
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

How to accelerate Classical Machine Learning
on Intel® Architecture

Choose the Best Accelerated Technology

Vladimir Kilyazov

AI Software Solutions Engineer

2

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be
claimed as the property of others.

http://www.intel.com/PerformanceIndex​

3

Workloads and Configurations

See all benchmarks and configurations: https://software.intel.com/content/www/us/en/develop/articles/blazing-fast-python-data-science-ai-
performance.html. Each performance claim and configuration data is available in the body of the article listed under sections 1, 2, 3, 4, and 5. Please also
visit this page for more details on all scores, and measurements derived.

Testing Date: Performance results are based on testing by Intel as of October 16, 2020 and may not reflect all publicly available updates. Configurations
details and Workload Setup: 2 x Intel® Xeon® Platinum 8280 @ 28 cores, OS: Ubuntu 19.10.5.3.0-64-generic Mitigated 384GB RAM (192 GB RAM (12x
32GB 2933). SW: Modin 0.81. Scikit-learn 0.22.2. Pandas 1.01, Python 3.8.5, DAL(DAAL4Py) 2020.2, Census Data, (21721922.45) Dataset is from IPUMS
USA, University of Minnesota, www.ipums.org [Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas and Matthew
Sobek. IPUMS USA: Version 10.0 [dataset], Minneapolis, MN. IPUMS, 2020. https//doc.org/10.18128/D010.V10.0]

Testing Date: Performance results are based on testing by Intel® as of October 23, 2020 and may not reflect all publicly available updates. Configuration
Details and Workload Setup: Intel® oneAPI Data Analytics Library 2021.1 (oneDAL). Scikit-learn 0.23.1, Intel® Distribution for Python 3.8; Intel® Xeon®
Platinum 8280LCPU @ 270GHz, 2 sockets, 28 cores per socket, 10M samples, 10 features, 100 clusters, 100 iterations, float32.

Testing Date: Performance results are based on testing by Intel® as of October 23, 2020 and may not reflect all publicly available updates. Configuration
Details and Workload Setup: Intel® oneAPI AI Analytics Toolkit v2021.1; Intel® oneAPI Data Analytics Library (oneDAL) beta10, Scikit-learn 0.23.1, Intel®
Distribution for Python 3.7, Intel® Xeon® Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode: 0x4003003, total available
memory 376 GB, 12X32GB modules, DDR4. AMD Configuration: AMD Rome 7742 @2.25 GHz, 2 sockets, 64 cores per socket, microcode: 0x8301038,
total available memory 512 GB, 16X32GB modules, DDR4, oneDAL beta10, Scikit-learn 0.23.1, Intel® Distribution for Python 3.7. NVIDIA Configuration:
NVIDIA Tesla V100 – 16 Gb, total available memory 376 GB, 12X32GB modules, DDR4, Intel® Xeon Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores
per socket, microcode: 0x5003003, cuDF 0.15, cuML 0.15, CUDA 10.2.89, driver 440.33.01, Operation System: CentOS Linux 7 (Core), Linux 4.19.36
kernel.

Testing Date: Performance results are based on testing by Intel® as of October 13, 2020 and may not reflect all publicly available updates. Configurations
details and Workload Setup: CPU: c5.18xlarge AWS Instance (2 x Intel® Xeon® Platinum 8124M @ 18 cores. OS: Ubuntu 20.04.2 LTS, 193 GB RAM. GPU:
p3.2xlarge AWS Instance (GPU: NVIDIA Tesla V100 16GB, 8 vCPUs, OS: Ubuntu 18.04.2LTS, 61 GB RAM. SW: XGBoost 1.1: build from sources compiler
– G++ 7.4, nvcc 9.1 Intel® DAAL: 2019.4 version: Python env: Python 3.6, Numpy 1.16.4, Pandas 0.25 Scikit-learn 0.21.2.

https://software.intel.com/content/www/us/en/develop/articles/blazing-fast-python-data-science-ai-performance.html
about:blank

4

Workloads and Configurations

Testing Date: Performance results are based on testing by Intel® as of October 26, 2020 and may not reflect all publicly available updates. Configuration
Details and Workload Setup: Intel® Optimization for Tensorflow v2.2.0; oneDNN v1.2.0; Intel® Low Precision Optimization Tool v1.0; Platform; Intel®
Xeon® Platinum 8280 CPU; #Nodes 1; #Sockets: 2; Cores/socket: 28; Threads/socket: 56; HT: On; Turbo: On; BIOS
version:SE5C620.86B.02.01.0010.010620200716; System DDR Mem Config: 12 slots/16GB/2933; OS: CentOS Linux 7.8; Kernel: 4.4.240-1.el7.elrepo
x86_64.

