Intel MIC Programming Workshop @ IT4I February 7-8, 201

Exploring the impact of Intel MIC and Intel CPU architectures on accelerating scientific applications

Łukasz Szustak Iszustak@icis.pcz.p

Roman Wyrzykowski roman@icis.pcz.pl

Institute of Computer and Information Science Czestochowa University of Technology, Poland

Motivation of our research

- Emerging computing platforms become increasingly complex, hierarchical and heterogeneous
- The efficient usage of all opportunities offered by modern computing systems represents a global challenge
- The research background of our team implies a profound and efficient exploration of emerging multi-/many-core architectures
- Our research includes two scientific applications:
 - Multidimensional Positive Definite Advection Transport Algorithm
 - Low-level approach
 - Numerical model of solidification
 - High-level approach

MPDATA

Łukasz Szustak Iszustak@icis.pcz.p

Roman Wyrzykowski roman@icis.pcz.pl

MPDATA

- Multidimensional Positive Definite Advection Transport Algorithm is one of the main parts of the EULAG model
- MPDATA is a real-life CFD application
- EULAG is an established computational model developed by the group headed by Piotr K. Smolarkiewicz for simulating thermo-fluid flows across a wide range of scales and physical scenarios
- One of the most interesting applications of the EULAG model is numerical weather prediction (NWP)
- In our research, we propose to rewrite the main parts of EULAG and replace standard HPC systems by emerging computing cluster

MPDATA

- MPDATA belongs to the class of the forward-in-time algorithms which assume iterative execution of multiple time steps
- The number of required time steps depends on a type of simulated physical phenomenon, and can exceed even few millions
- The whole MPDATA computations in each time step are decomposed into a set of 17 heterogeneous stencils
- The stages depend on each other
- A single MPDATA time step requires 5 input and 1 output matrices
- MPDATA, as a part of EULAG, is interleaved with other important computation in each time step
- · We focus on simulations using 3D grid

Basic parallel version of MPDTA

Data dependencies

```
#pragma omp for
 for(i=0; i<n;++i)
  for(j=0;j< m;++j)
    for(k=0;k<1;++k)
     f1(i,j,k) = ...
#pragma omp for
 for(i=0; i<n;++i)
  for(j=0;j< m;++j)
    for(k=0;k<1;++k)
      f2(i,j,k) = ...
/*
*/
#pragma omp for
 for(i=0; i<n;++i)
  for(j=0;j< m;++j)
    for(k=0;k<1;++k)
      x(i,j,k) = ...
```


MPDATA is a memory-bounded algorithm

MPDATA on a single node (shared-memory version)

- To improve performance we reorganized computation inside each time step:
 - (3+1)D decomposition of MPDATA
 - Improving efficiency of this decomposition
 - New strategies for workload distribution and data parallelism
 - Proprietary scheduler with affinity-aware threads/cores placement
 - Providing 2 levels of threads/cores grouping:
 - Work teams of cores better use of LLC
 - Work groups of threads better use of L1
 - New strategies for synchronization (dedicated to MPDATA)
 - Providing appropriate data layout and hints for auto-vectorization
 - Providing configurability of the code for application portability

- The main goal is to eliminate main memory data transfers associated with all intermediate computation/matrices
- Therefore, intermediate outcomes of computation should be kept in cache only - without transferring them to the main memory
- The main memory traffic will be generated only to transfer the required input and output data for each MPDATA time step
- To reach this goal, we proposed (3+1)D decomposition of MPDATA computation that is based on a combination of loop fusion and loop tiling techniques

- As a results, the MPDATA domain is decomposed into a set of blocks,
- Blocks are processed independently, and each block is computed in parallel by all cores (within each time steps)

- As a results, the MPDATA domain is decomposed into a set of blocks,
- Blocks are processed independently, and each block is computed in parallel by all cores (within each time steps)

- As a results, the MPDATA domain is decomposed into a set of blocks,
- Blocks are processed independently, and each block is computed in parallel by all cores (within each time steps)

Idea of islands of cores

- The (3+1)D decomposition shifts the data traffic from the main memory to the cache hierarchy
- In consequence, a lot of intra cache communication between threads is generated
- New strategy of MPDATA decomposition requires also much more points of synchronizations than the basic one
- It is particularly significant when more than 200 Intel MIC threads cooperates
- To solve this issue we propose to create islands of cores that:
 - share all input data,
 - provide independent computations according to 17 stages,
 - and return common output data for every MPDATA time step

