hybrid programming models

– Support for fault tolerance in MPI applications

• Additionally, several working groups are working on new ideas and concepts, incl.

– Active messages

– Stream messaging

– New profiling interface

Acknowledgements

• Some detailed slides are provided by the

– Ticket authors,

– Chapter authors, or

– Chapter working groups.

• Richard Graham, chair of MPI-3.0.

• Torsten Hoefler (additional example

about new one-sided interfaces)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

4 / 52MPI-3.0 & 3.1 Overview

MPI-3.0 (Sep. 21, 2012) and MPI-3.1 (June 4, 2015) – the pdf files

• www.mpi-forum.org

– MPI-3.0 documents

� MPI 3.0 document as PDF

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

� Hardcover (green book)

http://www.hlrs.de/mpi/mpi30/

+ errata document

http://www.mpi-forum.org/docs/mpi-3.0/errata-30.pdf

– MPI-3.1 documents

� MPI 3.1 document as PDF

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

� Hardcover (blue book)

http://www.hlrs.de/mpi/mpi31/ (planned, not yet available)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

5 / 52MPI-3.0 & 3.1 Overview

Change-Logs in MPI-3.1

B Change-Log

• B.1 Changes from Version 3.0 to Version 3.1 795

– B.1.1 Fixes to Errata in Previous Versions of MPI 795

• 21 Items

– B.1.2 Changes in MPI-3.1 . 797

• 6 Items

• B.2 Changes from Version 2.2 to Version 3.0 798

– B.2.1 Fixes to Errata in Previous Versions of MPI 798

• 7 Items

– B.2.2 Changes in MPI-3.0 . 799

• Items 1-25: General changes

• Times 26-42: Changes related to Fortran

• B.3 Changes from Version 2.1 to Version 2.2 803

• 28 Item

• B.4 Changes from Version 2.0 to Version 2.1 806

• 33 Item

MPI-3.1 is mainly an

errata release

MPI-3.0 has many

important new

features

MPI-2.1 with several

small new features

MPI-2.0 combined 1.1

+ 2.0 to one document

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

6 / 52MPI-3.0 & 3.1 Overview

MPI-3.0 – Details about most & important topics nn

• Major additions

– Slide 9: Nonblocking collectives

– Slide 10: Sparse and scalable irregular collectives

– Slides 11-15: One-sided communication – enhancements

– Slides 16-21: Shared memory extensions (on clusters of SMP nodes)

– Slides 22-35: Fortran interface

– Slides 36-40: New tools interface

• Minor additions

– Slide 42: Mprobe for hybrid programming on clusters of SMP nodes

– Slide 43: Group-Collective Communicator Creation

– Slide 44: MPI_TYPE_CREATE_HINDEXED_BLOCK

– Slide 45: Large Counts

– Slide 46: Removing C++ bindings from the Standard

– Slide 47-48: Other forum activities and minor corrections

Background information, see:
MPI-3.1, Change-Log, B.2.2 (1-42) & B.2.1 (E1-E6)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

7 / 52MPI-3.0 & 3.1 Overview

MPI-3.1 – Mainly an errata release

• Errata

– Several errata in the new MPI Tool Information Interface chapter (Section 14.3)

– New internal backend for the new Fortran interfaces (rewritten Section 17.1.5)

– Only a few errata to the One-sided chapter (Chapter 11)

• No errata to the new shared memory interface (Section 11.2.3 and other)

• New Functionality and Features � Slide 49

– A General Index was added: should contain all relevant MPI terms (pages 816-819)

– Intrinsic operators + and - for absolute addresses

� substituted by new functions MPI_AINT_ADD and MPI_AINT_DIFF

– MPI_INITIALIZED, MPI_FINALIZED, MPI_QUERY_THREAD, MPI_IS_THREAD_MAIN,

MPI_GET_VERSION, and MPI_GET_LIBRARY_VERSION � now without thread-safety restrictions

– same_disp_unit info key was added for use in RMA window creation routines

– Nonblocking collective MPI-I/O routines added for explicit addresses and individual file pointers:

MPI_FILE_IREAD_AT_ALL + MPI_FILE_IWRITE_AT_ALL and MPI_FILE_IREAD_ALL + MPI_FILE_IWRITE_ALL

• Corresponding split collective interface was not declared as deprecated

– MPI_T_... tools interface: 3 new routines; 2 new error codes; clarification about NULL parameters

Must be

implemented

already in

MPI-3.0

libraries!

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

8 / 52MPI-3.0 & 3.1 Overview

Outline nn

• MPI-3.0 – Major additions

– Slide 9: Nonblocking collectives

– Slide 10: Sparse and scalable irregular collectives

– Slides 11-15: One-sided communication – enhancements

– Slides 16-21: Shared memory extensions (on clusters of SMP nodes)

– Slides 22-35: Fortran interface

– Slides 36-40: New tools interface

• MPI-3.0 – Minor additions

– Slide 42: Mprobe for hybrid programming on clusters of SMP nodes

– Slide 43: Group-Collective Communicator Creation

– Slide 44: MPI_TYPE_CREATE_HINDEXED_BLOCK

– Slide 45: Large Counts

– Slide 46: Removing C++ bindings from the Standard

– Slide 47-48: Other forum activities and minor corrections

• MPI-3.1

• Implementation Status

Background information, see:
MPI-3.1, Change-Log, B.2.2 (1-42) & B.2.1 (E1-E6)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

9 / 52MPI-3.0 & 3.1 Overview

Nonblocking Collective Communication and MPI_ICOMM_DUP 13+15

• Idea

– Collective initiation and completion separated

– Offers opportunity to overlap computation and communication

– Each blocking collective operation has a corresponding nonblocking

operation: MPI_Ibarrier, MPI_Ibcast, …

– May have multiple outstanding collective communications on the same

communicator

– Ordered initialization

– Additional slide � Appendix

• Parallel MPI I/O: See MPI-3.1

Courtesy of Torsten Hoefler and Richard Graham

App.Additional slides,
see appendix

App.

