

Intel MIC Programming Workshop @ IT4I
February 7-8, 201

Exploring the impact of Intel MIC and Intel CPU
architectures on accelerating scientific applications

Institute of Computer and Information Science
Czestochowa University of Technology, Poland

Łukasz Szustak
lszustak@icis.pcz.p

Roman Wyrzykowski
roman@icis.pcz.pl

Motivation of our researchMotivation of our research

● Emerging computing platforms become increasingly
complex, hierarchical and heterogeneous

● The efficient usage of all opportunities offered by modern
computing systems represents a global challenge

● The research background of our team implies a profound
and efficient exploration of emerging multi-/many-core
architectures

● Our research includes two scientific applications:
– Multidimensional Positive Definite Advection Transport

Algorithm
● Low-level approach

– Numerical model of solidification
● High-level approach

MPDATAMPDATA

Łukasz Szustak
lszustak@icis.pcz.p

Roman Wyrzykowski
roman@icis.pcz.pl

MPDATAMPDATA

● Multidimensional Positive Definite Advection Transport Algorithm is
one of the main parts of the EULAG model

● MPDATA is a real-life CFD application

● EULAG is an established computational model developed by the
group headed by Piotr K. Smolarkiewicz for simulating thermo-fluid
flows across a wide range of scales and physical scenarios

● One of the most interesting applications
of the EULAG model is numerical weather
prediction (NWP)

● In our research, we propose to rewrite
the main parts of EULAG and replace
standard HPC systems by emerging
computing cluster

MPDATAMPDATA

● MPDATA belongs to the class of the forward-in-time algorithms
which assume iterative execution of multiple time steps

● The number of required time steps depends on a type of
simulated physical phenomenon, and can exceed even few
millions

● The whole MPDATA computations in each time step are
decomposed into a set of 17 heterogeneous stencils

● The stages depend on each other
● A single MPDATA time step requires 5 input and 1 output

matrices
● MPDATA, as a part of EULAG, is interleaved with other

important computation in each time step
● We focus on simulations using 3D grid

Basic parallel Basic parallel
version of MPDTAversion of MPDTA

#pragma omp for
 for(i=0; i<n;++i)
 for(j=0;j<m;++j)
 for(k=0;k<l;++k)
 f1(i,j,k) = ...

#pragma omp for
 for(i=0; i<n;++i)
 for(j=0;j<m;++j)
 for(k=0;k<l;++k)
 f2(i,j,k) = ...
/*
….
*/
#pragma omp for
 for(i=0; i<n;++i)
 for(j=0;j<m;++j)
 for(k=0;k<l;++k)
 x(i,j,k) = ...

S
tag

e 1
S

tag
e 2

S
tag

e 1 7

DataData
dependenciesdependencies

MPDATA is a memory-bounded algorithm

MPDATA on a single nodeMPDATA on a single node
(shared-memory version)(shared-memory version)

● To improve performance we reorganized computation inside each
time step:

– (3+1)D decomposition of MPDATA

– Improving efficiency of this decomposition

– New strategies for workload distribution and data parallelism
● Proprietary scheduler with affinity-aware threads/cores placement

– Providing 2 levels of threads/cores grouping:
● Work teams of cores – better use of LLC
● Work groups of threads – better use of L1

– New strategies for synchronization (dedicated to MPDATA)

– Providing appropriate data layout and hints for auto-vectorization

– Providing configurability of the code for application portability

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● The main goal is to eliminate main memory data transfers
associated with all intermediate computation/matrices

● Therefore, intermediate outcomes of computation should be
kept in cache only - without transferring them to the main
memory

● The main memory traffic will be generated only to transfer the
required input and output data for each MPDATA time step

● To reach this goal, we proposed (3+1)D decomposition of
MPDATA computation that is based on a combination of loop
fusion and loop tiling techniques

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● As a results, the MPDATA domain is decomposed into a set of blocks,

● Blocks are processed independently, and each block is computed in
parallel by all cores (within each time steps)

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● As a results, the MPDATA domain is decomposed into a set of blocks,

● Blocks are processed independently, and each block is computed in
parallel by all cores (within each time steps)

Each MPDATA block requires
extra computation for every stage

because of data dependencies between stages!!!