- 3 synchronization points
- 2 paths for implicit transfers of data between cores

- 3 synchronization points
- 2 paths for implicit transfers of data between cores

- 3 2 synchronization points
- 2 1 path for implicit transfers of data between cores
- · 1 extra cells necessary for computing

- 3 2 synchronization points
- 2 1 path for implicit transfers of data between cores
- · 1 extra cells necessary for computing

- 3 2 synchronization points
- 2 1 path for implicit transfers of data between cores
- · 2 extra cells necessary for computing

- 3 2 synchronization points
- 2 1 path for implicit transfers of data between cores
- · 2 extra cells necessary for computing

- 3 1 synchronization points
- 2 0 path for implicit transfers of data between cores
- · 3 extra cells necessary for computing

- 3 1 synchronization points
- 2 0 path for implicit transfers of data between cores
- · 3 extra cells necessary for computing

Idea of islands of cores

Idea of islands of cores

- This methodology is also well suitable for ccNUMA and SMP/NUMA architectures
 - In this case, it allows reducing communication paths between CPUs (islands of CPUs)

Target Platforms

- 2 x Intel Xeon E5-2699v3: 2.30GHz, 2x18 cores
- Intel Xeon Phi 7120P (Knight Corner): 1.24GHz, 61 cores
- Intel Xeon Phi 7210 (Knight Landing): 1.30GHz, 64 cores
- SMP/NUMA SGI UV 2000 server, 14x Intel Xeon E5-4627v2 (Ivy Bridge EP): 3.30GHz, 8 cores
- All performance results are obtained for the double precision
 - Accuracy of computation plays key role for MPDATA
- Compilation flags for Intel compiler:
 - -O3 -xavx/-xMIC-AVX512 -qopt-streaming-stores always
 - -fp-model precise -fp-model source
 - -no-vec

- 1. Basic version start point of our work
- 2. Parallel initialization of data
- 3.(3+1)D Decomposition
- 4. Islands of cores: workTeams
- 5. New strategy for synchronization
- 6. Work groups of threads
- 7. Enabling of SIMD

Optimizations steps:

- 1. Basic version start point of our work
- 2. Parallel initialization of data
- 3.(3+1)D Decomposition
- 4. Islands of cores: workTeams
- 5. New strategy for synchronization
- 6. Work groups of threads
- 7 Enabling of CIMD

- 1. Basic version start point of our work
- 2. Parallel initialization of data
- 3. (3+1)D Decomposition
- 4. Islands of cores: workTeams
- 5. New strategy for synchronization
- 6. Work groups of threads
- 7. Faciling of SIMD

Performance results

Optimizations steps:

- 1. Basic version start point of our work
- 2. Parallel initialization of data
- 3. (3+1)D Decomposition
- 4. Islands of cores: workTeams
- **5. New strategy for synchronization**
- 6. Work groups of threads

Performance results

Important:

Vectorization is disabled

Optimizations steps:

- 1. Basic version start point of our work
- 2. Parallel initialization of data
- 3. (3+1)D Decomposition
- 4. Islands of cores: workTeams
- 5. New strategy for synchronization
- 6. Work groups of threads

Performance results

Optimizations steps:

- 1. Basic version start point of our work
- 2. Parallel initialization of data
- 3. (3+1)D Decomposition
- 4. Islands of cores: workTeams
- 5. New strategy for synchronization
- 6. Work groups of threads

Important: Vectorization is enable

Performance results SMP/NUMA SGI UV 2000 server 14x Intel Xeon E5-4627v2

• Execution times [seconds] for the double precision, 500 time steps, and the grid of size 1024×512×64

#CPUs	#cores	Basic version	New version (1 island)	New version (x islands)	Strong scaling	Speedup against the best basic
1	8	300	89.9	85.3	100%	3
2	16	445	82.0	43.3	98%	6
4	32	688	79.8	22.4	95%	13
8	64	737	76.9	11.7	91%	25
10	80	777	145.0	9.4	91%	32
14	112	822	155.0	7.4	82%	40

Comparison of CPU, MIC, and GPU

Performance results are obtained for the double precision, 500 time steps, and the grid of size 1024×512×64

