Leibniz Supercomputing Centre

of the Bavarian Academy of Sciences and Humanities

Using R at LRZ

April 2021

Parallelization Using R
Using R at LRZ | April 2021

HPC Cluster Systems

Pruned Tree

Switch / / \

Fat Tree

Node

Island

Accelerator: GPU, FPGA
Socket
Core

28
a1 =l

Using R at LRZ | April 2021 4

Parallelization

Motivation:

e You have a lot of (more or less) indepen-
dent tasks or

e You want to accelerate a single complex
task -> it might be possible to turn the
single complex task into many (more or
less) independent tasks

...and you have access to a (massively
parallel) supercomputer!

Using R at LRZ | April 2021

Parallelization Scenario. Embarrassingly/Pleasingly Parallel

Using R at LRZ | April 2021

many independent processes
(10 - 100.000)

individual task (list) for each process
private memory for each process
Nno communication between processes

results are stored separately on a (large)
storage medium

Parallelization Scenario: Worker Queue

Using R at LRZ | April 2021

many independent processes
(10 - 100.000)

central task scheduler (database)
private memory for each process
results are sent back to task scheduler
re-scheduling of failed tasks possible

Parallelization Scenario. Shared Memory

« a few processes working closely together
(10-100)

» single task list (script/program)

e shared memory

(cache coherent non-uniform memory
architecture aka ccNUMA)

* results are kept in shared memory

Using R at LRZ | April 2021

Parallelization Scenario: Message Passing

 many independent processes
(10 - 100.000)

e one task list (script/program) for all processes

e each process can (in principle) talk to every
other process

e private memory

 needs communication strategy in order to
scale (area of optimization, e.g. nearest
neighbor communication)

e beware of deadlocks!

Using R at LRZ | April 2021

https://cran.r-project.org/web/views/HighPerformanceComputing.html

CRAN Task View: High-Performance and Parallel Computing

CRAN Task View: High-Performance and Parallel Computing with R

Maintainer: Dirk Eddelbuettel

Contact: Dirk Eddelbuettel at R-project.org

Version: 2018-08-27

URL: https://CRAN R-project.org/view=HighPerformanceComputing

This CRAN task view contains a list of packages, grouped by topic, that are useful for high-performance computing (HPC) with R. In this context, we are defining 'high-performance computing' rather loosely as just about anything related to pushing R a little further: using compiled code, parallel
computing (in both explicit and implicit modes), working with large objects as well as profiling.

Unless otherwise mentioned, all packages presented with hyperlinks are available from CRAN, the Comprehensive R Archive Network.
Several of the areas discussed in this Task View are undergoing rapid change. Please send suggestions for additions and extensions for this task view to the task view maintainer .

Suggestions and corrections by Achim Zeileis, Markus Schmidberger, Martin Morgan, Max Kuhn, Tomas Radivoyevitch, Jochen Knaus, Tobias Verbeke, Hao Yu, David Rosenberg, Marco Enea, Ivo Welch, Jay Emerson, Wei-Chen Chen, Bill Cleveland, Ross Boylan, Ramon Diaz-Uriarte, Mark
Zeligman, Kevin Ushey, Graham Jeffries, Will Landau, Tim Flutre, Reza Mohammadi, Ralf Stubner, and Bob Jansen (as well as others I may have forgotten to add here) are gratefully acknowledged.

Contributions are always welcome, and encouraged. Since the start of this CRAN task view in October 2008, most contributions have arrived as email suggestions. The source file for this particular task view file now also reside in a GitHub repository (see below) so that pull requests are also
possible.

The ctv package supports these Task Views. Its functions install.views and update.views allow, respectively, installation or update of packages from a given Task View; the option coreonly can restrict operations to packages labeled as core below.

: Direct support in R started with release 2.14.0 which includes a new package parallel incorporating (slightly revised) copies of packages
~multicore and snow. Some types of clusters are not handled directly by the base package 'parallel'. However, and as explained in the package

Parallel computing: Explicit parallelism

» Several packages provide the communications layer required for parallel computing. The first package in this area was rpvm by Li and Rossini which uses the PVM (Parallel Virtual Machine) standard and libraries. rpvm is no longer actively maintained, but available from its CRAN archive
directory.

+ In recent years, the alternative MPI (Message Passing Interface) standard has become the de facto standard in parallel computing. It is supported in R via the Rmpi by Yu. Rmpi package is mature yet actively maintained and offers access to numerous functions from the MPI API, as well as
number of R-specific extensions. Rmpi can be used with the LAM/MPI, MPICH / MPICH2, Open MPI, and Deino MPI implementations. It should be noted that LAM/MPI is now in maintenance mode, and new development is focused on Open MFPI.

