
Towards modernisation of the Gadget code on
many-core architectures
Fabio Baruffa, Luigi Iapichino (LRZ)

Overview

 Modernising P-Gadget3 for the Intel® Xeon Phi™: code features, challenges
and strategy for optimisation.

 Threading parallelism: minimising lock contention.

 Data layout: from AoS to SoA.

 Vectorisation: performance bottlenecks and proposed solution.

 First performance evaluation on KNL.

This work is done in the framework of the Intel® Parallel Computing Centre ExScaMIC (LRZ-
TUM). Thanks to our collaborator N. Hammer (LRZ) and to our project partners K. Dolag and
M. Petkova (USM München).

29.06.2016 Leibniz Supercomputing Centre 2

Gadget: numerical simulations of cosmological
structure formation

 Leading application for the simulation of the build-up of the cosmic
large-scale structure (galaxies and cluster of galaxies) and of
processes at sub-resolution scales (e.g. star formation, metal
enrichment).

 Publicly available, cosmological TreePM N-body + SPH code.
 Good scaling performance up to O(100k) Xeon cores (SuperMUC @

LRZ).

29.06.2016 Leibniz Supercomputing Centre 3

Challenges in GADGET simulations

29.06.2016 Leibniz Supercomputing Centre 4

The code can be run at different levels of
complexity:

N-Body-only (a.k.a. Dark Matter)
simulations

N-Body + gas component

Additional physics (sub-resolution)
modules:

Radiative cooling, star formation,
chemical reaction network…

The additional physics increases the
memory requirement per particle up to
~ 1Kb (x10 wrt DM-only)

Features and complications of the code

29.06.2016 Leibniz Supercomputing Centre 5

 Gadget has been first developed in the late 90s as serial code, has later evolved as an
MPI and a hybrid code.

 After the last public release Gadget-2, many research groups all over the world have
developed their own branches.

 The branch used for this project (P-Gadget3) has been used for more than 30 research
papers over the last two years.

 This puts significant constraints on the development:
• Portability on all modern architectures (Intel® Xeon/MIC, Power, GPU,…);
• Readibility for non-experts in HPC;
• Do not break existing functionalities.

 The code consists of ~200 files, ~400k code lines, and makes extensive use of #IFDEF .
 External library dependencies: FFTW, GSL, HDF5.

Best approach for optimising the code

29.06.2016 Leibniz Supercomputing Centre 6

• Choice of a reasonable test case to benchmark (small/large, type of
workload…).

• MPI Profiling: ITAC, Scalasca, …

• Node level performance metrics: VTune Amplifier, likwid, Allinea Map.

• Vector utilisation: Advisor, coarse-grained timing.

• Mini-App approach in complex codes.

• In our example: isolation of the target kernel through serialisation.

Performance characteristics and optimisation strategy

29.06.2016 Leibniz Supercomputing Centre 7

 Initial analysis: most of the code components consist of two sub-phases of nearly equal
execution time (40 to 45% for each of them):
Neighbour-finding phase
 Low floating-point rate
 Lots of branches (~20%)
 High L2 miss ratio (~36%)
 Typical „pointer-chasing“ problem
 Not easily amenable to be ported on Intel®

Xeon Phi™

Physics computations
 High floating-point rate
 25% of the peak scalar fp performance
 Low or sustainable cache and memory b/w

requirements
 Accesses (usually irregular) to array of huge data

structures, data cache misses

 „Physics computations“ are more suitable for the optimization on Intel® Xeon Phi™.
 Isolation of a typical kernel (subfind_density):

➢ Run as a stand-alone separate kernel (same input as original: sandbox model!).
➢ Avoid the overhead of the whole simulation → Quick prototyping, allows native mode on the KNC.
➢ Later: port optimizations back to the original code.

Kernel: serialisation and verification

29.06.2016 Leibniz Supercomputing Centre 8

 Serialisation: the process of translating data structures or objects state into a format that
can be stored and easily retrieve

 This allows to isolate the computational kernels using realistic input workload
 Dumping data for comparison

Object Byte stream

file

DB

mem

Byte stream Object

Initial profiling (Intel® VTune™ Amplifier XE)

29.06.2016 Leibniz Supercomputing Centre 9

The initial analysis shows a
severe shared-memory
parallelization overhead.

