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Agenda

1. Introduction to the 
LRZ AI Systems

q Overview of the LRZ AI 
Systems

q Access to the LRZ AI 
Systems 

q NVIDIA NGC Cloud
q Introduction to Enroot 

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and 

extend an Enroot 
container
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3. Fully Sharded Data 
Parallel

q Introduction to Fully 
Sharded Data Parallel

q Exercise: Train VGG-199 
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional 
Neural Networks

q Exercise: Train VGG-19 on a 
GPU 

q Introduction to Distributed 
Training

q Exercise: Train VGG-199 on 
2 GPUs using DDP
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Planned breaks

• 11:30 – 11:45 Coffee Break I
• 12:30 – 13:30 Lunch break
• 15:00 – 15:15 Coffee Break II
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Overview of the LRZ Systems
1. Introduction to the LRZ AI Resources

Data Science 
Archive (DSA)

LRZ Linux Cluster LRZ Compute CloudLRZ AI Systems
• “Big Data” CPU nodes
• HPE P100 node
• V100 nodes
• DGX-1 P100, DGX-1 V100
• Multiple DGX A100CoolMUC-2 Teramem-2 CoolMUC-3

LRZ Compute Cloud
(w/ some GPUs)

lxlogin[1-3].lrz.de
lxlogin8.lrz.de

login.ai.lrz.de
https://cc.lrz.de

Data Science Storage
(DSS)

Archive and 
Backup (ABS)

https://login.ai.lrz.de

Multi-purpose cluster systems might be 
used for AI workloads as well, but have 
different focus Designed and Configured for AI 

Flexible system that copes with almost any 
workload 
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Overview of the LRZ AI Systems
1. Introduction to the LRZ AI Resources

HGX H100 
Architecture

DGX A100 
Architecture

DGX A100 
Architecture

MIG

DGX-1 V100 
Architecture

DGX-1 P100 
Architecture

HPE Intel 
Skylake + 

Nvidia Node

V100 GPU 
Nodes

CPU Nodes

Number of 
Nodes

30 4 1 1 1 1 4 12

CPU cores 
per node

96 252 252 76 76 28 19 18 / 28 / 38 / 
94

Memory per 
node

768GB 2 TB 1 TB 512 GB 512 GB 256 GB 368 GB min. 360 GB

GPUs per 
node

4 NVIDIA 
H100

8 NVIDIA 
A100

8 NVIDIA A100 
(16 MIG 

partitions)

8 Nvidia Tesla 
V100

8 Nvidia Tesla 
P100

4 Nvidia Tesla 
P100

2 Nvidia Tesla 
V100

--

Memory per 
GPU

94 GB 80 GB 40 GB (20GB 
per MIG 
partition)

16 GB 16 GB 16GB 16 GB --

SLURM 
Partition

lrz-hgx-h100-
92x4

lrz-dgx-a100-
80x8

lrz-dgx-a100-
40x8-mig

lrz-dgx-1-
v100x8

lrz-dgx-1-
p100x8

lrz-hpe-
p100x4

lrz-v100x2 lrz-cpu

Nodes lrz-hgx-h100-
[001-030]

lrz-dgx-a100-
[001-002,004-

005]

lrz-dgx-a100-
003

dgx-002 dgx-001 p100-001 gpu-[001-
003,005]

cpu-[001-012]
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Storage on the LRZ AI Systems
1. Introduction to the LRZ AI Resources

Storage Pool Designated Use Top-level 
Directory

Size Limit Automated 
Backup

Expiration Additional 
Information

Home directory unified home directory with the 
LRZ Linux Cluster, created when 
LRZ Linux Cluster access is 
granted
Not suitable for heavy and/or 
high-frequency I/O operations -
use the AI Systems DSS instead.

