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Overview

» Modernising P-Gadget3 for the Intel® Xeon Phi™: code features, challenges
and strategy for optimisation.

» Threading parallelism: minimising lock contention.
» Data layout: from AoS to SoA.
» Vectorisation: performance bottlenecks and proposed solution.

» First performance evaluation on KNL.

This work is done in the framework of the Intel® Parallel Computing Centre ExScaMIC (LRZ-
TUM). Thanks to our collaborator N. Hammer (LRZ) and to our project partners K. Dolag and
M. Petkova (USM Munchen).
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Gadget: numerical simulations of cosmological
174 structure formation

» Leading application for the simulation of the build-up of the cosmic
large-scale structure (galaxies and cluster of galaxies) and of
processes at sub-resolution scales (e.g. star formation, metal
enrichment).

» Publicly available, cosmological TreePM N-body + SPH code. A Fr‘r’n%'iﬂ'\‘r?ngg

» Good scaling performance up to O(100k) Xeon cores (SuperMUC (@ ™S Smssss
LRZ).
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Challenges in GADGET simulations

The code can be run at different levels of .
complexity:

» N-Body-only (a.k.a. Dark Matter)
simulations

» N-Body + gas component

» Additional physics (sub-resolution)
modules:

Radiative cooling, star formation,
chemical reaction network...

» The additional physics increases the
memory requirement per particle up to
~ 1Kb (x10 wrt DM-only)
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Features and complications of the code

= Gadget has been first developed in the late 90s as serial code, has later evolved as an
MPI and a hybrid code.

= After the last public release Gadget-2, many research groups all over the world have
developed their own branches.

= The branch used for this project (P-Gadget3) has been used for more than 30 research
papers over the last two years.

= This puts significant constraints on the development:

e Portability on all modern architectures (Intel® Xeon/MIC, Power, GPU,...);
* Readibility for non-experts in HPC;
» Do not break existing functionalities.

= The code consists of ~200 files, ~400k code lines, and makes extensive use of #IFDEF .
= External library dependencies: FFTW, GSL, HDF5.
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Best approach for optimising the code

» Choice of a reasonable test case to benchmark (small/large, type of
workload...).

 MPI Profiling: ITAC, Scalasca, ...

* Node level performance metrics: VTune Amplifier, likwid, Allinea Map.
« Vector utilisation: Advisor, coarse-grained timing.

* Mini-App approach in complex codes.

* In our example: isolation of the target kernel through serialisation.
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Performance characteristics and optimisation strategy

- Initial analysis: most of the code components consist of two sub-phases of nearly equal
execution time (40 to 45% for each of them):

Neighbour-finding phase Physics computations

= Low floating-point rate = High floating-point rate

= Lots of branches (~20%) =  25% of the peak scalar fp performance

= High L2 miss ratio (~36%) = Low or sustainable cache and memory b/w
requirements

»  Accesses (usually irregular) to array of huge data
structures, data cache misses

= Typical ,pointer-chasing“ problem

= Not easily amenable to be ported on Intel®
Xeon Phi™

- ,Physics computations* are more suitable for the optimization on Intel® Xeon Phi™,

- Isolation of a typical kernel (subfind_density):
= Run as a stand-alone separate kernel (same input as original: sandbox model!).
= Avoid the overhead of the whole simulation — Quick prototyping, allows native mode on the KNC.
= Later: port optimizations back to the original code.
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m Kernel: serialisation and verification

» Serialisation: the process of translating data structures or objects state into a format that
can be stored and easily retrieve
» This allows to isolate the computational kernels using realistic input workload

» Dumping data for comparison
D fil

Byte stream - b8 —|Byte stream

~/

mem
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Initial profiling (Intel® VTune™ Amplifier XE)
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The initial analysis shows a
severe shared-memory
parallelization overhead.



Pseudocode

Original particle interaction scheme (pseudocode) before lock contention fix.

more_particles = ... # all particles
while more_particles:
p = <first particle>
while p:
do in parallel:
p = get_next_particle_atomic(partlist) # LOCKS!
if not should_compute(p):
continue
ngblist = find_neighbors(p)
foreach n in ngblist:
compute_interactions(p, n)
more_particles = mark_particles_for_recomputation(partlist)
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Algorithm restructuring:

*  Minimisation of the lock
contention issue.

