
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel Performance optimizations for
Deep Learning

Choose the Best Accelerated Technology

Shailen Sobhee – Deep Learning Engineer
shailen.sobhee@intel.com
9 April 2021

2Intel Architecture, Graphics, and SoftwareIAGS 2

▪ Quick recap of oneAPI

▪ Overview of oneDNN

▪ Training:

• Overview of performance-optimized DL
frameworks

• Tensorflow

• PyTorch

▪ Inferencing:

• Intel® Low Precision Optimization Tool

• Intro to Intel® Distribution of OpenVINO

Agenda

3Intel Architecture, Graphics, and SoftwareIAGS

oneAPI

A cross-architecture language based on C++
and SYCL standards

Powerful libraries designed for acceleration of
domain-specific functions

A complete set of advanced compilers, libraries,
and porting, analysis and debugger tools

Powered by oneAPI

Frameworks and middleware that are built
using one or more of the oneAPI industry
specification elements, the DPC++ language,
and libraries listed on oneapi.com.

Intel’s oneAPI
Ecosystem

Visit software.intel.com/oneapi for more details
Some capabilities may differ per architecture and custom-tuning will still be required. Other accelerators to be supported in the future.

...

Available Now

Built on Intel’s Rich Heritage of
CPU Tools Expanded to XPUs

file:///E:/IHI Creative Dropbox/Jay Jaime/Intel/OneAPI/Gold Deck/Assets/Copy Assets/software.intel.com/oneapi
software.intel.com/oneapi

4Intel Architecture, Graphics, and SoftwareIAGS

Toolkit

A core set of high-performance tools
for building C++, Data Parallel C++
applications & oneAPI library-based
applications

Intel® oneAPI
Rendering
Toolkit

Create performant,
high-fidelity visualization
applications

Intel® oneAPI
Tools for HPC

Deliver fast Fortran,
OpenMP & MPI
applications that
scale

Intel® oneAPI
Tools for IoT

Build efficient, reliable
solutions that run at
network’s edge

Intel® AI Analytics
Toolkit

Accelerate machine learning & data
science pipelines with optimized DL
frameworks & high-performing
Python libraries

Intel® Distribution of
OpenVINO™ Toolkit

Deploy high performance
inference & applications from
edge to cloud

Latest version is 2021.1

5Intel Architecture, Graphics, and SoftwareIAGS 5

Intel® oneAPI AI Analytics Toolkit

Accelerate end-to-end AI and data analytics
pipelines with libraries optimized for Intel®
architectures

Data scientists, AI researchers, ML and DL
developers, AI application developers

▪ Deep learning performance for training and
inference with Intel optimized DL
frameworks and tools

▪ Drop-in acceleration for data analytics and
machine learning workflows with compute-
intensive Python packages

Learn More: software.intel.com/oneapi/ai-kit

https://software.intel.com/en-us/oneapi/ai-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html#aikit
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

Intel® oneAPI Deep Neural Network Library
(oneDNN)

Develop Fast Neural Networks on Intel® CPUs & GPUs

with Performance-optimized Building Blocks

7Intel Architecture, Graphics, and SoftwareIAGS

Intel® oneAPI Deep Neural Network Library (oneDNN)

An open-source cross-platform performance library for deep learning
applications

• Helps developers create high performance deep learning frameworks

• Abstracts out instruction set and other complexities of performance
optimizations

• Same API for both Intel CPUs and GPUs, use the best technology for the
job

• Supports Linux, Windows and macOS

• Open source for community contributions

More information as well as sources:

https://github.com/oneapi-src/oneDNN

https://github.com/oneapi-src/oneDNN

8Intel Architecture, Graphics, and SoftwareIAGS

Intel® oneAPI Deep Neural Network Library

▪ Features

• API: C, C++, SYCL

• Training: float32, bfloat16(1)

• Inference: float32, bfloat16(1), float16(1), and int8(1)

• MLPs, CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

▪ Support Matrix

• Compilers: Intel, GCC, CLANG, MSVC, DPC++

• OS: Linux, Windows, macOS

• CPU

• Hardware: Intel® Atom, Intel® Core™, Intel® Xeon™

• Runtimes: OpenMP, TBB, DPC++

• GPU

• Hardware: Intel HD Graphics, Intel® Iris® Plus Graphics

• Runtimes: OpenCL, DPC++

Basic Information

8

Iris is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

(1) Low precision data types are supported only for platforms where hardware
acceleration is available

