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Motivation of our researchMotivation of our research

● Emerging computing platforms become increasingly 
complex, hierarchical and heterogeneous

● The efficient usage of all opportunities offered by modern 
computing systems represents a global challenge

● The research background of our team implies a profound 
and efficient exploration of emerging multi-/many-core 
architectures

● Our research includes two scientific applications:
– Multidimensional Positive Definite Advection Transport 

Algorithm
● Low-level approach

– Numerical model of solidification
● High-level approach
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MPDATAMPDATA

● Multidimensional Positive Definite Advection Transport Algorithm is 
one of the main parts of the EULAG model

● MPDATA is a real-life CFD application

● EULAG is an established computational model developed by the 
group headed by Piotr K. Smolarkiewicz for simulating thermo-fluid 
flows across a wide range of scales and physical scenarios

● One of the most interesting applications
of the EULAG model is numerical weather
prediction (NWP)

● In our research, we propose to rewrite
the main parts of EULAG and replace
standard HPC systems by emerging 
computing cluster



  

MPDATAMPDATA

● MPDATA belongs to the class of the forward-in-time algorithms 
which assume iterative execution of multiple time steps

● The number of required time steps depends on a type of 
simulated physical phenomenon, and can exceed even few 
millions

● The whole MPDATA computations in each time step are 
decomposed into a set of 17 heterogeneous stencils

● The stages depend on each other
● A single MPDATA time step requires 5 input and 1 output 

matrices
● MPDATA, as a part of EULAG, is interleaved with other 

important computation in each time step
● We focus on simulations using 3D grid



  

Basic parallel Basic parallel 
version of MPDTAversion of MPDTA

#pragma omp for
  for(i=0; i<n;++i)
    for(j=0;j<m;++j)
      for(k=0;k<l;++k)
        f1(i,j,k) = ...

#pragma omp for
  for(i=0; i<n;++i)
    for(j=0;j<m;++j)
      for(k=0;k<l;++k)
         f2(i,j,k) = ...
/*
….
*/
#pragma omp for
  for(i=0; i<n;++i)
    for(j=0;j<m;++j)
      for(k=0;k<l;++k)
         x(i,j,k) = ...
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MPDATA is a memory-bounded algorithm



  

MPDATA on a single nodeMPDATA on a single node
(shared-memory version)(shared-memory version)

● To improve performance we reorganized computation inside each  
time step:

– (3+1)D decomposition of MPDATA

– Improving efficiency of this decomposition

– New strategies for workload distribution and data parallelism
● Proprietary scheduler with affinity-aware threads/cores placement

– Providing 2 levels of threads/cores grouping:
● Work teams of cores – better use of LLC
● Work groups of threads – better use of L1

– New strategies for synchronization (dedicated to MPDATA)

– Providing appropriate data layout and hints for auto-vectorization

– Providing configurability of the code for application portability 



  

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● The main goal is to eliminate main memory data transfers 
associated with all intermediate computation/matrices

● Therefore, intermediate outcomes of computation should be 
kept in cache only - without transferring them to the main 
memory

● The main memory traffic will be generated only to transfer the 
required input and output data for each MPDATA time step

● To reach this goal, we proposed (3+1)D decomposition of 
MPDATA computation that is based on a combination of loop 
fusion and loop tiling techniques



  

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● As a results, the MPDATA domain is decomposed into a set of blocks,

● Blocks are processed independently, and each block is computed in 
parallel by all cores (within each time steps)



  

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● As a results, the MPDATA domain is decomposed into a set of blocks,

● Blocks are processed independently, and each block is computed in 
parallel by all cores (within each time steps)

Each MPDATA block requires
extra computation for every stage

because of data dependencies between stages!!!