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● As a results, the MPDATA domain is decomposed into a set of blocks,

● Blocks are processed independently, and each block is computed in
parallel by all cores (within each time steps)

We reduce this overhead
by leaving partial results in cache
for execution subsequent blocks

Idea of islands of coresIdea of islands of cores

● The (3+1)D decomposition shifts the data traffic from the main
memory to the cache hierarchy

● In consequence, a lot of intra cache communication between threads
is generated

● New strategy of MPDATA decomposition requires also much more
points of synchronizations than the basic one

● It is particularly significant when more than 200 Intel MIC threads
cooperates

● To solve this issue we propose to create islands of cores that:

– share all input data,

– provide independent computations according to 17 stages,

– and return common output data for every MPDATA time step

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

Sync.

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

Sync.

● 3 synchronization points
● 2 paths for implicit transfers of data between cores

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

Sync.

● 3 synchronization points
● 2 paths for implicit transfers of data between cores

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

● 3 2 synchronization points
● 2 1 path for implicit transfers of data between cores
● 1 extra cells necessary for computing

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

● 3 2 synchronization points
● 2 1 path for implicit transfers of data between cores
● 1 extra cells necessary for computing

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

● 3 2 synchronization points
● 2 1 path for implicit transfers of data between cores
● 2 extra cells necessary for computing

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

Sync.

● 3 2 synchronization points
● 2 1 path for implicit transfers of data between cores
● 2 extra cells necessary for computing

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

● 3 1 synchronization points
● 2 0 path for implicit transfers of data between cores
● 3 extra cells necessary for computing

Trade-off between computation Trade-off between computation
and communication for and communication for stencilsstencils

out[i] = B[i-1] + B[i]

B[i] = A[i] + A[i+1]

A[i] = in[i-1] + in[i] + in[i+1]

core_A core_B

Input data

Step 3
(out of time step)

Step 1

Step 2

Sync.

● 3 1 synchronization points
● 2 0 path for implicit transfers of data between cores
● 3 extra cells necessary for computing

Idea of islands of coresIdea of islands of cores

Idea of islands of coresIdea of islands of cores

● This methodology is also well suitable for ccNUMA and SMP/NUMA
architectures

– In this case, it allows reducing communication paths between
CPUs (islands of CPUs)

Target PlatformsTarget Platforms

● 2 x Intel Xeon E5-2699v3: 2.30GHz, 2x18 cores

● Intel Xeon Phi 7120P (Knight Corner): 1.24GHz, 61 cores

● Intel Xeon Phi 7210 (Knight Landing): 1.30GHz, 64 cores

● SMP/NUMA SGI UV 2000 server, 14x Intel Xeon E5-4627v2
(Ivy Bridge EP): 3.30GHz, 8 cores

● All performance results are obtained for the double precision

– Accuracy of computation plays key role for MPDATA

● Compilation flags for Intel compiler:

-O3 -xavx/-xMIC-AVX512 -qopt-streaming-stores always

-fp-model precise -fp-model source

-no-vec

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Important:
Auto vectorization is enable

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3.(3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step2 = 1.4x
Gain of Step2 = 1.0x

Gain of Step2 = 1.21x

Important:
Auto vectorization is enable

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3.(3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step3 = 1.45x
Gain of Step3 = 0.92x

Gain of Step3 = 0.29x

Important:
Vectorization is disabled

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step4 = 1.89x
Gain of Step4 = 1.79x

Gain of Step4 = 2.77x

Important:
Vectorization is disabled

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step5 = 1.23x
Gain of Step5 = 1.09x

Gain of Step5 = 1.39x

Important:
Vectorization is disabled

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step6 = 1.04x
Gain of Step6 = 1.14x

Gain of Step6 = 1.03x

Important:
Vectorization is disabled

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

E
xe

cu
tio

n
tim

e

2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step7 = 1.23x
Total speedup = 6.25

Gain of Step7 = 5.57x
Total speedup = 11.34

Gain of Step7 = 3.37x
Total speedup = 4.66

Important:
Vectorization is enable

Performance resultsPerformance results
SMP/NUMA SGI UV 2000 serverSMP/NUMA SGI UV 2000 server

14x Intel Xeon E5-4627v214x Intel Xeon E5-4627v2
● Execution times [seconds] for the double precision, 500 time

steps, and the grid of size 1024×512×64

#CPUs #cores
Basic

version

New
version

(1 island)

New
version

(x islands)

Strong
scaling

Speedup
against the
best basic

1 8 300 89.9 85.3 100% 3

2 16 445 82.0 43.3 98% 6

4 32 688 79.8 22.4 95% 13

8 64 737 76.9 11.7 91% 25

10 80 777 145.0 9.4 91% 32

14 112 822 155.0 7.4 82% 40

Comparison of CPU, MIC, and GPUComparison of CPU, MIC, and GPU

● Performance results are obtained for the double precision, 500
time steps, and the grid of size 1024×512×64

