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Abstract—3D models are integral to various domains such as
video games, industrial simulations, and medical applications,
and their significance is growing constantly. While generative
AI models for text and image creation have seen remarkable
advancements recently, the generation of 3D models remains
challenged by higher complexity and limited training data. In
many application areas, the capability to render 3D models in
real-time is essential. Consequently, 3D models are often produced
in polygonal form, which allow for efficient and fast rendering
while preserving details through textures. This literature review
examines the current state-of-the-art approaches for generating
textured 3D meshes in polygon form using text prompts or
images as inputs. Various methods are analyzed and compared,
highlighting their strengths and limitations. Finally, the paper
proposes a potential model for future developments in 3D
model generation, addressing existing challenges and suggesting
directions for further research.
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I. INTRODUCTION

Creating 3D models is a crucial task in visual applications
such as films, video games, and AR/VR environments. High-
quality 3D models are essential for the quality, usability, and
level of immersion in virtual worlds. However, creating these
models is labour-intensive and requires a high degree of artistic
skill.

To simplify this process and support artists in their creative
work, current research focuses on the automated generation of
3D models, either from the ground up or partly by generating
textures for existing models. Recent advancements in machine
learning, such as stable diffusion [23] for generating images
from text prompts, offer promising solutions. Additionally,
new 3D representation methods, like Neural Radiance Fields
(NeRFs) [16], have been developed that might be used to
generate 3D models from images. NeRFs can generate new
images from unknown perspectives using only a few static
images of an object from different angles.

Although current results have not yet achieved the level of
quality and generation speed required for actual production
use, there are promising indications of what might be possible
in the coming years. With numerous research projects and
approaches being explored, it is challenging to maintain a
comprehensive overview.

This paper aims to consolidate, evaluate, and compare all
these technologies to predict the future direction of research
in 3D model generation.

Applications of such a technology are extensive, including
game development, virtual reality, architectural visualization,
and digital content creation. For instance, integrating au-
tomated texture design as a plugin tool in 3D modelling
software can accelerate workflows for 3D artists. As demand
for immersive digital experiences grows, advancing machine
learning techniques for 3D model generation becomes a cru-
cial, economically significant task that drives innovation and
creativity across industries.

II. METHODOLOGY

A. Geometry Representation

Fig. 1. Visualizations of possible geometric representations for a 3D model
adapted from [21].

Mesh: Meshes are the most common representation used
in the real-time industry. They are optimized for performance
and are well-suited for manual modelling methods. Each mesh
consists of a list of vertices, with a combination of three or
more vertices forming a face, which is projected onto a 2D-
pixel grid through a rasterization process. The disadvantage
of meshes is that they are unordered and non-differentiable,
making them less suitable for machine-learning approaches.
Often, other representation methods are used and converted
into a mesh in the final step.

Voxel: The Voxel representation is the 3D equivalent of a
pixel grid. It is a volumetric representation where a 3D space
is divided into segments called Voxels. These Voxels contain
information corresponding to their specific location, such as
whether the space is empty or occupied by an object.
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Signed Distance Field (SDF): Similar to the Voxel repre-
sentation, a SDF is a divided field where each point in the
space has a value indicating how far it is from the nearest
surface.

Point Cloud: A collection of unconnected points in 3D
space, representing parts of the external surface of an object.
Point clouds are mostly acquired through 3D scanning of real
environments and objects.

Neural Radiance Fields (NeRFs): A novel method for
representing and synthesizing 3D scenes from a limited set of
2D images. By utilizing a deep learning model, NeRFs create
a continuous function in 3D space, where each point contains
colour radiance information that varies with the viewing angle.
To generate an image from a NeRF, traditional volumetric
rendering techniques are employed [16].

Other representations that might be used include Grammar,
Graphs and Parameterizations [21]. All mentioned representa-
tions can generally be converted between each other, though
not always without a loss of information.

