

AI Training Series
Introduction to the LRZ AI Systems
05.11.2024 | Ajay Navilarekal, Darshan Thummar

Agenda

1. Introduction to the
LRZ AI Systems

q Overview of the LRZ AI
Systems

q Access to the LRZ AI
Systems

q NVIDIA NGC Cloud
q Introduction to Enroot

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and

extend an Enroot
container

4

3. Fully Sharded Data
Parallel

q Introduction to Fully
Sharded Data Parallel

q Exercise: Train VGG-199
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional
Neural Networks

q Exercise: Train VGG-19 on a
GPU

q Introduction to Distributed
Training

q Exercise: Train VGG-199 on
2 GPUs using DDP

5

Planned breaks

• 11:30 – 11:45 Coffee Break I
• 12:30 – 13:30 Lunch break
• 15:00 – 15:15 Coffee Break II

7

Overview of the LRZ Systems
1. Introduction to the LRZ AI Resources

Data Science
Archive (DSA)

LRZ Linux Cluster LRZ Compute CloudLRZ AI Systems
• “Big Data” CPU nodes
• HPE P100 node
• V100 nodes
• DGX-1 P100, DGX-1 V100
• Multiple DGX A100CoolMUC-2 Teramem-2 CoolMUC-3

LRZ Compute Cloud
(w/ some GPUs)

lxlogin[1-3].lrz.de
lxlogin8.lrz.de

login.ai.lrz.de
https://cc.lrz.de

Data Science Storage
(DSS)

Archive and
Backup (ABS)

https://login.ai.lrz.de

Multi-purpose cluster systems might be
used for AI workloads as well, but have
different focus Designed and Configured for AI

Flexible system that copes with almost any
workload

8

Overview of the LRZ AI Systems
1. Introduction to the LRZ AI Resources

HGX H100
Architecture

DGX A100
Architecture

DGX A100
Architecture

MIG

DGX-1 V100
Architecture

DGX-1 P100
Architecture

HPE Intel
Skylake +

Nvidia Node

V100 GPU
Nodes

CPU Nodes

Number of
Nodes

30 4 1 1 1 1 4 12

CPU cores
per node

96 252 252 76 76 28 19 18 / 28 / 38 /
94

Memory per
node

768GB 2 TB 1 TB 512 GB 512 GB 256 GB 368 GB min. 360 GB

GPUs per
node

4 NVIDIA
H100

8 NVIDIA
A100

8 NVIDIA A100
(16 MIG

partitions)

8 Nvidia Tesla
V100

8 Nvidia Tesla
P100

4 Nvidia Tesla
P100

2 Nvidia Tesla
V100

--

Memory per
GPU

94 GB 80 GB 40 GB (20GB
per MIG
partition)

16 GB 16 GB 16GB 16 GB --

SLURM
Partition

lrz-hgx-h100-
92x4

lrz-dgx-a100-
80x8

lrz-dgx-a100-
40x8-mig

lrz-dgx-1-
v100x8

lrz-dgx-1-
p100x8

lrz-hpe-
p100x4

lrz-v100x2 lrz-cpu

Nodes lrz-hgx-h100-
[001-030]

lrz-dgx-a100-
[001-002,004-

005]

lrz-dgx-a100-
003

dgx-002 dgx-001 p100-001 gpu-[001-
003,005]

cpu-[001-012]

9

Storage on the LRZ AI Systems
1. Introduction to the LRZ AI Resources

Storage Pool Designated Use Top-level
Directory

Size Limit Automated
Backup

Expiration Additional
Information

Home directory unified home directory with the
LRZ Linux Cluster, created when
LRZ Linux Cluster access is
granted
Not suitable for heavy and/or
high-frequency I/O operations -
use the AI Systems DSS instead.

