

Using R at LRZ
April 2021

Parallelization Using R
Using R at LRZ | April 2021

HPC Cluster Systems

Accelerator: GPU, FPGA
Socket
Core

Using R at LRZ | April 2021 4

Parallelization

Motivation:
• You have a lot of (more or less) indepen-

dent tasks or

• You want to accelerate a single complex
task -> it might be possible to turn the
single complex task into many (more or
less) independent tasks

…and you have access to a (massively
parallel) supercomputer!

5Using R at LRZ | April 2021

Parallelization Scenario: Embarrassingly/Pleasingly Parallel

• many independent processes
(10 - 100.000)

• individual task (list) for each process
• private memory for each process
• no communication between processes
• results are stored separately on a (large)

storage medium

6Using R at LRZ | April 2021

Parallelization Scenario: Worker Queue

• many independent processes
(10 - 100.000)

• central task scheduler (database)
• private memory for each process
• results are sent back to task scheduler
• re-scheduling of failed tasks possible

7Using R at LRZ | April 2021

Parallelization Scenario: Shared Memory

• a few processes working closely together
(10-100)

• single task list (script/program)
• shared memory

(cache coherent non-uniform memory
architecture aka ccNUMA)

• results are kept in shared memory

8Using R at LRZ | April 2021

Parallelization Scenario: Message Passing

• many independent processes
(10 - 100.000)

• one task list (script/program) for all processes
• each process can (in principle) talk to every

other process
• private memory
• needs communication strategy in order to

scale (area of optimization, e.g. nearest
neighbor communication)

• beware of deadlocks!

9Using R at LRZ | April 2021

11Using R at LRZ | April 2021

CRAN Task View: High-Performance and Parallel Computing
https://cran.r-project.org/web/views/HighPerformanceComputing.html

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts

12Using R at LRZ | April 2021

Parallelization Using R: Embarrassingly/Pleasingly parallel

13Using R at LRZ | April 2021

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

Parallelization Using R: Embarrassingly/pleasingly parallel

• Use the command line to start your R process (in the background):
$ Rscript script0.R &

• If you do this repeatedly, the resulting R processes will be distributed by the OS to
different cores (subject to availability):
$ Rscript script1.R &
$ Rscript script2.R &
$ Rscript script3.R & …

• To further automate this procedure, you could write a bash script (run_all_R_scripts.sh)
containing these commands and then run this single script:
$ bash run_all_R_scripts.sh &

• Do not start more processes than cores!
• Do not use the (cluster) login nodes for this (e.g. request an interactive shell instead)!

14Using R at LRZ | April 2021

Parallelization Using R: Embarrassingly/pleasingly Parallel

• Let’s look at a toy problem:

for(i in 1:20) sum(sort(runif(1e7)))

• Are there parallelization opportunities?
• Add a time measurement:

system.time(for(i in 1:20) sum(sort(runif(1e7))))

• You might also be familiar with alternatives like the following:

lapply(1:20, function(x) sum(sort(runif(1e7))))

15Using R at LRZ | April 2021

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

16Using R at LRZ | April 2021

Parallelization Using R: Worker Queue

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

17

Shared file system or
database

job steps/srun, batchtools,
rredis/doRedis

Using R at LRZ | April 2021

“batchtools provides a parallel implementation of Map for high performance computing
systems managed by schedulers like Slurm, …
• all relevant batch system operations (submitting, listing, killing) are either handled

internally or abstracted via simple R functions
• with a well-defined interface, the source is independent from the underlying batch system

- prototype locally, deploy on any high performance cluster”

i.e. a (interactive) R process is used in combination with the shared file system and the
workload manager of the cluster to distribute workloads across nodes

18

Parallelization Using R: batchtools
https://mllg.github.io/batchtools/

Using R at LRZ | April 2021

Parallelization Using R: rredis/doRedis

Redis is an open source, fast, persistent, networked database with many features, among them a
blocking queue-like data structure (Redis “lists”). This feature makes Redis useful as a lightweight
back end for parallel computing.

A Redis server has to be set up as part of the cluster (e.g. on a login node) or even somewhere else,
containing the problem description(s). Worker processes connect to this server and tasks are
assigned to them.

This is a very flexible and dynamic approach, as workers can basically run wherever you want (as
long as they can connect to the server). When running on the cluster, you have to deal with resource
allocation separately (via the Slurm workload manager) and potential firewall access restrictions.