« The pbdMPT package provides S4 classes to directly interface MPI in order to support the Single Program/Multiple Data (SPMD) parallel programming style which is particularly useful for batch parallel execution. The pbdSLAP builds on this and uses scalable linear algebra packages
(namely BLACS, PBLAS, and ScaLAPACK) in double precision based on ScaLAPACK version 2.0.2. The pbdBASE builds on these and provides the core classes and methods for distributed data types upon which the ppdDMAT builds to provide distributed dense matrices for
"Programming with Big Data". The pbdNCDF4 package permits multiple processes to write to the same file (without manual synchronization) and supports terabyte-sized files. The pbdDEMO package provides examples for these packages, and a detailed vignette. The pbdPROF package
profiles MPI communication SPMD code via MPI profiling libraries, such as fpmpi, mpiP, or TAU.

« An alternative is provided by the nws (NetWorkSpaces) packages from REvolution Computing. It is the successor to the earlier LindaSpaces approach to parallel computing, and is implemented on top of the Twisted networking toolkit for Python.

+ The snow (Simple Network of Workstations) package by Tierney et al. can use PVM, MPI, NWS as well as direct networking sockets. It provides an abstraction layer by hiding the communications details. The snowFT package provides fault-tolerance extensions to snow.

« The snowfall package by Knaus provides a more recent alternative to snow. Functions can be used in sequential or Da.rallcl mode.

The foreach package allows genera] iteration over elements in a collection without the use of an explicit loop counter.

« The Rbenst packagc employs OpchP pragmas to cxplult prcdlclor-lcvcl pa.ra.]lc]lsm in the Random Forest algorithm whu:h promotes efficient use of multlcorc ha.rdwa.m in restaging data and in dc!crmmmg splitting criteria, both of which are performance botllcnccks in the algorithm.
» The h20 package connects to the h2o open source machine learning environment which has scalable implementations of random forests, GBM, GLM (with elastic net regularization), and deep learning.

» The randomForestSRC package can use both OpenMP as well as MPI for random forest extensions suitable for survival analysis, competing risks analysis, classification as well as regression

« The parSim package can perform simulation studies using one or multiple cores, both locally and on HPC clusters.

« The gsub package can submit commands to run on gridengine clusters.

Using R at LRZ | April 2021

11

(Explicit) Parallelization Using R

 Embarrassingly/pleasingly parallel (independent processes):

e basic approach: start as many R processes as you need in the shell with different
Scripts

Using R at LRZ | April 2021

12

Parallelization Using R: Embarrassingly/Pleasingly parallel

R R R

Embarrassingly/Pleasingly
Parallel

$ R -f script.R &

Using R at LRZ | April 2021

13

Parallelization Using R: Embarrassingly/pleasingly parallel

Use the command line to start your R process (in the background):

If you do this repeatedly, the resulting R processes will be distributed by the OS to
different cores (subject to availability):

To further automate this procedure, you could write a bash script (run_all R_scripts.sh)
containing these commands and then run this single script:

Do not start more processes than cores!
Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!

Using R at LRZ | April 2021 14

Parallelization Using R: Embarrassingly/pleasingly Parallel

Let’s look at a toy problem:

for(i in 1:20) sum(sort(runif(1e7)))

Are there parallelization opportunities?
Add a time measurement:

system.time(for(i in 1:20) sum(sort(runif(1e7))))

You might also be familiar with alternatives like the following:

lapply(1:20, function(x) sum(sort(runif(l1e7))))

Using R at LRZ | April 2021

15

(Explicit) Parallelization Using R

 Embarrassingly/pleasingly parallel (independent processes):

e basic approach: start as many R processes as you need in the shell with different
Scripts

 Worker Queue (weak coupling, shared file system or database):

e a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

Using R at LRZ | April 2021

16

Parallelization Using R: Worker Queue

:

R R R

Shared file system or
Embarrassingly/Pleasingly database
Parallel

job steps/srun, batchtools,
$ R -f script.R & rredis/doRedis

Using R at LRZ | April 2021

17

https://mllg.github.io/batchtools/
Parallelization Using R: batchtools

“batchtools provides a parallel implementation of Map for high performance computing
systems managed by schedulers like Slurm, ...

o all relevant batch system operations (submitting, listing, killing) are either handled
Internally or abstracted via simple R functions

« with a well-defined interface, the source is independent from the underlying batch system
- prototype locally, deploy on any high performance cluster”

l.e. a (interactive) R process is used in combination with the shared file system and the
workload manager of the cluster to distribute workloads across nodes

Using R at LRZ | April 2021 18

Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a
blocking queue-like data structure (Redis “lists™). This feature makes Redis useful as a lightweight
back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else,
containing the problem description(s). Worker processes connect to this server and tasks are
assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as
long as they can connect to the server). When running on the cluster, you have to deal with resource
allocation separately (via the Slurm workload manager) and potential firewall access restrictions.