Intel® oneDNN

Convolution 2D/3D Direct Convolution/Deconvolution, Depthwise separable
convolution
2D Winograd convolution

Inner Product 2D/3D Inner Production

Pooling 2D/3D Maximum
2D/3D Average (include/exclude padding)

Normalization 2D/3D LRN across/within channel, 2D/3D Batch normalization

Eltwise (Loss/activation) ReLU(bounded/soft), ELU, Tanh;
Softmax, Logistic, linear; square, sqrt, abs, exp, gelu, swish

Data manipulation Reorder, sum, concat, View

RNN cell RNN cell, LSTM cell, GRU cell

Fused primitive Conv+ReLU+sum, BatchNorm+ReLU

Data type f32, bfloat16, s8, u8

Overview of Intel-optimizations for
TensorFlow*

13Intel Architecture, Graphics, and SoftwareIAGS 13

Intel® TensorFlow* optimizations

1. Operator optimizations: Replace default (Eigen) kernels by highly-
optimized kernels (using Intel® oneDNN)

2. Graph optimizations: Fusion, Layout Propagation

3. System optimizations: Threading model

14Intel ConfidentialDepartment or Event Name

Run TensorFlow* benchmark

15Intel Architecture, Graphics, and SoftwareIAGS 15

Operator optimizations

In TensorFlow, computation
graph is a data-flow graph.

MatMul

Examples Weights

Bias

Add

ReLU

16Intel Architecture, Graphics, and SoftwareIAGS

Forward Backward

Conv2D Conv2DGrad

Relu, TanH, ELU ReLUGrad,

TanHGrad,

ELUGrad

MaxPooling MaxPoolingGrad

AvgPooling AvgPoolingGrad

BatchNorm BatchNormGrad

LRN LRNGrad

MatMul, Concat

16

Operator optimizations

▪ Replace default (Eigen) kernels by
highly-optimized kernels (using
Intel® oneDNN)

▪ Intel® oneDNN has optimized a set
of TensorFlow operations.

▪ Library is open-source
(https://github.com/oneapi-
src/oneDNN) and downloaded
automatically when building
TensorFlow.

17Intel Architecture, Graphics, and SoftwareIAGS

Fusing computations

▪ On Intel processors a high % of time is typically
spent in BW-limited ops

• ~40% of ResNet-50, even higher for inference

▪ The solution is to fuse BW-limited ops with
convolutions or one with another to reduce the
of memory accesses

• Conv+ReLU+Sum, BatchNorm+ReLU, etc

▪ The frameworks are expected to be able to
detect fusion opportunities

• IntelCaffe already supports this

Conv

Conv

Sum ReLU

Conv

Conv+ReLU+Sum

18Intel Architecture, Graphics, and SoftwareIAGS

Conv2D

BiasAdd

Input Filter

Bias
Conv2DWithBias

Input Filter Bias

Before Merge After Merge

18

Graph optimizations: fusion

19Intel Architecture, Graphics, and SoftwareIAGS

All oneDNN operators use highly-optimized layouts for TensorFlow tensors.

Conv2D

ReLU

Input Filter

Shape

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Propagation

19

Graph optimizations: layout propagation

20Intel Architecture, Graphics, and SoftwareIAGS

nchw

R
e

o
rd

e
rs

nChw16c

20

More on memory channels: Memory layouts

▪ Most popular memory layouts for image recognition
are nhwc and nchw

• Challenging for Intel processors either for vectorization or
for memory accesses (cache thrashing)

▪ Intel oneDNN convolutions use blocked layouts

• Example: nhwc with channels blocked by 16 – nChw16c

• Convolutions define which layouts are to be used by other
primitives

• Optimized frameworks track memory layouts and
perform reorders only when necessary

More details: https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

21Intel Architecture, Graphics, and SoftwareIAGS

21 18 32 6 3

1 8 0 3 26

40 9 22 76 81

23 44 81 32 11

5 38 10 11 1

8 92 37 29 44

11 9 22 3 26

3 47 29 88 1

15 16 22 46 12

29 9 13 11 1

21 8 18 92 .. 1 11 ..

