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Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. 
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or 
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for 
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the 
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804
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Intel® Xeon Phi™ Processor Architecture



GTC-P
Tokamak plasma physics particle-in-cell (PIC) code

Work by: 
Jason Sewall (Intel)  
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Princeton Gyrokinetic Toroidal Code

 Plasma turbulence simulation

– Motion of ions through Tokamak

– Vlassov-Poisson equation using 
particle-in-cell (PIC)

– Well-studied in HPC

– Many ‘leadership-class’ runs 
and ports
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Algorithm

Charge
 Particles deposit charge onto grid

Poisson
 Solve Poisson equation over grid

Field
 Reconstruct electric field over grid

Smooth
 Filter grid fields

Push
 Transfer field to particles
 Move particles (in phase space)

Shift
 Move particles between MPI ranks

O(Particles)

O(Grid)

O(Grid)

O(Grid)

O(Particles)

O(Particles)

Particles >>> Grid
(for this code)
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Optimizations (BASELINE)
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• B-1rank-half problem:
• Run with 1 rank and 400 particles

• KNL results from Xeon Phi 7250
• BDW results from 2x Xeon E5-2698 v4
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GTC-P: Baseline

Charge Push Sorting

KNL ~8% slower than 2xBDW 
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Optimizations to help vectorization
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• Avoid excessive memoization

• Gathers expensive, can be avoided sometimes

im = ii;
im2 = ii + 1;

tdumtmp = pi2_inv * (tflr - zetatmp * qtinv[im]) + 10.0;
tdumtmp2 = pi2_inv * (tflr - zetatmp * qtinv[im2]) + 10.0;

tdum = (tdumtmp - ( int )tdumtmp) * delt[im];
tdum2 = (tdumtmp2 - ( int )tdumtmp2) * delt[im2];

j00 = abs_min_int(mtheta[im] - 1, ( int )tdum);
j01 = abs_min_int(mtheta[im2] - 1, ( int )tdum2);

jtion0tmp = igrid[im] + j00;
jtion1tmp = igrid[im2] + j01;

• Minimize type conversions

const real im_r = ii_r;
const real im2_r = ii_r + 1.0;

const real mth_im_r = poloidal_mtheta(im_r, mtheta_a, mtheta_b, mthetamax_r);
const real mth_im2_r = poloidal_mtheta(im2_r, mtheta_a, mtheta_b, mthetamax_r);

const real pgrid_base = igrid[(int) im_r];
const real pgrid_next = pgrid_base + mth_im_r + 1.0;

const real qtinv_m = poloidal_qtinv(im_r, q0, q1, q2, ainv, a0, deltar, 
mth_im_r);
const real qtinv_m2 = poloidal_qtinv(im2_r, q0, q1, q2, ainv, a0, deltar, 
mth_im2_r);

const real tdumtmp = tflr - zetatmp_pi2 * qtinv_m + 10.0;
const real tdumtmp2 = tflr - zetatmp_pi2 * qtinv_m2 + 10.0;

const real tdum = fmod(tdumtmp, 1.0) * mth_im_r;
const real tdum2 = fmod(tdumtmp2, 1.0) * mth_im2_r;

const real j00 = abs_min_real(mth_im_r - 1.0, floor(tdum));
const real j01 = abs_min_real(mth_im2_r - 1.0, floor(tdum2));

const int jtion0tmp = (int) (pgrid_base + j00);
const int jtion1tmp = (int) (pgrid_next + j01);
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Optimizations (PUSH)
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• Large ‘diagnostic’ branch in code
• Only active for certain iterations
• Multiversion code so extra code not in ‘normal’ loop

• Strip-mining loop can help alignment
• Narrowing masks from whole-loop to just write-masking
• Marking reductions essential for correctness

#pragma omp for nowait
for (int mo = 0; mo < mi; mo += 16) {

real *__restrict__ z0mo  = particle_data->z0 + mo;
real *__restrict__ z1mo  = particle_data->z1 + mo;
real *__restrict__ z2mo  = particle_data->z2 + mo;
....
#pragma omp simd aligned(z0mo, z1mo, z2mo, ... : 64) \

simdlen(16) \
reduction(+ : particles_energy_a, ...)

for (int v = 0; v < 16; v++) {
const real zion2m = z2mo[v];
const int valid = v + mo < mi && !gtc_hole(zion2m);
...