Using R at LRZ | April 2021 19

(Explicit) Parallelization Using R

 Embarrassingly/pleasingly parallel (independent processes):

e basic approach: start as many R processes as you need in the shell with different
Scripts

 Worker Queue (weak coupling, shared file system or database):

e a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

e Shared Memory (strong coupling):

e one R process spawns sub-processes on a single node with many cores
(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

Using R at LRZ | April 2021

20

Parallelization Using R: Shared Memory

R R R

Shared file system or
Embarrassingly/Pleasingly database
Parallel Shared memory

job steps/srun, batchtools,
rredis/doRedis parallel/doParallel

Using R at LRZ | April 2021 21

Shared Memory Parallelization: Multithreading with doParallel

* As seen earlier, the for loop construct in R:
for(i in 1:20) sum(sort(runif(1e7)))
serlal execution/single thread

* “The foreach package provides a new looping construct for executing R code repeatedly.
[...] It supports parallel execution, that Is, it can execute those repeated operations on
multiple processors/cores on your computer, or on multiple nodes of a cluster.”

library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(le7))) # serial execution

foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))
multithread execution (?)

22

Using R at LRZ | April 2021

Shared Memory Parallelization: Multithreading with doParallel

* This is were the “do-back ends” (e.g. doParallel) come into play...

« By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel
resources, e.g. using parallel’'s multicore-like functionality (“forking”):

library(foreach)
library(doParallel)
registerDoParallel(cores=2)
define number of cores, this enables multicore-functionality
(preferred on GNU/Linux, but won’t work on Windows)
foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))

Using R at LRZ | April 2021

23

Shared Memory Parallelization: Multithreading with doParallel

 The procedure is similar for snow-like functionality:

library(foreach)

library(doParallel)

cluster.object <- makePSOCKcluster(2)
registerDoParallel(cluster.object)

foreach(1i = 1:20) %dopar% sum(sort(runif(1le7)))
stopCluster(cluster.object)

e This uses Rscript to launch further copies of R (on the same host or optionally elsewhere;
In the latter case, hostnames need to be provided)

 [parallel’'s snow-like functionality also allows to create MPI-clusters (makeMPIcluster()-
function) but Rmpi/doMPI is usually recommended to be used instead]

Using R at LRZ | April 2021 24

(Explicit) Parallelization Using R

Embarrassingly/pleasingly parallel (independent processes):

e basic approach: start as many R processes as you need in the shell with different
Scripts

Worker Queue (weak coupling, shared file system or database):

e a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

Shared Memory (strong coupling):

e one R process spawns sub-processes on a single node with many cores
(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

Message Passing (strong coupling):

o several R processes talk to each other (across different nodes) by passing messages
(e.g. Rmpi/doMPI), this also allows for a (single) main and (multiple) workers model

Using R at LRZ | April 2021 25

Parallelization Using R: Message Passing

R R R

Shared file system or
Embarrassingly/Pleasingly database
Parallel Shared memory Message Passing

job steps/srun, batchtools,
rredis/doRedis parallel/doParallel Rmpi/doMPI

Using R at LRZ | April 2021 26

Message Passing with doMPI

* To execute a doMPI script on multiple compute nodes a “message passing environment”

needs to be set up, i.e. the R interpreter needs to be executed using a command such as
mpirun (i.e.mpirun R -f script.R)

* Then, the already familiar ,do-back end“-pattern is put to use within R:

library(foreach)

Llibrary(doMPI)

cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)

foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))
closeCluster(cluster.object)

Using R at LRZ | April 2021 27

More foreach() M

 use times() for simple repetitions:
times(10) %do% sum(sort(runif(le7)))

« foreach is a function with several arguments...
foreach(i = 1:10, .combine = c, ..) %do% sth() # process results

as they get generated, e.g. c(), cbind(), Llist(), sum(),

... evaluates iterators...
foreach(1i = iter(input)) %do% sth() # see package iterators

foreach(i = 1rnorm(100)) %do% sth()

... and provides additional operators:
foreach(1i = 1:10) %:% when(cond) %do% sth() # nesting operator

and condition cf. Python’s list comprehensions

Using R at LRZ | April 2021 28

More parallel

« parallel provides parallel replacements of lapply and related functions (as have snow and
multicore):

« multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))),
mcmapply (X, FUN, ...), mcMap(FUN, ...)

« snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)

Using R at LRZ | April 2021

29

Even More parallel: Futures/Promises

« Constructs for synchronizing program execution. Describe objects that act as proxies for
a result, which is yet unknown (because the computation is incomplete)

 Send command to background and return handle:
handle <- mcparallel(some_expensive function)

« Collect result at later point:
result <- mccollect(handle)

Using R at LRZ | April 2021

30

Futures/Promises

> gystem.time(sum(sort(runif(1e7))))
user system elapsed
1.581 0©.112 1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
user system elapsed
28.875 2.998 31.883

> library(parallel)

> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)

NULL

wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 ..

Using R at LRZ | April 2021 31

https://github.com/HenrikBengtsson/future
Futures/Promises iIrz

« Package future tries to unify the previous approaches:
“The purpose of this package is to provide a lightweight and unified Future API for
sequential and parallel processing of R expressions via futures. [...] Because of its unified
API, there is no need to modify any code in order switch from sequential on the local
machine to, say, distributed processing on a remote compute cluster. ”

o Implicit:
v %<-% { expr } # future assignment , creates a future and a
promise to 1its value (instead of regular assignment <-)

o EXxplicit:
f <- future({ expr }) # creates a future
v <- value(f) # gets the value of the future
(blocks 1f not yet resolved)

Using R at LRZ | April 2021 32

https://github.com/HenrikBengtsson/future
Futures/Promises

« Function plan() allows the user to plan the future, i.e. it specifies how futures()s are
resolved

* For example: plan(sequential) vs. plan(multiprocess)

library("future")

plan(multiprocess)

vV %<-% {
cat("Hello world!\n")
3.14

)

v

Hello wor ld!

[1] 3.14

V.+ + 4+ V V V

Using R at LRZ | April 2021 33

https://github.com/HenrikBengtsson/future
Futures/Promises

Name OSes Description

synchronous: non-parallel:

sequential all seqguentially and in the current R process

transparent all as sequential w/ early signaling and w/out local (for debugging)
asynchronous: parallel:

multiprocess all multicore, if supported, otherwise multisession

multisession all background R sessions (on current machine)

multicore not Windows forked R processes (on current machine)

cluster all external R sessions on current, local, and/or remote machines
remote all simple access to remote R sessions

« Additionally: package future.batchtools provides an implementation of the Future API on
top of the batchtools package, i.e. it allows to process futures (as defined by the future
package) on HPC infrastructure

Using R at LRZ | April 2021 34

https://github.com/HenrikBengtsson/doFuture
doFuture: future and foreach

» Package doFuture provides a %dopar% adaptor for the foreach package such that any
type of future (that is supported by the Future API of the future package) can be used for
asynchronous (parallel/distributed) or synchronous (sequential) processing.

« Example:
library(doFuture)
registerDoFuture()
plan(multiprocess)
foreach(1i = 1:20) %dopar% sum(sort(runif(le7)))

* Look out for the use of foreach (and the possibility to register all these different back
ends) in other R packages!

Using R at LRZ | April 2021

35

https://ropensci.github.io/drake/

... and beyond.

e Drake is a general-purpose workflow manager for data-driven tasks.

* |t rebuilds intermediate data objects when their dependencies change, and it skips work
when the results are already up to date. Not every run-through starts from scratch, and
completed workflows have tangible evidence of reproducibility.

» drake supports scalability, parallel computing (relying on the parallel, future, batchtools,
and future.batchtools packages), and a smooth user experience when it comes to setting
up, deploying, and maintaining data science projects.

.

Up to date

Imported “raw_data.xlsx" raw_data data

® @
File @O® e®

Using R at LRZ | April 2021

36

Conclusion

Parallel programming is here to stay (for the foreseeable future).
Know your hardware...
... and the possibilities of your software/programming environment.

Applying proper (high level) abstractions (foreach, futures,...) to target the features of
modern CPUs/GPUs and supercomputing infrastructure will allow you to write fast and
scalable programs.

Using R at LRZ | April 2021

37

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	HPC Cluster Systems
	Parallelization
	Parallelization Scenario: Embarrassingly/Pleasingly Parallel
	Parallelization Scenario: Worker Queue
	Parallelization Scenario: Shared Memory
	Parallelization Scenario: Message Passing
	CRAN Task View: High-Performance and Parallel Computing
	(Explicit) Parallelization Using R
	Parallelization Using R: Embarrassingly/Pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly Parallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Worker Queue
	Parallelization Using R: batchtools
	Parallelization Using R: rredis/doRedis
	(Explicit) Parallelization Using R
	Parallelization Using R: Shared Memory
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Message Passing
	Message Passing with doMPI
	More foreach()
	More parallel
	Even More parallel: Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	doFuture: future and foreach
	… and beyond.
	Conclusion