21 18 … 1 .. 8 92 ..

for i= 1 to N # batch size
for j = 1 to C # number of channels, image RGB = 3 channels

for k = 1 to H # height
for l = 1 to W # width

dot_product(…)

Channel based
(NCHW)

Pixel based
(NHWC)

21

Data Layout has a BIG Impact

• Continuous access to avoid gather/scatter

• Have iterations in inner most loop to ensure high vector utilization

• Maximize data reuse; e.g. weights in a convolution layer

• Overhead of layout conversion is sometimes negligible, compared with operating on
unoptimized layout

More details: https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

https://oneapi-src.github.io/oneDNN/understanding_memory_formats.html

22Intel Architecture, Graphics, and SoftwareIAGS 22

System optimizations: load balancing

▪ TensorFlow graphs offer opportunities for parallel
execution.

▪ Threading model

1. inter_op_parallelism_threads = max number of
operators that can be executed in parallel

2. intra_op_parallelism_threads = max number of
threads to use for executing an operator

3. OMP_NUM_THREADS = oneDNN equivalent of
intra_op_parallelism_threads

23Intel Architecture, Graphics, and SoftwareIAGS

Performance Guide
▪ Maximize TensorFlow* Performance on CPU: Considerations and Recommendations for Inference
Workloads: https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-
considerations-and-recommendations-for-inference

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_AFFINITY"] = "granularity=fine,compact,1,0"

os.environ["KMP_SETTINGS"] = "0"

os.environ["OMP_NUM_THREADS"] = “56"

Example setting system environment variables with python os.environ :

Intel Tensorflow* install guide is
available →

https://software.intel.com/en-
us/articles/intel-optimization-
for-tensorflow-installation-

guide

23

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

oneDNN <-> Frameworks interaction

TensorFlow

Op implementations

impl_tanh

impl_load_data

impl_matmul

Graph
Optimizer

onednn_glue_code_...onednn_glue_code_matmul

impl_tanhimpl_tanh

...

oneDNNtf_model.py

load_data

matmul

matmul

tanh

print_result

call impl_load_data

call onednn_gc_matmul

call onednn_gc_matmul, po=tanh

call impl_print_result

class matmul {
matmul(bool tanh_post);

execute(sycl::queue q,
sycl::buffer A,
sycl::buffer B,
sycl::buffer C);

};

All parameters are specified at creation
time, so that oneDNN generate the

most optimized kernel(s).

24

25Intel Architecture, Graphics, and SoftwareIAGS

oneDNN (open source)

Intel oneDNN (binary)
OpenCL API is not available as part
of Intel oneAPI binary distribution

Dispatching between CPU and GPU
is based on the kind of device
associated with the DPC++ queue

All GPU kernels are compiled in
runtime. CM and nGEN support is
not available publicly yet.
Adding/migrating to DPC++ kernels
is under consideration

OpenCL GPU RT is always needed
to compile OpenCL C and CM
kernels

In case of DPC++ and L0, binary
kernels need to be wrapped to L0
modules to create SYCL kernels
eventually

Under DPC++ API/runtime, users
can run on GPU via either OpenCL
or L0 GPU runtime: it should be
specified in compile time, but can
be checked during execution time

25

oneDNN architecture overview
1

2

3

DPC++ API
OpenCL APITraditional C++ API

DPC++ GPU implementation

Kernels

CPU implementation

Kernels

Xbyak (x86 asm JIT)

C++ AOT

Threading layer

Eigen TBBOMP

CPU

OpenCL GPU implementation

Kernels
OpenCL C

GPU

DPC++ runtime

OpenCL GPU runtimeLevel0 (L0) GPU runtime

binary -> L0 -> SYCL
interoperability API

Dispatcher 2

4

4

6

C for Metal (CM)

1

nGEN (Gen asm JIT)

6

5

5

3

27Intel Architecture, Graphics, and SoftwareIAGS

Intel Optimizations for PyTorch

• Accelerated operators

• Graph optimization

• Accelerated communications

27

28Intel Architecture, Graphics, and SoftwareIAGS

Motivation for Intel Extension for PyTorch (IPEX)

• Provide customers with the up-to-date Intel software/hardware features

• Streamline the work to enable Intel accelerated library

PyTorch

Operator Optimization
➢Auto dispatch the operators optimized by
the extension backend