/dss/dsshome1
/.../<user>

100 GB yes, backup 
to tape and 
file system 
snapshots

lifetime of 
LRZ project

File Systems and 
IO on Linux-
Cluster

AI Systems DSS high-bandwidth, low latency I/O,
access is granted upon request 
through the LRZ Servicedesk

/dss/dssfs04 up to 4 TB no until further 
notice

Linux Cluster DSS general purpose, long-term data 
storage

/dss/dssfs02
/dss/dssfs03

up to 10 TB
(or 20TB+ with 
associated costs)

yes for paid 
DSS / no for 
the free tier

lifetime of 
data project

File Systems and 
IO on Linux-
Cluster (or DSS on 
demand offer with 
associated costs)

Exclusive/private 
DSS systems

specified by the system owner, 
can be purchased, implemented 
and housed exclusively for a 
private group of dedicated users

/dsslegfs01
/dsslegfs02
/dssmcmlfs01

specified by the 
system owner

specified by 
the system 
owner

specified by 
the system 
owner

Data Science 
Storage ("joint 
project offer")

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster
https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster
https://doku.lrz.de/data-science-storage-10745685.html
https://doku.lrz.de/display/PUBLIC/Data+Science+Storage


• User requirements to get the access:
1. Own / get a Linux Cluster account: 

https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+the+Linux-Cluster
2. Submit a service request to LRZ Servicedesk – select "AI topics" and "LRZ AI Systems -

Request for Access" from the drop-down lists. Request has to include Linux Cluster 
account username and a description of the intended usage.

• Login node login.ai.lrz.de accessible via SSH:

• Make sure you are connected to the Munich Scientific Network (MWN). 
• Provide your LRZ Linux Cluster credentials to log in.

Access to the LRZ AI Systems – How to access? 
1. Introduction to the LRZ AI Resources

10

$ ssh --login_name=xxyyyzz login.ai.lrz.de

https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+the+Linux-Cluster
https://servicedesk.lrz.de/en/ql/create/23
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Access to the LRZ AI Systems – Slurm: sinfo, salloc, srun & scancel 
1. Introduction to the LRZ AI Resources

$ ssh --login_name=xxyyyzz login.ai.lrz.de

$ sinfo

$ salloc --partition=lrz-v100x2 --gres=gpu:1

$ scancel job_id

$ squeue --user=xxyyzzz 

$ srun --pty bash

Executes in the login node

https://slurm.schedmd.com/overview.html

https://slurm.schedmd.com/overview.html
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• The NGC catalogue provides access to GPU 
accelerated software that speeds up end-to-end 
workflows with performance optimized containers, 
pretrained AI models, and SDKs that can be 
deployed on any NVIDIA’s GPU powered systems.

• The NVIDIA Container Toolkit includes a container 
runtime library and utilities to automatically 
configure containers to leverage NVIDIA GPUs. 

• The NVIDIA CUDA Toolkit, incorporated within 
each GPU-accelerated container in NGC, is the 
development environment for creating high 
performance NVIDIA GPU-accelerated applications.

• https://catalog.ngc.nvidia.com

Nvidia NGC Containers
1. Introduction to the LRZ AI Resources

https://catalog.ngc.nvidia.com/
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Nvidia NGC Containers
1. Introduction to the LRZ AI Resources
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Nvidia NGC Containers – Setting up credentials
1. Introduction to the LRZ AI Resources



• Create the file enroot/.credentials within your $HOME and insert the following lines in it:

• Where <KEY> is the API key generated and copied in the previous step. 
• Introduce a new line after < KEY>.

• Now you can import containers from Nvidia NGC on compute nodes of LRZ AI Systems, 
e.g. a Pytorch container, with:

15

Nvidia NGC Containers – Setting up credentials
1. Introduction to the LRZ AI Resources

machine nvcr.io login $oauthtoken password < KEY>
machine authn.nvidia.com login $oauthtoken password <KEY>

$ enroot import docker://nvcr.io/nvidia/pytorch:24.08-py3
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• Enroot container runtime operates 
completely in user space.

• It allows to run containers defined by 
container images from the NVIDIA 
NGC Cloud or from the Docker Hub.

• Not available on the login node, but 
on the compute nodes!

• The Enroot Workflow:
I. Import an Enroot Container 

Image – resulting in sqsh file
II. Create an Enroot Container with 

create,
III. Run software inside an existing 

Enroot Container with start.

Introduction to Enroot: The Software Stack Provider for the AI Systems
1. Introduction to the LRZ AI Resources

$ enroot import docker://nvcr.io/nvidia/pytorch:24.10-py3

$ enroot create nvidia+pytorch+24.10-py3.sqsh

$ enroot start nvidia+pytorch+24.10-py3

Executes in the allocated compute node

Executes in the login node

$ salloc --partition=lrz-hpe-p100x4 --gres=gpu:1

$ srun --pty bash
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• Interactive jobs are 
submitted to an existing 
allocation of resources 
using the srun command.