Testing Date: Performance results are based on testing by Intel® as of February 3, 2021 and may not reflect all publicly available updates. Configuration
Details and Workload Setup: Intel® Optimization for PyTorch v1.5.0; Intel® Extension for PyTorch (IPEX) 1.1.0; oneDNN version: v1.5; DLRM: Training
batch size (FP32/BF16): 2K/instance, 1 instance; DLRM dataset (FP32/BF16): Criteo Terabyte Dataset; BERT-Large: Training batch size (FP32/BF16):
24/Instance. 1 Instance on a CPU socket. Dataset (FP32/BF16): WikiText-2 [https://www.salesforce.com/products/einstein/ai-research/the-wiktext-
dependency-language-modeling-dataset/]: ResNext101-32x4d: Training batch size (FP32/BF16): 128/Instance, 1 instance on a CPU socket, Dataset
(FP32/BF16): ILSVRC2012; DLRM: Inference batch size (INT8): 16/instance, 28 instances, dummy data. Intel® Xeon® Platinum 8380H Processor, 4
socket, 28 cores HT On Turbo ON Total memory 768 GB (24 slots/32GB/3200 MHz), BIOS; WLYDCRBLSYS.0015.P96.2005070242 (ucode: OX
700001b), Ubuntu 20.04 LTS, kernel 5.4.0-29-genen: ResNet50: [https://github.com/Intel/optimized-models/tree/master/pytorch/ResNet50]:
ResNext101 32x4d: [https://github.com/intel/optimized-models/tree/master/pytorch/ResNext101_32x4ct: DLRM: https//github.com/intel/optimized-
models/tree/master/pytorch/dlrm].

https://www.salesforce.com/products/einstein/ai-research/the-wiktext-dependency-language-modeling-dataset/
https://github.com/Intel/optimized-models/tree/master/pytorch/ResNet50
https://github.com/intel/optimized-models/tree/master/pytorch/ResNext101_32x4ct:%20DLRM:%20https/github.com/intel/optimized-models/tree/master/pytorch/dlrm

55

▪ Intel® AI and Intel® AI Analytics Toolkit
Overview

▪ A Closer Look at:

• Intel® Distribution for Python*: Intel®
Optimizations for NumPy* and SciPy*

• Intel® Distribution of Modin*

• Intel® Extension for Scikit-
learn* and XGBoost*

▪ Hands-on session with demos

Agenda

6

A Brief Overview of Intel® AI Python Offerings

Deploy
Create Machine Learning and

Deep Learning Models
Engineer Data

Intel® Developer Catalog
Containers Developer Sandbox

Intel® Developer Cloud

MLOps

cnvrg.io

Connect AI to Big Data

Accelerate End-to-End Data Science and AI Intel® AI Analytics Toolkit

Data Analytics at Scale Optimized Frameworks
and Middleware

Optimize and Deploy
Models

oneDNN oneMKLoneDAL oneCCL

Automate
Model Tuning

AutoML

Write Once
Deploy

Anywhere

OpenVINO™
Toolkit

SigOpt

Automate
Low-Precision
Optimization

Intel® Neural
Compressor

BigDL

Accelerated Python Intel® Distribution for Python
Python Data API Standard/

Data Parallel Extensions for Python language

Accelerators

With Intel Optimizations

For larger scale and increased performance in data science workloads:

7
7

Intel® AI Analytics Toolkit
Powered by oneAPI

Accelerate end-to-end AI and data analytics
pipelines with libraries optimized for Intel®
architectures

Who Uses It?
Data scientists, AI researchers, ML and DL
developers, AI application developers

Top Features/Benefits

▪ Deep learning performance for training and
inference with Intel optimized DL frameworks
and tools

▪ Drop-in acceleration for data analytics and
machine learning workflows with compute-
intensive Python packages

Learn More: software.intel.com/oneapi/ai-kit

Deep Learning

Intel® Extension for TensorFlow

Intel® Extension for PyTorch

Intel® Neural Compressor

Model Zoo for Intel® Architecture

Data Analytics & Machine Learning

Intel® Distribution of Modin OmniSci Backend

Accelerated Data Frames

XGBoost Scikit-learn Daal-4Py

NumPy SciPy Pandas

Intel® Distribution for Python

Get the Toolkit HERE or via these locations

Intel® DevCloudIntel Installer Docker Apt, Yum Conda

Samples and End2End Workloads

Supported Hardware Architechures1

CPU GPU

Hardware support varies by individual tool. Architecture support will be expanded over time.
Other names and brands may be claimed as the property of others.

