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Abstract

This paper presents an interactive simulation of Konrad Zuse’s Z3 computer in a Virtual
Reality environment to give users the full experience of working with this machine.
It details the creation of the project in various aspects, documents findings from
developing and working with it, and evaluates how effective it is as an educational
tool in terms of teaching users about the Z3 itself and some concepts of low-level
programming.
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1. Introduction

Teaching people about historically significant places and objects through facts and
figures alone may be an effective approach in some cases, but inherently interactive
things such as the first computers demand more than that. Virtual Reality lends itself to
creating immersive experiences of such devices, letting users relive what it was like to
work with them, and giving a far better impression of these machines than a textbook
ever could. This project (hereafter referred to as Z3VR) aims to implement such a
learning environment for the Z3, arguably the first (built) programmable computer.
Working with the Z3 computer is, as with most early computers, a very hands-on
experience. Any attempt at simulating it through a 2D interface will inherently lose
this aspect, and without actually seeing the machine in front of you and hearing it
operate, that interface will only ever be an obtuse canvas of buttons and displays with
an obscure programming model behind it. The historical significance of this machine
should be evident, but the reasons for recreating the Z3 specifically reach further than
just that.

For one, the machine is hardly known outside of limited circles due to various factors,
and the author believes more efforts should be taken to rectify this.

Secondly, while there are currently some working recreations of the machine on
display in museums around the world, none of them are open to the public to work
with, and the one built under the supervision of Konrad Zuse himself is completely
inaccessible at the time of writing. Some digital simulations of it and how they’re
lacking in terms of providing insight into programming the Z3 will be detailed in
Chapter 2.

Another factor is that the programming model of the Z3 is remarkably similar to
modern assembly languages, thus offering an opportunity to teach users not just about
this machine and its historical significance, but also about hardware-level programming,
in a way that the learned skills can easily be applied to modern machine languages. In-
teraction with the machine is also extremely simple compared to other early computers
like the ENIAC or Mark I, as such the barrier to entry is low enough that users do not
first need to read through pages upon pages worth of instructions to get started with it.

Finally, the relatively compact yet open layout of the machine’s different components
(Fig. 1.1), as well as their clear separation in terms of function, makes it a lot easier to
show users what each part does and how they interact with each other.
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1. Introduction

Figure 1.1.: The 3D model created for Z3VR

The main target demographic of the project is people in their late teens and up, with
at least marginal interest in computer science. Z3VR places users in an interactive scene
where they can get the full experience of working with the Z3. Various interfaces are
provided to make programming the machine as accessible as possible while trying
to maintain immersion and historical accuracy. This paper will attempt to answer
whether this is an effective method for teaching users about this machine and low-level
programming concepts.

Chapter 2 will go into prior works concerning simulations of the Z3 and other
historical computers, plus some other VR teaching environments. The following
Chapter (3) covers Z3VR in more detail, explaining the different interfaces implemented
within it and the methods used to recreate the machine. Chapter 4 explores observations
made while working with the Z3 that are hardly mentioned in other literature, and
ends with an example program exhibiting conclusions drawn from those observations.
Chapter 5 presents and evaluates the data gathered from playtests, with emphasis
on the two iterations of Z3VR’s introduction system and their respective reception.
Chapter 6 outlines aspects of the project that were planned but ultimately cut due to
time constraints, as well as lessons learned and how these things could be of interest
for future works. The last Chapter (7) gives a summary of the paper and project, and
an outlook for the future of Z3VR.
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2. Related Work

2.1. Previous Z3 simulations

Aside from the mentioned physical reconstructions of the Z3, there have been various
digital simulations and emulations of the machine, with varying degrees of accuracy.
Details about how the Z3 operates will be covered in Chapter 3, for this section it’s only
necessary to know that it operated on two binary floating point registers, and it both
received and displayed numbers in a decimal floating point format.

Riley

A simulation by Mike Riley, published on their website [7], presents the user with a
standard application window, with interactive buttons and display fields mimicking
the layout of the machine’s console (Fig. 2.1). Tabs along the top of the window allow
the user to switch to an "Assembler" view where programs can be written or loaded, a
"Memory" view where 64 memory cells are each represented by a hexadecimal number
field, and a "Debug" view where extra information is shown during operation.

As Riley mentions in an included text document, numerous assumptions were
made concerning the console interface and operation specifics, some of which are
unfortunately erroneous. For instance, the function of the ↗, ↘, and A buttons
was misinterpreted as "load from memory", "write to memory", and "display result"
respectively, with the third and fourth digit of the decimal mantissa input providing
the address for memory operations. In reality, these buttons serve the functions of
"input number", "display result", and "start program" (A → "Abtasten"). What Riley’s
implementation does execute faithfully though, is the algorithms used to compute
the different operations. The registers are abstracted as unsigned integers, and all the
algorithmic steps as described by Rojas et al. [11] are taken to compute the results.
The code for this was a valuable resource for checking the correctness of Z3VR’s
implementation of the arithmetic unit.

PipZuseZ3

A different project named pipZuseZ3 [6] falls short on the algorithmic accuracy aspect
by abstracting the two operands as modern-day float values, and implementing the

3



2. Related Work

Figure 2.1.: Riley’s windowed Z3 simulation

instructions by utilizing the provided float operations. The program runs in a terminal
and expects the name of a text file containing a Z3 program as an argument on
startup, and there is no option to simulate manual operations through the console.
As the program terminates after the instruction sequence has ended, the simulated
machine’s memory is not persistent, making programs that operate on the results of
prior programs difficult. Furthermore, there is no option to create looping programs
(possible on the real machine by sticking both ends of the program together), and the
simulation does not implement the Z3’s exception handling.