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

10 / 52MPI-3.0 & 3.1 Overview

Sparse Collective Operations on Process Topologies 21

• MPI process topologies (Cartesian and (distributed) graph) usable for

communication

– MPI_(I)NEIGHBOR_ALLGATHER(V)

– MPI_(I)NEIGHBOR_ALLTOALL(V,W)

• If the topology is the full graph, then neighbor routine is identical to full

collective communication routine

– Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

• Allow for optimized communication scheduling and scalable resource binding

• Cartesian topology:

– Sequence of buffer segments is communicated with:

• direction=0 source, direction=0 dest, direction=1 source, direction=1 dest, …

– Defined only for disp=1

– If a source or dest rank is MPI_PROC_NULL then the buffer location is still there but the content

is not touched.
Courtesy of Torsten Hoefler and Richard Graham

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

11 / 52MPI-3.0 & 3.1 Overview

Outline nn

• MPI-3.0 – Major additions

– Slide 9: Nonblocking collectives

– Slide 10: Sparse and scalable irregular collectives

– Slides 11-15: One-sided communication – enhancements

– Slides 16-21: Shared memory extensions (on clusters of SMP nodes)

– Slides 22-35: Fortran interface

– Slides 36-40: New tools interface

• MPI-3.0 – Minor additions

– Slide 42: Mprobe for hybrid programming on clusters of SMP nodes

– Slide 43: Group-Collective Communicator Creation

– Slide 44: MPI_TYPE_CREATE_HINDEXED_BLOCK

– Slide 45: Large Counts

– Slide 46: Removing C++ bindings from the Standard

– Slide 47-48: Other forum activities and minor corrections

• MPI-3.1

• Implementation status

Background information, see:
MPI-3.1, Change-Log, B.2.2 (1-42) & B.2.1 (E1-E6)

Courtesy of the MPI-3 One-sided working group

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

12 / 52MPI-3.0 & 3.1 Overview

Background of MPI-2 One-Sided Communication

• MPI-2’s one-sided communication provides a programming model for

put/get/update programming that can be implemented on a wide variety of

systems

• The “public/private” memory model is suitable for systems without local

memory coherence (e.g., special memory in the network; separate, non-

coherent caches between actors working together to implement MPI One-

Sided)

• The MPI-2 interface, however, does not support some other common one-

sided programming models well, which needs to be fixed

• Good features of the MPI-2 one-sided interface should be preserved, such as

– Nonblocking RMA operations to allow for overlap of communication with other

operations

– Support for non-cache-coherent and heterogeneous environments

– Transfers of noncontiguous data, including strided (vector) and scatter/gather

– Scalable completion (a single call for a group of processes)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

13 / 52MPI-3.0 & 3.1 Overview

Goals for the MPI-3 One-Sided Interface

• Address the limitations of MPI-2 RMA by supporting the following features:

– In order to support RMA to arbitrary locations, no constraints on memory,

such as symmetric allocation or collective window creation, should be

required

– RMA operations that are imprecise (such as access to overlapping storage)

must be permitted, even if the behavior is undefined

– The required level of consistency, atomicity, and completeness should be

flexible

– Read-modify-write and compare-and-swap operations are needed for

efficient algorithms

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

14 / 52MPI-3.0 & 3.1 Overview

Major New Features in the MPI-3 One-sided Interface

• New types of windows (MPI-2 had only MPI_Win_create)

– MPI_Win_allocate – returns memory allocated by MPI; permits symmetric

allocation

– MPI_Win_allocate_shared – creates a window of shared memory that

enables direct load/store accesses with RMA semantics to other processes in

the same shared memory domain (e.g., the same node)

– MPI_Win_create_dynamic / attach / detach

allows any memory to be attached to the window dynamically as needed

• New atomic read-modify-write operations

– MPI_Get_accumulate, MPI_Fetch_and_op, MPI_Compare_and_swap

• New synchronization and completion calls, including:

– Wait and test on request-based one-sided operations: MPI_Rput/get/…

– Completion of pending RMA operations within passive target access epochs

(MPI_Win_flush and variants)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

15 / 52MPI-3.0 & 3.1 Overview

Major New Features – cont’d

• Query for new attribute to allow applications to tune for cache-coherent

architectures

– Attribute MPI_WIN_MODEL with values

• MPI_WIN_UNIFIED on cache-coherent systems

• MPI_WIN_SEPARATE otherwise

• Relaxed rules for certain access patterns

– Results undefined rather than erroneous;

matches other shared-memory and

RDMA approaches

• Ordering of Accumulate operations

– Change: ordering provided by default

– Can be turned off for performance, using a new info key

Figures: Courtesy of Torsten Hoefler

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

16 / 52

• Split main communicator into shared memory islands

– MPI_Comm_split_type

• Define a shared memory window on each island

– MPI_Win_allocate_shared

– Result (by default):

contiguous array, directly accessible by all processes of the island

• Accesses and synchronization

– Normal assignments and expressions

– No MPI_PUT/GET !

– Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

MPI-3 shared memory

MPI-3.0 shared memory can be used

to significantly reduce the memory needs

for replicated data.

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

17 / 52

• MPI on each core (not hybrid)

– Halos between all cores

– MPI uses internally shared memory and

cluster communication protocols

• MPI+OpenMP

– Multi-threaded MPI processes

– Halos communica. only between MPI processes

• MPI cluster communication

+ MPI shared memory communication

– Same as “MPI on each core”, but

– within the shared memory nodes,

halo communication through direct copying

with C or Fortran statements

• MPI cluster comm. + MPI shared memory access

– Similar to “MPI+OpenMP”, but

– shared memory programming through

work-sharing between the MPI processes

within each SMP node

Hybrid shared/cluster programming models

MPI inter-node communication
MPI intra-node communication
Intra-node direct Fortran/C copy
Intra-node direct neighbor access

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

18 / 52

• Query for new attribute to allow applications to tune for cache-coherent architectures

– Attribute MPI_WIN_MODEL with values

• MPI_WIN_SEPARATE model

• MPI_WIN_UNIFIED model on cache-coherent systems

• Shared memory windows always

use the MPI_WIN_UNIFIED model

– Public and private copies are eventually

synchronized without additional RMA calls
(MPI-3.0/MPI-3.1, Section 11.4, page 436/435 lines 37-40/43-46)

– For synchronization without delay: MPI_WIN_SYNC()
(MPI-3.0 errata https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/413)

(MPI-3.1 Section 11.8, Example 11.21 on pages 468-469)

– or any other RMA synchronization:
“A consistent view can be created in the unified memory model (see Section 11.4)
by utilizing the window synchronization functions (see Section 11.5) or explicitly
completing outstanding store accesses (e.g., by calling MPI_WIN_FLUSH).”