Devices Time [s]

14 x Intel Xeon E5-4627v2 SMP/NUMA 7

2 x NVIDIA Tesla K80 (Kepler) 10

NVIDIA Tesla P100 (Pascal) 12

Intel Xeon Phi 7210 (KNL) 17

NVIDIA Tesla K80 (Kepler) 19

2 x Intel Xeon CPU E5-2699 v3 (Haswell) 28

2 x Intel Xeon CPU E5-2695 v2 (Ivy Bridge) 34

Intel Xeon Phi 7120P (KNC) 36

NVIDIA Tesla K20 X (Kepler) 38

Numerical model of solidifactionNumerical model of solidifaction

Łukasz Szustak
lszustak@icis.pcz.p

Roman Wyrzykowski
roman@icis.pcz.pl

Kamil Halbiniak
khalbiniak@icis.pcz.pl

Motivation of our researchMotivation of our research

● The main goal of our current research is the suitability
assessment of three heretogeneous programming models
in practice:
– Intel Offload Interface,

– OpenMP 4.0 Accelerator Model,
– Hetero Streams Library.

● We focus on porting an application which implements the
numerical model of alloy solidification to hybrid CPU-MIC
platforms

● The prime assumption is developing new parallel version
without significant modifications of the application code

Motivation of our researchMotivation of our research

● OpenMP Accelerator Model
– It is available from version 4.0

– It assumes that a computing platform is equipped with multiple target
devices connected to the host

– This extension provides an unified directive-based programming model

● Hetero Streams Library
– This is open source project supported by Intel

– hStreams allows for stream programming in heterogeneous environments

– It is based on the heterogeneous asynchronous multitasking model

– It uses two key definitions:
● source - place where work is enqueued (only one source)
● sink - place where jobs defined as streams are executed (multiple sinks)

– Stream is FIFO queues which resides in selected device or part of it

Target platformsTarget platforms

● In our study, we use the following CPU-MIC
platform:

Intel Xeon
E5-2699 v3

Intel Xeon
Phi 7120P

Number of components 2 2

Number of cores 18 61

Number of threads 36 244

Frequency [GHz] 2.3 1.2

SIMD [bit] 256 512

LLC [MB] 45 30.5

Main memory [GB] 256 16

Peak performance for
DP [Gflop/s]

662.4 1208.3

Idea of adaptationIdea of adaptation

● Original version of the solidifcation application:

Porting application withPorting application with
Intel OffloadIntel Offload

● New version of the application:

● Porting the solification application to hybrid CPU-MIC platform requires:

– Employing all available resources of CPUs and MICs to joint problem solving

– Providing appropriate workload distribution between processors and two MICs, with
partitioning CPU threads into two work teams

– Applying adequate data partitioning between devices
● Arrays used in computations are partitioned into three parts
● We assign the first part of computations to MIC0, the second one to CPUs, and

the last part to MIC1
● It allows us to decrease communication paths

– Optimization of data movements
● Reduce the total size of transferred data (only the necessary data are transferred)
● Reduce the number of memory allocations (data are allocated only once at the

beginning of computations)

– Provide a double buffering technique to overlap computations and writing data to file

– Utilization of vector processing units of coprocessors as well as CPUs

Porting application withPorting application with
Intel OffloadIntel Offload

Mapping application workload Mapping application workload
onto hStreamsonto hStreams

● Idea of mapping application workload onto Hetero Streams

Mapping application workload Mapping application workload
onto hStreamsonto hStreams

Idea of mapping application workload onto Hetero Streams:

● Creation of four logical streams in three logical domains:

– Three streams used for parallel computations of packages with 2000 time steps (MICs +
CPUs)

– One stream responsible for writing partial result to the file (CPU)

● Use of hStreams Core API to manually initialize the streams on CPU responsible for parallel
computations and data writing, respectively

● Applying appropriate methods for stream synchronization:

– An active synchronization when source process is stopped during execution of streams

– The proposed aproach requires applying two scenerio of synchronization

– The first one used for synchronization streams responsible for parallel computations

– The second scenerio used to synchronize all the streams after completion both
computations within packages and data writing to the file

● Utilization of aliased buffers mechanism:

– Source process and CPU streams share the same memory regions

– It gives us a strong possibility for optimizing data exchanges

● Applying double-buffering technique

Porting application with OpenMP Porting application with OpenMP
4.0 Accelerator Model4.0 Accelerator Model

Porting application with OpenMP Porting application with OpenMP
4.0 Accelerator Model4.0 Accelerator Model