➢Auto operator fusion via PyTorch graph mode

Mix Precision

➢Accelerate PyTorch operator by bfloat16

➢Automatic mixed precision

28

29Intel ConfidentialDepartment or Event Name

PyTorch-IPEX Demo

30Intel Architecture, Graphics, and SoftwareIAGS 30

1. oneAPI AI Analytics Toolkit

2. Install from source

How to get IPEX

31Intel Architecture, Graphics, and SoftwareIAGS

IPEX from the oneAPI AI Analytics Toolkit

Intel Optimizations for PyTorch

Intel-Optimized
PyTorch

• PyTorch back-end optimizations
• Up-streamed to regular PyTorch
• Same front-end code as regular

PyTorch

Intel Extension
for PyTorch

(IPEX)

• Additional optimizations and
Mixed Precision support

• Different front-end

Torch-CCL

• For distributed learning
• PyTorch bindings for oneCCL

32Intel Architecture, Graphics, and SoftwareIAGS

Installing IPEX from source

https://github.com/intel/intel-extension-for-pytorch
License - Apache 2.0

Build and install

1. Install PyTorch from source

2.Download and install Intel PyTorch Extension source

3.Add new backend for Intel Extension for PyTorch

4. Install Intel Extension for PyTorch

33Intel Architecture, Graphics, and SoftwareIAGS

Automatic Mixed Precision Feature (FP32 + BF16)

33

1. import ipex

2. Enable Auto-Mix-Precision by API

3. Convert the input tensors to the
extension device

4. Convert the model to the extension
device

* Subject to change

34Intel Architecture, Graphics, and SoftwareIAGS

Data types

• Benefit of bfloat16
• Performance 2x up

• Comparable accuracy loss against fp32

• No loss scaling, compared to fp16

https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf?source=techstories.org

* bfloat16 intrinsic support starts from 3rd Generation Intel® Xeon® Scalable Processors

34

https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf?source=techstories.org

35Intel Architecture, Graphics, and SoftwareIAGS

Extension Perf

0

2

4

6

8

10

12

ResNet50 ResNeXt-3D BERT

Speedup Ration(Higher is better)

PyTorch Operator Injection Operator Injection + Mix Precision Operator Injection + Mix Precision + JIT

36Intel Architecture, Graphics, and SoftwareIAGS

Inference with IPEX for ResNet50

20.42 20.58

6.50 6.61

3.43 3.47
1.70

0.00

5.00

10.00

15.00

20.00

25.00

Default Default+JIT to_mkldnn IPEX IPEX+JIT IPEX+MIX IPEX+MIX+JIT

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Scenarios

Inference with ResNet50

ResNet50

Worker11 (CPX)

LD_PRELOAD=/root/anaconda3/lib/libiomp5.so OMP_NUM_THREADS=26 KMP_AFFINITY=granularity=fine,compact,1,0 numactl -N 0 -m 0 python resnet50.py

Intel Low Precision Optimization Tool
Tutorial

38Intel Architecture, Graphics, and SoftwareIAGS

The motivation for low precision

Lower
Power

Lower memory
bandwidth

Lower
storage

Higher
performance

Image credits: https://www.flaticon.com/authors/monkikis
Licensed by CC BY 3.0

Important:

Acceptable
accuracy loss

39Intel Architecture, Graphics, and SoftwareIAGS

The key term:

▪Quantization

40Intel Architecture, Graphics, and SoftwareIAGS

Quantization in a nutshell

10110110 10110110

10110110 10110110

10110110

Floating Point
96.1924

32 -bit

Integer
96

8 bit

41Intel Architecture, Graphics, and SoftwareIAGS

Challenge & Solution of Low Precision Optimization Tool (for
Inferencing in Deep Learning)

▪ Low Precision Inference can speed up the performance by reducing the computing, memory
and storage of AI model.

▪ Intel provides solution to cover the challenge of it:

Challenge Intel Solution How

Hardware support Intel® Deep Learning Boost
supported by the Second-
Generation Intel® Xeon® Scalable
Processors and later.

VNNI intrinsic. Support INT8
MulAdd.

Complex to convert the FP32
model to INT8/BF16 model

Intel® Low Precision Optimization
Tool (LPOT)

Unified quantization API

Accuracy loss in converting to INT8
model

Intel® Low Precision Optimization
Tool (LPOT)

Auto tuning

42Intel Architecture, Graphics, and SoftwareIAGS 42

▪ Convert the FP32 model to INT8/BF16 model.
Optimize the model in same time.