  

(3+1)D decomposition of MPDATA(3+1)D decomposition of MPDATA

● As a results, the MPDATA domain is decomposed into a set of blocks,

● Blocks are processed independently, and each block is computed in 
parallel by all cores (within each time steps)

We reduce this overhead
by leaving partial results in cache
for execution subsequent blocks



  

Idea of islands of coresIdea of islands of cores

● The (3+1)D decomposition shifts the data traffic from the main 
memory to the cache hierarchy

● In consequence, a lot of intra cache communication between threads 
is generated

● New strategy of MPDATA decomposition requires also much more 
points of synchronizations than the basic one

● It is particularly significant when more than 200 Intel MIC threads 
cooperates

● To solve this issue we propose to create islands of cores that:

– share all input data,

– provide independent computations according to 17 stages,

– and return common output data for every MPDATA time step



  

Trade-off between computation Trade-off between computation 
and communication for and communication for stencilsstencils  

out[i] = B[i-1] + B[i]
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A[i] = in[i-1] + in[i] + in[i+1]

Input data
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(out of time step)

Step 1

Step 2
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Idea of islands of coresIdea of islands of cores



  

Idea of islands of coresIdea of islands of cores

● This methodology is also well suitable for ccNUMA and SMP/NUMA 
architectures

– In this case, it allows reducing communication paths between 
CPUs (islands of CPUs)



  

Target PlatformsTarget Platforms

● 2 x Intel Xeon E5-2699v3: 2.30GHz, 2x18 cores

● Intel Xeon Phi 7120P (Knight Corner): 1.24GHz, 61 cores

● Intel Xeon Phi 7210 (Knight Landing): 1.30GHz, 64 cores

● SMP/NUMA SGI UV 2000 server, 14x Intel Xeon E5-4627v2 
(Ivy Bridge EP): 3.30GHz, 8 cores

● All performance results are obtained for the double precision

– Accuracy of computation plays key role for MPDATA

● Compilation flags for Intel compiler:

-O3 -xavx/-xMIC-AVX512 -qopt-streaming-stores always

-fp-model precise -fp-model source

-no-vec  



  

Performance resultsPerformance results

Optimizations
steps

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
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2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Important:
Auto vectorization is enable
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2 x Intel CPU
E5-2699v3

Intel Phi 7120P
(Knight Corner)

Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3.(3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step2 = 1.4x
Gain of Step2 = 1.0x

Gain of Step2 = 1.21x

Important:
Auto vectorization is enable
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steps
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Intel Phi 7210
(Knight Landing)

Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3.(3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step3 = 1.45x
Gain of Step3 = 0.92x

Gain of Step3 = 0.29x

Important:
Vectorization is disabled
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4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step4 = 1.89x
Gain of Step4 = 1.79x

Gain of Step4 = 2.77x

Important:
Vectorization is disabled
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1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step5 = 1.23x
Gain of Step5 = 1.09x

Gain of Step5 = 1.39x

Important:
Vectorization is disabled



  

Performance resultsPerformance results

Optimizations
steps
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Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step6 = 1.04x
Gain of Step6 = 1.14x

Gain of Step6 = 1.03x

Important:
Vectorization is disabled



  

Performance resultsPerformance results

Optimizations
steps
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Optimizations steps:
1.Basic version – start point of our work
2.Parallel initialization of data
3. (3+1)D Decomposition
4. Islands of cores: workTeams
5.New strategy for synchronization
6.Work groups of threads
7.Enabling of SIMD

Gain of Step7 = 1.23x
Total speedup = 6.25

Gain of Step7 = 5.57x
Total speedup =  11.34

Gain of Step7 = 3.37x
Total speedup = 4.66

Important:
Vectorization is enable



  

Performance resultsPerformance results
SMP/NUMA SGI UV 2000 serverSMP/NUMA SGI UV 2000 server

14x Intel Xeon E5-4627v214x Intel Xeon E5-4627v2
● Execution times [seconds] for the double precision, 500 time 

steps, and the grid of size 1024×512×64

#CPUs #cores
Basic

version 

New 
version

(1 island)

New 
version

(x islands)

Strong
scaling

Speedup
against the 
best basic

1 8 300 89.9 85.3 100% 3

2 16 445 82.0 43.3 98% 6

4 32 688 79.8 22.4 95% 13

8 64 737 76.9 11.7 91% 25

10 80 777 145.0 9.4 91% 32

14 112 822 155.0 7.4 82% 40



  

Comparison of CPU, MIC, and GPUComparison of CPU, MIC, and GPU

● Performance results are obtained for the double precision, 500 
time steps, and the grid of size 1024×512×64

