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Overview

 Modernising P-Gadget3 for the Intel® Xeon Phi™: code features, challenges 
and strategy for optimisation.

 Threading parallelism: minimising lock contention.

 Data layout: from AoS to SoA.

 Vectorisation: performance bottlenecks and proposed solution.

 First performance evaluation on KNL. 

This work is done in the framework of the Intel® Parallel Computing Centre ExScaMIC (LRZ-
TUM). Thanks to our collaborator N. Hammer (LRZ) and to our project partners K. Dolag and
M. Petkova (USM München).
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Gadget: numerical simulations of cosmological 
structure formation

 Leading application for the simulation of the build-up of the cosmic 
large-scale structure (galaxies and cluster of galaxies) and of 
processes at sub-resolution scales (e.g. star formation, metal 
enrichment).

 Publicly available, cosmological TreePM N-body + SPH code.
 Good scaling performance up to O(100k) Xeon cores (SuperMUC @ 

LRZ).
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Challenges in GADGET simulations 
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The code can be run at different levels of 
complexity:

N-Body-only (a.k.a. Dark Matter) 
simulations

N-Body + gas component

Additional physics (sub-resolution) 
modules: 

Radiative cooling, star formation, 
chemical reaction network…

The additional physics increases the 
memory requirement per particle up to 
~ 1Kb (x10 wrt DM-only)



Features and complications of the code
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 Gadget has been first developed in the late 90s as serial code, has later evolved as an 
MPI and a hybrid code.

 After the last public release Gadget-2, many research groups all over the world have 
developed their own branches. 

 The branch used for this project (P-Gadget3) has been used for more than 30 research 
papers over the last two years.  

 This puts significant constraints on the development:
• Portability on all modern architectures (Intel® Xeon/MIC, Power, GPU,…);
• Readibility for non-experts in HPC;
• Do not break existing functionalities.

 The code consists of ~200 files, ~400k code lines, and makes extensive use of #IFDEF .
 External library dependencies: FFTW, GSL, HDF5.



Best approach for optimising the code
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• Choice of a reasonable test case to benchmark (small/large, type of 
workload…).

• MPI Profiling: ITAC, Scalasca, …

• Node level performance metrics: VTune Amplifier, likwid, Allinea Map.

• Vector utilisation: Advisor, coarse-grained timing.

• Mini-App approach in complex codes.

• In our example: isolation of the target kernel through serialisation.



Performance characteristics and optimisation strategy
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 Initial analysis: most of the code components consist of two sub-phases of nearly equal 
execution time (40 to 45% for each of them):
Neighbour-finding phase
 Low floating-point rate
 Lots of branches (~20%)
 High L2 miss ratio (~36%)
 Typical „pointer-chasing“ problem
 Not easily amenable to be ported on Intel®

Xeon Phi™

Physics computations
 High floating-point rate
 25% of the peak scalar fp performance
 Low or sustainable cache and memory b/w 

requirements
 Accesses (usually irregular) to array of huge data 

structures, data cache misses

 „Physics computations“ are more suitable for the optimization on Intel® Xeon Phi™.
 Isolation of a typical kernel (subfind_density):

➢ Run as a stand-alone separate kernel (same input as original: sandbox model!).
➢ Avoid the overhead of the whole simulation → Quick prototyping, allows native mode on the KNC.
➢ Later: port optimizations back to the original code.



Kernel: serialisation and verification
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 Serialisation: the process of translating data structures or objects state into a format that 
can be stored and easily retrieve

 This allows to isolate the computational kernels using realistic input workload
 Dumping data for comparison

Object Byte stream

file

DB

mem

Byte stream Object



Initial profiling (Intel® VTune™ Amplifier XE) 
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The initial analysis shows a 
severe shared-memory 
parallelization overhead.



Pseudocode
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Algorithm restructuring:

• Minimisation of the lock 
contention issue. 

• Non-intrusive changes 
in the shared-memory 
implementation. 

• Iteration only on the 
particles that really 
need to be recomputed 
at every step.



Improved performance 

Intel® Xeon host:
 91% efficiency on a single socket;
 3.4x faster node-level performance;

Intel® Xeon Phi™: 
 5.5x improvement @ 120 threads;
 Locking still a problem at high thread 

counts.
Even better solution: lockless implementation 
(OpenMP dynamic scheduling)
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What‘s wrong with data layout?
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 Modern SIMD architecture allows to apply the same instruction to multiple data elements

Struct Particle
{

float px, py, pz;
float vx, vx, vz;

…
P = Particle[N]; //AoS

0

1

2

3

vec_reg1

P[i].px

P[i].py

P[i].pz

P[i].vx

0

1

2

3

vec_reg2

P[i].vy

P[i].vz

P[i+1].px

P[i+1].py

0

1

2

3

vec_reg1

P.px[i]

P.px[i+1]

P.px[i+2]

P.px[i+3]

0

1

2

3

vec_reg2

P.px[i+4]

P.px[i+5]

P.px[i+6]

P.px[i+7]

Struct Particle
{
float *px, *py, *pz;
float *vx, *vx, *vz;

…
P.px = malloc [N]; //SoA
…



 Current data organisation: Array of Structures (AoS), 224 bytes per particle.

 Motivation: highly optimized for performance at large MPI task numbers.

