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Part I

Dynamic Rupture and Earthquake
Simulation with SeisSol

http://www.seissol.org/

Dumbser, Käser et al. [9]
An arbitrary high-order discontinuous Galerkin method . . .

Pelties, Gabriel et al. [11]
Verification of an ADER-DG method for complex dynamic rupture problems

Heinecke, Breuer, Rettenberger, Gabriel, Pelties et al. [4]:
Petascale High Order Dynamic Rupture Earthquake Simulations on
Heterogeneous Supercomputers (Gordon Bell Prize Finalist 2014)

M. Bader et al. | Multi-Physics Earthquake Simulation at Petascale | MIC Workshop | 28 June 2017 3

http://www.seissol.org/


Dynamic Rupture and Earthquake Simulation

Landers fault system: simulated ground motion and seismic waves [4]

SeisSol – ADER-DG for seismic simulations:
• adaptive tetrahedral meshes
→ complex geometries, heterogeneous media, multiphysics

• complicated fault systems with multiple branches
→ non-linear multiphysics dynamic rupture simulation

• ADER-DG: high-order discretisation in space and time
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Example: 1992 Landers M7.2 Earthquake

• multiphysics simulation of dynamic rupture and resulting ground motion of
a M7.2 earthquake

• fault inferred from measured data, regional topography from satellite data,
physically consistent stress and friction parameters

• static mesh refinement at fault and near surface
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Multiphysics Dynamic Rupture Simulation

• spontaneous rupture, non-linear interaction with wave-field
• featuring rupture jumps, fault branching, etc.
• tackles fundamental questions on earthquake dynamics
• realistic rupture source for seismic hazard assessment
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Part II

SeisSol as a Compute-Bound Code:
Code Generation for Matrix Kernels

Breuer, Heinecke, Rannabauer, Bader [2]: High-Order ADER-DG Minimizes
Energy- and Time-to-Solution of SeisSol (ISC’15)

Uphoff, Bader [6]: Generating high performance matrix kernels for
earthquake simulations with viscoelastic attenuation (HPCS 2016)
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Seismic Wave Propagation with SeisSol
Elastic Wave Equations: (velocity-stress formulation)

qt + Aqx + Bqy + Cqz = 0

with q = (σ11, σ22, σ33, σ12, σ23, σ13,u, v ,w)T

Technische Universität München
Department of Informatics V

A. Breuer, A. Heinecke, S. Rettenberger,
M. Bader, C. Pelties

Optimization of SeisSol

SeisSol in a nutshell: Governing eq’s

4

qt + Aqx + Bqy + Cqz = 0. (46)
The nine dimensional vector of unknowns,

q =

0
BBBBBBBBBBBB@

�11

�22

�33

�12

�23

�13

u
v
w

1
CCCCCCCCCCCCA

, (47)

includes the normal stress components �11, �22 and �33, the shear stresses �12,
�23 and �13 and the particle velocities in x-, y-, and z-direction, u, v and w
(see [7, ch. 22.1], TODO: Puente 1.2). Furthermore the matrices A, B and C
are defined by (see [Eigenstructure3D elastic.mws TODO]):

A =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 -�- 2 µ 0 0
0 0 0 0 0 0 -� 0 0
0 0 0 0 0 0 -� 0 0
0 0 0 0 0 0 0 -µ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -µ

-⇢-1 0 0 0 0 0 0 0 0
0 0 0 -⇢-1 0 0 0 0 0
0 0 0 0 0 -⇢-1 0 0 0

1
CCCCCCCCCCCCA

B =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 -� 0
0 0 0 0 0 0 0 -�- 2 µ 0
0 0 0 0 0 0 0 -� 0
0 0 0 0 0 0 -µ 0 0
0 0 0 0 0 0 0 0 -µ
0 0 0 0 0 0 0 0 0
0 0 0 -⇢-1 0 0 0 0 0
0 -⇢-1 0 0 0 0 0 0 0
0 0 0 0 -⇢-1 0 0 0 0

1
CCCCCCCCCCCCA

C =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 -�
0 0 0 0 0 0 0 0 -�
0 0 0 0 0 0 0 0 -�- 2 µ
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -µ 0
0 0 0 0 0 0 -µ 0 0
0 0 0 0 0 -⇢-1 0 0 0
0 0 0 0 -⇢-1 0 0 0 0
0 0 -⇢-1 0 0 0 0 0 0