• We can mount existing 
data from outside of the 
container into container.

• Enroot container creation 
and job submission in a 
single step can be done 
via a plugin called pyxis.

Running Applications as Interactive Jobs
1. Introduction to the LRZ AI Resources

Executes in the allocated compute node

$ salloc --partition=lrz-hpe-p100x4 --gres=gpu:1

Executes in the login node

$ srun --pty \
--container-mounts=./:/workspace \
--container-image=nvcr.io/nvidia/pytorch:24.10-py3 bash

$ python /workspace/exercise1.py

If Enroot Container Image
is already imported

If Enroot Container Image
has not been imported

$ srun --pty \
--container-mounts=./:/workspace \
--container-image=path/to/your/container.sqsh bash
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• Batch jobs are the preferred and quicker 
way of using the LRZ AI Systems.

• Batch job is queued and executed when 
the resources are available.

• It does the allocation and running of the 
job for you (instead of salloc and srun).

• The sbatch command submits jobs 
described in a sbatch script file.

• You need to specify the partition and 
number of GPUs that you want to use.

• Two additional required arguments: 
output and error messages file.

Running Applications as Batch Jobs
1. Introduction to the LRZ AI Resources

#!/bin/bash
#SBATCH -p lrz-hpe-p100x4
#SBATCH --gres=gpu:1
#SBATCH -o exercise1.out
#SBATCH -e exercise1.err

srun \
--container-mounts=‘./:/workspace’ \
--container-image=‘nvcr.io/nvidia/pytorch:24.10-py3’ \
python /workspace/exercise1.py

$ sbatch exercise1.sbatch

Executes in the login node



• If your image does not supply the CUDA Toolkit, do not install it within the image, because this fixes paths to 
the existing NVIDIA driver on the target machine and might crash if the NVIDIA driver is upgraded.

• Instead add the following environment variables within the container, and the container runtime will copy 
within the container the needed libraries. Refer to https://docs.nvidia.com/datacenter/cloud-native/container-
toolkit/latest/docker-specialized.html for more information on the accepted values of these variables.
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Dealing with base images from catalogues other than NGC
1. Introduction to the LRZ AI Resources

Executes in the allocated resource
$ enroot import docker://some/image-no-cuda

$ enroot create --name base_container some+image-no-cuda.sqsh

echo "NVIDIA_DRIVER_CAPABILITIES=compute,utility" >> /etc/environment
echo "NVIDIA_REQUIRE_CUDA=cuda>=9.0" >> /etc/environment
echo "NVIDIA_VISIBLE_DEVICES=all" >> /etc/environment

$ exit

$ enroot export --output base_image.sqsh base_container 

$ enroot start base_container bash

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html


• If your workload depends on a package not provided by the used image.

• For installing some applications you need to be root within the container (e.g., installing software using 
the apt package manager in Debian and Ubuntu-based containers.) In this case, add the --root flag.
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Creating an extended Enroot image
1. Introduction to the LRZ AI Resources

Executes in the allocated resource

$ enroot create --name custom_container nvidia+pytorch+24.08-py3.sqsh

$ enroot start custom_container

$ pip install --no-cache-dir lightning
$ HOROVOD_GPU_OPERATIONS=NCCL pip install --no-cache-dir horovod 

$ exit

$ enroot export --output custom_container.sqsh custom_container

Executes in the allocated resource
$ enroot start --root my_container

$ apt update
$ apt install python3-dev



• Jupyter Notebook, JupyterLab, RStudio Server and TensorBoard

• Available at https://login.ai.lrz.de

• To start e.g. a Jupyter Notebook session select from the top panel: 
"Interactive Apps"  =>  “Jupyter Notebook”

• For a typical use-case:
• select the type of resources (CPU only or CPU + single GPU)
• specify your workload (a combination of CPU core and RAM requirements)
• select the container environment you want to work with (e.g. available PyTorch or Tensorflow 

container, or a custom container)
• finally, specify the number of hours you plan to work (be aware that your session will be shut 

down when this time limit is reached, and any unsaved work will then be lost).
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Access to AI Systems through interactive web servers
1. Introduction to the LRZ AI Resources

https://login.ai.lrz.de/
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Access to AI Systems through interactive web servers
1. Introduction to the LRZ AI Resources
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Public Datasets and Containers on the LRZ AI Systems
1. Introduction to the LRZ AI Resources

• Dedicated DSS container for storing public datasets and Enroot container images of interest to researchers.
• Procedure to request the addition of public datasets / Enroot images:

• make sure the dataset / Enroot image is licensed for public usage and requires no individual license nor 
registration, and in case of an Enroot image make sure the image is not provided by the Nvidia NGC, 
Dockerhub or another public repository directly

• open a ticket with the LRZ Servicedesk, providing the location of the dataset / Dockerfile for building the 
image, and a justification for public interest (including the expected target audience)

• provide instructions for downloading the dataset (ideally shell script) / building the image (if non-standard).