B. Textures Representation
Textures Mapping: Texture Mapping projects a 2D image

texture onto a 3D mesh surface by unwrapping the model into
a 2D space. The albedo-map represents the base color without
lighting effects and the material map defines properties like re-
flectivity and glossiness. Texture maps oftentimes specifically
depend on the geometry of the given model and cannot be
reused on other models easily [7].

PBR Materials: Physically-Based Rendering (PBR) [26]
Materials simulate real-world material properties for more
accurate light interaction. Key components include metalness
(indicating if the surface is metallic), Roughness (defining sur-
face texture detail), and Base (Albedo) Color. PBR materials
ensure realistic and consistent visuals across various lighting
conditions. The advantage compared to normal texture maps
is that they are often independent of the geometry and can
be easily reused across different models. However, this can
also be a disadvantage, as it may cause the texture to appear
misaligned or unnatural in certain areas.

Texture Field: A continuous 3D function parameterized
with a neural network which avoids limiting factors like shape
discretization and parameterization since it is independent of
the shape representation of the 3D object. [18].

Neural Radiance Fields: Neural Radiance Fields (NeRFs),
use a neural network to encode volumetric density and color
for each point in space. These fields enable realistic rendering
by varying colour based on viewing direction and using
volumetric rendering techniques. Radiance fields can capture
fine details and complex light interactions, synthesizing novel
views from sparse input images [16].

C. Generation Methods
Generative Adversarial Network (GAN): A generative

method that involves the simultaneous training of two models:
a generator G, which is designed to produce synthetic data,
and a discriminator D, which is tasked with distinguishing

Fig. 2. Visualizations of possible machine learning methods commonly used
for generative AI adopted from [21].

between real data from the training set and data generated
by G. The generator is iteratively trained to deceive the
discriminator, resulting in progressively improved synthetic
data that increasingly mimic the original data sets [6].

Variational autoencoder (VAEs): An autoencoder is an
artificial neural network architecture that consists of two com-
ponents: the encoder and the decoder. The task of the encoder
is to map the input data points to a latent space that has a
much lower dimensionality than the input data but still retains
all the important information from the input data. The decoder
is simultaneously trained to generate the original input data
as accurately as possible from these compressed data points.
While simple autoencoders are not designed to create novel
content, variational autoencoders (VAEs) can generate new
content through the usage of a parameterization of a probability
distribution as its internal representation [12].

Reinforcement Learning (RL): Reinforcement Learning
(RL) differs from other machine learning methodologies in
that it does not rely on pre-existing datasets for the learning
process. Instead, it involves an actor that interacts with an
environment or state space, receiving rewards for actions that
contribute to predefined goals. The actors’s objective is to
determine the optimal sequence of actions that maximizes the
cumulative reward over time. While a key advantage of RL is
its independence from large datasets, its effectiveness heavily
depends on the design of a well-suited reward function and
the structure of the environment and action space [10].

Diffusion models: Diffusion models are machine learning
techniques designed to generate high-quality synthetic data by
progressively adding noise to input data, creating a sequence
of increasingly noisy versions. The model learns to predict the
noise introduced at each step and then reverses the process,
gradually denoising the noisy data to reconstruct the original
input. These models can also be conditioned on specific inputs,
allowing them to generate outputs that follow desired patterns
or attributes, making them highly versatile in controlled gen-
eration tasks [23].
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III. CONTRIBUTIONS

A. Model Generation

1) 3D Model From Text: A significant portion of research
initiatives in this domain focuses on developing methodologies
for generating 3D models from text prompts. A widely adopted
technique in this area is the Zero-shot approach, where a
model can generalize to new tasks or data it has never
encountered before. In the context of 3D model generation,
generative models often rely on large-scale image data sets
for training, rather than using actual 3D models or data. This
approach allows the models to learn from extensive visual
information, which can then be applied to create accurate
and realistic 3D representations from text descriptions. A key
model frequently used in these research projects is CLIP
(Contrastive Language–Image Pretraining), a pre-trained
model that interprets the relationship between images and text
descriptions. In many of the studies that follow, CLIP is used
to assess the correlation between the generated image and the
input text prompt, effectively measuring the quality of the
generative output.