Devices Time [s]

14 x Intel Xeon E5-4627v2 SMP/NUMA 7

2 x NVIDIA Tesla K80 (Kepler) 10

NVIDIA Tesla P100 (Pascal) 12

Intel Xeon Phi 7210 (KNL) 17

NVIDIA Tesla K80 (Kepler) 19

2 x  Intel Xeon CPU E5-2699 v3 (Haswell) 28

2 x  Intel Xeon CPU E5-2695 v2 (Ivy Bridge) 34

Intel Xeon Phi 7120P (KNC) 36

NVIDIA Tesla K20 X (Kepler) 38
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Motivation of our researchMotivation of our research

● The main goal of our current research is the suitability 
assessment of three heretogeneous programming models
in practice:
– Intel Offload Interface,

– OpenMP 4.0 Accelerator Model,
– Hetero Streams Library.

● We focus on porting an application which implements the 
numerical model of alloy solidification to hybrid CPU-MIC 
platforms

● The prime assumption is developing new parallel version 
without significant modifications of the application code



  

Motivation of our researchMotivation of our research

● OpenMP Accelerator Model
– It is available from version 4.0

– It assumes that a computing platform is equipped with multiple target 
devices connected to the host

– This extension provides an unified directive-based programming model

● Hetero Streams Library
– This is open source project supported by Intel

– hStreams allows for stream programming in heterogeneous environments

– It is based on the heterogeneous asynchronous multitasking model

– It uses two key definitions:
● source - place where work is enqueued (only one source)
● sink - place where jobs defined as streams are executed (multiple sinks) 

– Stream is FIFO queues which resides in selected device or part of it



  

Target platformsTarget platforms

● In our study, we use the following CPU-MIC 
platform:

Intel Xeon
E5-2699 v3

Intel Xeon
Phi 7120P

Number of components 2 2

Number of cores 18 61

Number of threads 36 244

Frequency [GHz] 2.3 1.2

SIMD [bit] 256 512

LLC [MB] 45 30.5

Main memory [GB] 256 16

Peak performance for 
DP [Gflop/s]

662.4 1208.3



  

Idea of adaptationIdea of adaptation

● Original version of the solidifcation application:



  

Porting application withPorting application with
Intel OffloadIntel Offload

● New version of the application:



  

● Porting the solification application to hybrid CPU-MIC platform requires:

– Employing all available resources of CPUs and MICs to joint problem solving 

– Providing appropriate workload distribution between processors and two MICs, with 
partitioning CPU threads into two work teams

– Applying adequate data partitioning between devices
● Arrays used in computations are partitioned into three parts
● We assign the first part of computations to MIC0, the second one to CPUs, and 

the last part to MIC1
● It allows us to decrease communication paths

– Optimization of data movements
● Reduce the total size of transferred data (only the necessary data are transferred)
● Reduce the number of memory allocations (data are allocated only once at the 

beginning of computations)

– Provide a double buffering technique to overlap computations and writing data to file

– Utilization of vector processing units of coprocessors as well as CPUs

Porting application withPorting application with
Intel OffloadIntel Offload



  

Mapping application workload Mapping application workload 
onto hStreamsonto hStreams

● Idea of mapping application workload onto Hetero Streams



  

Mapping application workload Mapping application workload 
onto hStreamsonto hStreams

Idea of mapping application workload onto Hetero Streams:

● Creation of four logical streams in three logical domains:

– Three streams used for parallel computations of packages with 2000 time steps (MICs + 
CPUs)

– One stream responsible for writing partial result to the file (CPU)

● Use of hStreams Core API to manually initialize the streams on CPU responsible for parallel 
computations and data writing, respectively

● Applying appropriate methods for stream synchronization:

– An active synchronization when source process is stopped during execution of streams

– The proposed aproach requires applying two scenerio of synchronization

– The first one used for synchronization streams responsible for parallel computations

– The second scenerio used to synchronize all the streams after completion both 
computations within packages and data writing to the file

● Utilization of aliased buffers mechanism:

– Source process and CPU streams share the same memory regions

– It gives us a strong possibility for optimizing data exchanges

● Applying double-buffering technique



  