19Using R at LRZ | April 2021

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)

20Using R at LRZ | April 2021

Parallelization Using R: Shared Memory

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

21

Shared file system or
database

job steps/srun, batchtools,
rredis/doRedis

Shared memory

parallel/doParallel

Using R at LRZ | April 2021

Shared Memory Parallelization: Multithreading with doParallel

• As seen earlier, the for loop construct in R:
for(i in 1:20) sum(sort(runif(1e7)))

serial execution/single thread

• “The foreach package provides a new looping construct for executing R code repeatedly.
[…] it supports parallel execution, that is, it can execute those repeated operations on
multiple processors/cores on your computer, or on multiple nodes of a cluster.”

library(foreach)
foreach(i = 1:20) %do% sum(sort(runif(1e7))) # serial execution

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
multithread execution (?)

22Using R at LRZ | April 2021

Shared Memory Parallelization: Multithreading with doParallel

• This is were the “do-back ends” (e.g. doParallel) come into play…
• By creating/registering a cluster, foreach’s %dopar% operator can rely on these parallel

resources, e.g. using parallel’s multicore-like functionality (“forking”):

library(foreach)
library(doParallel)
registerDoParallel(cores=2)

define number of cores, this enables multicore-functionality
(preferred on GNU/Linux, but won’t work on Windows)

foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

23Using R at LRZ | April 2021

Shared Memory Parallelization: Multithreading with doParallel

• The procedure is similar for snow-like functionality:

library(foreach)
library(doParallel)
cluster.object <- makePSOCKcluster(2)
registerDoParallel(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
stopCluster(cluster.object)

• This uses Rscript to launch further copies of R (on the same host or optionally elsewhere;
in the latter case, hostnames need to be provided)

• [parallel‘s snow-like functionality also allows to create MPI-clusters (makeMPIcluster()-
function) but Rmpi/doMPI is usually recommended to be used instead]

24Using R at LRZ | April 2021

(Explicit) Parallelization Using R

• Embarrassingly/pleasingly parallel (independent processes):
• basic approach: start as many R processes as you need in the shell with different

scripts
• Worker Queue (weak coupling, shared file system or database):

• a main process (with access to a database/shared file system) coordinates several R
processes, potentially on different compute nodes (e.g. batchtools, rredis/doRedis)

• Shared Memory (strong coupling):
• one R process spawns sub-processes on a single node with many cores

(e.g. parallel/doParallel; formerly multicore/doMC, snow/doSNOW)
• Message Passing (strong coupling):

• several R processes talk to each other (across different nodes) by passing messages
(e.g. Rmpi/doMPI), this also allows for a (single) main and (multiple) workers model

25Using R at LRZ | April 2021

Parallelization Using R: Message Passing

Embarrassingly/Pleasingly
Parallel

$ R –f script.R &

26

Message Passing

Rmpi/doMPI

Shared file system or
database

job steps/srun, batchtools,
rredis/doRedis

Shared memory

parallel/doParallel

Using R at LRZ | April 2021

Message Passing with doMPI

• To execute a doMPI script on multiple compute nodes a “message passing environment”
needs to be set up, i.e. the R interpreter needs to be executed using a command such as
mpirun (i.e. mpirun R –f script.R)

• Then, the already familiar „do-back end“-pattern is put to use within R:

library(foreach)
library(doMPI)
cluster.object <- startMPIcluster()
registerDoMPI(cluster.object)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))
closeCluster(cluster.object)

27Using R at LRZ | April 2021

More foreach()

• use times() for simple repetitions:
times(10) %do% sum(sort(runif(1e7)))

• foreach is a function with several arguments…
foreach(i = 1:10, .combine = c, …) %do% sth() # process results

as they get generated, e.g. c(), cbind(), list(), sum(), ...
• … evaluates iterators…
foreach(i = iter(input)) %do% sth() # see package iterators
foreach(i = irnorm(100)) %do% sth()

• … and provides additional operators:
foreach(i = 1:10) %:% when(cond) %do% sth() # nesting operator

and condition cf. Python’s list comprehensions

28Using R at LRZ | April 2021

More parallel

• parallel provides parallel replacements of lapply and related functions (as have snow and
multicore):

• multicore-like: e.g. mclapply(1:10, function(x) sum(sort(runif(1e7)))),
mcmapply (x, FUN, ...), mcMap(FUN, …)

• snow-like: clusterApply(cl, x, fun, ...), e.g. parLapply(cl, x, FUN, ...)