Pseudocode

29.06.2016 Leibniz Supercomputing Centre 10

Algorithm restructuring:

• Minimisation of the lock
contention issue.

• Non-intrusive changes
in the shared-memory
implementation.

• Iteration only on the
particles that really
need to be recomputed
at every step.

Improved performance

Intel® Xeon host:
 91% efficiency on a single socket;
 3.4x faster node-level performance;

Intel® Xeon Phi™:
 5.5x improvement @ 120 threads;
 Locking still a problem at high thread

counts.
Even better solution: lockless implementation
(OpenMP dynamic scheduling)

29.06.2016 Leibniz Supercomputing Centre 11

What‘s wrong with data layout?

29.06.2016 Leibniz Supercomputing Centre 12

 Modern SIMD architecture allows to apply the same instruction to multiple data elements

Struct Particle
{

float px, py, pz;
float vx, vx, vz;

…
P = Particle[N]; //AoS

0

1

2

3

vec_reg1

P[i].px

P[i].py

P[i].pz

P[i].vx

0

1

2

3

vec_reg2

P[i].vy

P[i].vz

P[i+1].px

P[i+1].py

0

1

2

3

vec_reg1

P.px[i]

P.px[i+1]

P.px[i+2]

P.px[i+3]

0

1

2

3

vec_reg2

P.px[i+4]

P.px[i+5]

P.px[i+6]

P.px[i+7]

Struct Particle
{
float *px, *py, *pz;
float *vx, *vx, *vz;

…
P.px = malloc [N]; //SoA
…

 Current data organisation: Array of Structures (AoS), 224 bytes per particle.

 Motivation: highly optimized for performance at large MPI task numbers.

 Outcome: data cache misses, code is memory bound.
 Average memory B/W consumed: 5.5 GB/s (peak ≈16.5 GB/s)

 Data structure hinders vectorisation.

 In the kernel: ~ 17 iterations, 1.5M particles to be processed.

29.06.2016 Leibniz Supercomputing Centre 13

Implementation in Gadget

Proposed solution: SoA

29.06.2016 Leibniz Supercomputing Centre 14

 New particle data structure: defined as Structure
of Arrays (SoA).

 From the original set, only variables used in the
kernel are included in the SoA: ~ 60 bytes per
particle.

 Software gather / scatter routines.
 Gather from old to new data structure, compute

with it, scatter back to old. Example of change in
the data structure approach:

Performance outcomes

29.06.2016 Leibniz Supercomputing Centre

 Gather+scatter overhead small when compared
both to execution time and to performance gain.

 Node-level performance improvement: +22% on
the Xeon, +41% on the Xeon Phi™ (KNC).

 Xeon/Xeon Phi™ performance ratio: from 0.15
0.28

 According to VTune analysis, the bottleneck on
memory latency (caused by cache misses) is
solved.

 Current B/W consumption decreased to ≈ 2.5
GB/s, because of much lower data cache misses.

 The data structure is now vectorization-ready.

15

Improving vectorisation in the Gadget kernel

29.06.2016 Leibniz Supercomputing Centre 16

 Modern multi- and many-core architectures rely on vectorisation as an
additional layer of parallelism to deliver performance.

 Mind the constraint: keep Gadget readable and portable for the community!
Wherever possible, avoid programming in intrinsics.

 Analysis with Intel® Advisor 2016:
 Most of the vectorisation potential (10 to 20% of the workload) in the kernel

“compute” loop.
 Prototype loop in the Gadget code: iteration on the neighbours of a given

particle.

 Similarity with many other N-body codes.