Dataset Location Version Licence

AlphaFold /dss/dssfs04/pn69za/pn69za-dss-
0004/datasets/alphafold_2024

Last update March 2024 following the 
instructions here https://github.com/ 
deepmind/alphafold#genetic-databases

https://github.com/deepmind/alp
hafold#license-and-disclaimer

COCO-Stuff dss/dssfs04/pn69za/pn69za-dss-
0004/datasets/cocostuff/

2020 Update (train2017.zip, val2017.zip, 
annoations_trainval2017.zip, 
stuff_annotations_trainval2017.zip)

https://cocodataset.org/#termsof
use

Visual Genome dss/dssfs04/pn69za/pn69za-dss-
0004/datasets/visualgenome/

Version 1.4 of dataset completed as of July 2017 Creative Commons Attribution 
4.0 International License

https://servicedesk.lrz.de/en/ql/create/159
https://github.com/%20deepmind/alphafold
https://github.com/deepmind/alphafold
https://cocodataset.org/


Interactive job Batch job
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Summary
1. Introduction to the LRZ AI Resources

$ ssh -l xxyyyzz login.ai.lrz.de

Executes in the login node login-1

$ salloc --partition=dgx-1-p100 --gres=gpu:1

$ sinfo

Executes in the allocated resource

$ python /workspace/exercise1.py 

$ srun --pty --container-mounts=./:/workspace \
--container-image=nvcr.io/nvidia/pytorch:24.08-py3 bash

#!/bin/bash
#SBATCH -p lrz-dgx-a100-80x8
#SBATCH --gres=gpu:1
#SBATCH -o exercise1.out
#SBATCH -e exercise1.err

srun --container-mounts=‘./:/workspace’ \
--container-image=‘nvcr.io/nvidia/pytorch:24.08-py3’ \
python /workspace/exercise1.py

$ sbatch exercise1.sbatch

Executes in the login node datalab2

https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems

https://login.ai.lrz.de

Command line

Web browser

https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems
https://login.ai.lrz.de/
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Hands-On Exercise 0



1. Write a job script to import and extend a container
2. Execute and create your own container

Job script info:
1. partition: lrz-hgx-h100-92x4
2. reservation: aits
3. gpu resources: 1

26

Creating an extended Enroot image
Hands-On Exercise 0



Agenda

1. Introduction to the 
LRZ AI Systems

q Overview of the LRZ AI 
Systems

q Access to the LRZ AI 
Systems 

q NVIDIA NGC Cloud
q Introduction to Enroot 

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and 

extend an Enroot 
container

28

3. Fully Sharded Data 
Parallel

q Introduction to Fully 
Sharded Data Parallel

q Exercise: Train VGG-199 
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional 
Neural Networks

q Exercise: Train VGG-19 on a 
GPU 

q Introduction to Distributed 
Training

q Exercise: Train VGG-199 on 
2 GPUs using DDP
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Introduction to Convolutional Neural Networks
2. Data Distributed Training

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


• Main idea: increasing depth of CNNs
• 3 × 3 conv. layers with a stride of 1 -

small receptive fields (compared to prev. 
11 × 11 with a stride of 4 in AlexNet)

• 1 × 1 conv. to make the decision function 
more non-linear without changing the 
receptive fields

• ReLU activation function
• ImageNet dataset – 4 days of training
• 19 layers – 144M parameters

30

Convolutional Neural Network Architectures – VGG (Visual Geometry Group)
2. Data Distributed Training

https://arxiv.org/pdf/1409.1556.pdf
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CIFAR10 Data
2. Data Distributed Training

# download the data
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(), download=True)

# transform to DataLoader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

https://www.cs.toronto.edu/~kriz/cifar.html

Input size: 32x32x3



• Pre-trained model is a saved network that was 
previously trained on a large dataset.