1
CCCCCCCCCCCCA

. (48)

�(x, y, z) and µ(x, y, z) are the Lamé parameters, whereas µ is the shear modulus
and � doesn’t have a direct physical interpretation (see [7, ch. 22.1]), ⇢(x, y, z) >
0 is the density of the material (see [7, ch. 2.12.4]).
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• high order discontinuous Galerkin discretisation
• ADER-DG: high approximation order in space and time:
• additional features: local time stepping, high accuracy of earthquake

faulting (full frictional sliding)
→ Dumbser, Käser et al., e.g. [8]
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Discontinous Galerkin Discretisation in SeisSol

Weak Form of the elastic wave equations:
∫

Tk

qtφmd~x +

∫

Tk

(Aqx + Bqy + Cqz)φmd~x = 0

Apply chain rule and divergence theorem:
∫

Tk

qtφmd~x =

∫

Tk

Aq(φm)x + Bq(φm)y + Cq(φm)z d~x −
∫

∂Tk

Fφmd~s

Further choices:
• modal basis φm; φm orthogonal to obtain diagonal mass matrix
• hierachical (w.r.t polynomial degree) basis φm,

leads to staircase pattern in stiffness matrices
• exact Riemann solver for linear flux F
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SeisSol in a Nutshell – ADER-DG

Technische Universität München
Department of Informatics V

A. Breuer, A. Heinecke, S. Rettenberger,
M. Bader, C. Pelties

Optimization of SeisSol

SeisSol in a nutshell: ADER-DG

5

Mathematical Operation File name Subroutine
(K⇠)T (Qk)T (A⇤

k)T + (K⌘)T (Qk)T (B⇤
k)T cauchykovalewski.f90 cauchyKovalewskiTimeIntegration

recursively ! I(tn+1 - tn)

Q̂k = A⇤
kI(tn+1 - tn) galerkin2d_solver.f90 ADERGalerkin2D_Unified

Q̂k = Q̂kK⇠ galerkin2d_solver.f90 ADERGalerkin2D_Unified

Q̂k = B⇤
kI(tn+1 - tn) galerkin2d_solver.f90 ADERGalerkin2D_Unified

Q̂k = Q̂kK⌘ galerkin2d_solver.f90 ADERGalerkin2D_Unified

⇥ ⇥ ⇥

Table 1: Matrix operations in SeisSol2D

3.7 Complete Update Scheme

Combining the spatial discretization in chapter 3.3 with the flux computation
in chapter 3.4 and the ADER time discretization of chapter 3.6 the following
explicit update scheme is obtained:

Qn+1
k = Qk-

|Sk|

|Jk|
M-1

✓ 4X

i=1

Nk,iA
+
k N-1

k,iI(t
n, tn+1, Qn

k )F-,i

+

4X

i=1

Nk,iA
-
k(i)N

-1
k,iI(t

n, tn+1, Qn
k(i))F

+,i,j,h

◆

+M-1A⇤
kI(tn, tn+1, Qn

k )K⇠

+M-1B⇤
kI(tn, tn+1, Qn

k )K⌘

+M-1C⇤
kI(tn, tn+1, Qn

k )K⇣

(91)

Qn+1
k = Qk-

|Sk|

|Jk|
M-1

✓ 4X

i=1

F-,iI(tn, tn+1, Qn
k )Nk,iA

+
k N-1

k,i

+

4X

i=1

F+,i,j,hI(tn, tn+1, Qn
k(i))Nk,iA

-
k(i)N

-1
k,i

◆

+M-1K⇠I(tn, tn+1, Qn
k )A⇤

k

+M-1K⌘I(tn, tn+1, Qn
k )B⇤

k

+M-1K⇣I(tn, tn+1, Qn
k )C⇤

k

(92)

4 Structure of the Code

5 Matrix Patterns

This chapter shows the matrix patterns in SeisSol for the ADER-DG scheme
of polynomial order 3, which results in (3 + 1)(3 + 2)(3 + 3)/6 = 20 degrees of
freedom. The global matrices correspond to the reference tetrahedron. Local
matrices are shown for the first element only. The output was extracted from
SeisSol directly.