Approaches like CLIP-Mesh [11] utilize the zero-shot
method, relying solely on textual input without the need for
explicit 3D supervision. This technique deforms a subdivided
control mesh, along with its associated texture and normal
maps. CLIP is then used to evaluate the correlation between
the rendered images and the input text prompt. By treating this
as an inverse problem, the shape and texture of the mesh can
be optimized to maximize the CLIP score, ensuring that the
generated 3D assets closely align with the text descriptions.
Although the initial results from this method often produce
rough outputs, characterized by distorted geometries and un-
natural color schemes, the foundational technique has been
highly influential and has been further developed in numerous
subsequent studies.

Similarly, Dream Fields [8] is a zero-shot method that
employs simple geometric priors, generating the geometry and
colour of various objects without the need for 3D supervision.
Unlike CLIP-Mesh this does not allow the direct generation
of a mesh but instead trains a neural radiance field [16].
Once again a pre-trained CLIP model is used to measure the
alignment, which enhances both fidelity and visual quality.
The large training data set allows Dream Field to generate
more diverse and creative models. However, the results are
often times very abstract and only very loosely resemble the
intended objects in the prompt.

Another zero-shot method, incorporating explicit 3D shape
priors is seen in Dream3D [29], which also combines these
priors with CLIP-guided 3D optimization. Dream3D begins
by generating a high-quality 3D shape from an input text,
using this shape as a starting point for initializing a neural
radiance field. This field is then further optimized based on
the full-text prompt, allowing for a more effective translation
of complex textual descriptions into 3D shapes. Compared
to the previously mentioned approaches, Dream3D generation
results reflect a good understanding of symmetry, proportions
and straight clear lines, however, they still struggle to create
natural or aesthetically pleasing textures and contain strong

noise or artefacts.
Many current approaches take a significant amount of time

to generate models, even on modern hardware. LATTE3D
[28] stands out for its significantly reduced generation times
compared to its competitors, aiming to achieve real-time text-
to-3D synthesis. LATTE3D enhances quality and robustness by
using 3D data during training, incorporating 3D-aware diffu-
sion priors, applying regularization loss, and initializing model
weights through pretraining with 3D reconstruction techniques.
Compared to the previously mentioned methods, LATTE3D’s
strength lies also in its consistency and variety. However,
while it generates more natural colours than prior methods,
it still often incorporates unwanted lighting information from
the training data, resulting in uneven and unnatural texturing.
Additionally, LATTE3D tends to overly round sharp edges,
sometimes leading to wonky silhouettes.

Techniques like Magic3D [13] use a combination of diffu-
sion priors and efficient rendering strategies to refine coarse
3D models into high-quality textured meshes. This process
is faster than many related methods, such as DreamFusion
[20], and yields higher resolution results. Magic3D makes use
a low-resolution diffusion prior alongside a sparse 3D hash
grid structure, followed by high-resolution refinement using a
latent diffusion model. With that Magic3D manages to create
highly detailed meshes, which are not easy to achieve with
other methods. However, like many other works it struggles
with unnatural colors and unwanted lighting artefacts.

In a different approach, Shap·E [9] directly generates pa-
rameters for implicit functions that can be rendered as textured
meshes and neural radiance fields. This method involves using
an encoder to map 3D assets to parameters, which are then
processed by a conditional diffusion model. By conditioning
the diffusion prior on images or text descriptions from a large
data set of 3D assets, Shap·E can quickly generate complex 3D
objects. The final results tend to struggle with high-frequency
objects with thin, small details and often displaying unnatural
proportions. Compared to other approaches, the given results of
Shap·E indicate that the textures are free of lighting artefacts.

Lastly, SDF-Diffusion [24] introduces a novel method for
3D shape generation using denoising diffusion models that
represent shapes with signed distance fields (SDF). This ap-
proach separates the generation process into two stages: first, a
diffusion-based model creates a low-resolution SDF, which is
then refined to high-resolution using a second diffusion model.
According to the authors, this use of SDFs enhances memory
efficiency and allows for direct mesh reconstruction, making
the method suitable for detailed 3D shape generation. The
results of this paper show simple textureless geometry and
overly rounded edges, which might be improved by increasing
the SDF resolution.