Back to Domain-specific Toolkits for Specialized Workloads

https://software.intel.com/en-us/oneapi/ai-kit
https://software.intel.com/content/www/us/en/develop/tools/oneapi/download.html#aikit
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://software.intel.com/content/www/us/en/develop/articles/installation-guide-for-intel-oneapi-toolkits.html
https://hub.docker.com/r/intel/oneapi-aikit
https://software.intel.com/content/www/us/en/develop/articles/oneapi-repo-instructions.html
https://software.intel.com/content/www/us/en/develop/articles/installing-ai-kit-with-conda.html

8

Maximize the Power of Intel® XPUs for Data
Science, Machine Learning, and AI Workflows

Accelerate Performance

Maximize machine learning performance for
multiple architectures (Intel® CPUs/GPUs)
with tools and components built using
oneAPI libraries

Streamline End-2-End
Workflows

Get the latest AI Analytics optimizations in one place
that work seamlessly together, scale end-to-end
workflows fast

No need to download and integrate multiple external
packages together

Improve Productivity

Alleviate the uncertainty associated with
the Conda* package manager through a
version-controlled binary installation

Speed Development

Reduce the learning curve with drop-in replacement
for Python* packages with minimal to no code changes

Get started quickly with samples, pre-trained models,
and end-to-end workloads

9

*Performance improvements shown here are based off hardware running on Intel Cascade Lake processors. This chart will be updated once data from Ice Lake is available. See backup for workloads and configurations. Results may vary.

A Sneak Peek at the Performance Benefits

10

Intel® Distribution for Python*:
Intel® Optimizations for NumPy* and SciPy*

11

Intel® Distribution for Python

▪ Intel® Distribution for Python covers major usages in
HPC and Data Science

▪ Achieve faster Python application performance —
right out of the box — with minimal or no changes to
a code

▪ Accelerate NumPy*, SciPy*, and scikit-learn* with
integrated Intel® Performance Libraries such as
Intel® oneMKL (Math Kernel Library) and Intel®
oneDAL (Data Analytics Library)

▪ By default, already integrated in Anaconda

12

Intel® Performance Optimization with NumPy*
and SciPy*

The Python* language is interpreted and
has many type checks to make it flexible
Each level has various tradeoffs; NumPy*
value proposition is immediately seen
For best performance, escaping the
Python* layer early is best method

Intel® oneMKL included with Anaconda standard bundle; is Free for Python

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware vectorization

Gets around the GIL
(multi-thread and multi-core)
BLAS* API can be the bottleneck

*Basic Linear Algebra Subprograms (BLAS) [CBLAS]

Enforces Global Interpreter Lock (GIL)
and is single-threaded, abstraction
overhead. No advanced types.

Python*

NumPy*

Intel® oneAPI
Math Kernel
Library (oneMKL)

The layers of quantitative Python*

13

Intel® Distribution of Modin*

14

Issue: Pandas Not Scaling to Larger Datasets
After a certain data size, need to change your API to handle more data

100 MB+ of Data

Increasing data size
Easy to use,
difficult to scale

Easy to scale,
difficult to use

15

Solution: Modin Pandas Scales to Big Datasets
Spend the time that would be used to change the workload’s API, and use it to
improve your workload and analysis

0-1TB+ of Data

Easy to use,
Easy to scaleIncreasing data size

16
16

Single Line Code Change for Infinite
Scalability
No need to learn a new API to use Modin*

▪ Accelerate your Pandas* workloads across multiple cores and multiple nodes

▪ No upfront cost to learning a new API

• import modin.pandas as pd

▪ Integration with the Python* ecosystem

▪ Integration with Ray/Dask clusters (run on what you have, even on a laptop!)

▪ Integration with Intel-built oneAPI Heterogeneous Data Kernels (oneHDK) backend

• New experimental Modin backend based on HeavyDB* technology

https://github.com/heavyai/heavydb

17

Modin*: How it Works
▪ Modin* transparently distributes the data and computation across

available cores, unlike Pandas which only uses one core at a time

▪ To use Modin, you do not need to know how many cores your
system has, and you do not need to specify how to distribute the
data