Porting application with OpenMP Porting application with OpenMP 
4.0 Accelerator Model4.0 Accelerator Model



  

Porting application with OpenMP Porting application with OpenMP 
4.0 Accelerator Model4.0 Accelerator Model

Idea of porting application with OpenMP 4.0 Accelerator Model:
● Utilize two major construct which allows offloading computation and data:

– target data construct which create data device enviroment

– target  construct used to trasnfers computations to the device

– target update construct to transfer data from host to coprocessors and vice versa

● Applying OpenMP task parallelism for:
– Implementation asynchronous offloads to all coprocessors

– Parallel computations performed by CPUs

– Writing partial results to the file

● Select an appropriate method for task synchronization:
– To ensure adequate and efficient synchronization, taskgroup construct is used

– Proposed aproach requires applying two scenerio of synchronization

– The first one used for synchronization only tasks responsible for management of processors 
and parallel computations performed by the CPU

– The second scenerio used to synchronization of all the tasks after completion both 
computations for package of 2000 time steps and data writing to the file

● Utilize double-buffering technique



  

Performance comparisonPerformance comparison

● All performance results are obtained for double-precision format
● The tests are performed for 110 000 time steps and grid containing

4 000 000 nodes
● Numerical accuracy of simulation results is verified experimentally

Version Computing  
resources

Time Speedup

Basic 2 x CPU 645 min 43 sec -

hStreams-based 1 x MIC 182 min 13 sec 3.54x

OpenMP-based 1 x MIC 189 min 55 sec 3.40x

offload-based 1 x MIC 180 min 56 sec 3.56x

hStreams-based

OpenMP-based

offload-based

hStreams-based

OpenMP-based

offload-based
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OpenMP-based 1 x MIC 189 min 55 sec 3.40x
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Performance comparisonPerformance comparison

● All performance results are obtained for double-precision format
● The tests are performed for 110 000 time steps and grid containing

4 000 000 nodes
● Numerical accuracy of simulation results is verified experimentally

Version Computing  
resources

Time Speedup

Basic 2 x CPU 645 min 43 sec -

hStreams-based 1 x MIC 182 min 13 sec 3.54x

OpenMP-based 1 x MIC 189 min 55 sec 3.40x

offload-based 1 x MIC 180 min 56 sec 3.56x

hStreams-based 2 x MIC 97 min 31 sec 6.62x

OpenMP-based 2 x MIC 104 min 51 sec 6.16x

offload-based 2 x MIC 91 min 17 sec 7.07x

hStreams-based 2 x CPU + 2 x MIC 61 min 35 sec 10.48x

OpenMP-based 2 x CPU + 2 x MIC Too slow ! Too slow !

offload-based 2 x CPU + 2 x MIC 59 min 23 sec 10.87x



  

● Our work shows that it is a challenging task to fully utilize 
emerging computing system for real-life scientific applications 
which like the MPDATA algorithm are memory bound, and have a 
complex structure of data dependencies

● Novel HPC platforms require often to develop a new 
programming abstraction for better utilization of computing 
resources, including threads/cores and Vector Processing Unit

– The data locality plays a key role to reach this goal

● With the quick development of computing platforms and software 
environments, application developers are forced to contend with 
a variety of parallel architecture

– In consequence, providing the performance portability for 
parallel codes becomes the key issue for creators of 
applications 

Conclusions: part I (MPDATA!)Conclusions: part I (MPDATA!)



  

● Using of hStreams and Intel Offload programming models give us 
the performance gain on desired level of efficiency

– While OpenMP provides an unified directive-based 
programming model, the current stable version of this standard 
is not efficient to fully utilize all hybrid component 

● The proposed method of adapting the solidification application 
allows hiding more than 99% of transfers behind computations

● hStreams addresses key programming productivity issues by 
allowing a separation of concerns between:

– the expression of functional semantics and disclosure of task 
parallelism (important for creators of scientific algorithms who 
are generally not computer scientists)

– the performance tuning and control over mapping tasks onto a 
platform (responsibility of code tuners and runtime developers)

Conclusions: part IIConclusions: part II



  

Thank YouThank You
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