29

U
pd

at
e 

sc
he

m
e

I(tn, tn+1, Qn
k ) =

JX

j=0

(tn+1 - tn)j+1

(j + 1)!

@j

@tj
Qk(tn)

(Qk)t = -M-1
�
(K⇠)TQkA⇤

k + (K⌘)TQkB⇤
k + (K⇣)TQkC⇤

k

�C
au

ch
y 

K
ov

al
ew

sk
i
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Sparse, Dense→ Block-Sparse
Consider equaivalent sparsity patterns: (Uphoff, [6])
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Code Generator for Matrix Chain Products
Programming Interface:

db = Tools.parseMatrixFile(’matrices.xml’)

Tools.memoryLayoutFromFile(’layout.xml’, db)

arch = Arch.getArchitectureByIdentifier(’dhsw’)

volume = db[’kXiDivM’] * db[’timeIntegrated’] * db[’AstarT’]

+ db[’timeIntegrated’] * db[’ET’]

kernels = [(’volume’, volume)]

Tools.generate(

’path/to/output’, db, kernels,

’path/to/libxsmm_gemm_generator’, arch

)

Code Generation:
• auto-tuning to chose dense/sparse/blocked-sparse matrices
• automatically determine best order to evaluate matrix chain products
• efficient matrix multiplication backend: libxsmm library [10]

M. Bader et al. | Multi-Physics Earthquake Simulation at Petascale | MIC Workshop | 28 June 2017 12



Floating-Point Performance (Haswell vs. KNC)
Single-node, 65,000 elements, 1000 timesteps, 6-th order (Uphoff, [6])
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Non-zero flops increase by 13%
due to matrix partitioning.
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Benefit of High Order ADER-DG – Energy-Efficient
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Fig. 3. L∞-error of variable σyz in dependency of the consumed energy for the HSW
machine in single- and double-precision.

fully reached, as we align the elements’ DOFs to the 32-byte boundary. This, in
general, imposes some overheads with longer vectors and switching from double
to single precision naturally doubles the vector length.

Finally, in Fig. 4 we evaluated the measured power-to-solution curves by
linear interpolation in log-log-space at 150 kJ for all architectures (using on-
demand frequency for WSM and SNB). For this energy budget we can now easily
compare the achieved accuracy depending on convergence order and architecture.
Note that we excluded settings beyond convergence and low order settings not
fitting into the memory of KNC due to slow convergence. Comparing O2 and
O7 on HSW we see an error reduction of five orders of magnitude. For the cross-
architecture comparison we select O6. According to Fig. 1 roughly the same
efficiency can be reached on all platforms. In this case the error is reduced by
a factor of 3.4 when switching from WSM to SNB and 4× when comparing
SNB to KNC and HSW. These findings align well with the Dennard scaling4

between SNB and HSW on an iso-frequency and iso-TDP level. From WSM to
SNB we even see a superior scaling. This is due to the fact that we use full-
box power measurements, but strictly speaking Dennard scaling applies to the
processor only. Other parts of the system became more power-efficient, too, such
that SNB clearly exceeds the WSM machine. One KNC coprocessor is able to
achieve the same energy efficiency as the entire HSW machine. The reason for
not (clearly) outperforming HSW is the (already analyzed) lower efficiency of
the matrix kernels. This emphasizes that for compute-bound applications the
fastest execution is also most likely the most energy-efficient one.

4 doubling the number of transistors doubles the amount of computations within the
same energy budget; number of transistors: WSM: 2×1.17 B, SNB: 2×2.26 B, HSW:
2×5.57 B

• mesasure maximum error vs. consumed energy
• for increasing discretisation order on regular meshes
• here: dual-socket “Haswell” server, 36 cores @1.9 GHz
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Benefit of High Order ADER-DG – Energy-Efficient
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fully reached, as we align the elements’ DOFs to the 32-byte boundary. This, in
general, imposes some overheads with longer vectors and switching from double
to single precision naturally doubles the vector length.