Idea of porting application with OpenMP 4.0 Accelerator Model:
● Utilize two major construct which allows offloading computation and data:

– target data construct which create data device enviroment

– target construct used to trasnfers computations to the device

– target update construct to transfer data from host to coprocessors and vice versa

● Applying OpenMP task parallelism for:
– Implementation asynchronous offloads to all coprocessors

– Parallel computations performed by CPUs

– Writing partial results to the file

● Select an appropriate method for task synchronization:
– To ensure adequate and efficient synchronization, taskgroup construct is used

– Proposed aproach requires applying two scenerio of synchronization

– The first one used for synchronization only tasks responsible for management of processors
and parallel computations performed by the CPU

– The second scenerio used to synchronization of all the tasks after completion both
computations for package of 2000 time steps and data writing to the file

● Utilize double-buffering technique

Performance comparisonPerformance comparison

● All performance results are obtained for double-precision format
● The tests are performed for 110 000 time steps and grid containing

4 000 000 nodes
● Numerical accuracy of simulation results is verified experimentally

Version Computing 
resources

Time Speedup

Basic 2 x CPU 645 min 43 sec -

hStreams-based 1 x MIC 182 min 13 sec 3.54x

OpenMP-based 1 x MIC 189 min 55 sec 3.40x

offload-based 1 x MIC 180 min 56 sec 3.56x

hStreams-based

OpenMP-based

offload-based

hStreams-based

OpenMP-based

offload-based

Performance comparisonPerformance comparison

● All performance results are obtained for double-precision format
● The tests are performed for 110 000 time steps and grid containing

4 000 000 nodes
● Numerical accuracy of simulation results is verified experimentally

Version Computing 
resources

Time Speedup

Basic 2 x CPU 645 min 43 sec -

hStreams-based 1 x MIC 182 min 13 sec 3.54x

OpenMP-based 1 x MIC 189 min 55 sec 3.40x

offload-based 1 x MIC 180 min 56 sec 3.56x

hStreams-based 2 x MIC 97 min 31 sec 6.62x

OpenMP-based 2 x MIC 104 min 51 sec 6.16x

offload-based 2 x MIC 91 min 17 sec 7.07x

hStreams-based

OpenMP-based

offload-based

Performance comparisonPerformance comparison

● All performance results are obtained for double-precision format
● The tests are performed for 110 000 time steps and grid containing

4 000 000 nodes
● Numerical accuracy of simulation results is verified experimentally

Version Computing 
resources

Time Speedup

Basic 2 x CPU 645 min 43 sec -

hStreams-based 1 x MIC 182 min 13 sec 3.54x

OpenMP-based 1 x MIC 189 min 55 sec 3.40x

offload-based 1 x MIC 180 min 56 sec 3.56x

hStreams-based 2 x MIC 97 min 31 sec 6.62x

OpenMP-based 2 x MIC 104 min 51 sec 6.16x

offload-based 2 x MIC 91 min 17 sec 7.07x

hStreams-based 2 x CPU + 2 x MIC 61 min 35 sec 10.48x

OpenMP-based 2 x CPU + 2 x MIC Too slow ! Too slow !

offload-based 2 x CPU + 2 x MIC 59 min 23 sec 10.87x

● Our work shows that it is a challenging task to fully utilize
emerging computing system for real-life scientific applications
which like the MPDATA algorithm are memory bound, and have a
complex structure of data dependencies

● Novel HPC platforms require often to develop a new
programming abstraction for better utilization of computing
resources, including threads/cores and Vector Processing Unit

– The data locality plays a key role to reach this goal

● With the quick development of computing platforms and software
environments, application developers are forced to contend with
a variety of parallel architecture

– In consequence, providing the performance portability for
parallel codes becomes the key issue for creators of
applications

Conclusions: part I (MPDATA!)Conclusions: part I (MPDATA!)

● Using of hStreams and Intel Offload programming models give us
the performance gain on desired level of efficiency

– While OpenMP provides an unified directive-based
programming model, the current stable version of this standard
is not efficient to fully utilize all hybrid component

● The proposed method of adapting the solidification application
allows hiding more than 99% of transfers behind computations

● hStreams addresses key programming productivity issues by
allowing a separation of concerns between:

– the expression of functional semantics and disclosure of task
parallelism (important for creators of scientific algorithms who
are generally not computer scientists)

– the performance tuning and control over mapping tasks onto a
platform (responsibility of code tuners and runtime developers)

Conclusions: part IIConclusions: part II

Thank YouThank You

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58