2) 3D Model from Images: Instead of using text prompts
as input for 3D model generation, it is also possible to use
images to guide the process. One such method is Pixel2Mesh
[27], which proposes an end-to-end deep learning architecture
that generates a 3D shape in the form of a triangular mesh
from a single colour image. This model utilizes a graph-based
convolutional neural network to represent the 3D mesh and
claims to achieve accurate geometry by progressively deform-
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ing an ellipsoid based on perceptual features extracted from the
input image. To ensure stability during deformation, a coarse-
to-fine strategy is employed, along with various mesh-related
loss functions to capture different properties. Pixel2Mesh does
not produce textures and can result in shapes with wonky edges
and strong rounding, often requiring high polygon counts even
for simple shapes.

Another approach, GET3D [5], introduces a generative
model that directly produces explicit textured 3D meshes with
complex topology, rich geometric details, and high-fidelity
textures from images. GET3D combines advancements in
differentiable surface modelling, differentiable rendering, and
2D Generative Adversarial Networks and is trained using
2D image collections. This model can generate high-quality
textured meshes for a wide range of objects, including cars,
chairs, animals, motorbikes, human characters, and buildings,
significantly outperforming other methods. A standout feature
of GET3D is its ability to also generate material properties, like
adjusting the reflectivity of a car’s window. However, while it
creates realistic textures and shapes, it occasionally produces
models with unclean edges.

Similarly, the method described in Convolutional Genera-
tion of Textured 3D Meshes [19] uses only supervision from
single-view natural images. A key innovation of this approach
is encoding both the mesh and texture as 2D representations
that are semantically aligned and effectively modelled by a 2D
convolutional GAN. This technique is effective in generating
good textures but struggels to create high detail 3d models.

The Fine Detailed Texture Learning for 3D Meshes with
Generative Models [4] approach focuses on reconstructing
high-quality textured 3D models from both multi-view and
single-view images. This method frames the reconstruction
process as an adaptation problem that progresses through two
stages: first, it learns accurate geometry, and then it uses
a generative adversarial network to learn the texture. Key
enhancements in this pipeline include an attention mechanism
based on learnable pixel positions to ensure spatial alignment
of textures, and an augmented input for the discriminator with
a learnable embedding to improve feedback to the generator.
While this method achieves good texture quality, it can also
introduce lighting artefacts and distorted shapes.

3) View Reconstruction: Zero-1-to-3 [15] is introduced as
a framework for changing the camera viewpoint of an object
based on a single RGB image. To achieve novel view synthesis
in this setting, the framework uses geometric priors learned
by large-scale diffusion models from natural images. A condi-
tional diffusion model, trained on a synthetic data set, learns to
control the relative camera viewpoint, enabling the generation
of new images of the same object under specified camera trans-
formations. Additionally, this viewpoint-conditioned diffusion
approach can be applied to 3D reconstruction from a single
image.

4) Model like Human: A common drawback of generative
3D modelling methods is the disorganized and inefficient
topology of the generated meshes, which often complicates
manual post-processing by human modellers. Additionally,
poor mesh topology can create problems during animations,
resulting in undesirable artefacts. Research initiatives such as

Modeling 3D Shapes by Reinforcement Learning [14] seek
to address this issue by enabling machines to model 3D shapes
more like human modellers, leveraging deep reinforcement
learning (RL). This approach mimics the human process by
first identifying a set of primitives that approximate the target
object and then refining these primitives to generate detailed
geometry that aligns with the intended design. To train the
modelling agents effectively, the study introduces a novel
algorithm that combines heuristic policies, imitation learning,
and reinforcement learning. The results show that agents can
learn to produce structured, regular, and topology-aware mesh
models, underscoring the feasibility and effectiveness of the
RL framework.