(MPI-3.0/MPI-3.1, MPI_Win_allocate_shared, page 410/408, lines 16-20/43-47)

Two memory models

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

19 / 52

Splitting the communicator &

contiguous shared memory allocation

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

MPI_Comm comm_all, comm_sm; int my_rank_all, my_rank_sm, size_sm, disp_unit;

MPI_Comm_rank (comm_all, &my_rank_all);

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0,

MPI_INFO_NULL, &comm_sm);

MPI_Comm_rank (comm_sm, &my_rank_sm); MPI_Comm_size (comm_sm, &size_sm);

disp_unit = sizeof(double); /* shared memory should contain doubles */

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, MPI_INFO_NULL,

comm_sm, &base_ptr, &win_sm);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

…

MPI process

Sub-communicator
comm_sm
for one SMP node

local_window_count
doubles

base_ptr

Contiguous shared memory window within each SMP node

Sequence in comm_sm

as in comm_all

comm_all

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

20 / 52

• The allocated shared memory is contiguous across process ranks,

• i.e., the first byte of rank i starts right after the last byte of rank i-1.

• Processes can calculate remote addresses’ offsets

with local information only.

• Remote accesses through load/store operations,

• i.e., without MPI RMA operations (MPI_GET/PUT, …)

• Although each process in comm_sm accesses the same physical memory,

the virtual start address of the whole array

may be different in all processes!

� linked lists only with offsets in a shared array,

but not with binary pointer addresses!

Within each SMP node – Essentials

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

21 / 52

Shared memory access example

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, MPI_INFO_NULL,

comm_sm, &base_ptr, &win_sm);

MPI_Win_fence (0, win_sm); /*local store epoch can start*/

for (i=0; i<local_window_count; i++) base_ptr[i] = … /* fill values into local portion */

MPI_Win_fence (0, win_sm); /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1]);

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",

base_ptr[local_window_count]);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

base_ptr

Contiguous shared memory window within each SMP node local_window_count
doubles

xDirect load access to

remote window

portion

Synchroni-

zation

Synchroni-

zation
Local stores

F

F

F

F

F In Fortran, before and after the synchronization, one must declare the buffer as ASYNCHRONOUS and must add:

IF(.NOT.MPI_ASYNC_PROTECTS_NONBLOCKING) CALL MPI_F_SYNC_REG (buffer)

to guarantee that register copies of buffer are written back to memory, respectively read again from memory.

MPI-3.0 & 3.1 OverviewApp.Additional slides,
see appendix

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

22 / 52MPI-3.0 & 3.1 Overview

Outline nn

• MPI-3.0 – Major additions

– Slide 9: Nonblocking collectives

– Slide 10: Sparse and scalable irregular collectives

– Slides 11-15: One-sided communication – enhancements

– Slides 16-21: Shared memory extensions (on clusters of SMP nodes)

– Slides 22-35: Fortran interface

• A high-level summary for non-Fortran programmers

• Details for Fortran programmers

– Slides 36-40: New tools interface

• MPI-3.0 – Minor additions

– …

– …

• MPI-3.1

• Implementation status

Background information, see:
MPI-3.1, Change-Log, B.2.2 (1-42) & B.2.1 (E1-E6)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

23 / 52MPI-3.0 & 3.1 Overview

Brief overview of the requirements for new MPI 3.0 Fortran bindings

• Requirements

– comply with Fortran standard (for the first time)

– enhance type safety

– suppress argument checking for choice buffers

– guarantee of correct asynchronous operations

– for user convenience

• provide users with convenient migration path

• allow some optional arguments (e.g., ierror)

• support sub-arrays

– for vendor convenience

• allow vendors to take advantage of the C interoperability standard

Slide: Courtesy of Jeff Squyres and Craig Rasmussen

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

24 / 52MPI-3.0 & 3.1 Overview

Three methods of Fortran support

• USE mpi_f08 26

– This is the only Fortran support method that is consistent with the Fortran standard
(Fortran 2008 + TR 29113 and later).

– This method is highly recommended for all MPI applications.

– Mandatory compile-time argument checking & unique MPI handle types.

– Convenient migration path.

• USE mpi
– This Fortran support method is inconsistent with the Fortran standard, and its use is

therefore not recommended.

– It exists only for backwards compatibility.

– Mandatory compile-time argument checking (but all handles match with INTEGER). 39

• INCLUDE ‘mpif.h’
– The use of the include file mpif.h is strongly discouraged starting with MPI-3.0. 40

– Does not guarantees compile-time argument checking.

– Does not solve the optimization problems with nonblocking calls,

– and is therefore inconsistent with the Fortran standard.

– It exists only for backwards compatibility with legacy MPI applications.

new

new

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

25 / 52MPI-3.0 & 3.1 Overview

The mpi_f08 Module

• Example:

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) BIND(C)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf 28

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm 27

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror 38

MPI_Wait(request, status, ierror) BIND(C)

TYPE(MPI_Request), INTENT(INOUT) :: request 30

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror 29

Mainly for implementer’s
reasons.

Not relevant for users.