▪ Support multiple Intel optimized DL
frameworks (TensorFlow, PyTorch, MXNet) on
both CPU and GPU.

▪ Support automatic accuracy-driven tuning,
along with additional custom objectives like
performance, model size, or memory
footprint

▪ Provide the easy extension capability for new
backends (e.g., PDPD, ONNX RT) and new
tuning strategies/metrics (e.g., HAWQ from
UCB)

Product Definition

43Intel Architecture, Graphics, and SoftwareIAGS

Tuning Zoo
The followings are the models supported by Intel® Low Precision Optimization Tool for auto
tuning.

TensorFlow Model Category

ResNet50 V1 Image Recognition

ResNet50 V1.5 Image Recognition

ResNet101 Image Recognition

Inception V1 Image Recognition

Inception V2 Image Recognition

Inception V3 Image Recognition

Inception V4 Image Recognition

ResNetV2_50 Image Recognition

ResNetV2_101 Image Recognition

ResNetV2_152 Image Recognition

Inception ResNet V2 Image Recognition

SSD ResNet50 V1 Object Detection

Wide & Deep Recommendation

VGG16 Image Recognition

VGG19 Image Recognition

Style_transfer Style Transfer

PyTorch Model Category

BERT-Large RTE Language Translation

BERT-Large QNLI Language Translation

BERT-Large CoLA Language Translation

BERT-Base SST-2 Language Translation

BERT-Base RTE Language Translation

BERT-Base STS-B Language Translation

BERT-Base CoLA Language Translation

BERT-Base MRPC Language Translation

DLRM Recommendation

BERT-Large MRPC Language Translation

ResNext101_32x8d Image Recognition

BERT-Large SQUAD Language Translation

ResNet50 V1.5 Image Recognition

ResNet18 Image Recognition

Inception V3 Image Recognition

YOLO V3 Object Detection

Peleenet Image Recognition

ResNest50 Image Recognition

SE_ResNext50_32x4d Image Recognition

ResNet50 V1.5 QAT Image Recognition

ResNet18 QAT Image Recognition

MxNet Model Category

ResNet50 V1 Image Recognition

MobileNet V1 Image Recognition

MobileNet V2 Image Recognition

SSD-ResNet50 Object Detection

SqueezeNet V1 Image Recognition

ResNet18 Image Recognition

Inception V3 Image Recognition

https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/object_detection/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/recommendation/wide_deep_large_ds/WND_README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/tensorflow/style_transfer/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/recommendation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/imagenet/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/language_translation/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/imagenet/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/imagenet/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/imagenet/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/object_detection/yolo_v3/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/peleenet/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/resnest/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/se_resnext/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/pytorch/image_recognition/imagenet_qat/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/object_detection/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/image_recognition/README.md
https://github.com/intel/lp-opt-tool/blob/master/examples/mxnet/image_recognition/README.md

44Intel Architecture, Graphics, and SoftwareIAGS

Tunable Configurations

Quantizer

Auto-tuning Flow

Quantization

Evaluator
(Accuracy metrics, Performance

etc.)

Tuning
StrategyFP32 Model

Low-precision
Model

Optimal Solution

Next Config

M
o

d
e

l In
sp

e
ct

45Intel Architecture, Graphics, and SoftwareIAGS 45

▪ Hardware

Intel® Low Precision Optimization Tool supports systems based on Intel 64
architecture or compatible processors.

The quantization model could get acceleration by Intel® Deep Learning Boost if
running on the Second-Generation Intel® Xeon® Scalable Processors and later:

Verified:

- Cascade Lake & Cooper Lake, with Intel DL Boost VNNI

- Skylake, with AVX-512 INT8

▪ OS: Linux

Verified: CentOS 7.3 & Ubuntu 18.04

▪ Software

Intel® Low Precision Optimization Tool requires to install Intel optimized
framework version for TensorFlow, PyTorch, and MXNet.