Devices	Time [s]
14 x Intel Xeon E5-4627v2 SMP/NUMA	7
2 x NVIDIA Tesla K80 (Kepler)	10
NVIDIA Tesla P100 (Pascal)	12
Intel Xeon Phi 7210 (KNL)	17
NVIDIA Tesla K80 (Kepler)	19
2 x Intel Xeon CPU E5-2699 v3 (Haswell)	28
2 x Intel Xeon CPU E5-2695 v2 (Ivy Bridge)	34
Intel Xeon Phi 7120P (KNC)	36
NVIDIA Tesla K20 X (Kepler)	38

Numerical model of solidifaction

Łukasz Szustak Iszustak@icis.pcz.p

Roman Wyrzykowski roman@icis.pcz.pl

Kamil Halbiniak khalbiniak@icis.pcz.pl

Motivation of our research

- The main goal of our current research is the suitability assessment of three heretogeneous programming models in practice:
 - Intel Offload Interface,
 - OpenMP 4.0 Accelerator Model,
 - Hetero Streams Library.
- We focus on porting an application which implements the numerical model of alloy solidification to hybrid CPU-MIC platforms
- The prime assumption is developing new parallel version without <u>significant modifications of the application code</u>

Motivation of our research

- OpenMP Accelerator Model
 - It is available from version 4.0
 - It assumes that a computing platform is equipped with multiple target devices connected to the host
 - This extension provides an unified directive-based programming model
- Hetero Streams Library
 - This is open source project supported by Intel
 - hStreams allows for stream programming in heterogeneous environments
 - It is based on the heterogeneous asynchronous multitasking model
 - It uses two key definitions:
 - **source** place where work is enqueued (only one source)
 - sink place where jobs defined as streams are executed (multiple sinks)
 - Stream is FIFO queues which resides in selected device or part of it

Target platforms

In our study, we use the following CPU-MIC platform:

	Intel Xeon E5-2699 v3	Intel Xeon Phi 7120P
Number of components	2	2
Number of cores	18	61
Number of threads	36	244
Frequency [GHz]	2.3	1.2
SIMD [bit]	256	512
LLC [MB]	45	30.5
Main memory [GB]	256	16
Peak performance for DP [Gflop/s]	662.4	1208.3

Idea of adaptation

Original version of the solidifcation application:

Porting application with Intel Offload

New version of the application:

Porting application with Intel Offload

- Porting the solification application to hybrid CPU-MIC platform requires:
 - Employing all available resources of CPUs and MICs to joint problem solving
 - Providing appropriate workload distribution between processors and two MICs, with partitioning CPU threads into two work teams
 - Applying adequate data partitioning between devices
 - Arrays used in computations are partitioned into three parts
 - We assign the first part of computations to MICO, the second one to CPUs, and the last part to MIC1
 - It allows us to decrease communication paths
 - Optimization of data movements
 - Reduce the total size of transferred data (only the necessary data are transferred)
 - Reduce the number of memory allocations (data are allocated only once at the beginning of computations)
 - Provide a double buffering technique to overlap computations and writing data to file
 - Utilization of vector processing units of coprocessors as well as CPUs

Mapping application workload onto hStreams

Idea of mapping application workload onto Hetero Streams

Mapping application workload onto hStreams

Idea of mapping application workload onto Hetero Streams:

- Creation of four logical streams in three logical domains:
 - Three streams used for parallel computations of packages with 2000 time steps (MICs + CPUs)
 - One stream responsible for writing partial result to the file (CPU)
- Use of hStreams Core API to manually initialize the streams on CPU responsible for parallel computations and data writing, respectively
- Applying appropriate methods for stream synchronization:
 - An active synchronization when source process is stopped during execution of streams
 - The proposed aproach requires applying two scenerio of synchronization
 - The first one used for synchronization streams responsible for parallel computations
 - The second scenerio used to synchronize all the streams after completion both computations within packages and data writing to the file
- Utilization of aliased buffers mechanism:
 - Source process and CPU streams share the same memory regions
 - It gives us a strong possibility for optimizing data exchanges
- Applying double-buffering technique

Porting application with OpenMP 4.0 Accelerator Model

OMP Task #0 - writing partial results to the file

OMP Task #1 and #2 - asynchronous offloading data and computations between CPU to coprocessors OMP Task #3 ... OMP Task c - computations performed by CPU threads

Porting application with OpenMP 4.0 Accelerator Model

Idea of porting application with OpenMP 4.0 Accelerator Model:

- Utilize two major construct which allows offloading computation and data:
 - target data construct which create data device environment
 - target construct used to trasnfers computations to the device
 - target update construct to transfer data from host to coprocessors and vice versa
- Applying OpenMP task parallelism for:
 - Implementation asynchronous offloads to all coprocessors
 - Parallel computations performed by CPUs
 - Writing partial results to the file
- Select an appropriate method for task synchronization:
 - To ensure adequate and efficient synchronization, taskgroup construct is used
 - Proposed aproach requires applying two scenerio of synchronization
 - The first one used for synchronization only tasks responsible for management of processors and parallel computations performed by the CPU
 - The second scenerio used to synchronization of all the tasks after completion both computations for package of 2000 time steps and data writing to the file
- Utilize double-buffering technique

Performance comparison

- All performance results are obtained for double-precision format
- The tests are performed for 110 000 time steps and grid containing 4 000 000 nodes
- Numerical accuracy of simulation results is verified experimentally

Version	Computing resources	Time	Speedup
Basic	2 x CPU	645 min 43 sec	-
hStreams-based	1 x MIC	182 min 13 sec	3.54x
OpenMP-based	1 x MIC	189 min 55 sec	3.40x
offload-based	1 x MIC	180 min 56 sec	3.56x
hStreams-based			
OpenMP-based			
offload-based			
hStreams-based			
OpenMP-based			
offload-based			

Performance comparison

- All performance results are obtained for double-precision format
- The tests are performed for 110 000 time steps and grid containing 4 000 000 nodes
- Numerical accuracy of simulation results is verified experimentally

Version	Computing resources	Time	Speedup
Basic	2 x CPU	645 min 43 sec	-
hStreams-based	1 x MIC	182 min 13 sec	3.54x
OpenMP-based	1 x MIC	189 min 55 sec	3.40x
offload-based	1 x MIC	180 min 56 sec	3.56x
hStreams-based	2 x MIC	97 min 31 sec	6.62x
OpenMP-based	2 x MIC	104 min 51 sec	6.16x
offload-based	2 x MIC	91 min 17 sec	7.07x
hStreams-based			
OpenMP-based			
offload-based			

Performance comparison

- All performance results are obtained for double-precision format
- The tests are performed for 110 000 time steps and grid containing 4 000 000 nodes
- Numerical accuracy of simulation results is verified experimentally

Version	Computing resources	Time	Speedup
Basic	2 x CPU	645 min 43 sec	-
hStreams-based	1 x MIC	182 min 13 sec	3.54x
OpenMP-based	1 x MIC	189 min 55 sec	3.40x
offload-based	1 x MIC	180 min 56 sec	3.56x
hStreams-based	2 x MIC	97 min 31 sec	6.62x
OpenMP-based	2 x MIC	104 min 51 sec	6.16x
offload-based	2 x MIC	91 min 17 sec	7.07x
hStreams-based	2 x CPU + 2 x MIC	61 min 35 sec	10.48x
OpenMP-based	2 x CPU + 2 x MIC	Too slow!	Too slow!
offload-based	2 x CPU + 2 x MIC	59 min 23 sec	10.87x

Conclusions: part I (MPDATA!)

- Our work shows that it is a challenging task to fully utilize emerging computing system for real-life scientific applications which like the MPDATA algorithm are memory bound, and have a complex structure of data dependencies
- Novel HPC platforms require often to develop a new programming abstraction for better utilization of computing resources, including threads/cores and Vector Processing Unit
 - The data locality plays a key role to reach this goal
- With the quick development of computing platforms and software environments, application developers are forced to contend with a variety of parallel architecture
 - In consequence, providing the performance portability for parallel codes becomes the key issue for creators of applications

Conclusions: part II

- Using of hStreams and Intel Offload programming models give us the performance gain on desired level of efficiency
 - While OpenMP provides an unified directive-based programming model, the current stable version of this standard is not efficient to fully utilize all hybrid component
- The proposed method of adapting the solidification application allows hiding more than 99% of transfers behind computations
- hStreams addresses key programming productivity issues by allowing a separation of concerns between:
 - the expression of functional semantics and disclosure of task parallelism (important for creators of scientific algorithms who are generally not computer scientists)
 - the performance tuning and control over mapping tasks onto a platform (responsibility of code tuners and runtime developers)

Thank You