* Non-intrusive changes
in the shared-memory
implementation.

e lteration only on the
particles that really
need to be recomputed
at every step.
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Speedup

Gadget particle interaction scheme scaling

1 4 16 64 256
#threads
—a—|vy-Bridge —e—I|vy-Bridge (lock fix) —e=MIC MIC (lock fix)

Intel® Xeon host:
» 91% efficiency on a single socket;
»  3.4x faster node-level performance;
Intel® Xeon Phi™:
» 5.5x improvement @ 120 threads;

»  Locking still a problem at high thread
counts.
Even better solution: lockless implementation
(OpenMP dynamic scheduling)
11



m What's wrong with data layout?

- Modern SIMD architecture allows to apply the same instruction to multiple data elements

Struct Particle Struct Particle

{ {
pPX, Py, pz; *px, *py, *pz;
VX, VX, VZ; *vx, *vx, *vz;

P = Particle[N]; [/RoS P.px = [N1; [[SoA
P[i].px 0 P[i].vy ) P.px[1i] 0 P.px[1+4]
P[i].py 1 P[i].vz 1 P.px[1i+1] |l P.px[i+5] |l
P[i].pz gl P[i+1].px 2 @ P.px[1+2] | P.px[1+6]
P[i].vx &N P[i+1].py 3 P.px[1+3] 8] P.px[1+7] 8]

vec regl vec reg? vec regl vec reg?
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Implementation in Gadget

Current data organisation: Array of Structures (AoS), 224 bytes per particle.
Motivation: highly optimized for performance at large MPI task numbers.

Outcome: data cache misses, code is memory bound.
Average memory B/W consumed: 5.5 GB/s (peak =16.5 GB/s)

Data structure hinders vectorisation.

In the kernel: ~ 17 iterations, 1.5M particles to be processed.
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Proposed solution: SoA

struct new_particle_data

- New particle data structure: defined as Structure |

MyDoublePos *Pos[3];
of Arrays (S_oA). _ _ o
- From the original set, only variables used in the Ehassla ST
. . y ype *ID;
kernel are included in the SoA: ~ 60 bytes per MyFloat *Mass;
. int *DM_NumNgb,
F)Eiftl()|€3. MyFloat *DM_Hsml;
. MyFloat *DM_Density;
- Software gather / scatter routines. MyFloat *DH Velbisp,
}i
- Gather from old to new data structure, compute
with it, scatter back to old. Example of change in void gather particle data(struct new particle data
*dst, const struct particle_data *src, size_t N)
the data structure approach: {
int i;
© w2 += P[j].Vel[@]*P[j].Vel[@] + #pragma omp parallel for
P[j].Vel[1]*P[j].Vel[1] + P[j].Vel[2]*P[j].Vel[2]; for (i = @; i < N; i++) {
l :clst—;v'-'el[l] [1] = src[i].Vel[1];
dst->Vel[2][1i] = src[i].Vel[2];
vZ += NewPart.Vel[®][j]*NewPart.Vel[0][j] dst->Type[i] = src[i].Type;

+ NewPart.Vel[1][j]*NewPart.Vel[1][j] + dst->ID[i] = src[i].ID;
NewPart.Vel[2][j]*NewPart.Vel[2][j]; o
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Performance outcomes

- Gather+scatter overhead small when compared
both to execution time and to performance gain.

+~ L
TIT T T TITTT

better)

- Node-level performance improvement: +22% on
the Xeon, +41% on the Xeon Phi™ (KNC).

= Xeon/Xeon Phi™ performance ratio: from 0.15
0.28

- According to VTune analysis, the bottleneck on
memory latency (caused by cache misses) is
solved.

1=
= Current B/W consumption decreased to = 2.5 I
GB/s, because of much lower data cache misses. °¢ -

norm. node-level performance (higher

41X
+22% ]
34X ]
78X
55X 41 %]
Host,no MIC, no Host, lock MIC, lock Host, MIC,
lock fix  lock fix fix, AoS fix, AoS SoA SoA

- The data structure is now vectorization-ready.

29.06.2016 Leibniz Supercomputing Centre
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Improving vectorisation in the Gadget kernel

= Modern multi- and many-core architectures rely on vectorisation as an
additional layer of parallelism to deliver performance.

= Mind the constraint: keep Gadget readable and portable for the community!
Wherever possible, avoid programming in intrinsics.