Finally, in Fig. 4 we evaluated the measured power-to-solution curves by
linear interpolation in log-log-space at 150 kJ for all architectures (using on-
demand frequency for WSM and SNB). For this energy budget we can now easily
compare the achieved accuracy depending on convergence order and architecture.
Note that we excluded settings beyond convergence and low order settings not
fitting into the memory of KNC due to slow convergence. Comparing O2 and
O7 on HSW we see an error reduction of five orders of magnitude. For the cross-
architecture comparison we select O6. According to Fig. 1 roughly the same
efficiency can be reached on all platforms. In this case the error is reduced by
a factor of 3.4 when switching from WSM to SNB and 4× when comparing
SNB to KNC and HSW. These findings align well with the Dennard scaling4

between SNB and HSW on an iso-frequency and iso-TDP level. From WSM to
SNB we even see a superior scaling. This is due to the fact that we use full-
box power measurements, but strictly speaking Dennard scaling applies to the
processor only. Other parts of the system became more power-efficient, too, such
that SNB clearly exceeds the WSM machine. One KNC coprocessor is able to
achieve the same energy efficiency as the entire HSW machine. The reason for
not (clearly) outperforming HSW is the (already analyzed) lower efficiency of
the matrix kernels. This emphasizes that for compute-bound applications the
fastest execution is also most likely the most energy-efficient one.

4 doubling the number of transistors doubles the amount of computations within the
same energy budget; number of transistors: WSM: 2×1.17 B, SNB: 2×2.26 B, HSW:
2×5.57 B

• high order (“compute”) beats high resolution (“memory”)
• ≈35% gain in energy-to-solution for single precision,

but only for low order
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SeisSol – Recent Extensions

“Multiphysics” Simulations:

• viscoelastic attenuation; implementation based on new matrix-based
code generator (C. Uphoff, [6])

• off-fault plasticity (current work by S. Wollherr)

Workflow and HPC:

• asynchronous parallel IO using staging nodes or writer cores
(S. Rettenberger, [13])

• input of 3D velocity models from data files via parallel library ASAGI
(S. Rettenberger, [14])

• simplified CAD generation and close-to-automatic meshing using
SimModeler and Simulation Modeling Suite by Simmetrix
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Part III

Simulation of the 2004 Sumatra
Megathrust Earthquake

Sebastian Rettenberger, Carsten Uphoff,
Alice Gabriel, Betsy Madden, Stephanie Wollherr, Thomas Ulrich:

Extreme Scale Multi-Physics Simulations of the Tsunamigenic 2004 Sumatra
Megathrust Earthquake

SC17
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Sumatra Earthquake – Seismology Challenges
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Domain, mesh and geometry of the Sumatra scenario

• multiscale: rupture extends of 1500 km, but happens on meter scale
• complex geometry: shallow angles in subduction zone; splay faults,

topography, multiple material layers
• extremely long duration of earthquake: 500 s simulated time (over 3 Mio

smallest time steps)→ local time stepping imperative
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Sumatra Earthquake – HPC Challenges
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Sumatra: histogram of LTS clusters and extrapolated runtimes

• target manycore CPUs (Knights Landing→ Cori supercomputer)
→ available cache/local memory per core→ new flux computation
→ dynamic rupture became bottleneck→ matrix-based code generation

• dynamic rupture plus local time stepping with strong(!) scalability required
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ADER Local Time Stepping

• ADER time stepping scheme allows straightforward extension to local
time stepping

• implemented for SeisSol in 2007 (Dumbser et al. [9])
→ experienced severe scalability problems
→ better with (explicitly declared) clusters, but never really solved

• new approach by Alex Breuer [1]:
settle for multi-rate time stepping and (arbitrary!) clusters
 4–5× speedup in time-to-solution for Landers scenario
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Clusters for Local Time Stepping

Table 1: LTS data structure configuration
∆tk < ∆tki ∆tk = ∆tkj ∆tk > ∆tkl Bk Dk

3 7 7 3 7

3 3 7 3 3

3 7 3 3 3

7 3 7 3 7

7 3 3 3 3

7 7 3 7 3

3 3 3 3 3

lated time integrated DOFs Tk (size BO × 9) of elements
k for one or more time steps. Dk store the derivatives de-
rived in Eq. (3). In [2] we presented how the exploita-
tion of increasing-size zero-blocks generated in the recur-
sive time derivative computation can be used to speed up
time integration in GTS. In this work we use the same ap-
proach to reduce the amount of memory occupied by the
derivatives in our clustered LTS scheme: instead of storing
the full derivatives ∂j/∂tjQk of size BO × 9 each, we only
store the (possibly memory-aligned) non-zeros of total size
(BO +BO−1 + . . .+B1)× 9.