/dss/dsshome1
/.../<user>

100 GB yes, backup
to tape and
file system
snapshots

lifetime of
LRZ project

File Systems and
IO on Linux-
Cluster

AI Systems DSS high-bandwidth, low latency I/O,
access is granted upon request
through the LRZ Servicedesk

/dss/dssfs04 up to 4 TB no until further
notice

Linux Cluster DSS general purpose, long-term data
storage

/dss/dssfs02
/dss/dssfs03

up to 10 TB
(or 20TB+ with
associated costs)

yes for paid
DSS / no for
the free tier

lifetime of
data project

File Systems and
IO on Linux-
Cluster (or DSS on
demand offer with
associated costs)

Exclusive/private
DSS systems

specified by the system owner,
can be purchased, implemented
and housed exclusively for a
private group of dedicated users

/dsslegfs01
/dsslegfs02
/dssmcmlfs01

specified by the
system owner

specified by
the system
owner

specified by
the system
owner

Data Science
Storage ("joint
project offer")

https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster
https://doku.lrz.de/display/PUBLIC/File+Systems+and+IO+on+Linux-Cluster
https://doku.lrz.de/data-science-storage-10745685.html
https://doku.lrz.de/display/PUBLIC/Data+Science+Storage

• User requirements to get the access:
1. Own / get a Linux Cluster account:

https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+the+Linux-Cluster
2. Submit a service request to LRZ Servicedesk – select "AI topics" and "LRZ AI Systems -

Request for Access" from the drop-down lists. Request has to include Linux Cluster
account username and a description of the intended usage.

• Login node login.ai.lrz.de accessible via SSH:

• Make sure you are connected to the Munich Scientific Network (MWN).
• Provide your LRZ Linux Cluster credentials to log in.

Access to the LRZ AI Systems – How to access?
1. Introduction to the LRZ AI Resources

10

$ ssh --login_name=xxyyyzz login.ai.lrz.de

https://doku.lrz.de/display/PUBLIC/Access+and+Login+to+the+Linux-Cluster
https://servicedesk.lrz.de/en/ql/create/23

11

Access to the LRZ AI Systems – Slurm: sinfo, salloc, srun & scancel
1. Introduction to the LRZ AI Resources

$ ssh --login_name=xxyyyzz login.ai.lrz.de

$ sinfo

$ salloc --partition=lrz-v100x2 --gres=gpu:1

$ scancel job_id

$ squeue --user=xxyyzzz

$ srun --pty bash

Executes in the login node

https://slurm.schedmd.com/overview.html

https://slurm.schedmd.com/overview.html

12

• The NGC catalogue provides access to GPU
accelerated software that speeds up end-to-end
workflows with performance optimized containers,
pretrained AI models, and SDKs that can be
deployed on any NVIDIA’s GPU powered systems.

• The NVIDIA Container Toolkit includes a container
runtime library and utilities to automatically
configure containers to leverage NVIDIA GPUs.

• The NVIDIA CUDA Toolkit, incorporated within
each GPU-accelerated container in NGC, is the
development environment for creating high
performance NVIDIA GPU-accelerated applications.

• https://catalog.ngc.nvidia.com

Nvidia NGC Containers
1. Introduction to the LRZ AI Resources

https://catalog.ngc.nvidia.com/

13

Nvidia NGC Containers
1. Introduction to the LRZ AI Resources

14

Nvidia NGC Containers – Setting up credentials
1. Introduction to the LRZ AI Resources

• Create the file enroot/.credentials within your $HOME and insert the following lines in it:

• Where <KEY> is the API key generated and copied in the previous step.
• Introduce a new line after < KEY>.

• Now you can import containers from Nvidia NGC on compute nodes of LRZ AI Systems,
e.g. a Pytorch container, with:

15

Nvidia NGC Containers – Setting up credentials
1. Introduction to the LRZ AI Resources

machine nvcr.io login $oauthtoken password < KEY>
machine authn.nvidia.com login $oauthtoken password <KEY>

$ enroot import docker://nvcr.io/nvidia/pytorch:24.08-py3

16

• Enroot container runtime operates
completely in user space.

• It allows to run containers defined by
container images from the NVIDIA
NGC Cloud or from the Docker Hub.

• Not available on the login node, but
on the compute nodes!

• The Enroot Workflow:
I. Import an Enroot Container

Image – resulting in sqsh file
II. Create an Enroot Container with

create,
III. Run software inside an existing

Enroot Container with start.

Introduction to Enroot: The Software Stack Provider for the AI Systems
1. Introduction to the LRZ AI Resources

$ enroot import docker://nvcr.io/nvidia/pytorch:24.10-py3

$ enroot create nvidia+pytorch+24.10-py3.sqsh

$ enroot start nvidia+pytorch+24.10-py3

Executes in the allocated compute node

Executes in the login node

$ salloc --partition=lrz-hpe-p100x4 --gres=gpu:1

$ srun --pty bash

17

• Interactive jobs are
submitted to an existing
allocation of resources
using the srun command.