VRML Simulation

The prior work closest to Z3VR (as far as Z3 simulations are concerned) would be
the 3D simulation of the machine available on the Konrad Zuse Internet Archive [8, 9]
(Fig. 2.2). It was constructed using the Virtual Reality Modeling Language [3], an archaic
file format used for creating interactive 3D environments and sharing them through
websites. Despite its name, it cannot be used for VR applications. Today it needs
specialised software to run in a web browser, and getting this specific simulation to
run requires downloading the web page and scouring through error logs to determine
the file paths for the required textures to manually download those separately. Once it
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does run, the user is presented with a simple 3D scene featuring the two relay cabinets
and console, which can be navigated using the mouse via tank controls, or by switching
between preset perspectives. The console can be interacted with by clicking on the
buttons, and it displays values and exceptions by illuminating the appropriate fields.
Outside of the 3D view, the web page also features a field where users can write a
program to be run, though seemingly this also does not give users the option of looping
programs.

Figure 2.2.: 3D VRML scene

Unfortunately, while the console interaction and programming both work as expected,
the machine itself behaves in strange ways. The button intended for displaying the
output instead acts as the input button, whereas pressing the proper input button
throws an exception in the simulation’s output log and leaves the virtual machine
running indefinitely. Pressing A should start the program written on the right, but
instead, the machine terminates after a short delay without requesting a number input,
and supplying two inputs anyway has no effect. These issues are likely caused by
incompatibilities between the specific file format version used by the simulation and
what the VRML software expects, and attempts at unpacking the VRML file to try and
fix these were unsuccessful.

These three projects are currently the only publicly available, mostly functional
simulations of the Z3. As all of them are either broken due to using archaic formats or
do not represent its interface accurately, there is no way for someone to work with the
Z3 as you would with the real machine, a gap that Z3VR aims to fill.

5
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2.2. Simulations of other historic computers

Of course, the Z3 is not the only early computer to have been simulated, and it’s worth
taking a look at the approaches taken to simulate other pioneering machines.

ENIAC Java applet

Figure 2.3.: ENIAC simulation Java applet

The Konrad Zuse Internet Archive also features a portable Java application which
emulates the ENIAC computer [16], shown in Figure 2.3. This applet presents the user
with the option to initiate the machine with example programs like Fibonacci on startup,
after which a window showing a 2D representation of the ENIAC’s interface is created.
Unlike the Z3, programming the ENIAC required a lot of manual labour, connecting
different sections of the machine with cables and turning dials to the correct settings.
Due to the very horizontal nature of the ENIAC, a scroll view is used to navigate
to different parts of the machine. Tooltips give the names of all visible components,
and the various dials and plug sockets can be turned and connected by clicking and
dragging across them. The simulation is quite function-oriented, it does not feature an
introduction and the FAQ section recommends users to try and understand and modify
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example programs to get started on programming. Alternatively, the accompanying
paper [16] provides an in-depth guide on the programming model.

EDSAC Simulator

Figure 2.4.: EDSAC simulation

Martin Campbell-Kelly presented a simulation of the EDSAC computer in 1996,
which is still available on the website of the University of Warwick [1, 2]. Much like
the ENIAC Java applet, this program opens a window with a 2D representation of the
machine’s main interface. Additionally, a secondary window (at the top of Fig. 2.4)
allows users to load EDSAC programs, of which several examples are prepackaged
with the software, including Conway’s Game of Life and OXO, one of the first video
games. Also included in the files are several documents detailing the EDSAC itself
and how this simulator is operated, though no explicit tutorial is provided within the
program.

ENIAC-VR

A remarkably similar project, only found after Z3VR’s completion, is ENIAC-VR [15],
presented at the MuC 2020 (Fig. 2.5). It had the same goal of providing an immersive
virtual environment for users to experience programming one of the first computers.
This was extended further by including a guided tour which details the historical
context and significance of the machine, as well as a Maintenance mode, in which users
are instructed on how to spot and fix issues with the machine, which were a frequent
occurrence on the real one.

7
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Figure 2.5.: Screenshot of the introduction to ENIAC-VR

It features an introduction quite similar to Z3VR, which guides users by explicitly
telling them what actions to perform to arrive at their first program. Given the vastly
higher number of interactable components, and from a modern standpoint unintuitive
programming model, ENIAC-VR makes heavier use of text-based instructions (just
about visible in Fig. 2.5), though it’s difficult to imagine a purely visual or gesture-based
tutorial that can convey this level of information density effectively. Just like Z3VR,
ENIAC-VR was realised through the Unity3D game engine1, though it runs on the
Oculus Quest headset2 natively rather than in a PC-hosted form like SteamVR3 or older
Oculus headsets with a cable [15].

1https://unity.com/, accessed 30.8.2023
2https://www.oculus.com/, accessed 30.8.2023
3https://www.steamvr.com/, accessed 30.8.2023
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Unfortunately, no contact with the main developer could be established and the
project is not publicly available, so a deeper comparison than this is not possible.

2.3. Other VR learning environments

Besides ENIAC-VR, there are also other VR applications with the intent to teach users
about programming or other technical subjects, two of which will be highlighted here.

Zenva Sky

Figure 2.6.: A Program within Zenva Sky

Zenva Sky is a game available for Oculus VR devices intended to teach young users
basic programming concepts [5]. The game revolves around the player being placed
within a vehicle that can be moved around a tile-based virtual space using program
instructions, similar to previous teaching applications like Karel the Robot / Robot Karol4.
The user has buttons in front of them corresponding to each possible instruction, and
pressing these adds them to an instruction list, not unlike the one featured in Z3VR
(Fig. 2.65). This starts out with simple instructions for moving forward and turning 90

4https://xkarel.sourceforge.net/eng/, accessed 5.9.2023
5Screenshots taken from https://www.youtube.com/watch?v=hMqiroApt2I, accessed 5.9.2023
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degrees, and is later expanded upon by loops. The game consists of a series of levels
with increasing difficulty, where the vehicle is used to reach an exit, later complicated
by introducing locked doors and boolean inputs that the vehicle can activate, combined
with logic gates to open said doors.