Obstacles to vectorization efficiency - pseudocode

29.06.2016 Leibniz Supercomputing Centre 17

for (n = 0, n < neighbouring particles (selected)) {
j = ngblist[n]; // getting the index from the particle data structure (SoA)

if (particle n within smoothing length) { // Problem 1: if statement
inlined_function1(…..);
inlined_function2(…..);

}
vx += NewPart.Vel[0][j]; // Problem 2: indirect (strided) access to the data
…
v2 += NewPart.Vel[0][j] * NewPart.Vel[0][j] + … ; // additional load

// (unnecessary): why does the compiler not reuse it from the register?
}

Optimised pseudocode

29.06.2016 Leibniz Supercomputing Centre 18

for (n = 0, n < neighbouring particles (selected)) {
j = ngblist[n]; // getting the index from the particle data structure (SoA)

inlined_function1(…..); // the if condition is moved inside the function
inlined_function2(…..);

vel1 = NewPart.Vel[0][j]; // still strided data access: next exposed hotspot
…
vx += vel1; // optimised data load
…
v2 += vel1 * vel1 + … ;

}

Compiler report on Intel Xeon Ivy-Bridge

LOOP BEGIN at kernels/subfind_stripped.c(293,13) inlined into kernels/subfind_stripped.c(72,13)
….
remark #15328: vectorization support: gather was emulated for the variable NewPart.Mass:

indirect access [kernels/subfind_stripped.c(308,30)]
remark #15328: vectorization support: gather was emulated for the variable NewPart.Vel:

indirect access [kernels/subfind_stripped.c(312,25)]
….
remark #15305: vectorization support: vector length 4
….
remark #15300: LOOP WAS VECTORIZED
….
remark #15478: estimated potential speedup: 3.670
remark #15487: type converts: 2
….
LOOP END

29.06.2016 Leibniz Supercomputing Centre 19

Vectorisation: improvements from HSW to KNL

● Vectorisation of the kernel main
“compute” loop (red bar) through better
localised masking.

● On KNL: measured loop speed-up 6.6x.
A vector efficiency of 83% is reached
without using intrinsics.

● Both on HSW and KNL, vectorisation
provides some performance
improvement also in other parts of the
kernel.

20

- Yellow + red bar: kernel workload
- Red bar: target loop for vectorisation

29.06.2016 Leibniz Supercomputing Centre

Node-level performance comparison between HSW,
KNC and KNL

2129.06.2016 Leibniz Supercomputing Centre

Features of the KNL tests:
• native runs on Xeon Phi™ 7210 @

1.30GHz (KNL), 64 cores
• Intel® compiler 2016, -xmic-avx512
• KMP Affinity: scatter; Memory mode: Flat;

Cluster mode: Quadrant.

Results:
• Previous optimisations (data layout,

vectorisation) improved the speedup on
all systems, by different factors.

• KNL scalability slightly better than HSW
and KNC up to 128 threads.

• Necessity of using hyperthreading can
be different between KNC and KNL.

Performance comparison: first results including KNL

● Initial version vs. vectorised
including all optimisations.

● IVB, HSW: 1 socket w/o
hyperthreading.
KNC: 1 MIC, 240 threads.
KNL: 1 node, 128 threads.

● Performance gain for Xeon Phi™
larger than for Xeon.

● Single-core execution time on KNL:
3.3x faster than KNC.

2229.06.2016 Leibniz Supercomputing Centre

Summary

 Code modernisation as the iterative process for improving the performance
of an HPC application.

 Our IPCC example: Gadget3.
Threading parallelism
Data layout Key points of our work, guided by analysis tools.
Vectorisation

 This effort is (mostly) portable! Good performance found on new
architectures (KNL) basically out-of-the-box.

 Investment on the future of well-established community applications, and
crucial for the effective use of forthcoming HPC facilities.

29.06.2016 Leibniz Supercomputing Centre 23

	Towards modernisation of the Gadget code on many-core architectures�Fabio Baruffa, Luigi Iapichino (LRZ)
	Overview
	Gadget: numerical simulations of cosmological structure formation
	Challenges in GADGET simulations
	Features and complications of the code
	Best approach for optimising the code
	Performance characteristics and optimisation strategy
	Kernel: serialisation and verification
	Initial profiling (Intel® VTune™ Amplifier XE)
	Pseudocode
	Improved performance
	What‘s wrong with data layout?
	Implementation in Gadget
	Proposed solution: SoA
	Performance outcomes
	Improving vectorisation in the Gadget kernel
	Obstacles to vectorization efficiency - pseudocode
	Optimised pseudocode
	Compiler report on Intel Xeon Ivy-Bridge
	Vectorisation: improvements from HSW to KNL
	Node-level performance comparison between HSW, KNC and KNL
	Performance comparison: first results including KNL
	Summary