System
Requirements

Verified Release Installation Example

Intel Optimization for TensorFlow: v1.15
(up1), v2.1, v2.2, v2.3

pip install intel-tensorflow==2.3.0

PyTorch: v1.5 pip install torch==1.5.0+cpu******

MXNet: v1.6, v1.7 pip install mxnet-mkl==1.6.0

46Intel Architecture, Graphics, and SoftwareIAGS 46

▪ Install from Intel AI Analytics Toolkit (Recommended)

source /opt/intel/oneapi/setvars.sh

conda activate tensorflow

cd /opt/intel/oneapi/iLiT/latest

sudo ./install_iLiT.sh

▪ Install from source

git clone https://github.com/intel/lpot.git

cd lpot

python setup.py install

▪ Install from binary

install from pip

pip install lpot

install from conda

conda install lpot -c intel -c conda-forge

For more detailed installation info, please refer to https://github.com/intel/lpot

Installation

47Intel Architecture, Graphics, and SoftwareIAGS

Usage: Simple Python API + YAML config

LPOT is designed to reduce the workload of the user and keep the flexibility.

Python API YAML

• Simple API is easy to

integrated in original

training/inference

script.

• Common functions are integrated and

controlled by parameters;

• Templates are easy to refer;

• Lots of advance parameters provide powerful

tuning capability.

FP32

model

YAML file

(template-based)

Training/Inference script

Launcher code based on API
INT8

BF16

model

Coding-free (80%): template-based configs
Coding-needed (20%): user providing
callback functions

Dataset

48Intel Architecture, Graphics, and SoftwareIAGS

Python API

▪ Core User-facing API:

❑ Quantization()

- Follow a specified
tuning strategy to tune a
low precision model
through QAT or PTQ
which can meet pre-
defined accuracy goal
and objective.

49Intel Architecture, Graphics, and SoftwareIAGS

Intel LPOT YAML Configure

Intel LPOT YAML config consists of 6
building blocks:

❑ model

❑ device

❑ quantization

❑ evaluation

❑ tuning

50Intel Architecture, Graphics, and SoftwareIAGS

Easy: TensorFlow ResNet50
model:

 name: resnet50_v1_5

 framework: tensorflow

 inputs: input_tensor

 outputs: softmax_tensor

quantization:

 calibration:

 sampling_size: 50, 100

 dataloader:

 batch_size: 10

 dataset:

 Imagenet:

 root: /path/to/calibration/dataset

 transform:

 ParseDecodeImagenet:

 ResizeCropImagenet:

 height: 224

 width: 224

 mean_value: [123.68, 116.78, 103.94]

evaluation:

 accuracy:

 metric:

 topk: 1

 dataloader:

 batch_size: 32

 dataset:

 Imagenet:

 root: /path/to/evaluation/dataset

 transform:

 ParseDecodeImagenet:

 ResizeCropImagenet:

 height: 224

 width: 224

 mean_value: [123.68, 116.78, 103.94]

tuning:

 accuracy_criterion:

 relative: 0.01

 exit_policy:

 timeout: 0

 random_seed: 9527

YAML config

Code change
Full example:
https://github.com/intel/lpot/tree/master/examples/tensorflow/image
_recognition

https://github.com/intel/lpot/tree/master/examples/tensorflow/image_recognition

51Intel Architecture, Graphics, and SoftwareIAGS

Intermediate: TensorFlow HelloWorld
model:

 name: hello_world

 framework: tensorflow

 inputs: input

 outputs: output

quantization:

 calibration:

 sampling_size: 5, 10

 model_wise:

 activation:

 algorithm: minmax

evaluation:

 accuracy:

 metric:

 topk: 1

tuning:

 accuracy_criterion:

 relative: 0.05

 exit_policy:

 timeout: 0

 random_seed: 100

Code change
YAML config

No dataloader related setting here,

Implemented by code.

❑ This example shows how to create LPOT calibration
and evaluation dataloader by code and pass them to
LPOT for tune.