Figure 2.7.: Part of Zenva Sky’s introduction

The project is a lot more gamified than Z3VR, it begins with a short scene where users
are introduced to the game world and given an end goal of freeing an NPC, justifying
why they must solve these puzzles. This intro scene and the later explanations of
the interface and programming concepts are all done through text bubbles (Fig. 2.7),
something which the development of Z3VR has shown to be far from optimal for
effectively teaching users. The commentary of a playtester confirms this:

"I’m not sure if this has anything to do with learning programming. The things
they’re showing me in between they could have just given me in a PDF."6

During the first several levels, Zenva Sky places a lot more focus on introducing
logic gates than making the user familiar with programming the movement system and
tries to make the connection between the puzzle and what it would look like in code
by just putting a screenshot of equivalent Python7 code in front of the user after the

6Direct translation from German, https://youtu.be/hMqiroApt2I?t=460, accessed 5.9.2023
7https://www.python.org/, accessed 6.9.2023
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level. A better approach to this might be to have this code somewhere within the game
world already and dynamically show changes in its evaluation as the user activates the
boolean inputs.

Network engineering in VR

Frezzo et al. presented an immersive VR application for Oculus Quest devices in which
users could learn about various aspects of network engineering [4]. Different widgets
within the application put the user in unique scenes, each tailored to communicate
different concepts.

These widgets are:

• Hardware→ The user is put in front of a server rack and has to connect different
slots using ethernet cables. (Seen in Fig. 2.8)

• Be-the-device → The user is in a scene where they receive ethernet frames
(visualized as cubes with different bits of information on each side) and has to
perform the role of a switch, consulting a switching table and forwarding the
message to the correct port.

• Logical topology→ The user has to solve topological problems involving device
icons and connections.

The back-end for this project is provided by Cisco Packet Tracer 8, an educational
tool featuring similar widgets, though only as 2D representations. Aside from a graded
single-user format, the paper also presents concepts for involving an instructor and
other students through asymmetric VR as a form of remote teaching, as well as the
possibility for a competitive mode where students in and outside of VR are split into
teams [4].

8https://www.netacad.com/courses/packet-tracer, accessed 6.9.2023
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Figure 2.8.: The "Hardware" widget

The interaction model of this project seems comparable to both Z3VR and ENIAC-
VR, being quite physical with the user grabbing and manipulating objects as the main
method of interaction. The plugging and unplugging of cables is especially similar to
that seen in ENIAC-VR.

12



3. Recreating the Z3 in VR

One thing to note is that Z3VR recreates the Z3 that the Zuse KG rebuilt in 1960
for display in the Deutsches Museum, and not the original Z3, as it was destroyed
during WWII, and no photographs have survived that the 3D model could be based
on. Functionally the two machines are mostly identical, the only differences being that
the original had twice the number of memory cells and a few more instructions for
operations like doubling or halving a number or multiplying it by 10 or 0.1 [18], which
can be emulated by the rebuilt machine with some extra steps (bar the larger memory).
The following will cover how Z3VR was developed, starting with a brief overview of
the object of interest.

3.1. Z3

The Z3 was a programmable calculating machine operating on binary floating point
numbers, completed by the engineer Konrad Zuse in 1941 [11]. His prior machine Z1
worked entirely mechanically (the Z2 being the Z1 but with a relay-based processor),
and was conceived as he was frustrated with statics equations which he didn’t want to
work out himself [11]. Functionally the Z1 and Z3 are mostly identical, as Zuse had
developed an abstract design language that could be realised through both mechanical
logic gates and electromechanical relays [17], with the latter being the case for the Z3.

Architecturally, these machines were quite similar to what is now called a Von-
Neumann architecture, being split into a control unit, arithmetic unit, input/output unit,
and memory [11]. Furthermore, the machine operates on floating point numbers which
are remarkably similar to the modern float standard, and as such the arithmetic unit
works in much the same way as modern ones, handling the exponents and mantissa
separately, with binary adders for both and a shifting unit for the latter [11]. The Z3 also
has encodings for the cases of 0 and ∞ and features automatic exception handling. If an
operation like 0/0 or ∞±∞ is detected, the machine halts and shows an appropriate
error on the console. The only things separating the Z3 from later computers are that
the programs (including memory addresses) were static and stored on film stock with
holes punched into it, and that conditional jumps were not supported. Raúl Rojas
has previously shown that these features can be simulated using a very long program,
though this method has no practical applications [10]. Loops can be implemented quite

13



3. Recreating the Z3 in VR

Instruction Console button Meaning
Lu ↗ Input number
Ld ↘ Display content of R1

Ls1 + Add
Ls2 − Subtract
Lm × Multiply
Li : Divide
Lw √ Square root
Pr x Read from address x
Ps x Save to address x

A Start program

Table 3.1.: Instruction set of the Z3

simply by sticking both ends of the program film together once in the reader, though
this means that loops always run over the entirety of the program. The implications of
this will be explored in Chapter 4.

The operational model of the Z3 is effectively Reverse Polish Notation1: a mathematical
operation requires first giving the operands and then the operator. The machine features
two main registers which all operations execute on, and which can be thought of as a
stack. These registers will be referred to as R1 and R2 throughout this paper. Operations
that ’add’ to the stack are Input (to prompt the user to input a number) and Read address
(to read a number stored at the given memory address). Two-operand mathematic
operators like Add or Multiply require both registers to be filled and reduce the stack to
one filled register. Output (to show a number on the display) and Save address (to save a
number at the given memory address) both expect exactly one register to be filled and
clear the stack upon completion. Square root is a unique operation in that it requires
one filled register but also leaves that register filled with the result.

Interaction with the machine happens almost exclusively through the console unit
(Fig. 3.1). This box features a lamp matrix for displaying results and exceptions, and a
keyboard which allows users to input decimal floating point numbers and manually
execute mathematical operations without the need for a program. Table 3.1 shows all
operations supported by the Z3 with their names given by Zuse and their respective
console button and meaning [11]. Input number is technically separate from ↗ as
when the former is executed in a program, the machine halts and waits until the user
presses↗ to confirm their input and translate it to binary.