• We can mount existing
data from outside of the
container into container.

• Enroot container creation
and job submission in a
single step can be done
via a plugin called pyxis.

Running Applications as Interactive Jobs
1. Introduction to the LRZ AI Resources

Executes in the allocated compute node

$ salloc --partition=lrz-hpe-p100x4 --gres=gpu:1

Executes in the login node

$ srun --pty \
--container-mounts=./:/workspace \
--container-image=nvcr.io/nvidia/pytorch:24.10-py3 bash

$ python /workspace/exercise1.py

If Enroot Container Image
is already imported

If Enroot Container Image
has not been imported

$ srun --pty \
--container-mounts=./:/workspace \
--container-image=path/to/your/container.sqsh bash

18

• Batch jobs are the preferred and quicker
way of using the LRZ AI Systems.

• Batch job is queued and executed when
the resources are available.

• It does the allocation and running of the
job for you (instead of salloc and srun).

• The sbatch command submits jobs
described in a sbatch script file.

• You need to specify the partition and
number of GPUs that you want to use.

• Two additional required arguments:
output and error messages file.

Running Applications as Batch Jobs
1. Introduction to the LRZ AI Resources

#!/bin/bash
#SBATCH -p lrz-hpe-p100x4
#SBATCH --gres=gpu:1
#SBATCH -o exercise1.out
#SBATCH -e exercise1.err

srun \
--container-mounts=‘./:/workspace’ \
--container-image=‘nvcr.io/nvidia/pytorch:24.10-py3’ \
python /workspace/exercise1.py

$ sbatch exercise1.sbatch

Executes in the login node

• If your image does not supply the CUDA Toolkit, do not install it within the image, because this fixes paths to
the existing NVIDIA driver on the target machine and might crash if the NVIDIA driver is upgraded.

• Instead add the following environment variables within the container, and the container runtime will copy
within the container the needed libraries. Refer to https://docs.nvidia.com/datacenter/cloud-native/container-
toolkit/latest/docker-specialized.html for more information on the accepted values of these variables.

19

Dealing with base images from catalogues other than NGC
1. Introduction to the LRZ AI Resources

Executes in the allocated resource
$ enroot import docker://some/image-no-cuda

$ enroot create --name base_container some+image-no-cuda.sqsh

echo "NVIDIA_DRIVER_CAPABILITIES=compute,utility" >> /etc/environment
echo "NVIDIA_REQUIRE_CUDA=cuda>=9.0" >> /etc/environment
echo "NVIDIA_VISIBLE_DEVICES=all" >> /etc/environment

$ exit

$ enroot export --output base_image.sqsh base_container

$ enroot start base_container bash

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/docker-specialized.html

• If your workload depends on a package not provided by the used image.

• For installing some applications you need to be root within the container (e.g., installing software using
the apt package manager in Debian and Ubuntu-based containers.) In this case, add the --root flag.

20

Creating an extended Enroot image
1. Introduction to the LRZ AI Resources

Executes in the allocated resource

$ enroot create --name custom_container nvidia+pytorch+24.08-py3.sqsh

$ enroot start custom_container

$ pip install --no-cache-dir lightning
$ HOROVOD_GPU_OPERATIONS=NCCL pip install --no-cache-dir horovod

$ exit

$ enroot export --output custom_container.sqsh custom_container

Executes in the allocated resource
$ enroot start --root my_container

$ apt update
$ apt install python3-dev

• Jupyter Notebook, JupyterLab, RStudio Server and TensorBoard

• Available at https://login.ai.lrz.de

• To start e.g. a Jupyter Notebook session select from the top panel:
"Interactive Apps" => “Jupyter Notebook”

• For a typical use-case:
• select the type of resources (CPU only or CPU + single GPU)
• specify your workload (a combination of CPU core and RAM requirements)
• select the container environment you want to work with (e.g. available PyTorch or Tensorflow

container, or a custom container)
• finally, specify the number of hours you plan to work (be aware that your session will be shut

down when this time limit is reached, and any unsaved work will then be lost).