}
}
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GTC-P: Push Optimisations

Charge Push Sorting

3.2x speedup for Push
1.6x speedup overall 
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Optimizations (Charge)
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#pragma omp for
for (int mo = 0; mo < mi; mo += 16) {

real *__restrict z0mo = particle_data->z0 + mo;
real *__restrict z1mo = particle_data->z1 + mo;
real *__restrict z2mo = particle_data->z2 + mo;
real *__restrict z4mo = particle_data->z4 + mo;
real *__restrict z5mo = particle_data->z5 + mo;

#pragma omp simd aligned(z0mo, z1mo, z2mo, z4mo, z5mo : 64) simdlen(16)
for (int v = 0; v < 16; ++v) {

const real zetatmp = z2mo[v];
const int valid        = v + mo < mi && !gtc_hole(zetatmp);
<lots of code>
if (valid) {

chargei_update(ij1, densityi_part, wz0 * wt00);
chargei_update(ij1 + 1, densityi_part, wz1 * wt00);
chargei_update(ij1 + mzeta + 1, densityi_part, wz0 * wt10);
chargei_update(ij1 + mzeta + 2, densityi_part, wz1 * wt10);

chargei_update(ij2, densityi_part, wz0 * wt01);
chargei_update(ij2 + 1, densityi_part, wz1 * wt01);
chargei_update(ij2 + mzeta + 1, densityi_part, wz0 * wt11);
chargei_update(ij2 + mzeta + 2, densityi_part, wz1 * wt11);

}
}

}

#pragma omp for
for (m = 0; m < mi; m++) {

zetatmp = z2[m];
if (zetatmp == HOLEVAL) {

continue;
}
<later>
densityi_part[ij1] += d1;
densityi_part[ij1 + 1] = +d2;
densityi_part[ij1 + mzeta + 1] += d3;
densityi_part[ij1 + mzeta + 2] += d4;

densityi_part[ij2] += d5;
densityi_part[ij2 + 1] = +d6;
densityi_part[ij2 + mzeta + 1] += d7;
densityi_part[ij2 + mzeta + 2] += d8;

}

#pragma omp declare simd simdlen(16)
static void chargei_update(const int offs, wreal *addr, const real del) {

#pragma omp ordered simd
{ addr[offs] += del; }

}

• Strip-mining loop can help alignment
• Narrowing masks from whole-loop to just write-masking helpful
• Write-conflicts can be helped with ordered simd

• Or vconflict + scatter
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Optimizations (Charge)
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GTC-P: Charge Optimisations

Charge Push Sorting

2.3x speedup for Charge
1.6x speedup overall 
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Optimizations (Sorting)
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Unnecessary pressure on TLB:

#pragma omp for
for (m = 0; m < mi_new; m++) {

z0[m] = z00[m];
z1[m] = z01[m];
z2[m] = z02[m];
z3[m] = z03[m];
z4[m] = z04[m];

}

Use vectors, alignment, and copy 1 at a time:

#pragma omp for simd schedule(static:simd) aligned(z0,z00:64) nowait
for (m = 0; m < mi_new; m++) 

z0[m] = z00[m];
#pragma omp for simd schedule(static:simd) aligned(z1,z01:64) nowait

for (m = 0; m < mi_new; m++) 
z1[m] = z01[m];

#pragma omp for simd schedule(static:simd) aligned(z2,z02:64) nowait
for (m = 0; m < mi_new; m++) 

z2[m] = z02[m];
#pragma omp for simd schedule(static:simd) aligned(z3,z03:64) nowait

for (m = 0; m < mi_new; m++) 
z3[m] = z03[m];

#pragma omp for simd schedule(static:simd) aligned(z4,z04:64) nowait
for (m = 0; m < mi_new; m++) 

z4[m] = z04[m];
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GTC-P: Sorting Optimisations

Charge Push Sorting

1.2x speedup for Sort
KNL now ~2x faster than 2xBDW

On KNL optimisations deliver ~2.6x cumulative speedup 



NWChem AIMD
NWChem Ab-initio Molecular Dynamics

Work by: 
E. Bylaska (PNNL), Matthias Jacquelin (LBL), Bert de Jong (LBL), Michael Klemm (Intel)
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Introduction: Plane Wave Methods

• 100-1000 atoms, 
uses plane wave basis

• Many FFTs and 
DGEMM operations

• “Meaty”: Lots of FLOPs, 
but also bandwidth sensitive

QM-CC                   QM-DFT                  AIMD                     QM/MM                 MM
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Strong Scaling is Key

• 20 psec of simulation time ≈ 200,000 steps

• 1 sec/step = 2-3 days simulation time

• 10 sec/step = 23 days simulation time

• 13 sec/step = 70 days simulation time

• Mesoscale phenomena at longer time scales

• Assume 1 sec/step

• 100 psec = 10-15 days simulation time

• 1 nsec = 100 - 150 days simulation time

• Strong scaling required to reduce time per time step as much as possible

• At least below 1sec/step
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Strong Scaling is Key