Fortran compatible buffer
declaration allows correct

compiler optimizations

Unique handle types allow
best compile-time argument

checking

OPTIONAL ierror:

MPI routine can be called
without ierror argument

Status is now a
Fortran structure, i.e.,
a Fortran derived type

INTENT � Compiler-based
optimizations & checking

new Removed, see

MPI-3.0 errata

Sep. 24, 2013

and later

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

26 / 52

Nonblocking Receive and Register Optimization / Code Movement

in Fortran
S

b

• Fortran source code:

MPI_IRECV (buf, ..., request_handle, ierror)

MPI_WAIT(request_handle, status, ierror)

write (*,*) buf

• may be compiled as

MPI_IRECV (buf, ..., request_handle, ierror)

registerA = buf

MPI_WAIT(request_handle, status, ierror)

write (*,*) registerA

• Solution:

– ASYNCHRONOUS :: buf

– buf may be allocated in a common block or module data, or

– IF (.NOT. MPI_ASYNC_PROTECTS_NONBLOCKING) &

& CALL MPI_F_SYNC_REG(buf)

• Work-around in older MPI versions:

– call MPI_GET_ADDRESS(buf, iaddrdummy, ierror)

with INTEGER(KIND=MPI_ADDRESS_KIND) iaddrdummy

buf is not part of the argument list

Data may be received in buf
during MPI_Wait

Therefore old data may be printed
instead of the newly received data

In the scope including nonblocking call and MPI_Wait

Directly after CALL MPI_Wait

i.e., if MPI_F_SYNC_REG and
MPI_ASYNC_PROTECTS_NONBLOCKING
is not yet available

MPI_ASYNC_PROTECTS_NONBLOCKING == .TRUE. requires a TS29113 compiler

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

27 / 52MPI-3.0 & 3.1 Overview

Major changes

• Support method: 26

USE mpi or INCLUDE ‘mpif.h’ � USE mpi_f08

• Status 30

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status

� TYPE(MPI_Status) :: status

status(MPI_SOURCE) � status%MPI_SOURCE

status(MPI_TAG) � status%MPI_TAG

status(MPI_ERROR) � status%MPI_ERROR

Additional routines and declarations are provided for the

language interoperability of the status information between

see MPI-3.0/3.1, Section 17.2.5

– C,

– Fortran mpi_f08, and

– Fortran mpi (and mpif.h)

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

28 / 52MPI-3.0 & 3.1 Overview

Major changes, continued

• Unique handle types, e.g., 27

– INTEGER new_comm � TYPE(MPI_Comm) :: new_comm

• Handle comparisons, e.g.,

– req .EQ. MPI_REQUEST_NULL � req .EQ. MPI_REQUEST_NULL

• Conversion in mixed applications:

– Both modules (mpi & mpi_f08) contain the declarations for all handles.

TYPE, BIND(C) :: MPI_Comm
INTEGER :: MPI_VAL

END TYPE MPI_Comm

SUBROUTINE a
USE mpi
INTEGER :: splitcomm
CALL MPI_COMM_SPLIT(…, splitcomm)
CALL b(splitcomm)
END

SUBROUTINE b(splitcomm)
USE mpi_f08
INTEGER :: splitcomm
TYPE(MPI_Comm) :: splitcomm_f08
CALL MPI_Send(…, MPI_Comm(splitcomm))
! or
splitcomm_f08%MPI_VAL = splitcomm
CALL MPI_Send(…, splitcomm_f08)
END

SUBROUTINE a
USE mpi_f08
TYPE(MPI_Comm) :: splitcomm
CALL MPI_Comm_split(…, splitcomm)
CALL b(splitcomm)
END

SUBROUTINE b(splitcomm)
USE mpi
TYPE(MPI_Comm) :: splitcomm
INTEGER :: splitcomm_old
CALL MPI_SEND(…, splitcomm%MPI_VAL)
! or
splitcomm_old = splitcomm%MPI_VAL
CALL MPI_SEND(…, splitcomm_old)
END

No change through overloaded operator

Same
names
as in C

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

29 / 52MPI-3.0 & 3.1 Overview

Major changes, continued

• SEQUENCE and BIND(C) derived application types can be used as buffers in MPI

operations.

• Alignment calculation of basic datatypes:

– In MPI-2.2, it was undefined in which environment the alignments are taken.

– There is no sentence in the standard.

– It may depend on compilation options!

– In MPI-3.0, still undefined, but recommended to use a BIND(C) environment.

– Implication (for C and Fortran!):

• If an array of structures (in C/C++) or derived types (in Fortran) should be

communicated, it is recommended that

• (1st) the user creates a portable datatype handle and

• (2nd) applies additionally MPI_TYPE_CREATE_RESIZED to this datatype handle.

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

30 / 52MPI-3.0 & 3.1 Overview

Other enhancements

• Unused ierror

INCLUDE ‘mpif.h’

! wrong call:

CALL MPI_SEND(…., MPI_COMM_WORLD)

! � terrible implications because ierror=0 is written somewhere to the memory

• With the new module 29

USE mpi_f08

! Correct call, because ierror is optional:

CALL MPI_SEND(…., MPI_COMM_WORLD)

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

31 / 52MPI-3.0 & 3.1 Overview

Other enhancements, continued

• With the mpi & mpi_f08 module:

– Positional and keyword-based argument lists 33

• CALL MPI_SEND(sndbuf, 5, MPI_REAL, right, 33, MPI_COMM_WORLD)

• CALL MPI_SEND(buf=sndbuf, count=5, datatype=MPI_REAL,

dest=right, tag=33, comm=MPI_COMM_WORLD)

– Remark: Some keywords are changed since MPI-2.2 33

• For consistency reasons, or

• To prohibit conflicts with Fortran keywords, e.g., type, function.

� Use at least MPI-3.0 standard document

The keywords are defined in the language bindings.
Same keywords for both modules.

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

32 / 52MPI-3.0 & 3.1 Overview

Major enhancement with a full MPI-3.0 implementation

• The following features require Fortran 2003 + TR 29113

– Subarrays may be passed to nonblocking routines 28

• This feature is available if the LOGICAL compile-time constant

MPI_SUBARRAYS_SUPPORTED == .TRUE.

– Correct handling of buffers passed to nonblocking routines, 37

• if the application has declared the buffer as ASYNCHRONOUS within

the scope from which the nonblocking MPI routine and its

MPI_Wait/Test is called,

• and the LOGICAL compile-time constant

MPI_ASYNC_PROTECTS_NONBLOCKING == .TRUE.