Full example:
https://github.com/intel/lpot/tree/master/examples/hell
oworld

https://github.com/intel/lpot/tree/master/examples/helloworld

52Intel Architecture, Graphics, and SoftwareIAGS

Advanced : TensorFlow SSD-RN50
model:

 name: ssd_resnet50_v1

 framework: tensorflow

 inputs: image_tensor

 outputs: num_detections,detection_boxes,detection_scores,detection_classes

quantization:

 calibration:

 sampling_size: 100

 model_wise:

 activation:

 algorithm: minmax

 weight:

 algorithm: minmax

 op_wise: {

 'FeatureExtractor/resnet_v1_50/fpn/bottom_up_block5/Conv2D': {

 'activation': {'dtype': ['fp32']},

 },

'WeightSharedConvolutionalBoxPredictor_2/ClassPredictionTower/conv2d_0/Conv2D

': {

 'activation': {'dtype': ['fp32']},

 }

 }

tuning:

 accuracy_criterion:

 relative: 0.01

 exit_policy:

 timeout: 0

 max_trials: 100

 random_seed: 9527

def accuracy_check(self, input_graph=None):

 ...

 self.build_data_sess()

 evaluator = CocoDetectionEvaluator()

 with tf.compat.v1.Session(graph=self.infer_graph,

 config=self.config) as sess:

 ...

 evaluator.add_single_ground_truth_image_info(

 image_id, ground_truth)

 num, boxes, scores, labels = sess.run(

 self.output_tensors, {self.input_tensor: input_images})

 ...

 return res['DetectionBoxes_Precision/mAP']

infer = model_infer(args)

if args.tune:

 quantizer = Quantization(args.config)

 q_dataloader = quantizer.dataloader(infer, args.batch_size)

 output_graph = quantizer(infer.get_graph(),

 q_dataloader=q_dataloader,

 eval_func=infer.accuracy_check)

❑ This example shows how to customize tuning
space by YAML at model-wise and op-wise level.

YAML config

Code change

Full example:
https://github.com/intel/lpot/tree/master/exa
mples/tensorflow/object_detection

Constrain model-
wise/op-wise
quantization behavior
in tuning space.

https://github.com/intel/lp-opt-tool/tree/master/examples/tensorflow/object_detection

54Intel Architecture, Graphics, and SoftwareIAGS

DEMO

55Intel Architecture, Graphics, and SoftwareIAGS

Demo

▪ Intel AI Analytics Toolkit Samples:

▪ https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-
Analytics

▪ Intel LPOT Sample for Tensorflow:-samples

▪ https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-
Analytics/Getting-Started-Samples/iLiT-Sample-for-Tensorflow

57Intel Architecture, Graphics, and SoftwareIAGS

Infrastructure

Calib/QAT
Configuration

Quantization
Configuration

Tuning
Configuration

TF Adaptation
Layer

TF PyTorch MXNet

Calibrate Quant-Aware Train Quantize

PyTorch
Adaptation Layer

MXNet Adaptation
Layer

Auto-tuner

Framework Adaptation Layer

OpenVINO or
ONNX

OpenVINO or
ONNX Adaptation

Layer

FP32 Model
Quantized

Model

Metrics Model Inspect

LPOT

Extensible Tuning
Strategies

A
u

to
-t

u
n

in
g

E
xt

e
n

si
o

n
 A

P
I

User Configurations

legend

Not Yet

Supported

58Intel Architecture, Graphics, and SoftwareIAGS

Working Flow

Tunable Configurations

Calibration/QAT
Configuration

Quantization
Configuration

Tuning Strategy

Metrics Evaluator

Next Config

Framework Quantization Flow

Evaluation Dataset

Optimal Solution
(Conf* -> Perf*)

Tuning Config

Performance
and Accuracy

FP32
Model

Quantized
Model

Calibraton/QAT
Dataset

Calibrate
or QAT

Quantize

Dynamic Quant

Post-Training Quant or QAT

Stop Criteria Met

M
o

d
e

l In
sp

e
ct

91

92Intel Architecture, Graphics, and SoftwareIAGS

Notices and Disclaimers

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available ​updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be
claimed as the property of others.

Optimization Notice
1 Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice. Notice revision #20110804.

2 Software and workloads used in performance tests may have been optimized for performance only on microprocessors from Intel. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations, and functions. Any change to any
of those factors may cause the results to vary. Consult other information and performance tests while evaluating potential purchases, including
performance when combined with other products. For more information, see Performance Benchmark Test Disclosure. Source: Intel measurements, as
of June 2017.