21

Access to AI Systems through interactive web servers
1. Introduction to the LRZ AI Resources

https://login.ai.lrz.de/

22

Access to AI Systems through interactive web servers
1. Introduction to the LRZ AI Resources

23

Public Datasets and Containers on the LRZ AI Systems
1. Introduction to the LRZ AI Resources

• Dedicated DSS container for storing public datasets and Enroot container images of interest to researchers.
• Procedure to request the addition of public datasets / Enroot images:

• make sure the dataset / Enroot image is licensed for public usage and requires no individual license nor
registration, and in case of an Enroot image make sure the image is not provided by the Nvidia NGC,
Dockerhub or another public repository directly

• open a ticket with the LRZ Servicedesk, providing the location of the dataset / Dockerfile for building the
image, and a justification for public interest (including the expected target audience)

• provide instructions for downloading the dataset (ideally shell script) / building the image (if non-standard).

Dataset Location Version Licence

AlphaFold /dss/dssfs04/pn69za/pn69za-dss-
0004/datasets/alphafold_2024

Last update March 2024 following the
instructions here https://github.com/
deepmind/alphafold#genetic-databases

https://github.com/deepmind/alp
hafold#license-and-disclaimer

COCO-Stuff dss/dssfs04/pn69za/pn69za-dss-
0004/datasets/cocostuff/

2020 Update (train2017.zip, val2017.zip,
annoations_trainval2017.zip,
stuff_annotations_trainval2017.zip)

https://cocodataset.org/#termsof
use

Visual Genome dss/dssfs04/pn69za/pn69za-dss-
0004/datasets/visualgenome/

Version 1.4 of dataset completed as of July 2017 Creative Commons Attribution
4.0 International License

https://servicedesk.lrz.de/en/ql/create/159
https://github.com/%20deepmind/alphafold
https://github.com/deepmind/alphafold
https://cocodataset.org/

Interactive job Batch job

24

Summary
1. Introduction to the LRZ AI Resources

$ ssh -l xxyyyzz login.ai.lrz.de

Executes in the login node login-1

$ salloc --partition=dgx-1-p100 --gres=gpu:1

$ sinfo

Executes in the allocated resource

$ python /workspace/exercise1.py

$ srun --pty --container-mounts=./:/workspace \
--container-image=nvcr.io/nvidia/pytorch:24.08-py3 bash

#!/bin/bash
#SBATCH -p lrz-dgx-a100-80x8
#SBATCH --gres=gpu:1
#SBATCH -o exercise1.out
#SBATCH -e exercise1.err

srun --container-mounts=‘./:/workspace’ \
--container-image=‘nvcr.io/nvidia/pytorch:24.08-py3’ \
python /workspace/exercise1.py

$ sbatch exercise1.sbatch

Executes in the login node datalab2

https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems

https://login.ai.lrz.de

Command line

Web browser

https://doku.lrz.de/display/PUBLIC/LRZ+AI+Systems
https://login.ai.lrz.de/

25

Hands-On Exercise 0

1. Write a job script to import and extend a container
2. Execute and create your own container

Job script info:
1. partition: lrz-hgx-h100-92x4
2. reservation: aits
3. gpu resources: 1

26

Creating an extended Enroot image
Hands-On Exercise 0

Agenda

1. Introduction to the
LRZ AI Systems

q Overview of the LRZ AI
Systems

q Access to the LRZ AI
Systems

q NVIDIA NGC Cloud
q Introduction to Enroot

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and

extend an Enroot
container

28

3. Fully Sharded Data
Parallel

q Introduction to Fully
Sharded Data Parallel

q Exercise: Train VGG-199
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional
Neural Networks

q Exercise: Train VGG-19 on a
GPU

q Introduction to Distributed
Training

q Exercise: Train VGG-199 on
2 GPUs using DDP

29

Introduction to Convolutional Neural Networks
2. Data Distributed Training

https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

• Main idea: increasing depth of CNNs
• 3 × 3 conv. layers with a stride of 1 -

small receptive fields (compared to prev.
11 × 11 with a stride of 4 in AlexNet)

• 1 × 1 conv. to make the decision function
more non-linear without changing the
receptive fields

• ReLU activation function
• ImageNet dataset – 4 days of training
• 19 layers – 144M parameters

30

Convolutional Neural Network Architectures – VGG (Visual Geometry Group)
2. Data Distributed Training

https://arxiv.org/pdf/1409.1556.pdf

32

CIFAR10 Data
2. Data Distributed Training

download the data
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor(), download=True)

transform to DataLoader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

https://www.cs.toronto.edu/~kriz/cifar.html

Input size: 32x32x3

• Pre-trained model is a saved network that was
previously trained on a large dataset.