Pandas* on Big Machine Modin on Big Machine

Memory

Modin DataFrame

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

Memory

pandas DataFrame

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU

import modin.pandas as pd

18

NYCTaxi Workload Performance
▪ Pandas* vs. Modin*

Dataset source: https://github.com/toddwschneider/nyc-taxi-data

Configurations: For 20 million rows: Dual socket Intel(R) Xeon(R) Platinum 8280L CPUs (S2600WFT platform), 28 cores per socket, hyperthreading enabled, turbo mode enabled, NUMA nodes per socket=2, BIOS:
SE5C620.86B.02.01.0013.121520200651, kernel: 5.4.0-65-generic, microcode: 0x4003003, OS: Ubuntu 20.04.1 LTS, CPU governor: performance, transparent huge pages: enabled, System DDR Mem Config: slots / cap / speed: 12 slots / 32GB
/ 2933MHz, total memory per node: 384 GB DDR RAM, boot drive: INTEL SSDSC2BB800G7. For 1 billion rows: Dual socket Intel Xeon Platinum 8260M CPU, 24 cores per socket, 2.40GHz base frequency, DRAM memory: 384 GB 12x32GB
DDR4 Samsung @ 2666 MT/s 1.2V, Optane memory: 3TB 12x256GB Intel Optane @ 2666MT/s, kernel: 4.15.0-91-generic, OS: Ubuntu 20.04.4

0

2

4

6

8

10

12

14

16

18

20

Reading Q1 Q2 Q3 Q4

S
p

e
e

d
u

p

NYCTaxi– Performance improvement with Modin + oneHDK

Higher is Better

Pandas Modin + oneHDK Q = Query

https://github.com/toddwschneider/nyc-taxi-data

19

Intel® Extension for Scikit-learn*
and XGBoost*

20

The most popular ML package for Python*

20

21

21

Intel(R) Extension for Scikit-learn

▪ from sklearn.svm import SVC

▪

X, Y = get_dataset()

▪ clf = SVC().fit(X, y)

▪ res = clf.predict(X)

Common Scikit-learn

Scikit-learn mainline

Same Code,
Same Behavior

• Scikit-learn, not scikit-learn-like

• Scikit-learn conformance
(mathematical equivalence)
defined by Scikit-learn
Consortium,
continuously vetted by public CI

Intel Confidential

Scikit-learn with Intel CPU opts

from sklearnex import patch_sklearn

patch_sklearn()

from sklearn.svm import SVC

X, Y = get_dataset()

clf = SVC().fit(X, y)

res = clf.predict(X)

Available through:
• conda install scikit-learn-intelex
• conda install –c intel scikit-learn-intelex
• conda install –c conda-forge scikit-learn-intelex
• pip install scikit-learn-intelex

22

Available algorithms

▪ Accelerated IDP Scikit-learn algorithms:

• Linear/Ridge Regression

• Logistic Regression

• ElasticNet/LASSO

• PCA

• K-means

• DBSCAN

• SVC

• train_test_split(), assume_all_finite()

• Random Forest Regression/Classification

• kNN (kd-tree and brute force)

23

Intel® Extension for Scikit-learn*
▪ Intel® Extension for Scikit-learn* Performance on CLX compared

to original Scikit-learn* (Training and Inference)

Testing Date: Performance results are based on testing by Intel as of June 8, 2021 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: c5.24xlarge AWS EC2 (3.0 GHz Intel Xeon Platinum 8275CL, two sockets, 24 cores per socket) Python 3.8, scikit-learn 0.24.2, scikit-learn-intelex 2021.2.3.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary

Speedups of Intel® Extension for Scikit-learn
training over the original Scikit-learn

Higher is Better

Speedups of Intel® Extension for Scikit-learn
inference over the original Scikit-learn

Higher is Better

http://www.intel.com/PerformanceIndex

24

Gradient Boosting - Overview

Gradient Boosting:

• Boosting algorithm (Decision Trees - base learners)

• Solve many types of ML problems
(classification, regression, learning to rank)

• Highly-accurate, widely used by Data Scientists

• Compute intensive workload

• Known implementations: XGBoost*, LightGBM*, CatBoost*, Intel®
oneDAL, …

25

Gradient Boosting Acceleration – gain sources
Pseudocode for XGBoost* (0.81)
implementation Pseudocode for Intel® oneDAL implementation

T
ra

in
in

g
 s

ta
g

e

Memory prefetching
to mitigate

irregular memory
access

SIMD instructions
instead of scalar code

Nested parallelism

Advanced parallelism,
reducing seq loops

Usage of AVX-512,
vcompress instruction
(from Skylake)

Moved from Intel®
oneDAL to
XGBoost (v1.3)

Already available in Intel®
oneDAL, potential
optimizations for XGBoost*

Legend:

Usage uint8 instead of
uint32

26

26

XGBoost* fit CPU acceleration (“hist” method)

1 1 1 1 1

1.8

0.4
1.1

2.1

1.0

5.4

3.7

1.5

3.8

1.4

15.5

5.7

3.1

7.5

3.4

0

2

4

6

8

10

12

14

16

18

higgs1m Letters Airline-ohe MSRank-30K Mortgage

S
p

e
e

d
u

p
 v

s.
 0

.8
1

XGBoost fit - acceleration against baseline (v0.81) on Intel CPU

XGB 0.81 (CPU) XGB 0.9 (CPU) XGB 1.0 (CPU) XGB master 1.1 (CPU)

CPU configuration: c5.24xlarge AWS Instance, CLX 8275 @ 3.0GHz, 2 sockets, 24 cores per socket, HT:on, DRAM (12 slots / 32GB / 2933 MHz)

+ Reducing memory
consumption

Intel Confidential

27

Optimizations

▪ Xgboost Training -> upstreamed

▪ Xgboost Inference -> have to switch to oneDAL backend

▪ Installation guide: Improve the Performance of XGBoost and
LightGBM Inference

(https://www.intel.com/content/www/us/en/developer/articles/techni
cal/improve-performance-xgboost-lightgbm-inference.html)

https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-xgboost-lightgbm-inference.html

28

▪ Custom-trained XGBoost* and LightGBM* Models
utilize Gradient Boosting Tree (GBT) from Daal4Py
library for performance on CPUs

▪ No accuracy loss; 23x performance boost by simple
model conversion into daal4py GBT:

▪ Advantages of daal4py GBT model:

• More efficient model representation in memory

• Intel® AVX512 instruction set usage

• Better L1/L2 caches locality

No accuracy lost!

XGBoost* and LightGBM* Prediction
Acceleration with Daal4Py

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
See backup for configuration details.

Train common XGBoost model as usual
xgb_model = xgb.train(params, X_train)

import daal4py as d4p

XGBoost model to DAAL model
daal_model = d4p.get_gbt_model_from_xgboost(xgb_model)

make fast prediction with DAAL
daal_prediction = d4p.gbt_classification_prediction(…).compute(X_test, daal_model)

http://www.intel.com/benchmarks

29

29

What makes oneDAL faster?

The best performance on Intel Architectures
with oneMKL vs. less performance OS
BLAS/LAPACK libs

1

onDAL targets to many-core systems to achieve
the best scalability on Intel® Xeon, other libs
mostly target to client versions with small
amount of cores

2

C++ baseline Optimized Math routines Threading Advanced Vectorization Memory optimizations Support of the newest

arhitecrures

Scaling-out opportunities

P
e

rf
o

rm
a

n
ce

Other ML libraries DAAL

oneDAL uses the latest available vector-instructions on
each architecture, enables them by compiler options,
intrinsics. Usually other ML libs build application without
vector-instructions support or sse4.2 only.

3

oneDAL’s uses the most efficient memory optimization
practices: minimally access memory, cache access
optimizations, SW memory prefetching. Usually Other ML
libs don’t make low-level optimizations.

4

oneDAL enables new instruction sets
and other HW features even before
official HW lunch. Usually other ML
libs do this with long delay.

5

1 2
3

4

5

6

oneDAL provides distributed
algorithms which scale on many
nodes

6

30

Call to Action

For more details on Intel® AI Analytics Toolkit and
its software optimizations, please visit

• software.intel.com/en-us/oneAPI/ai-kit

• https://devcloud.intel.com/oneapi/

• AI Analytics Toolkit Support Forum

For more details on specific Intel’s Python* Data
Science software options, visit

• Intel oneContainer Portal

• Intel® AWS Containers

• Intel® oneAPI AI Analytics Toolkit Code Samples

• Intel® Distribution for Python Support Forum

• Machine Learning and Data Analytics Support Forum

• Intel AI Homepage Install Intel’s Python and machine
learning software for easy, fast, and

scalable data science tools!

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html
https://devcloud.intel.com/oneapi/
https://community.intel.com/t5/Intel-AI-Analytics-Toolkit/bd-p/ai-analytics-toolkit
https://software.intel.com/content/www/us/en/develop/tools/containers/get-started.html
https://aws.amazon.com/marketplace/seller-profile?id=d1c6e336-5f6f-4234-82a8-a57463081a35&ref=dtl_B08R5B4HML
https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics
https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python
https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python
https://www.intel.com/content/www/us/en/artificial-intelligence/overview.html

31

Demo time!

32

Questions?