93Intel Architecture, Graphics, and SoftwareIAGS

Notices and Disclaimers

Slide Reference 1 2 3

System Board Intel® Server S2600 (Dual socket) Supermicro / X11SPL-F Supermicro / X11SPL-F

Product Xeon Silver 4216 Intel(R) Xeon(R) Silver 4112 Intel(R) Xeon(R) Silver 4112

CPU sockets 2 - 1

Physical cores 2 x 16 4 4

Processor Base Frequency 2.10 GHz 2.60GHz 2.60GHz

HyperThreading enabled - enabled

Turbo On - On

Power-Performance Mode Performance Mode - -

Total System Memory size 12 x 64GB 16384 16384

Memory speed 2400MHz 2400MHz 2400MHz

Software OS Ubuntu 18.04 Ubuntu 16.04.3 LTS Ubuntu 16.04.6 LTS

Software Kernel 4.15.0-66-generic x86_64 4.13.0-36-generic 4.15.0-29-generic

Test Date 27 September 2019 25 May 2018 18 April 2019

Precision (IntMode)
Int 8

(Throughput Mode)
FP32 Int 8 (Throughput Mode)

Power (TDP) 200W 85W 85W

Price Link on 30 Sep 2019
(Prices may vary)

$2,024 $483 $483

Network Mobilenet SSD Mobilenet SSD Mobilenet SSD

Intel technologies’ features and benefits
depend on system configuration and may
require enabled hardware, software or service
activation. Performance varies depending on
system configuration. Check with your system
manufacturer or retailer or learn more at
www.intel.com.

Intel, the Intel logo, Xeon™, Arria™ and
Movidius™ are trademarks of Intel Corporation
or its subsidiaries in the U.S. and/or other
countries.

*Other names and brands may be claimed as
the property of others.

© Intel Corporation.

http://www.intel.com/

94Intel Architecture, Graphics, and SoftwareIAGS

Notices and Disclaimers

Intel technologies’ features and benefits
depend on system configuration and may
require enabled hardware, software or service
activation. Performance varies depending on
system configuration. Check with your system
manufacturer or retailer or learn more at
www.intel.com.

Intel, the Intel logo, Xeon™, Arria™ and
Movidius™ are trademarks of Intel Corporation
or its subsidiaries in the U.S. and/or other
countries.

*Other names and brands may be claimed as
the property of others.

© Intel Corporation.

System Board Intel prototype, TGL U DDR4 SODIMM RVP ASUSTeK COMPUTER INC. / PRIME Z370-A

CPU 11th Gen Intel® Core™ -5-1145G7E @ 2.6 GHz. 8th Gen Intel ® Core™ i5-8500T @ 3.0 GHz.

Sockets / Physical cores 1 / 4 1 / 6

HyperThreading / Turbo Setting Enabled / On Na / On

Memory 2 x 8198 MB 3200 MT/s DDR4 2 x 16384 MB 2667 MT/s DDR4

OS Ubuntu* 18.04 LTS Ubuntu* 18.04 LTS

Kernel 5.8.0-050800-generic 5.3.0-24-generic

Software
Intel® Distribution of OpenVINO™ toolkit

2021.1.075
Intel® Distribution of OpenVINO™ toolkit

2021.1.075

BIOS Intel TGLIFUI1.R00.3243.A04.2006302148 AMI, version 2401

BIOS release date Release Date: 06/30/2021 7/12/2019

BIOS Setting Load default settings Load default settings, set XMP to 2667

Test Date 9/9/2021 9/9/2021

Precision and Batch Size CPU: INT8, GPU: FP16-INT8, batch size: 1 CPU: INT8, GPU: FP16-INT8, batch size: 1

Number of Inference Requests 4 6

Number of Execution Streams 4 6

Power (TDP Link) 28 W 35W

Price (USD) Link on Sep 22,2021
Prices may vary

$309 $192

1): Memory is installed such that all primary memory slots are populated.
2): Testing by Intel as of September 9, 2021

http://www.intel.com/
https://mark.intel.com/content/www/us/en/secure/mark/products/208081/intel-core-i5-1145g7e-processor-8m-cache-up-to-4-10-ghz.html#tab-blade-1-0-1
https://ark.intel.com/content/www/us/en/ark/products/129941/intel-core-i5-8500t-processor-9m-cache-up-to-3-50-ghz.html#tab-blade-1-0-1
https://mysamples.intel.com/SAM_U_Product/ProductDetail.aspx?InputMMID=99A3D1&RequestID=0&ProductID=1213750
https://ark.intel.com/content/www/us/en/ark/products/129941/intel-core-i5-8500t-processor-9m-cache-up-to-3-50-ghz.html#tab-blade-1-0-0