• Feature Extraction: Use the feature maps from
the pre-trained model to detect features in the
new samples. Add a new classifier, which will
be trained from scratch to make predictions.

• Fine-Tuning: Unfreeze a few top layers of a
pretrained model and jointly train both the
newly-added classifier layers and the last
layers of the base model. This allows us "fine-
tune" the higher-order feature maps to make
them more relevant for the specific task.

33

Transfer learning – Pretrained Convolutional Neural Networks
2. Data Distributed Training

import torchvision.models as models
model = models.vgg19(weights=‘IMAGENET1K_V1’)

import torchvision.models as models
model = models.resnet34(weights=‘IMAGENET1K_V1’)

• GPUs in comparison to CPUs:
• GPU allows parallel running of repetitive

calculations within an application
• CPU can be thought of as the taskmaster of the

entire system, coordinating a wide range of
general-purpose computing tasks

• GPU performs a narrower range of more
specialized tasks (e.g., matrix multiplications)

• CPUs are faster than GPUs in scalar
multiplications.

• GPUs are faster than CPUs in matrix
multiplications.

34

Neural Networks and GPUs - Why?
2. Data Distributed Training

SLOW
ER

35

Neural Networks and GPUs - How?
2. Data Distributed Training

Device configuration - cpu
device = torch.device('cpu’)

Device configuration - gpu
device = torch.device(‘cuda’)

Model to device
model = model.to(device)

Data to device
images = images.to(device=device)
labels = labels.to(device=device)

36

Hands-On Exercise 1

1. Make a batch-size vs epoch time table
2. Pull the GitHub repo: https://github.com/LRZ-BADW/ai-

systems.git
3. Explore the code
4. Write a job script to run the code
5. Play with the batch size and note the time

Job script info:
• partition: lrz-hgx-h100-92x4
• reservation: aits
• gpu resources: 1

37

VGG-19 + CIFAR10 on a GPU
Hands-On Exercise 1

Batch
Size

1 GPU 2 GPU

https://github.com/LRZ-BADW/ai-systems.git

ImageNet

14,197,122 images
(150 GB)

38

Common Crawl

2.95 billion web pages
(351.844 TB)

BigScience
Multilingual Dataset

for Language
Modeling

350 billion tokens
(1.5 TB)

46 languages

Pile: Dataset of
Diverse Text for

Language Modeling

800GB

Increasing Amount of Data Available for Deep Learning
2. Data Distributed Training

https://paperswithcode.com/dataset/imagenet https://bigscience.huggingface.co/blog/building-a-tb-
scale-multilingual-dataset-for-language-modeling

https://commoncrawl.org/https://arxiv.org/abs/2101.00027

• Based on package torch.distributed for
synchronizing gradients.

• DDP registers a hook for each parameter that
fires when the corresponding gradient is
computed in the backward pass. That signal is
used to trigger gradient synchronization across
processes.

• Runs across multiple GPUs and across multiple
machines/nodes.

• Near-linear scalability

Li et al., 2020, arXiv:2006.15704
https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#basic-use-case

40

Pytorch Distributed Data Parallel
2. Data Distributed Training import torch.distributed as dist

import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP

def setup(rank, world_size):
#environment variables for using torch.distributed
os.environ['MASTER_ADDR'] = 'localhost’
os.environ['MASTER_PORT'] = '12355’

#initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)

def main(rank, world_size, args):
#setup DDP
setup(rank, world_size)
#create a model…..
#wrap model in DDP
ddp_model = DDP(model, device_ids=[rank])
#define loss function and optimizer…
#forward pass…
#backward pass and update parameters….
#cleanup
dist.destroy_process_group()

if __name__=="__main__":

world_size = torch.cuda.device_count()
batch_size = int(batch_size / world_size)
mp.spawn(main, args=(world_size, args), nprocs=world_size,

join=True)

https://pytorch.org/docs/master/notes/ddp.html
https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Data Parallel

41

Data Distributed Parallel Training of NNs
2. Data Distributed Training

🦁

🦋

🐠

🦒

Worker 1

Worker 2

42

Hands-On Exercise 2

Title | Date | Author

1. Refer to batch-size vs epoch time table
2. Pull the GitHub repo: https://github.com/LRZ-BADW/ai-

systems.git
3. Explore the code
4. Write a job script to run the code
5. Play with the batch size and note the time