 Outcome: data cache misses, code is memory bound. 
 Average memory B/W consumed: 5.5 GB/s (peak ≈16.5 GB/s)

 Data structure hinders vectorisation.

 In the kernel: ~ 17 iterations, 1.5M particles to be processed.
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Implementation in Gadget



Proposed solution: SoA
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 New particle data structure: defined as Structure
of Arrays (SoA).

 From the original set, only variables used in the
kernel are included in the SoA:  ~ 60 bytes per 
particle.

 Software gather / scatter routines.
 Gather from old to new data structure, compute

with it, scatter back to old. Example of change in 
the data structure approach: 



Performance outcomes
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 Gather+scatter overhead small when compared
both to execution time and to performance gain. 

 Node-level performance improvement: +22% on 
the Xeon, +41% on the Xeon Phi™ (KNC). 

 Xeon/Xeon Phi™ performance ratio: from 0.15 
0.28

 According to VTune analysis, the bottleneck on 
memory latency (caused by cache misses) is
solved.

 Current B/W consumption decreased to ≈ 2.5 
GB/s, because of much lower data cache misses.

 The data structure is now vectorization-ready.
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Improving vectorisation in the Gadget kernel
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 Modern multi- and many-core architectures rely on vectorisation as an 
additional layer of parallelism to deliver performance.

 Mind the constraint: keep Gadget readable and portable for the community! 
Wherever possible, avoid programming in intrinsics.

 Analysis with Intel® Advisor 2016: 
 Most of the vectorisation potential (10 to 20% of the workload) in the kernel 

“compute” loop. 
 Prototype loop in the Gadget code: iteration on the neighbours of a given 

particle.

 Similarity with many other N-body codes.



Obstacles to vectorization efficiency - pseudocode
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for (n = 0, n < neighbouring particles (selected)) {
j = ngblist[n];       // getting the index from the particle data structure (SoA)

if (particle n within smoothing length) {               // Problem 1: if statement 
inlined_function1(…..);
inlined_function2(…..);

}
vx += NewPart.Vel[0][j]; // Problem 2: indirect (strided) access to the data
…
v2 += NewPart.Vel[0][j] * NewPart.Vel[0][j] + … ;    //         additional load

// (unnecessary): why does the compiler not reuse it from the register?
}



Optimised pseudocode
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for (n = 0, n < neighbouring particles (selected)) {
j = ngblist[n];             // getting the index from the particle data structure (SoA)

inlined_function1(…..);               // the if condition is moved inside the function
inlined_function2(…..);

vel1 = NewPart.Vel[0][j]; // still strided data access: next exposed hotspot
…
vx += vel1;                                                                      // optimised data load
…
v2 += vel1 * vel1 + … ; 

}



Compiler report on Intel Xeon Ivy-Bridge 

LOOP BEGIN at kernels/subfind_stripped.c(293,13) inlined into kernels/subfind_stripped.c(72,13)
….
remark #15328: vectorization support: gather was emulated for the variable NewPart.Mass:  

indirect access    [ kernels/subfind_stripped.c(308,30) ]   
remark #15328: vectorization support: gather was emulated for the variable NewPart.Vel:  

indirect access    [ kernels/subfind_stripped.c(312,25) ]   
….
remark #15305: vectorization support: vector length 4   
….
remark #15300: LOOP WAS VECTORIZED 
….
remark #15478: estimated potential speedup: 3.670
remark #15487: type converts: 2   
….
LOOP END
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Vectorisation: improvements from HSW to KNL

● Vectorisation of the kernel main 
“compute” loop (red bar) through better 
localised masking.

● On KNL: measured loop speed-up 6.6x. 
A vector efficiency of 83% is reached 
without using intrinsics.

● Both on HSW and KNL, vectorisation 
provides some performance 
improvement also in other parts of the 
kernel. 
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- Yellow + red bar: kernel workload
- Red bar: target loop for vectorisation
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Node-level performance comparison between HSW, 
KNC and KNL
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Features of the KNL tests:
• native runs on Xeon Phi™ 7210 @ 

1.30GHz (KNL), 64 cores
• Intel® compiler 2016, -xmic-avx512
• KMP Affinity: scatter; Memory mode: Flat; 

Cluster mode: Quadrant.

Results:
• Previous optimisations (data layout, 

vectorisation) improved the speedup on 
all systems, by different factors.

• KNL scalability slightly better than HSW 
and KNC up to 128 threads.

• Necessity of using hyperthreading can 
be different between KNC and KNL.



Performance comparison: first results including KNL 

● Initial version vs. vectorised 
including all optimisations.

● IVB, HSW: 1 socket w/o 
hyperthreading. 
KNC: 1 MIC, 240 threads.                   
KNL: 1 node, 128 threads.

● Performance gain for Xeon Phi™ 
larger than for Xeon.

● Single-core execution time on KNL: 
3.3x faster than KNC. 
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Summary

 Code modernisation as the iterative process for improving the performance 
of an HPC application.

 Our IPCC example: Gadget3.
Threading parallelism
Data layout                              Key points of our work, guided by analysis tools. 
Vectorisation

 This effort is (mostly) portable! Good performance found on new 
architectures (KNL) basically out-of-the-box.

 Investment on the future of well-established community applications, and 
crucial for the effective use of forthcoming HPC facilities.  
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