• Feature Extraction: Use the feature maps from 
the pre-trained model to detect features in the 
new samples. Add a new classifier, which will 
be trained from scratch to make predictions.

• Fine-Tuning: Unfreeze a few top layers of a 
pretrained model and jointly train both the 
newly-added classifier layers and the last 
layers of the base model. This allows us "fine-
tune" the higher-order feature maps to make 
them more relevant for the specific task.
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Transfer learning – Pretrained Convolutional Neural Networks
2. Data Distributed Training

import torchvision.models as models
model = models.vgg19(weights=‘IMAGENET1K_V1’)

import torchvision.models as models
model = models.resnet34(weights=‘IMAGENET1K_V1’)



• GPUs in comparison to CPUs:
• GPU allows parallel running of repetitive 

calculations within an application
• CPU can be thought of as the taskmaster of the 

entire system, coordinating a wide range of 
general-purpose computing tasks 

• GPU performs a narrower range of more 
specialized tasks (e.g., matrix multiplications)

• CPUs are faster than GPUs in scalar 
multiplications.

• GPUs are faster than CPUs in matrix 
multiplications.

34

Neural Networks and GPUs - Why?
2. Data Distributed Training

SLOW
ER
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Neural Networks and GPUs - How?
2. Data Distributed Training

# Device configuration - cpu
device = torch.device('cpu’)

# Device configuration - gpu
device = torch.device(‘cuda’)

# Model to device
model = model.to(device)

# Data to device
images = images.to(device=device)
labels = labels.to(device=device)



36

Hands-On Exercise 1



1. Make a batch-size vs epoch time table
2. Pull the GitHub repo: https://github.com/LRZ-BADW/ai-

systems.git
3. Explore the code
4. Write a job script to run the code
5. Play with the batch size and note the time

Job script info:
• partition: lrz-hgx-h100-92x4
• reservation: aits
• gpu resources: 1
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VGG-19 + CIFAR10 on a GPU
Hands-On Exercise 1

Batch 
Size

1 GPU 2 GPU

https://github.com/LRZ-BADW/ai-systems.git


ImageNet 

14,197,122 images 
(150 GB)
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Common Crawl

2.95 billion web pages 
(351.844 TB)

BigScience 
Multilingual Dataset 

for Language 
Modeling

350 billion tokens 
(1.5 TB)

46 languages

Pile: Dataset of 
Diverse Text for 

Language Modeling

800GB

Increasing Amount of Data Available for Deep Learning
2. Data Distributed Training

https://paperswithcode.com/dataset/imagenet https://bigscience.huggingface.co/blog/building-a-tb-
scale-multilingual-dataset-for-language-modeling

https://commoncrawl.org/https://arxiv.org/abs/2101.00027



• Based on package torch.distributed for 
synchronizing gradients.

• DDP registers a hook for each parameter that 
fires when the corresponding gradient is 
computed in the backward pass. That signal is 
used to trigger gradient synchronization across 
processes. 

• Runs across multiple GPUs and across multiple
machines/nodes.

• Near-linear scalability

Li et al., 2020, arXiv:2006.15704  
https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#basic-use-case
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Pytorch Distributed Data Parallel
2. Data Distributed Training import torch.distributed as dist

import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP 

def setup(rank, world_size):
#environment variables for using torch.distributed
os.environ['MASTER_ADDR'] = 'localhost’
os.environ['MASTER_PORT'] = '12355’

#initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)

def main(rank, world_size, args):
#setup DDP
setup(rank, world_size)
#create a model…..
#wrap model in DDP
ddp_model = DDP(model, device_ids=[rank]) 
#define loss function and optimizer…
#forward pass…
#backward pass and update parameters….
#cleanup
dist.destroy_process_group()

if __name__=="__main__": 

world_size = torch.cuda.device_count()
batch_size = int(batch_size / world_size)
mp.spawn(main, args=(world_size, args), nprocs=world_size, 

join=True)

https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html


Data Parallel
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Data Distributed Parallel Training of NNs
2. Data Distributed Training

🦁

🦋

🐠

🦒

Worker 1

Worker 2
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Hands-On Exercise 2

Title | Date | Author



1. Refer to batch-size vs epoch time table
2. Pull the GitHub repo: https://github.com/LRZ-BADW/ai-

systems.git
3. Explore the code
4. Write a job script to run the code
5. Play with the batch size and note the time