– These features must be available in MPI-3.0 if the target compiler is

Fortran 2003+TR 29113 compliant.

• For the mpi module and mpif.h, it is a question of the quality of the

MPI library.

new

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

33 / 52MPI-3.0 & 3.1 Overview

Minor changes

• MPI_ALLOC_MEM, MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED 35

and MPI_WIN_SHARED_QUERY return a base_addr.

– In MPI-2.2, it is declared as INTEGER(KIND=MPI_ADDRESS_KIND)

and may be usable for non-standard Cray-pointer,

see Example 8.2 of the use of MPI_ALLOC_MEM

– In MPI-3.0 in the mpi_f08 & mpi module, these routines are overloaded with

a routine that returns a TYPE(C_PTR) pointer,

see Example 8.1

• The buffer_addr argument in MPI_BUFFER_DETACH is incorrectly defined 31

and therefore unused.

• Callbacks are defined with explicit interfaces PROCEDURE(MPI_...) BIND(C) 41+42

• A clarification about comm_copy_attr_fn callback, 34

see MPI_COMM_CREATE_KEYVAL:

– Returned flag in Fortran must be LOGICAL, i.e., .TRUE. or .FALSE.

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

34 / 52MPI-3.0 & 3.1 Overview

Detailed description of problems, mainly with the old support 37

methods, or if the compiler does not support TR 29113:
– 17.1.8 Additional Support for Fortran Register-Memory-Synchronization

– 17.1.10 Problems With Fortran Bindings for MPI

– 17.1.11 Problems Due to Strong Typing

– 17.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets

– 17.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts

– 17.1.14 Special Constants

– 17.1.15 Fortran Derived Types

– 17.1.16 Optimization Problems, an Overview

– 17.1.17 Problems with Code Movement and Register Optimization

• Nonblocking Operations

• One-sided Communication

• MPI_BOTTOM and Combining Independent Variables in Datatypes

• Solutions

• The Fortran ASYNCHRONOUS Attribute

• Calling MPI_F_SYNC_REG (new routine, defined in Section 17.1.7)

• A User Defined Routine Instead of MPI_F_SYNC_REG

• Module Variables and COMMON Blocks

• The (Poorly Performing) Fortran VOLATILE Attribute

• The Fortran TARGET Attribute

– 17.1.18 Temporary Data Movement and Temporary Memory Modication

– 17.1.19 Permanent Data Movement

– 17.1.20 Comparison with C

new

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

35 / 52MPI-3.0 & 3.1 Overview

Implementation

• Initial implementations of the MPI 3.0 Fortran bindings are based on Fortran 2003

– OpenMPI � MPI-3.0 compliant

• MPICH strategy:

– MPI-3.0 compliant only with TS 29113-compilers

– Without TS 29113-compilers

• All of MPI-3.0 routines available with mpif.h and mpi module

• MPI module (partially)

without compile argument checking & keyword-based argument lists

� Not MPI-3.0 compliant

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

36 / 52MPI-3.0 & 3.1 Overview

Outline nn

• MPI-3.0 – Major additions

– Slide 9: Nonblocking collectives

– Slide 10: Sparse and scalable irregular collectives

– Slides 11-15: One-sided communication – enhancements

– Slides 16-21: Shared memory extensions (on clusters of SMP nodes)

– Slides 22-35: Fortran interface

– Slides 36-40: New tools interface

� Goals of the tools working group

� Extend tool support in MPI-3 beyond the PMPI interface

� Document state of the art for de-facto standard APIs

• MPI-3.0 – Minor additions

– …

• MPI-3.1

• Implementation status

Background information, see:
MPI-3.1, Change-Log, B.2.2 (1-42) & B.2.1 (E1-E6)

Courtesy of the MPI-3 Tools working group

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

37 / 52MPI-3.0 & 3.1 Overview

The MPI Performance Interface (MPI_T)

• Goal: provide tools with access to MPI internal information

– Access to configuration/control and performance variables

– MPI implementation agnostic: tools query available information

• Information provided as a set of variables

– Performance variables (design similar to PAPI counters)

Query internal state of the MPI library at runtime

– Configuration/control variables

List, query, and (if available) set configuration settings

• Complimentary to the existing PMPI Interface

Examples for Control Vars.

� Parameters like Eager Limit

� Startup control

� Buffer sizes and management

Examples of Performance Vars.

� Number of packets sent

� Time spent blocking

� Memory allocated

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

38 / 52MPI-3.0 & 3.1 Overview

Granularity of PMPI Information

MPI FunctionMPI Function

ADI-3 LayerADI-3 Layer

CH3 LayerCH3 Layer

MRAILMRAIL PSMPSM NEMESISNEMESIS ……

DCMFDDCMFD

MPI Function

MPI_Recv

+ Information is the same for all MPI implementations

− MPI implementation is a black box

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

39 / 52MPI-3.0 & 3.1 Overview

Granularity of MPI_T Information

MPI FunctionMPI Function

ADI-3 LayerADI-3 Layer

CH3 LayerCH3 Layer

MRAILMRAIL PSMPSM NEMESISNEMESIS ……

DCMFDDCMFD ……

MPI_Recv

PSM

Counter

Polling Counter,

Queue Length &

Time, …

Time in

Layer

Memory

Consumption

Example: MVAPICH2

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

40 / 52MPI-3.0 & 3.1 Overview

Some of MPI_T’s Concepts

• Query API for all MPI_T variables / 2 phase approach

– Setup: Query all variables and select from them

– Measurement: allocate handles and read variables

– Other features and properties

• Ability to access variables before MPI_Init and after MPI_Finalize

• Optional scoping of variables to individual MPI objects, e.g., communicator

• Optional categorization of variables

Return Var.
Information

MPI Implementation with MPI_T

User Requesting a Performance Variable from MPI_T

Query All
Variables

Measured Interval

Start
Counter

Stop
Counter

Counter
Value

Setup Measurement

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

41 / 52MPI-3.0 & 3.1 Overview

Outline nn

• MPI-3.0 – Major additions

– Slide 9: Nonblocking collectives

– Slide 10: Sparse and scalable irregular collectives

– Slides 11-15: One-sided communication – enhancements

– Slides 16-21: Shared memory extensions (on clusters of SMP nodes)