For more efficient computation we split the one-step up-
date of Eq. (6) into a two-step scheme:

Q∗,n+1
k = Qnk − Vk (Tk)−

4∑

i=1

F̂−,i (Tk) Â+
k,i, (7)

Qn+1
k = Q∗,n+1

k −
4∑

i=1

F+,i,jk(i),hk(i) (Tki) Â−k,i. (8)

The element local update step in Eq. (7) first computes the
time integration Tk and updates Bk and/or Dk – depend-
ing on the requirements of the face neighbors – accordingly.
After that we update the DOFs Qnk with the element local
contribution of the time step only. We obtain the interme-
diate DOFs Q∗,n+1

k .
The neighboring update step in Eq. (8) uses – depending

on the LTS structure – either the buffers Bki of the neighbors
directly, or evaluates the time integration (see Eq. (2)) using
Dki first.

The decision if we have to store buffers Bk, derivatives Dk,
or both in Eq. (7) depends on the element’s LTS configu-
ration with respect to its face neighbors. In the first four
columns Tab. 1 illustrates the unique relations an element
k can have to one or more of its face neighbors (ki, kj , kl)
in our scheme. The resulting configuration of the LTS data
structures Bk and Dk is shown in column five and six. For
the neighboring update shown in Eq. (8) we additionally
encode if we are required to work on neighboring derivatives
or the buffers for each face.

The single set of derivatives Dk is able to support neigh-
bors having multiple non-unique smaller time step widths
than the element k. On the contrary our design allows for a
single buffer Bk in every element k at maximum. Thus we
support only a single time step width ration with respect
to neighbors having larger time step widths than element
k. Note that no real limitation is posed by the single buffer
requirement, since our final scheme clusters elements with
similar time step widths together in time clusters.

Tab. 1 also encodes a special case: two elements k and ki
are in GTS relation ∆tk = ∆tki but data exchange is based

Figure 2: Illustration of the six time stepping clus-
ters in the Mount Merapi setting. Colors denote
different MPI partitions.

on time derivatives. In the case when the buffer Bk of an
element k is used by a third element kj in a true LTS fashion
– meaning ∆tk < ∆tkj – the information in the buffer is
accumulated over several time steps of k. The GTS-relation
of k and ki requires each others time integrated DOFs for
the neighboring updates in every time step. This is why we
derive the time integrated DOFs from the derivatives in this
special case.

Time Clusters: For time clustering we base our scheme on
multiples of the minimum time step width over all elements:
∆tmin = min(∆tcfl

k ). Our clusters Cl, l ∈ 1 . . . L are defined
as intervals covering the entire range [∆tmin,∆tmax] of time
step widths:

C1 = [∆tmin, r1 ·∆tmin[,

C2 = [r1 ·∆tmin, r1 · r2 ·∆tmin[,

. . .

CL = [r1 · . . . · rL−1 ·∆tmin, r1 · . . . · rL ·∆tmin]

(9)

Every element k is then mapped to the unique cluster Cl
covering its time step width and advances in time with the
lower bound r1 · . . . rl−1 ·∆tmin of the corresponding cluster.
For the cluster rates rl, l ∈ 1 . . . L we use natural numbers
greater than one (rl ∈ N>1).

Figure 2 illustrates such a clustering for the 1.5 mio ele-
ment Mount Merapi setting with r1 = . . . = r6 = 2. Details
and results of the setting are covered in Sect. 5.

Similar to the choice of using only a single buffer B and a
single set of derivatives D at maximum, using natural num-
bers is a decision of our numerics-HPC co-design, rather
than a limitation imposed by the ADER-DG scheme. With
the benefit of a finer-grained clustering, real valued rates
rl have a major drawback: in order to recover time inte-

• what we hoped for (but don’t get): compact clusters of uniform time steps
• therefore: implemented bins of arbitrarily located grid cells
• bins defined from smallest time step ∆t (a.k.a. global time step)
→ [∆t ,2∆t), [2∆t ,4∆t), [4∆t ,8∆t), . . .