Job script info:
• partition: lrz-hgx-h100-92x4
• reservation: aits
• gpu resources: 2
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VGG-19 + CIFAR10 on 2 GPUs - DDP
Hands-On Exercise 2

Batch 
Size

1 GPU 2 GPU

https://github.com/LRZ-BADW/ai-systems.git


Agenda

1. Introduction to the 
LRZ AI Systems

q Overview of the LRZ AI 
Systems

q Access to the LRZ AI 
Systems 

q NVIDIA NGC Cloud
q Introduction to Enroot 

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and 

extend an Enroot 
container
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3. Fully Sharded Data 
Parallel Training

q Introduction to Fully 
Sharded Data Parallel

q Exercise: Train VGG-199 
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional 
Neural Networks

q Exercise: Train VGG-19 on a 
GPU 

q Introduction to Distributed 
Training

q Exercise: Train VGG-199 on 
2 GPUs using DDP



• Inspired by ZeRO Stage 3 from 
DeepSpeed

• Ideal for training large models that do 
not fit into a single GPU

• Model parameters, gradients and 
optimizer states are sharded across 
GPUs
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Fully Sharded Data Parallel
3. Fully Sharded Data Parallel Training import torch.distributed as dist

import torch.multiprocessing as mp
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

def setup(rank, world_size):
#environment variables for using torch.distributed
os.environ['MASTER_ADDR'] = 'localhost’
os.environ['MASTER_PORT'] = '12355’

#initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)

def main(rank, world_size, args):
#setup FSDP
setup(rank, world_size)
#create a model…..
#wrap model in FSDP
fsdp_model = FSDP(model)
#define loss function and optimizer…
#forward pass…
#backward pass and update parameters….
#cleanup
dist.destroy_process_group()

if __name__=="__main__": 

world_size = torch.cuda.device_count()
batch_size = int(batch_size / world_size)
mp.spawn(main, args=(world_size, args), nprocs=world_size, 

join=True)
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Fully Sharded Data Parallel
3. Fully Sharded Data Parallel Training

Image from: https://towardsdatascience.com/pytorch-lightning-vs-deepspeed-vs-fsdp-vs-ffcv-vs-e0d6b2a95719

https://towardsdatascience.com/pytorch-lightning-vs-deepspeed-vs-fsdp-vs-ffcv-vs-e0d6b2a95719


Data Parallel
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Data Distributed Parallel Training of NNs
3. Fully Sharded Data Parallel Training

🦁

🦋

🐠

🦒

Worker 1

Worker 2
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Hands-On Exercise 3



1. Refer to batch-size vs epoch time table
2. Pull the GitHub repo: https://github.com/LRZ-BADW/ai-

systems.git
3. Explore the code
4. Write a job script to run the code
5. Play with the batch size and note the time

Job script info:
• partition: lrz-hgx-h100-92x4
• reservation: aits
• gpu resources: 2
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VGG-19 + CIFAR10 on 2 GPUs - FSDP
Hands-On Exercise 3

Batch 
Size

1 GPU 2 GPU

https://github.com/LRZ-BADW/ai-systems.git
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The End!



Agenda

1. Introduction to the 
LRZ AI Systems

q Overview of the LRZ AI 
Systems

q Access to the LRZ AI 
Systems 

q NVIDIA NGC Cloud
q Introduction to Enroot 

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and 

extend an Enroot 
container

52

3. Fully Sharded Data 
Parallel Training

q Introduction to Fully 
Sharded Data Parallel

q Exercise: Train VGG-19 
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional 
Neural Networks

q Exercise: Train VGG-19 on a 
GPU 

q Introduction to Distributed 
Training

q Exercise: Train VGG-19 on 2 
GPUs using DDP
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Announcements



• Half day event

• BYOC – Bring Your Own Code

• Hands-on & mentoring on scaling/parallelizing your code

• Write us at – Ajay.Navilarekal@lrz.de or Darshan.Thummar@lrz.de
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Hackathon
Announcements

mailto:Ajay.Navilarekal@lrz.de
mailto:Darshan.Thummar@lrz.de
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Feedback Survey
Announcements

https://survey.lrz.de/index.php/885115?lang=en

https://survey.lrz.de/index.php/885115?lang=en