– Slides 22-35: Fortran interface

– Slides 36-40: New tools interface

• MPI-3.0 – Minor additions

– Slide 42: Mprobe for hybrid programming on clusters of SMP nodes

– Slide 43: Group-Collective Communicator Creation

– Slide 44: MPI_TYPE_CREATE_HINDEXED_BLOCK

– Slide 45: Large Counts

– Slide 46: Removing C++ bindings from the Standard

– Slide 47-48: Other forum activities and minor corrections

• MPI-3.1

• Implementation status

Background information, see:
MPI-3.1, Change-Log, B.2.2 (1-42) & B.2.1 (E1-E6)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

42 / 52MPI-3.0 & 3.1 Overview

Thread-safe probe: MPI_(I)MPROBE & MPI_(I)MRECV 11

• MPI_PROBE & MPI_RECV together are not thread-safe:

– Within one MPI process, thread A may call MPI_PROBE

– Another tread B may steal the probed message

– Thread A calls MPI_RECV, but may not receive the probed message

• New thread-safe interface:

– MPI_IMPROBE(source, tag, comm, flag, message, status) or

– MPI_MPROBE(source, tag, comm, message, status)

together with

– MPI_MRECV(buf, count, datatype, message, status) or

– MPI_IMRECV(buf, count, datatype, message, request)

Message handle,

e.g., stored in a thread-

local variable

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

43 / 52MPI-3.0 & 3.1 Overview

Group-Collective Communicator Creation 16

• MPI-2: Comm. creation is collective

• MPI-3: New group-collective creation

– Collective only on members of new comm.

• Avoid unnecessary synchronization

– Enable asynchronous multi-level parallelism

• Reduce overhead

– Lower overhead when creating small communicators

• Recover from failures

– Failed processes in parent communicator can’t participate

• Enable compatibility with Global Arrays

– In the past: GA collectives implemented on top of MPI Send/Recv

Courtesy of Jim Dinan and Richard Graham

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

44 / 52MPI-3.0 & 3.1 Overview

MPI_TYPE_CREATE_HINDEXED_BLOCK 12

• MPI_TYPE_CREATE_HINDEXED_BLOCK is identical to

MPI_TYPE_CREATE_INDEXED_BLOCK,

except that block displacements in array_of_displacements are specied in bytes,

rather than in multiples of the oldtype extent:

MPI_TYPE_CREATE_HINDEXED_BLOCK(count, blocklength, array_of_displacements,

oldtype, newtype)

IN count length of array of displacements

(non-negative integer)

IN blocklength size of block (non-negative integer)

IN array_of_displacements byte displacement of each block

(array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

45 / 52MPI-3.0 & 3.1 Overview

Large Counts

• MPI-2.2

– All counts are int / INTEGER

– Producing longer messages through derived datatypes may cause problems

• MPI-3.0

– New type to store long counts: 6

• MPI_Count / INTEGER(KIND=MPI_COUNT_KIND)

– Additional routines to handle “long” derived datatypes:

• MPI_Type_size_x, MPI_Type_get_extent_x, MPI_Type_get_true_extent_x

– “long” count information within a status:

• MPI_Get_elements_x, MPI_Status_set_elements_x

– Communication routines are not changed !!! 8

– Well-defined overflow-behavior in existing MPI-2.2 query routines:

• count in MPI_GET_COUNT, MPI_GET_ELEMENTS, and

size in MPI_PACK_SIZE and MPI_TYPE_SIZE

is set to MPI_UNDEFINED when that argument would overflow.

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

46 / 52MPI-3.0 & 3.1 Overview

Removing C++ bindings from the Standard 2

• MPI-2 C++ Interface:

– Not what most C++ programmers expect

– Deprecated in MPI-2.2 / removed in MPI-3.0

• Use the C bindings – what most C++ developers do today

• Preserve/add additional MPI predefined datatype handles in C and Fortran

to support C++ types that are not provided by C

• Special C++ types are supported through

additional MPI predefined datatypes (in C and Fortran) E1

– MPI_CXX_BOOL bool

– MPI_CXX_FLOAT_COMPLEX std::complex<float>

– MPI_CXX_DOUBLE_COMPLEX std::complex<double>

– MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

• Preserve the MPI:: namespace and names with the meaning as defined in MPI-2.2 +

MPI-2.2 errata, see MPI-3.0 Annex B.1.1

• Perhaps provide the current bindings as a standalone library sitting on top of MPI, or as

part of MPI-3.0 libraries.

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

47 / 52MPI-3.0 & 3.1 Overview

Other Forum Activities

• MPI_Init, MPI_Init_thread, and MPI_Finalize were clarified. 22

– New predefined info object MPI_INFO_ENV holds arguments from mpiexec or

MPI_COMM_SPAWN

• MPIR (independent document, not part of the MPI standard) ---

– “The MPIR Process Acquisition Interface”

– a commonly implemented interface

primarily used by debuggers to interface to MPI parallel programs

• Removed MPI-1.1 functionality stored in new Chapter 16 (deprecated since MPI-2.0): 1

– Routines: MPI_ADDRESS, MPI_ERRHANDLER_CREATE / GET / SET, MPI_TYPE_EXTENT

/ HINDEXED / HVECTOR / STRUCT / LB / UB

– Datatypes: MPI_LB / UB

– Constants MPI_COMBINER_ HINDEXED/HVECTOR/STRUCT _INTEGER

– Removing deprecated functions from the examples and definition of

MPI_TYPE_GET_EXTENT

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

48 / 52MPI-3.0 & 3.1 Overview

Minor Corrections and Clarifications

• Consistent use of [] for input and output arrays 7

– Exception: MPI_INIT and MPI_INIT_THREAD: char ***argv

• Add const keyword to the C bindings. “IN” was clarified. 3

• MPI_STATUSES_IGNORE can be used in MPI_(I)(M)PROBE 9

• MPI_PROC_NULL behavior for MPI_PROBE and MPI_IPROBE 10

• MPI_UNWEIGHTED should not be NULL 4

• MPI_Cart_map with num_dims=0 20

• MPI_MAX_OBJECT_NAME used in MPI_Type/win_get_name 19

• New wording in reductions:

Multi-language types MPI_AINT, MPI_OFFSET, MPI_COUNT ---

• MPI_TYPE_CREATE_RESIZED should be used for “arrays of struct” 32

– The MPI alignment rule cannot guarantee to calculate the same alignments as the

compiler

• The MPI_C_BOOL "external32" representation is 1-byte E5

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

49 / 52MPI-3.0 & 3.1 Overview

MPI-3.1 – Mainly an errata release

• Errata

– Several errata in the new MPI Tool Information Interface chapter (Section 14.3)

– New internal backend for the new Fortran interfaces (rewritten Section 17.1.5)

– Only a few errata to the One-sided chapter (Chapter 11)

• No errata to the new shared memory interface (Section 11.2.3 and other)

• New Functionality and Features

– A General Index was added: should contain all relevant MPI terms (pages 816-819)

– Intrinsic operators + and - for absolute addresses

� substituted by new functions MPI_AINT_ADD and MPI_AINT_DIFF

– MPI_INITIALIZED, MPI_FINALIZED, MPI_QUERY_THREAD, MPI_IS_THREAD_MAIN,

MPI_GET_VERSION, and MPI_GET_LIBRARY_VERSION � now without thread-safety restrictions

– same_disp_unit info key was added for use in RMA window creation routines

– Nonblocking collective MPI-I/O routines added for explicit addresses and individual file pointers:

MPI_FILE_IREAD_AT_ALL + MPI_FILE_IWRITE_AT_ALL and MPI_FILE_IREAD_ALL + MPI_FILE_IWRITE_ALL

• Corresponding split collective interface was not declared as deprecated

– MPI_T_... tools interface: 3 new routines; 2 new error codes; clarification about NULL parameters

Must be

implemented

already in

MPI-3.0

libraries!

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

50 / 52

Address calculations in MPI-3.1 and later

New absolute address := existing absolute address + relative displacement

– C/C++: MPI_Aint MPI_Aint_add(MPI_Aint base, MPI_Aint disp)

– Fortran: INTEGER(KIND=MPI_ADDRESS_KIND) MPI_Aint_add(base, disp)
INTEGER(KIND=MPI_ADDRESS_KIND) :: base, disp

Relative displacement := absolute address 1 – absolute address 2

– C/C++: MPI_Aint MPI_Aint_diff(MPI_Aint addr1, MPI_Aint addr2)

– Fortran: INTEGER(KIND=MPI_ADDRESS_KIND) MPI_Aint_diff(addr1, addr2)
INTEGER(KIND=MPI_ADDRESS_KIND) :: addr1, addr2

Examples: (MPI-3.0 / MPI-3.1, Example 4.8, page 103 / 102 and Example 4.17, pp 125-127)

REAL a(100,100)
INTEGER(KIND=MPI_ADDRESS_KIND) iaddr1, iaddr2, disp; INTEGER ierror
CALL MPI_GET_ADDRESS(a(1,1), iaddr1, ierror) ! The address of a(1,1) is stored in iaddr1
CALL MPI_GET_ADDRESS(a(10,10), iaddr2, ierror)
disp = MPI_Aint_diff(iaddr2, iaddr1) ! MPI-3.0 & former: disp = iaddr2–iaddr1

float a[100][100]; MPI_Aint iaddr1, iaddr2, disp;
MPI_Get_address(&a[0][0], &iaddr1); // the address value &a[0][0] is stored into variable iaddr
MPI_Get_address(a, &iaddr1); // same result, because a represents the address of

the first element, i.e. &a[0][0]
MPI_Get_address(&a[9][9], &iaddr2);
disp = MPI_Aint_diff(iaddr2, iaddr1); // MPI-3.0 & former: disp = iaddr2–iaddr1

Fortran

C

New in MPI-3.1

New in MPI-3.1

Instead of intrinsic
integer address

operators + and –

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

51 / 52MPI-3.0 & 3.1 Overview

1 Open source, but unsupported 2 No MPI_T variables exposed * Under development

Release dates are estimates and are subject to change at any time.

Empty cells indicate no publicly announced plan to implement/support that feature.

Platform-specific restrictions might apply for all supported features.

MPICH MVAPICH
Open

MPI

Cray

MPI

Tianhe

MPI

Intel

MPI

IBM BG/Q

MPI 1
IBM PE

MPICH

IBM

Platform

SGI

MPI

Fujitsu

MPI

MS

MPI

NB collectives ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ *

Neighborhood

collectives
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ Q2 ‘15

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ Q2 ‘15

Shared

memory
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ Q2 ‘15 ✔

Tools Interface ✔ ✔ ✔ ✔ ✔ ✔ ✔✔✔✔ 2 ✔ Q3 ‘15 ✔ Q2 ‘15 *

Non-collective

comm. create
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ Q2 ‘15

F08 Bindings ✔ ✔ ✔ ✔ ✔ Q2 ‘15 ✔ ✔ Q3 ‘15 ✔ Q2 ‘15

New

Datatypes
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ Q2 ‘15 *

Large Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ Q2 ‘15 *

Matched

Probe
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ Q3 ‘15 ✔ ✔ *

Courtesy of

Pavan Balaji (ANL)

Status of MPI-3.0 Implementations

March 2015

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

52 / 52MPI-3.0 & 3.1 Overview

Further information

• www.mpi-forum.org � MPI documents � the official standard & link to printed books

• https://svn.mpi-forum.org/

– View tickets (see headline boxes) � Custom query (right below headline boxes)

• https://svn.mpi-forum.org/trac/mpi-forum-web/query � Filter

� Version = MPI-3.0 or MPI-2.2-errata � Tickets for MPI-3.0 document

� Version = MPI-3.1 or MPI-3.0-errata � Tickets for MPI-3.1 document

� Version = MPI-4.0 or MPI<next> � Tickets for future MPI document

• http://meetings.mpi-forum.org/

– At a glance � All meeting information

• http://meetings.mpi-forum.org/Meeting_details.php

– MPI-3.1 Wiki and chapter committees

• http://meetings.mpi-forum.org/MPI_3.1_main_page.php

– MPI-3.1/4.0 Working groups:

• http://meetings.mpi-forum.org/MPI_4.0_main_page.php

Thank you for your interest

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

53 / 52

APPENDIX

Additional slides on

• Nonblocking collective communication (slide 53)

• MPI shared memory with one-side communication

− Other synchronization on shared memory – with MPI_WIN_SYNC (slide 54)

− General MPI-3 shared memory synchronization rules (slide 55)

(write-read-rule, read-write-rule, write-write-rule)

− Benchmark results (slide 56)

(Low latency and high bandwith by combining pt-to-pt synchronization & direct shared memory store)

• The MPI Forum: After final vote for MPI-3.1, June 4, 2015 (slide 58)

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

54 / 52

• MPI_I.......… Nonblocking variants of all collective communication:
MPI_Ibarrier, MPI_Ibcast, …

• Nonblocking collective operations do not match with blocking collective operations

• Collective initiation and completion are separated

• May have multiple outstanding collective communications on same communicator

• Ordered initialization on each communicator

• Offers opportunity to overlap

– several collective communications,
e.g., on several overlapping communicators

• Without deadlocks or serializations!

– computation and communication

� Often a background MPI progress engine is missing or not efficient

� Alternative:

− Several calls to MPI_Test(), which enables progress

− Use non-standard extensions to switch on asynchronous progress

o export MPICH_ASYNC_PROGRESS=1

Nonblocking Collective Communication Routines

New in MPI-3.0

Implies a helper thread and
MPI_THREAD_MULTIPLE, see
Chapter 13. MPI and Threads

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

With point-to-point message passing,
such matching is allowed

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

55 / 52

• If the shared memory data transfer is done without RMA operation,

then the synchronization can be done by other methods.

• This example demonstrates the rules for the unified memory model if the data transfer is

implemented only with load and store (instead of MPI_PUT or MPI_GET) and the synchronization

between the processes is done with MPI communication (instead of RMA synchronization routines).

Other synchronization on shared memory

Process A Process B

MPI_WIN_LOCK_ALL(MPI_WIN_LOCK_ALL(

MPI_MODE_NOCHECK,win) MPI_MODE_NOCHECK,win)

DO ... DO ...

X=...

MPI_F_SYNC_REG(X) 1)

MPI_WIN_SYNC(win)

MPI_Send

MPI_Recv

MPI_WIN_SYNC(win)

MPI_F_SYNC_REG(X) 1)

local_tmp = X

MPI_F_SYNC_REG(X) 1)

MPI_WIN_SYNC(win)

MPI_Send

MPI_Recv print local_tmp
MPI_WIN_SYNC(win)

MPI_F_SYNC_REG(X) 1) 1) Fortran only.

END DO END DO

MPI_WIN_UNLOCK_ALL(win)MPI_WIN_UNLOCK_ALL(win)

• The used synchronization must be

supplemented with MPI_WIN_SYNC, which

acts only locally as a processor-memory-

fence.

For MPI_WIN_SYNC, a passive target epoch

is established with MPI_WIN_LOCK_ALL.

• X is part of a shared memory window and

should be the same memory location in

both processes.

• See also tickets #413 and #456:
https://svn.mpi-forum.org/trac/mpi-forum-
web/ticket/413 and https://svn.mpi-forum.org/trac/mpi-
forum-web/ticket/456

Also needed due to read-write-rule

Data exchange in this direction,
therefore MPI_WIN_SYNC is
needed in both processes:
Write-read-rule

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

56 / 52

General MPI-3 shared memory synchroniz. rules

and having …

A=val_1
Sync-from

load(B)
Sync-from

C=val_3
Sync-from

Sync-to
load(A)

Sync-to
B=val_2

Sync-to
C=val_4
load(C)

then it is guaranteed that …

… the load(A) in P1 loads val_1
(this is the write-read-rule)

… the load(B) in P0 is not affected by the store of val_2 in P1
(read-write-rule)

… that the load(C) in P1 loads val_4
(write-write-rule)

Defining Proc 0

Sync-from

Proc 1

Sync-to

being MPI_Win_post1)

or MPI_Win_complete1)

or MPI_Win_fence1)

or MPI_Win_sync
Any-process-sync2)

or MPI_Win_unlock1)

and the lock on process 0 is granted first

MPI_Win_start1)

MPI_Win_wait1)

MPI_Win_fence1)

Any-process-sync2)

MPI_Win_sync

MPI_Win_lock1)

1) Must be paired according to the general
one-sided synchronization rules.

2) "Any-process-sync" may be done with methods from MPI
(e.g. with send-->recv as in MPI-3.1 Example 11.13, but also
with some synchronization through MPI shared memory
loads and stores, e.g. with C++11 atomic loads and stores).

Candidate
for lowest
latency

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

57 / 52

Benchmark results on a Cray XE6 –

1-dim ring communication on 1 node w. 32 cores

High latency
MPI_Win_fence

Low latency pt-to-pt
synchronization

x

Medium bandwidth w. point-
to-point and neighbor alltoall

High bandwidth
direct shared
memory store

19 µs

30 µs

� 2.9 µs

� 1.7 µs

� 2.8 µs

� 2.9 µs Latency

Benchmark on Cray XE6 Hermit at HLRS
with aprun –n 32 –d 1 –ss, best values out of 6 repetitions, modules PrgEnv-cray/4.1.40 and cray-mpich2/6.2.1

Low bandwidth with MPI_Put

Low latency and high bandwith
by combining

pt-to-pt synchronization
& direct shared memory store

MPI-3.0 & 3.1 Overview

:: :: ::

::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

58 / 52MPI-3.0 & 3.1 Overview

The MPI Forum: After final vote for MPI-3.1, June 4, 2015

Attendance of the meeting June 1-4, 2015, in Chicago: 34 participants from 24 organisations.

Photo by D. Eder