• 20 psec of simulation time ≈ 200,000 steps

• 1 sec/step = 2-3 days simulation time

• 10 sec/step = 23 days simulation time

• 13 sec/step = 70 days simulation time

• Mesoscale phenomena at longer time scales

• Assume 1 sec/step

• 100 psec = 10-15 days simulation time

• 1 nsec = 100 - 150 days simulation time

• Strong scaling required to reduce time per time step as much as possible

• At least below 1sec/step
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3D FFTs – Pipelined Implementation

• Performed at each step

• 2 Ne 3D FFTs for DFT

• Plus (Ne+1)*Ne 3D FFTs 
for hybrid DFT

• In reciprocal space, sphere
of radius Ecut is stored

• 3D FFTs are pipelined

• Overlap communication and
computation

• Latency reduction

• N2 1D FFTs per stage 
execute in parallel
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Lagrange Multiplier

• Sequence of matrix products of shape F or M

• F: Npack x Ne or Ne x Npack matrix (tall & skinny)

• M: Ne x Ne matrix

• In general: Npack >> Ne
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Lagrange Multiplier – Parallelization

FMF FFM
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Experimental Setup – NERSC Cori

• “Haswell”, HSW

• Cray* XC40

• 2S Intel® Xeon® E5-2698v3 
processors 

• 32 cores, no Hyper-Threading 

• 2.3 GHz clock frequency

• 128 GB of DDR4 at 2133 MHz

• Cray* Aries* w/ Dragonfly

• “Knights Landing”, KNL

• Cray* XC40

• Intel® Xeon Phi™ 7250 processors

• 68 cores w/ 4 hardware threads

• 1.4 GHz clock frequency 

• 96 GB of DDR4 at 2400 MHz

• Cache mode

• Quadrant cluster mode

• Cray* Aries* w/ Dragonfly

* Some names and brands may be claimed as the property of others.
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Experimental Setup – Benchmarks 

• water64: 

• 64 water molecules in a box

• test intra-node strong scaling

• water256:

• 256 water molecules

• test cluster strong scaling

• Ne=2056

• Ng=5,832,000 (1803)

• Npack=437,000
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Intra-node Performance

• Insight into performance without fabric 
effects

• Xeon node saturates at about 16 cores, 
reaching memory bandwidth limits

• Xeon Phi node keeps strong scaling due to 
the on-package cache memory

• 1.8x speed-up of KNL over HSW node 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured using specific computer 
systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to 
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. System configuration: Cray* XC40 system, 2S 
Intel® Xeon® E5-2698v3 processor, Intel® Hyper-Threading technology disabled, 128 GB of DDR4 (8x 16 GB, 2133 MHz), Cray* Aries interconnect with Dragonfly topology; Cray* XC40 
system Intel® Xeon Phi™ 7250 processors, 96 GB of DDR4 (6x 16GB, 2400 MHz), quadrant cluster mode, MCDRAM in cache mode, Cray* Aries interconnect with Dragonfly topology.
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Performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests are measured using specific computer 
systems, components, software, operations, and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to 
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. System configuration: Cray* XC40 system, 2S 
Intel® Xeon® E5-2698v3 processor, Intel® Hyper-Threading technology disabled, 128 GB of DDR4 (8x 16 GB, 2133 MHz), Cray* Aries interconnect with Dragonfly topology; Cray* XC40 
system Intel® Xeon Phi™ 7250 processors, 96 GB of DDR4 (6x 16GB, 2400 MHz), quadrant cluster mode, MCDRAM in cache mode, Cray* Aries interconnect with Dragonfly topology.

“Haswell”

“Knights Landing”
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Relative Performance – HSW vs KNL

• Strong scaling regime

• Interconnect latency becomes 
visible

• Less occupancy of the network

• KNL seems to suffer from this 
more than HSW does
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Performance – Effect of the Processor Grid

• Processor grid is a tradeoff

• 2D processor grid:
Np=Npi * Npj

• Large Npj favors FFTs and non-
local pseudopotentials

• Lagrange multiplier suffers from 
large Npi

• Balancing Npi and Npj is required

• problem size

• number of ranks



Summary 
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Summary –

 Much of Knights Landing’s throughput comes from parallelism:

– Codes will need to be modernized to fully exploit the features of the chip

– Usually: thread-parallel and SIMD-parallel execution key to performance

 Optimizations for Knights Landing usually also pay off on Xeon processors

 Plain library approaches are not good enough at times due to special 
requirements of application kernels