As previously mentioned, many prior approaches do not
generate polygon meshes directly, instead using alternative
3D representations that are more compatible with generative
models. The polygon meshes are then converted in a post-
processing step, often resulting in suboptimal topology. Poly-
Gen [17] tackles the challenges of generating polygon meshes
with clean topology directly by predicting mesh vertices
and faces sequentially using a Transformer-based architecture.
PolyGen is composed of two key components: a vertex model,
which unconditionally generates mesh vertices, and a face
model, which predicts mesh faces conditioned on the vertices.
The results of this paper demonstrate a clean and efficient
topology, similar to what one would expect from a human
modeller.

B. Texture Generation
There are multiple approaches to generating textures for

3D models. Most approached begin with an untextured 3D
model and use either an input text prompt or an image-based
description to define the desired texture. Achieving state-of-
the-art performance in text-driven texture synthesis involves
overcoming two critical challenges. The first challenge is
ensuring broad generalization across various objects, whether
guided by diverse prompts or images. The second challenge
is eliminating unwanted coupled artefacts like unwanted illu-
mination in the generated textures, which often results from
pre-training.

A common method for generating textures involves render-
ing a 3D mesh from a specific viewpoint and using depth data
to generate and inpaint the texture. Text2Tex [3] is such a
text-driven texture synthesis technique that uses depth-aware
diffusion models. The view-dependent textures produced are
then back-projected onto the texture map, allowing for the
progressive synthesis of high-resolution partial textures from
multiple viewpoints. By iterating this process from different
angles, new regions are covered, and stretched textures are
corrected. Closely related to this TEXTure [22] uses the
same depth-aware diffusion model generating the texture from
different viewpoints with segmentions they call ”generate”,
”refine” and ”keep”. Additionally, it also enables editing and
refining existing textures using either a text prompt or user-
provided scribbles.

Another approach that utilizes a publicly available Stable-
Diffusion model with depth conditioning is TexFusion [2],
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which proposes using latent diffusion models that autoencode
images into a latent space to generate images within that space.
Their pipeline uses Score Distillation Sampling (SDS) to
distill, or optimize, a 3D representation such that its renders are
encouraged to be high-likelihood under the image prior. This
approach claims to produce textures with a more natural tone,
stronger view consistency, and significantly faster sampling
times compared to other similar methods.

A GAN-based method that directly operates on the sur-
face of 3D objects without requiring 3D colour supervision
or correspondence between shape geometry and images for
texturing is Texturify [25]. Given a shape geometry, Texturify
can generate diverse textures by sampling from a latent texture
space. By using a latent texture space this method avoids
relying on 2D texture parameterization with texture maps,
which enables texture generation that respects the 3D structural
neighbourhood relations, minimizing distortion.

Most approaches to texture generation focus solely on pro-
ducing the so-called albedo colour, neglecting material proper-
ties such as roughness and metalness. This oversight reduces
the overall quality of the results. One project addressing this
issue is PaintIt [30], which synthesizes high-fidelity texture
maps and material information for a given mesh and text
description through a synthesis-through-optimization process.
Specifically, PaintIt introduces Deep Convolutional Physically-
Based Rendering (DC-PBR) parameterization, which replaces
traditional pixel-based parameterization of PBR texture maps
with convolutional neural kernels that are randomly initialized.
During optimization, DC-PBR re-parameterizes the texture
maps, optimizing the neural surrogate of the PBR texture maps
rather than directly optimizing pixel values.

Paint3D [31] addresses the challenge of generating high-
quality textures without embedded illumination, allowing for
re-lighting and re-editing within external graphics pipelines.
It starts by using a depth-aware 2D diffusion model to create
an initial coarse texture map through view-conditional images
and multi-view texture fusion. To overcome the limitations
of 2D models in fully representing 3D shapes and removing
lighting effects, texture map inpainting and UVHD diffusion
models are used for refining incomplete areas and eliminating
illumination artefacts. This coarse-to-fine approach enables
Paint3D to produce high-quality, consistent 2K texture maps
without lighting artefacts, advancing 3D object texturing. The
diffusion models are trained in texture map space, using
feasible 3D objects and their high-quality illumination-free
textures as supervision.