= Analysis with Intel® Advisor 2016:

» Most of the vectorisation potential (10 to 20% of the workload) in the kernel
“compute” loop.

> Prototype loop in the Gadget code: iteration on the neighbours of a given
particle.

= Similarity with many other N-body codes.
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Obstacles to vectorization efficiency - pseudocode

for (n = 0, n < neighbouring particles (selected)) {

29.06.2016

j = ngblist[n]; Il getting the index from the particle data structure (SoA)

if (particle n within smoothing length) { // Problem 1: if statement

inlined_functioni(.....);
inlined_function2(.....);

}

vx += NewPart.Vel[O][j]; // Problem 2: indirect (strided) access to the data

v2 += NewPart.Vel[O][j] * NewPart.Vel[O][j] + ... ; // additional load
/I (unnecessary): why does the compiler not reuse it from the register?

Leibniz Supercomputing Centre
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Optimised pseudocode

for (n = 0, n < neighbouring particles (selected)) {

29.06.2016

j = ngblist[n]; I/ getting the index from the particle data structure (SoA)

inlined_functionl(.....); // the if condition is moved inside the function
inlined_function2(.....);

vell = NewPart.Vel[O][j]; // still strided data access: next exposed hotspot

vx +=vell; // optimised data load

v2 +=vell *vell + ... ;

Leibniz Supercomputing Centre 18



Compiler report on Intel Xeon Ivy-Bridge

LOOP BEGIN at kernels/subfind_stripped.c(293,13) inlined into kernels/subfind_stripped.c(72,13)
remark #15328: vectorization support: gather was emulated for the variable NewPart.Mass:
indirect access [ kernels/subfind_stripped.c(308,30) ]
remark #15328: vectorization support: gather was emulated for the variable NewPart.Vel:
indirect access [ kernels/subfind_stripped.c(312,25) ]
remark #15305: vectorization support: vector length 4

remark #15300: LOOP WAS VECTORIZED

remark #15478: estimated potential speedup: 3.670
remark #15487: type converts: 2

LOOP END

29.06.2016 Leibniz Supercomputing Centre
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Vectorisation: improvements from HSW to KNL

| | I I I |
e Vectorisation of the kernel main Lok HSW KNC KNL i
“compute” loop (red bar) through better
localised masking. b I
g 09 -4.5x
e On KNL: measured loop speed-up 6.6x. &
A vector efficiency of 83% is reached 2 o5 IT_ . B s.6x
without using intrinsics. =
]
o7l -
e Both on HSW and KNL, vectorisation '
provides some performance
| | | | | |
Lrgrplig?/ement also in other parts of the 0.6 & o & @o & %\%
. S ¥ S $ fS-fF

- Yellow + red bar: kernel workload
- Red bar: target loop for vectorisation
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Node-level performance comparison between HSW,

KNC and KNL
Features of the KNL tests: 236 |
| A KNLL g _
e native runs on Xeon Phi™ 7210 @ . 128 a—a&w.mm /,f’
1.30GHz (KNL), 64 cores D 641 et -
e Intel® compiler 2016, -xmic-avx512 Té 321
« KMP Affinity: scatter; Memory mode: Flat; 2 16
Cluster mode: Quadrant. S gl
3
Results: & A s
» Previous optimisations (data layourt, 2r
vectorisation) improved the speedup on : p T 61 5
. 56
all systems, by different factors. #threads
* KNL scalability slightly better than HSW * Necessity of using hyperthreading can
and KNC up to 128 threads. be different between KNC and KNL.
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Performance comparison: first results including KNL

e [nitial version vs. vectorised
Out of scale

including all optimisations. (64s)
| |

e |VB, HSW: 1 socket w/o
hyperthreading.
KNC: 1 MIC, 240 threads.
KNL: 1 node, 128 threads.

e Performance gain for Xeon Phi™
larger than for Xeon.

e Single-core execution time on KNL:
3.3x faster than KNC. 0

% 9
T %

. (o
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Summary

Code modernisation as the iterative process for improving the performance
of an HPC application.

Our IPCC example: Gadget3.

Threading parallelism

Data layout Key points of our work, guided by analysis tools.
Vectorisation

This effort is (mostly) portable! Good performance found on new
architectures (KNL) basically out-of-the-box.

Investment on the future of well-established community applications, and
crucial for the effective use of forthcoming HPC facilities.

29.06.2016 Leibniz Supercomputing Centre
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