Job script info:
• partition: lrz-hgx-h100-92x4
• reservation: aits
• gpu resources: 2

43

VGG-19 + CIFAR10 on 2 GPUs - DDP
Hands-On Exercise 2

Batch
Size

1 GPU 2 GPU

https://github.com/LRZ-BADW/ai-systems.git

Agenda

1. Introduction to the
LRZ AI Systems

q Overview of the LRZ AI
Systems

q Access to the LRZ AI
Systems

q NVIDIA NGC Cloud
q Introduction to Enroot

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and

extend an Enroot
container

44

3. Fully Sharded Data
Parallel Training

q Introduction to Fully
Sharded Data Parallel

q Exercise: Train VGG-199
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional
Neural Networks

q Exercise: Train VGG-19 on a
GPU

q Introduction to Distributed
Training

q Exercise: Train VGG-199 on
2 GPUs using DDP

• Inspired by ZeRO Stage 3 from
DeepSpeed

• Ideal for training large models that do
not fit into a single GPU

• Model parameters, gradients and
optimizer states are sharded across
GPUs

45

Fully Sharded Data Parallel
3. Fully Sharded Data Parallel Training import torch.distributed as dist

import torch.multiprocessing as mp
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP

def setup(rank, world_size):
#environment variables for using torch.distributed
os.environ['MASTER_ADDR'] = 'localhost’
os.environ['MASTER_PORT'] = '12355’

#initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)

def main(rank, world_size, args):
#setup FSDP
setup(rank, world_size)
#create a model…..
#wrap model in FSDP
fsdp_model = FSDP(model)
#define loss function and optimizer…
#forward pass…
#backward pass and update parameters….
#cleanup
dist.destroy_process_group()

if __name__=="__main__":

world_size = torch.cuda.device_count()
batch_size = int(batch_size / world_size)
mp.spawn(main, args=(world_size, args), nprocs=world_size,

join=True)

46

Fully Sharded Data Parallel
3. Fully Sharded Data Parallel Training

Image from: https://towardsdatascience.com/pytorch-lightning-vs-deepspeed-vs-fsdp-vs-ffcv-vs-e0d6b2a95719

https://towardsdatascience.com/pytorch-lightning-vs-deepspeed-vs-fsdp-vs-ffcv-vs-e0d6b2a95719

Data Parallel

47

Data Distributed Parallel Training of NNs
3. Fully Sharded Data Parallel Training

🦁

🦋

🐠

🦒

Worker 1

Worker 2

48

Hands-On Exercise 3

1. Refer to batch-size vs epoch time table
2. Pull the GitHub repo: https://github.com/LRZ-BADW/ai-

systems.git
3. Explore the code
4. Write a job script to run the code
5. Play with the batch size and note the time

Job script info:
• partition: lrz-hgx-h100-92x4
• reservation: aits
• gpu resources: 2

49

VGG-19 + CIFAR10 on 2 GPUs - FSDP
Hands-On Exercise 3

Batch
Size

1 GPU 2 GPU

https://github.com/LRZ-BADW/ai-systems.git

51

The End!

Agenda

1. Introduction to the
LRZ AI Systems

q Overview of the LRZ AI
Systems

q Access to the LRZ AI
Systems

q NVIDIA NGC Cloud
q Introduction to Enroot

Containers
q Interactive and Batch Jobs
q Open on Demand
q Exercise: Run a job and

extend an Enroot
container

52

3. Fully Sharded Data
Parallel Training

q Introduction to Fully
Sharded Data Parallel

q Exercise: Train VGG-19
on 2 GPUs using FSDP

2. Data Distributed
Training

q Introduction to Convolutional
Neural Networks

q Exercise: Train VGG-19 on a
GPU

q Introduction to Distributed
Training

q Exercise: Train VGG-19 on 2
GPUs using DDP

54

Announcements

• Half day event

• BYOC – Bring Your Own Code

• Hands-on & mentoring on scaling/parallelizing your code

• Write us at – Ajay.Navilarekal@lrz.de or Darshan.Thummar@lrz.de

55

Hackathon
Announcements

mailto:Ajay.Navilarekal@lrz.de
mailto:Darshan.Thummar@lrz.de

57

Feedback Survey
Announcements

https://survey.lrz.de/index.php/885115?lang=en

https://survey.lrz.de/index.php/885115?lang=en