29Using R at LRZ | April 2021

Even More parallel: Futures/Promises

• Constructs for synchronizing program execution. Describe objects that act as proxies for
a result, which is yet unknown (because the computation is incomplete)

• Send command to background and return handle:
handle <- mcparallel(some_expensive_function)

• Collect result at later point:
result <- mccollect(handle)

30Using R at LRZ | April 2021

Futures/Promises

> system.time(sum(sort(runif(1e7))))
user system elapsed
1.581 0.112 1.700

> system.time(sapply(1:20, function(x) sum(sort(runif(1e7)))))
user system elapsed

28.875 2.998 31.883

> library(parallel)
> h <- mcparallel(sapply(1:20, function(x) sum(sort(runif(1e7)))))
> mccollect(h, wait = FALSE)
NULL
wait approx. 30 seconds for job to finish
> mccollect(h, wait = FALSE)
[1] 5000214 4999121 5001166 …

31Using R at LRZ | April 2021

• Package future tries to unify the previous approaches:
“The purpose of this package is to provide a lightweight and unified Future API for
sequential and parallel processing of R expressions via futures. […] Because of its unified
API, there is no need to modify any code in order switch from sequential on the local
machine to, say, distributed processing on a remote compute cluster. ”

• Implicit:
v %<-% { expr } # future assignment , creates a future and a

promise to its value (instead of regular assignment <-)

• Explicit:
f <- future({ expr }) # creates a future
v <- value(f) # gets the value of the future

(blocks if not yet resolved)

32

Futures/Promises
https://github.com/HenrikBengtsson/future

Using R at LRZ | April 2021

• Function plan() allows the user to plan the future, i.e. it specifies how futures()s are
resolved

• For example: plan(sequential) vs. plan(multiprocess)

> library("future")
> plan(multiprocess)
> v %<-% {
+ cat("Hello world!\n")
+ 3.14
+ }
> v
Hello world!
[1] 3.14

33

Futures/Promises
https://github.com/HenrikBengtsson/future

Using R at LRZ | April 2021

Name OSes Description
synchronous: non-parallel:
sequential all sequentially and in the current R process
transparent all as sequential w/ early signaling and w/out local (for debugging)
asynchronous: parallel:
multiprocess all multicore, if supported, otherwise multisession
multisession all background R sessions (on current machine)
multicore not Windows forked R processes (on current machine)
cluster all external R sessions on current, local, and/or remote machines
remote all simple access to remote R sessions

• Additionally: package future.batchtools provides an implementation of the Future API on
top of the batchtools package, i.e. it allows to process futures (as defined by the future
package) on HPC infrastructure

34

Futures/Promises
https://github.com/HenrikBengtsson/future

Using R at LRZ | April 2021

• Package doFuture provides a %dopar% adaptor for the foreach package such that any
type of future (that is supported by the Future API of the future package) can be used for
asynchronous (parallel/distributed) or synchronous (sequential) processing.

• Example:
library(doFuture)
registerDoFuture()
plan(multiprocess)
foreach(i = 1:20) %dopar% sum(sort(runif(1e7)))

• Look out for the use of foreach (and the possibility to register all these different back
ends) in other R packages!

35

doFuture: future and foreach
https://github.com/HenrikBengtsson/doFuture

Using R at LRZ | April 2021

• Drake is a general-purpose workflow manager for data-driven tasks.
• It rebuilds intermediate data objects when their dependencies change, and it skips work

when the results are already up to date. Not every run-through starts from scratch, and
completed workflows have tangible evidence of reproducibility.

• drake supports scalability, parallel computing (relying on the parallel, future, batchtools,
and future.batchtools packages), and a smooth user experience when it comes to setting
up, deploying, and maintaining data science projects.

36

… and beyond.
https://ropensci.github.io/drake/

Using R at LRZ | April 2021

Conclusion

• Parallel programming is here to stay (for the foreseeable future).
• Know your hardware…
• … and the possibilities of your software/programming environment.
• Applying proper (high level) abstractions (foreach, futures,…) to target the features of

modern CPUs/GPUs and supercomputing infrastructure will allow you to write fast and
scalable programs.

37Using R at LRZ | April 2021

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	HPC Cluster Systems
	Parallelization
	Parallelization Scenario: Embarrassingly/Pleasingly Parallel
	Parallelization Scenario: Worker Queue
	Parallelization Scenario: Shared Memory
	Parallelization Scenario: Message Passing
	CRAN Task View: High-Performance and Parallel Computing
	(Explicit) Parallelization Using R
	Parallelization Using R: Embarrassingly/Pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly parallel
	Parallelization Using R: Embarrassingly/pleasingly Parallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Worker Queue
	Parallelization Using R: batchtools
	Parallelization Using R: rredis/doRedis
	(Explicit) Parallelization Using R
	Parallelization Using R: Shared Memory
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	Shared Memory Parallelization: Multithreading with doParallel
	(Explicit) Parallelization Using R
	Parallelization Using R: Message Passing
	Message Passing with doMPI
	More foreach()
	More parallel
	Even More parallel: Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	Futures/Promises
	doFuture: future and foreach
	… and beyond.
	Conclusion