• needed to re-organise data structures (ghost layers, element buffers, etc.)
and data exchange (introduced communication threads)
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Optimizing SeisSol for Xeon Phi (Knights Landing)
Step 1: Memory Optimization (Heinecke, Breuer et al., ISC 16 [5])

• profit from Knights Landing optimization of libxsmm library [10]
• examine impact of DRAM-only, CACHE and FLAT mode
• FLAT mode: careful placement of element-local matrices in MCDRAM:

10 Alexander Heinecke, Alexander Breuer, Michael Bader, and Pradeep Dubey

order Qk Bk,Dk Aξck , Â
−,i
k , Â+,i

k K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h

2 MCDRAM MCDRAM MCDRAM MCDRAM
3 MCDRAM MCDRAM MCDRAM MCDRAM
4 DDR4 MCDRAM MCDRAM MCDRAM
5 DDR4 MCDRAM DDR4 MCDRAM
6 DDR4 MCDRAM DDR4 MCDRAM

Table 1. Placements for all orders and the different data structures of SeisSol;
DDR4/MCDRAM denotes if a particular data structure is placed in DDR4/MCDRAM.

higher orders as they are bigger but have the same access frequency. These access
patterns allow to overcome size limitations of the 16 GB MCDRAM by placing
the ’slow-running’ data structures in DDR4. Therefore, in FLAT mode and for
higher order runs, we store Bk and/or Dk of every element into MCDRAM on
the fly via the memkind library when computing them. As both memory types
are seamlessly integrated into the architecture, we simply change the place of
allocation, but not our macro-kernels. Thus pointers to Bk and/or Dk reference

memory physically stored in MCDRAM whereas Aξck , Â
−,i
k , Â+,i

k , Qk reside in the
DDR4 portion of the address space for orders O = 5 and O = 6. Additionally,
we hold unique matrices, K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h, including the 48 flux matrices
required for neighboring elements’ contribution to the surface kernel (7), in MC-
DRAM as well, as we expect local L2 cache evicts for higher orders. For lower
orders, two to four, the bandwidth requirements of SeisSol for the element local
matrices and Qk increase. We therefore allocate more data structures in MC-
DRAM. In fact, for orders O = 2 and O = 3, all important data structures are
placed in MCDRAM. Table 1 summarizes the used placements, when running
on KNL in FLAT mode.

4.3 Optimizing the Mesh Traffic and Prefetching

KNL’s last level cache (LLC) is not a shared cache level as it is implemented
by a 2D mesh of up to 36 1 MB large slices of L2 caches, c.f. Sect. 2. These
slices are kept coherent by a distributed tag directory in each tile’s CHA. As we
pointed out in the last section, for higher orders than four, the 48 flux matrices
F+,i,j,h approach (500 KB for order five) or even exceed the size (1.5 MB for
order O = 6) of one tile’s L2 cache. This can negatively effect the performance
of (7) for two reasons: a) especially for order O = 6 this results into a high rate
of CHA-to-CHA communication as the unstructured mesh causes unstructured
accesses to the flux matrices b) the hardware prefetcher cannot pick-up the
unstructured accesses. Keeping the last section in mind, we know that we still
have plenty of MCDRAM bandwidth available in higher orders. Therefore, we
place several copies, one per two tiles, in MCDRAM. This ensures that the mesh
traffic gets equally distributed and the access latency may not be limited by
one CHA in the entire mesh holding the directory entries for one particular
flux matrix. Additionally, we are using modified matrix kernel operations in (7),

Step 2: Improved Flux Computation and Dynamic Rupture (C. Uphoff)

• exploit code generation based on matrix chain products
• fluxes: Riemann solvers expressed via matrix chain product→

reformulate via smaller matrices (slightly fewer ops; much fewer cache)
• dynamic rupture: derive new scheme based on chain products
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Performance Results on Knights Landing

Phase 1: Heinecke et al., ISC 16 [5]High Order Seismic Simulations on Intel Xeon Phi 17
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Fig. 9. Normalized time-to-solution speed-up over HSX for KNC and KNL and orders
2-6 when simulating the 1992 Landers scenario using global time stepping.

would easily fit into MCDRAM any time as the total memory consumption at
order 6 is 7.1 GB.