Table 3.2 shows some example programs exhibiting most of the Z3’s instructions.

1https://en.wikipedia.org/wiki/Reverse_Polish_notation, accessed 1.9.2023
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Figure 3.1.: Z3 Console

3.2. Implementation

The project was implemented within the Unity3D game engine2, which provides an
OpenXR3 API allowing the application to be used with virtually any VR hardware.
Behaviours of objects within the engine are primarily governed by C# scripts. In Z3VR,
each of the machine’s separate units and peripherals has one such script attached
to emulate its function, with references to others allowing for communication where
necessary. Some more fine-grained separations were made to decrease code coupling
and improve maintainability. For instance, each digit of the mantissa input (vertical
columns of buttons in Fig. 3.1) has its own script to manage the 10 buttons it’s composed
of (each of which also has a universal push-button script attached), to ensure that only
one of them is pressed at a time.

The arithmetic unit is simulated on an algorithmic level. This means that the sets
of relays making up the mantissa, exponent, and sign of registers are abstracted as
integers and a boolean respectively, however, all the algorithmic steps that the real
machine takes to work out results are replicated. Some temporary registers were

2https://unity.com/, accessed 30.8.2023
3https://www.khronos.org/openxr/, accessed 30.8.2023

15

https://unity.com/
https://www.khronos.org/openxr/


3. Recreating the Z3 in VR

Program 1 Notes Program 2 Notes
Lu A Input A Lu A Input A
Lu B Input B Ps 1 Save A at address 1
Ls1 A + B Pr 1 Read A
Ld Display result Lu B Input B

Ls1 A + B
Ps 2 Save A + B at address 2
Pr 1 Read A
Lu C Input C
Ls2 A− C
Pr 2 Read A + B
Lm (A− C) ∗ (A + B)
Lw

√
(A− C) ∗ (A + B)

Ld Display result

Table 3.2.: Example programs for A + B and
√
(A + B) ∗ (A− C)

omitted (namely C and D, which only serve as intermediaries to make the addition
of R1 and R2 possible [11]). The algorithms are executed using C# coroutines, which
allows for simulating the speed (or lack thereof) of the machine by timing out the
coroutine for the duration of a real cycle after each simulated one.

Some technicalities are unaccounted for however, mostly due to time constraints and
because users who are not extremely familiar with the intricacies of how the Z3 is built
and operates will never notice them. One of these is the fact that different registers
have a different number of bits for their mantissa, making some more accurate than
others [11]. In Z3VR all mantissas are assumed to have 14 Bits of accuracy and are
represented by 32 Bit integers, where only the lowest 15 Bits (14 + 1 for the implicit
20 Bit) are actually used.

Another detail is that all operations are treated as equal in terms of when they start
execution. The Z3’s cycles consist of various steps, one of which is specifically reserved
for writing a result to memory. For instance, a "write" operation following an "add"
operation should already be executed within the end of the "add" operation’s cycle [11].
As such, the simulated Z3 is technically slower than the real machine in these specific
instances, though by a virtually unnoticeable amount.

A further aspect is the behaviour of the machine in various edge cases, which is
largely undocumented and would require an extensive deep dive into its electrical
plans. Especially questions regarding the handling of invalid instruction sequences,
like "What happens if the machine encounters a third input instruction, when both
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registers are already filled?" or "Is a write or output operation valid if both registers
or neither are filled?" arose during development. Z3VR implements a watchdog, which
monitors the current state of both registers and the upcoming instruction, and throws a
generic exception if an invalid sequence is detected. This system has shown to be an
invaluable aid for new users, as it prevents them from accidentally putting the machine
in an invalid state. Such a system only requires a check of how many registers are
currently filled and how many would need to be filled for the next operation, and as
such is feasible to have been implemented on the real machine.

Another safeguard in Z3VR that likely wasn’t part of the real machine, however, is
that the machine puts itself in a valid state when a new program is inserted, by clearing
both operands. If an exception occurs or the user actively interrupts a program by
turning off the reader or yanking out the program, there will likely be leftover values in
one or both registers. If these remain when a new program starts it’s almost guaranteed
to trigger the watchdog and throw another exception. A user who has not yet learned
to watch the register state indicators on the console and clear the registers by hand
when necessary would be thrown off by this, and a lengthy error message explaining
exactly what has happened would be counterproductive. Simply clearing the registers
when inserting a new program is the simplest way to ensure proper operation, even if
it’s not quite accurate to the real machine.

3.3. Interface

A simulated Z3 is all well and good unless you can’t operate it. The VR interface places
the user in the virtual space and allows them to move freely and interact with the
machine intuitively and physically. These mechanics work to give users more intuition
and knowledge of this machine than a text description ever could. Furthermore, users
are actively involved in handling the machine and running programs. They don’t just
click a button and watch the application do stuff, they engage with the process and do
things themselves to understand how they work.

The Z3 was mainly programmed on paper. "Calculating plans" (Rechenpläne) were
written by hand, with tables to keep track of which variables and constants are in which
memory cell, and annotations describing what number inputs were expected at which
time. These plans were then made physical by punching holes corresponding to the
bitcode of each instruction in 35mm film stock, though notes about the program had
to be included to tell the operator how to use it properly. Such notes were especially
important if a calculation required the sequenced execution of several programs in a
specific order.

Handing a person pen and paper in VR is a recipe for disaster, and letting them type
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everything on a keyboard would turn anyone away within seconds. As such Z3VR
provides a number of interfaces and interactable elements to make the programming
process as convenient as feasible.

Figure 3.2.: Introduction of interaction types

These systems are introduced step by step, so as not to overwhelm users with
everything at once. Upon startup, users are placed in a bare scene with nothing but
an empty table and a text bubble in front of them, instructing them how to move and
rotate in the virtual world using the controllers, and how to open the options menu.
After that, four objects appear one after the other in the scene once the user interacts
with the previous one, introducing each of Z3VR’s modes of interaction. These objects
are, in order: a push button, a sticky note, a book, and a blackboard bearing a 2D UI
button (Visible in fig. 3.2).