Finally, we consider Mesh2Tex [1], which introduces a
novel hybrid mesh-neural-field texture representation. This
approach enables diverse and realistic texture generation on
object mesh geometries by linking a neural texture field to the
barycentric coordinate system of the mesh faces. While the
generated textures are of high quality with minimal distortions,
they still exhibit unwanted illumination information embedded
within the textures.

IV. CHALLENGES AND FUTURE WORK

Despite the enormous progress in 3D model generation in
recent years, several challenges still need to be addressed. The

following section outlines some of these issues.

A. Challenges
Usability: A significant challenge will be elevating the

generated 3D models to an industry-usable level. To achieve
this, the models must be user-friendly, high-quality, fast, and
controllable. Existing methods often rely on volume rendering
or neural rendering and fail to produce quality content suitable
for the rasterization graphics pipeline.

Generation times: For generative AI to be viable in
3D model production, it must be fast enough to integrate
smoothly into workflows, support rapid iterations, and scale
to meet high-volume demands, ensuring efficiency and cost-
effectiveness. Some of the works presented here take up to 30
minutes to generate a model, which is too slow for producing
probabilistic results. However, we have also seen some models
that can generate models in near real-time.

Unwanted Lighting-Information in textures: In many tex-
ture generation approaches, the final results exhibit undesirable
lighting effects inherited from the training images. However,
for the use of 3D models in a production environment, it
is crucial that the textures are free of lighting information,
representing only the so-called albedo color. Like mentioned
there are already first research attempts that address this chal-
lenge, focusing on developing methods to produce lighting-
independent textures.

Unnatural textures: In a notable number of results, textures
exhibit very high saturation, which significantly reduces the
quality of the outcomes and makes them appear unnatural.
Addressing this issue is essential to improve the realism and
visual appeal of the generated textures.

Unnoptimized Mesh-Topology: A clean topology is crucial
for maintaining and dynamically editing meshes, and it can
also impact the final quality, such as in vertex base animations.
In this paper, we discussed two research works that focus on
modeling 3D models as cleanly as a human would. However,
most generative models still rely on topology- unaware gener-
ation methods.

Limited Datasets: Although the available 3D model
datasets are now of considerable size, they still lag signifi-
cantly behind the datasets used for image generation. This is
especially true since the style of the available 3D data is often
very similar, limiting diversity. One solution to this problem is
to rely more on existing 2D datasets to generate 3D models.

B. Future work
Future work will focus on improving the overall visual

quality of 3D models. More importantly, enhancing the sta-
bility of 3D models is crucial; the topology must be clean
and optimized for further processing and applications, making
the generated models suitable for animations. Improving the
diversity of generation will also be significant, likely utilizing
the large 2D datasets available. Perhaps the most critical
area for development is the controllability of the generations.
Accurately representing the desired input is essential, but so is
the ability to control additional high-precision parameters like
aspect, bounds, and feature points.
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V. CONCLUSION

This review has comprehensively examined the current land-
scape of textured 3D model generation in polygon form using
machine learning techniques. Various techniques, including
GANs, reinforcement learning, and diffusion models, have
been explored to address the challenges associated with 3D
modeling, such as generating high-quality textures and detailed
geometries.

The integration of neural networks with traditional polygon-
based methods has shown promising results, producing models
with improved fidelity and complexity. However, challenges
remain, particularly in achieving seamless, lighting-less texture
mapping and optimizing the balance between computational
efficiency and model accuracy.

Future research should focus on refining these machine
learning approaches to enhance the quality and realism of
3D models further. Additionally, there is a need for more
robust training algorithms that can handle diverse and complex
datasets, ensuring that generated models are both accurate
and versatile for various applications in computer graphics,
robotics, and game development.

Overall, the advancements in machine learning provide a
robust foundation for the continued evolution of textured 3D
model generation, offering exciting possibilities for future
innovations and applications in the field.
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