The GTS performance of the 1992 Landers setup is provided in Fig. 9. As
this is a multi-physics scenario, we expect slightly lower performance than for
the earlier pure wave propagation runs on a many-core processor. This is due
to the fact that the dynamic rupture portion of the solver requires high scalar
performance. Here, KNL’s increased single-thread performance becomes visible.
KNL reassembles more than 92% of the pure wave propagation speed-up over
HSX whereas the previous generation KNC chip is only able to attain 83%. This
results into a relative performance which is comparable to HSX. KNL’s time-to-
solution speed-up for executing the 1992 Landers earthquake simulations is 2.5
- 2.9 × depending on the chosen order.

6 Conclusion

In this article, we presented a holistic optimization of SeisSol, a multi-physics
simulation package for seismic simulations, which tightly couples seismic wave
propagation, and dynamic rupture processes. First, we presented a deep-dive
into KNL’s architectural features and their challenges and opportunities for
high-performance software. After a brief recapitulation of SeisSol’s mathemati-
cal background, we discussed in detail how to exploit KNL’s two VPUs per core
efficiently and to leverage both memory subsystems for a novel out-of-core imple-
mentation in SeisSol’s high-order wave propagation solver. The KNL-optimized
implementation was evaluated for three different scenarios with distinct chal-
lenges and sizes. In case of global time stepping runs, KNL was able to out-
perform its predecessor, KNC, by 2.9 × and the current most powerful Intel
Xeon processor, E5v3, by more than 3.4 ×. Even more important, in contrast to

Landers scenario, 466,574 elements
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Performance Results on Knights Landing

Phase 2: New Results on Cori (C. Uphoff et al.)
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Performance Results on Haswell

Phase 2: New Results on SuperMUC and Shaheen-II (C. Uphoff et al.)
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Performance Results on Haswell

Phase 2: New Results on SuperMUC and Shaheen-II (C. Uphoff et al.)
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Sumatra 2004: 220 Mio Elements on SuperMUC

HPC Facts – 13.9 Hours Production Run:

• 221 million elements with order 6 accuracy
• 111 billion degrees of freedom
• 11 LTS clusters: “smallest” elements performed 3.3 Mio time steps
• 500 s simulated time
• 1500km fault size; 400 m geometrical resolution;
• 2.2 Hz frequency content of the seismic wave field
• 0.94 PFLOPS sustained performance (86,016 Haswell cores 2.2 GHz)
• 13 TB checkpoint data, 2.8 TB for post-processing

(asynchronous IO; costs entirely overlapped by computation)
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Sumatra 2004 – Results
Splay Fault Activation and Ocean Floor Displacements
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Sumatra 2004 – Results
Splay Fault Activation and Ocean Floor Displacements
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Conclusions – Earthquake Simulation with SeisSol
Compute-Bound Simulations at Petascale:

• high convergence order and high computational intensity of ADER-DG
→ compute-bound performance on current and imminent CPUs

• code generation based on matrix chain products to accelerate all element
kernels

• careful tuning and parallelisation of the entire simulation pipeline
(scalable mesh input, output and checkpointing)

• offload scheme scaled to 1.5 million cores (Tianhe-2, Stampede)
→ latest work tackled KNL and heterogeneous KNC platforms

(Cori, Stampede, Salomon)

Multiphysics Earthquake Simulation:

• dynamic rupture coupled to seismic wave propagation
• recent/current work: visco-elastic attenuation, off-fault plasticity
• Sumatra 2004: first dynamic rupture simulation at this level of detail
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[9] M. Dumbser, M. Käser, E. Toro: An Arbitrary High Order Discontinuous Galerkin Method for
Elastic Waves on Unstructured Meshes – V. Local Time Stepping and p-Adaptivity, Geophys.
J. Int. 171(2), 2007

[10] A. Heinecke, G. Henry, M. Hutchinson, H. Pabst: LIBXSMM: Accelerating Small Matrix
Multiplications by Runtime Code Generation, SC16.

[11] C. Pelties, A.-A. Gabriel, J.-P. Ampuero: Verification of an ADER-DG method for complex
dynamic rupture problems, Geoscientific Model Development, 7(3), p. 847–866.

[12] C. Pelties, J. de la Puente, J.-P. Ampuero, G. B. Brietzke, M. Käser: Three-dimensional
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