Interactable objects in Z3VR can be categorized as such:

• Push buttons→ Physically based buttons that incrementally depress as you move
your virtual finger into them. Once a threshold is reached, they snap to a fully
depressed position and trigger whatever they’re linked to. Examples include the
console keyboard and the lever buttons of the film puncher.
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• Grabbables→ Objects that can be picked up and carried around. They can be
let go in mid-air without falling or put into specialised deposits, which can have
various functions. Examples include sticky notes and program films.

• Openables→ Grabbables that can be opened by tilting them such that their spine
points downwards. These include the info book and program folders.

• 2D UI buttons→ Standard Unity UI buttons on world space canvases. A raycast
visualised by a laser pointer attached to each hand acts as the user’s cursor. The
laser is only visible when aiming at such a canvas.

Interactions (other than ones by raycast) produce a small haptic feedback in the
respective controller, to further enhance the immersion and responsiveness of the
interface.

Some notes on the interabable objects:
The most common items that users will be interacting with are the program films.

They’re grabbables that open a display of the program held within when you hold your
hand near them, shown in fig. 3.3. This display also features two buttons with which
you can toggle to a plain text view (eye icon) and whether the program should loop or
not (∞). The plain text view translates the instruction code names given by Zuse to a
literal name describing what it does, for instance, Ls1 becomes Add.

The book, referred to as the Info Book, is present in the main scene as well and
provides extra information and trivia about various things, including individual sections
of the machine and background info about how and why film strips were used for
programming. Once opened, the user can point at a section of the machine marked
with a square, or hold it near an object emitting particles with the same i logo as on the
book, and the text within will change to said information. If the text exceeds the two
pages, arrows next to the page numbers below will indicate that there are more pages,
and the user can simply grab the corresponding edge to switch to that page.

Sticky notes were added as a simple and intuitive way to both name programs
and metaprograms for saving, and to define the expected inputs of a program. A
typewriter-style keyboard is provided to allow users to write anything on them. The
program display that opens when you hold a punched film has an outlined box at the
top, and placing a sticky note there will let you save the program under that name. The
display also bears a list of these boxes on the right-hand side, titled "Inputs" (Fig. 3.3).
This list has the same number of boxes as there are input instructions in the program.
If the machine runs a program that has at least one expected input defined, it will show
an outline of the info book on the console, and placing it there will show the list of
expected input values within it, including an arrow indicating which input is currently
requested.
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Figure 3.3.: Instruction list and sticky notes for name and input

The Z3 does not have an instruction for immediate values, as such the only way to
obtain constants is through user input, which of course can be anything. Furthermore,
the machine has no way of communicating which variables should be input in what
order, which might be arbitrary depending on the program. The sticky notes were
implemented to emulate the hand-written notes on a real program while being as
simple to grasp and use as possible. However, this system alone is not sufficient to
communicate sequences of programs to the operator, which is where program folders
come in.

Program folders are used to store program films within them in a defined sequence.
They open like the info book and offer a clock-like arrangement of boxes where
programs can be put, shown in figure 3.4. The number and positioning of these slots
adjust automatically depending on how many programs are contained. The folders
themselves can be named and saved as well, to make for more compact entries in the
saved program list. The name Metaprogram is introduced to describe such sequences of
programs. This system works well for most applications, though there are edge cases
where this may not suffice. One can imagine a case where a value is approximated by
a process that executes one loop until a stop condition is reached, and then another,
alternating between the two repeatedly. Though given the skill level necessary to design
such metaprograms, no work was put into designing a system that allows for adding
further operation notes to folders.
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Figure 3.4.: Program folder containing three programs

Once the user has completed the interaction introduction, they’re transported to the
main scene, where the Z3 is situated. The room is vaguely inspired by the room in the
museum where the real machine used to be, though this one is far smaller, ensuring
the user can’t stray too far from the machine. At this point, the console does not feature
any of the operation buttons, and the only option users have is to start selecting a
number using the mantissa and exponent buttons. Once a number has been selected, a
small tutorial will start, guiding the user through their first calculation of A + B. There
is no text telling them what to do, instead translucent hands indicate the action to be
performed, in this case mainly pressing the operation buttons (Fig. 3.5). The next step
doesn’t start until the previous one has been performed, leaving users to comply at
their own pace. The only text added to the console is large numbers which reflect the
currently selected number input and output number in the format +1234 ∗ 105. This
was added since some people have difficulty making out the button labels, not helped
by the lacking resolution of the headset used during playtests. These help texts can be
disabled through the options. An extra aid in this regard is the option to double the
size of the keyboard, which users are reminded of by further text on the console which
disappears after their first number input.

This introduction system, internally titled Step Tutorials, has been implemented as a
simple state machine, where each state defines which scene objects should be enabled
and disabled once it is reached, and which other states can be reached with which
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Figure 3.5.: Console introduction. A hand is shown telling the user to press the Add
button.

inputs. Inputs can come through push buttons or any class implementing a Trigger
interface, and each input object passes a unique identifier to allow distinguishing
between them.

Once the simple console introduction has been completed, all the operation buttons
reappear, and the user is shown towards the next scene element. This is telegraphed
through a green arrow under the player, pointing towards the next tutorial which only
appears once the user has reached it. To facilitate the writing of programs, various
interactable "stations" have been placed in the scene, each with a specific function. The
following will outline these elements in the order they’re introduced to the user.

Programming board

The programming board is the main utility for writing programs. A scroll view in the
middle shows the current list of instructions, and the left-hand side features buttons
for each of the available operations. Clicking on one of these operations will add it to
the instruction list where the cursor is (indicated by <, can be moved by clicking on list
entries). On the right are the same buttons as on punched film displays for toggling the
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Figure 3.6.: Programming board

plain text view and program looping, as well as one for instantiating a punched film
object with the current program on it.

As you can see in figure 3.6, some operations are greyed out. The watchdog used for
ensuring that the machine can’t enter an invalid state during manual operation is also
used here to determine which operations are valid to put at the cursor and only lets
users insert those. The columns for R1 and R2 show the user which registers are filled
after each instruction. Should an invalid sequence still be created, whether by inserting
or deleting an instruction in the middle of the program, the invalid instruction will be
marked red.

Program eraser

This is a shredder which can be used to dispose of wrong or unneeded programs, to
keep things tidy.

Film puncher

The film puncher is an accurate rendition of the device used for creating programs for
the real machine and can be used to punch films by hand in Z3VR as well, to get the
full experience of programming the Z3. Users press the lever buttons corresponding to
the 1-bits of the current instruction code, then click the wheel on the right-hand side to
advance to the next instruction (Fig. 3.7). A list to the left of the puncher shows what
instructions have been punched, so users can see if they’ve made a mistake right away.
Once done they can pull out the film from the far end. There is no apparent source
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Figure 3.7.: Film puncher

on what the large drum on the left-hand side does, the current working theory is that
it was used to flatten sticky tape that was used to cover up erroneous holes, though
no such system has been implemented in Z3VR. The reconstruction of the Z1 in the
late 1980s (also by Zuse himself) features a puncher of the exact same design, however
without this specific part, further throwing its function into question4.

Program saving

This table features an unlimited supply of sticky notes and the keyboard used to label
them. Labelling a sticky note requires it to be placed on a deposit just above the
keyboard, shown in figure 3.8. An unlimited stack of folders is also introduced later.
Labelled programs and metaprograms can be saved by placing them in the nearby
filing cabinet. Attempting to save an unnamed program makes a short text appear
above, informing the user that this is not possible.

4https://youtu.be/_K7Z0afc4wk?t=113, accessed 21.8.2023
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Figure 3.8.: Table featuring folders, sticky notes, a keyboard, and a filing cabinet

Program loading

The loading interface consists of a blackboard bearing a list of buttons, each labelled
with the name of a program that has been saved on disk. Clicking an entry instantiates
a punched film or folder containing the selected program or metaprogram on a plinth
next to the blackboard.

3.4. Visuals

Despite the reconstructed Z3 (hereafter referred to as just "Z3" for simplicity) having
been on display in the Deutsches Museum for well over 50 years, the number of publicly
available photos of it on the internet is shockingly limited. The author’s attempt at
contacting the Museum directly for measurements and better pictures was ignored, as
such the 3D model is based entirely on these public images.

Figure 3.9.: The fSpy interface
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(a) View from one camera, 3D model visible as
wireframe overlay

(b) Scene view with all reference cameras

Figure 3.10.: 3D recreation process

The main method used to make the 3D model was using a program called fSpy5,
pictured in figure 3.9, which allows users to import a photo and, by marking a few
orthogonal lines within it, extrapolate the position and orientation of the camera that
took it. This data can then be imported into 3D modelling programs like Blender6,
where a virtual camera is placed in the scene, and the photo is set as a transparent
background for that camera’s view (Fig. 3.10a). Once a few of these views have been
imported (Fig. 3.10b), it’s possible to approximate the basic shapes of the machine and
to iterate on these over time to approach an accurate model. Something that fSpy cannot
extrapolate, however, is the scale. Fortunately, the assumption that the film strips used
for programming the machine were the standard 35mm (later confirmed by plans of
the reader) and a plan that revealed the height of the arithmetic unit and memory racks
to be 2 Meters [18], were enough to make an educated guess at the dimensions of the
machine.

There are several shortcomings in terms of the accuracy of the model. As mentioned
the number of reference photos was relatively limited, and the number of those that
were usable for the stated method was even lower, as fSpy can’t be applied to images
with even slight distortion, which can occur when pictures get squashed or stretched
for display on a website, or if the initial photo was taken using a fisheye lens. With
the amount of references being so small there are also parts of the machine where
there are simply not enough pictures available to be able to reconstruct them accurately.
Examples of this would be the debug bar at the front of the arithmetic unit (Fig. 3.11),

5https://fspy.io/, accessed 21.8.2023
6https://www.blender.org/, accessed 21.8.2023
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and the pulse drum around the back of the machine’s base (Fig. 3.12). The latter
features a lot of visual complexity, which is nearly impossible to recreate without a
sufficient number of different angles available, and while the debug bar can be seen in
most photos, none of them is close enough or has a resolution high enough to make out
finer details, like the content of the four labels around it, or the shape of the buttons on
either side. Combing through the electrical plans of the machine allowed for deducing
its function, and making an educated guess for the labels and buttons possible, though
confirmation of these will remain impossible until the real machine is accessible again.

Figure 3.11.: A low-resolution view of the debug bar7

Figure 3.12.: The only clear picture of the pulse drum8

7https://www.youtube.com/watch?v=5TNUebJ-BmU, accessed 29.8.2023
8https://www.youtube.com/watch?v=TbW-qNxD1lE, accessed 29.8.2023
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A notable detail of Z3VR is that the punched films that store programs have procedu-
rally generated textures to reflect the program within them. A base texture of ordinary
film stock is combined with 8 masks for the alpha channel (one for each bit) which
are either applied or not depending on the bits of the given instruction’s code. The
resulting texture for a lengthy program is shown in figure 3.13. When a program is run
through the reader, an offset is applied to the material every time the machine reads
an instruction, moving the whole film forward by the length of one instruction, and
further emphasizing the fact that the holes encode the program to the user.

Figure 3.13.: A punched film, encoding a program to turn a non-zero input into 214

Some shortcuts were taken in this system for readability and timely implementation.
The hole pattern on the real machine is interlaced, with bits 1, 2, 4, and 8 of one
instruction coming after bits 16, 32, 64, and 128 of the next one [18]. This makes it
very difficult to tell different instructions apart and would hinder the users’ association
between the bits they punched and the holes they see in the final film. Instead, the
holes of an instruction code in Z3VR are packed together, effectively leaving a one-step
gap between instructions. Running such a film through the real machine would work
just fine, as an all-zero instruction equates to "no-op" and is simply skipped9. Another
shortcut taken was using hand-made meshes for the handheld and placed film strips.
This limits the length of the visual program, while the number of stored instructions is
virtually unlimited, and further introduces the issue of the looping film mesh on the
reader not reflecting the actual length of the program. For non-looping films, this was
mostly hidden using a coiling start and end. Fixing this would require implementing a
dynamic mesh generation system, which would have blown the workload for this way
out of proportion with the effect of the result.

9https://youtu.be/Ct2WHmu6OJ4?t=439, accessed 21.8.2023
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3.5. Audio

A critical part of creating a believable VR space is sound. Aside from greatly amplifying
the immersion [14], it also provides feedback to the user that things are happening. This
ranges from the immediate response of a clicking noise when a button on the console
is pressed, to the symphony of relays clacking away while the machine is crunching
numbers. Two videos exist on the YouTube channel of the Deutsches Museum10 which
show the Z3 working, though only one of them could be used for sampling audio as
it has little to no background music11. During operation, a short loop of the relays
working is played until the machine either finishes running a program or until it halts
for requesting a number input or displaying a value. To break up this loop and give
at least some indication of which instruction is being run, an additional single-shot
relay sound is played during memory access operations, implying the activation of
the address decoder. The two audio sources for the relay loop and memory access
sound are placed within their respective relay cabinets, and spatial audio helps users
tell where each of them is coming from. When running a program, an additional loop
of the pulse drum spinning is played while the machine waits, and is stopped when a
program ends. Technically, this loop should be playing permanently as there is no way
of turning off the machine entirely in Z3VR, but this would likely be annoying to users
after a while and lead to confusion about whether the machine is doing something or
not, so it was used to telegraph that a program is running instead.

Further sounds were added to the console buttons and puncher levers to indicate
when they’ve triggered, and custom foley was recorded to give life to the info book.

10https://www.youtube.com/@DeutschesMuseum, accessed 21.8.2023
11https://www.youtube.com/watch?v=aUXnhVrT4CI, accessed 21.8.2023
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4. Findings from working with the Z3

Some aspects of working with the Z3 are hardly explored in literature and only
become evident once one has written a few more advanced programs and familiarised
themselves with things to look out for and consider. These shall be outlined in the
following.

4.1. Metaprograms

The most glaring one of these is the reason for the program folder system. As program-
ming loops is only possible by taping both ends of the punched films together, looping
programs almost always necessitate a pre- and sometimes post-processing program, to
input variables and constants, and accumulate and output results respectively. Such
metaprograms can consist of multiple loops as well, as will be shown in an upcoming
example, and their potential complexity can be vast. They’re also quite useful if there
are specific programs which either act as libraries to be used in other metaprograms or
if they produce a specific constant and only need to run once, placing their result in a
predetermined memory cell for other programs to access.

4.2. Flooring

There is no built-in instruction for reducing a number to its integer component. How-
ever, due to the limited accuracy of floating point numbers, an arbitrary amount
n ∈ [0, 14] of fractional digits can be eliminated by adding and subtracting 2n, with
n = 14 flooring the number to an integer. This can then also be used to implement
modulo, another unsupported operation. Getting the number 214 in the first place
without relying on the operator to input a sufficiently large number requires starting
from 1 by dividing an input number by itself (though this still breaks if the user
inputs 0), and growing it through additions and multiplications. Recalculating this
from scratch in every program would be quite inefficient, instead running a single
program once to calculate it and place it in memory would be advised. The shortest
number of instructions (starting with 1) for this found during development is 20 (Table
4.1), though this introduces the question of optimization. Different operations take
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a different number of cycles to execute. Addition and multiplication take 3 and 16
respectively [11], which is a substantial amount of time at the machine’s 5 cycles per
second. Adding a number onto itself instead of multiplying it by 2 is always the
quicker option, though when multiplying with higher powers of 2 this becomes more
complicated and would warrant further investigation which is out of scope for this
paper.

Instruction Notes
Lu X Any non-zero number
Ps 0
Pr 0
Pr 0
Li → 1
Ps 1
Pr 1 (Starting with 1)
Pr 1
Ls1 → 2
Ps 2
Pr 2
Pr 2
Ls1 → 22

Ps 4
Pr 4
Pr 4
Lm → 24

Pr 4
Lm → 26

Pr 2
Lm → 27

Ps 14
Pr 14
Pr 14
Lm → 214

Ps 14

Table 4.1.: Program for obtaining 214. See table 4.2 for instruction code meanings
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4.3. Stopping loops

The reading unit of the Z3 has a small switch that can be used to stop a program at any
moment, but unless the operator has quick reflexes and is watching the reading levers
intently, they will not know what the machine is currently doing and when would be
the right time to abort a loop. There are two strategies to get around this. For one, the
program could include a display operation which stops the machine and shows the
current state of a variable. Examples of such a variable would be a simple countdown,
where the operator would stop the machine once it reached 0, or, if the loop is used to
approximate a value, the difference between the previous and current result, where
one stops the iteration once a sufficiently small difference is achieved. The drawback of
this is that every run of the loop requires the operator to clear the display by hand and
to make sure to stop it at the right moment.

A more sophisticated and automated solution to this is the use of exceptions. Among
other cases, dividing zero by zero is detected by a special circuit which halts the
machine and displays an appropriate exception on the console. Stopping the loop once
a countdown reaches zero is trivial with this method, achieved by dividing the counter
variable by zero and discarding the result afterwards. Stopping when a difference is
small enough can be implemented similarly, but by adding and subtracting a large
number 2n before the division to eliminate some digits and floor the number to zero
once it’s smaller than 2−14+n.

4.4. Example program

The program shown in table 4.2 is used to approximate Pi using the Leibniz formula1.
It’s split into 4 separate programs, namely an input handler, preprocessing loop, main
loop, and accumulation and output handler. The program starts with a single input,
which will determine the desired accuracy of the approximation. The first loop then
iterates over the given accuracy variable to produce the value 2accuracy, which is then
used in the second loop to check whether the difference of the last two results is smaller
than 2−14+accuracy. The final step multiplies the current result by 4 and displays it.

1https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80, accessed 8.9.2023
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Prep PrepLoop MainLoop Post Addresses of variables
Lu Accuracy Pr 0 Pr 4 Pr 2 0→ Input, counter
Ps 0 Pr 7 Ps 6 Pr 2 1→ 1
Pr 0 Li Pr 1 Ls1 2→ 2
Pr 0 Ps 31 Pr 3 Pr 4 3→ Odd dividend
Li Pr 8 Li Lm 4→ Current result
Ps 1 Pr 8 Ps 5 Ld 5→ Temporary value
Pr 1 Ls1 Pr 4 6→ Previous result
Pr 1 Ps 8 Pr 5 7→ 0
Ls1 Pr 0 Ls2 8→ Accuracy addend
Ps 2 Pr 1 Ps 4 31→ Dump
Pr 1 Ls2 Pr 3
Pr 2 Ps 0 Pr 2 Instruction reference
Ls1 Ls1 Lu [Value]→ Read console input
Ps 3 Ps 3 Ld → Display content of R1

Pr 1 Pr 1 Ls1 → Add
Ps 4 Pr 3 Ls2 → Subtract
Pr 2 Li Lm → Multiply
Ps 8 Ps 5 Li → Divide

Pr 4 Pr x → Read from address x
Pr 5 Ps x → Save to address x
Ls1

Ps 4
Pr 3
Pr 2
Ls1

Ps 3
Pr 6
Pr 4
Ls2

Pr 8
Ls1

Pr 8
Ls2

Pr 7
Li
Ps 31

Table 4.2.: Example program for approximating Pi
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User tests played a critical role in the development of the VR interface and especially
the introduction system. Participants were given a short info sheet (Appendix A.1) to
explain that the gathered data would be handled anonymously and that the test could
be aborted at any time. After each test, they were handed a questionnaire (Appendix
A.2) to fill out, consisting of the Standard Usability Scale1 questions as well as some
supplementary entries that were more project-specific. The project-specific questions
include how immersed the participants felt, how clear the introduction was, whether
they would revisit the application in their spare time, their prior experience with
low-level programming, and some relating to what sort of programming challenge
they underwent and how they felt about it. The first three of these questions were
intended to evaluate the project in various aspects and analyze how the sentiment of
users evolved throughout development, however, they were not effective in this regard,
as will be discussed later.

Before the first tests, the plan was to limit the time each participant had to 5 minutes,
hence the related bullet point in the questionnaire, but it quickly became evident that
such a time limit was not realistic and it was dropped during testing.

Tests were performed by letting the introduction system guide testees at first. Some-
times explicit instructions by the test conductor were necessary to help them along,
but the amount of required intervention sunk drastically with the second introduction
version and throughout its further development. Once testees had completed the
introduction, they were asked if they would like to take a programming challenge,
and if so at what difficulty level. Tests were concluded either if they opted out of the
challenge or if they attempted and completed it (or gave up on it in rare cases). Testees
were given the option to continue if they wished, though hardly any took advantage of
this. Tests generally lasted between 20 and 30 minutes, with some outliers lasting 40
minutes or even up to almost 2 hours.

Programming challenges were split into three difficulty levels:

• Easy → Could be solved by only working within the two registers directly.
Examples include (A + B) ∗ C and the average of two numbers (with 2 being
provided as a third number input)

1https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
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• Medium → Involved memory accesses. Examples include (A + B) ∗ (A + C),
A + 1, and A ∗ 2, with only A being allowed as an input for the latter two.

• Hard → Also required a loop and pre-/post-processing programs. Examples
include computing Fibonacci numbers and the average of an arbitrary amount of
numbers.

In terms of the demographic, testees consisted mostly of informatics students between
the ages of 20 and 25, as they were the easiest to contact and the GamesLab within the
TUM Mathematics and Informatics building already provides VR equipment which
could be used for testing.

Standard Usability Scale

The Standard Usability Scale (SUS hereafter) used during testing is a standardized set of
10 questions developed by the Digital Equipment Corporation in 1986 for evaluating the
usability of system interfaces. Since then it has become an industry standard, being
used virtually anywhere where applicable, making for an adequate metric to compare
different systems. Evaluation of the responses produces scores in the range of 0-100,
and a comparison of hundreds of studies has shown the average score to be 68.2

5.1. Introduction version 1

The first introduction system was quickly thrown together just before the first round of
playtests. It consisted of a series of text bubbles that showed users around the different
elements in the room one at a time, which at this point in development were all visible
from the start. Needless to say, the combination of being overwhelmed by the number
of elements introduced at once, as well as the walls of text users were presented with
to explain how they worked, meant that the vast majority of testees were quite lost and
had to be given explicit instructions to proceed.

Gathered data

The first round of tests only accumulated a sample size of 7, so the discrete numbers
should be taken with a large grain of salt. Nevertheless, they reflect the perceived
performance of the first introduction system, with an average SUS score of 52.86, way
below the general SUS average of 68. The scores are also extremely varied, ranging

2https://measuringu.com/sus/
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Question Average answer (0-4)
Immersion 3.43
Clear introduction 2.43
Would revisit Z3VR 3.43
Prior experience3 3.14

Table 5.1.: Project-specific answers (Version 1, n = 7)

between 25 and 72.5 and with a standard deviation of 18.1, with higher scores possibly
being a result of politeness rather than honesty.

The data obtained through the project-specific questions at the bottom of the ques-
tionnaire is virtually useless at 7 participants, which is even more evident once the
respective values for version 2 are considered, but shall be listed here for completeness’
sake (Table 5.1). Only one person actually attempted a challenge, so plotting this datum
would yield no further insight. They took an "easy" challenge and didn’t find it to be
harder or easier than advertised.
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Figure 5.1.: Percentile distribution of SUS scores (Version 1, n = 7)

3Prior experience with low-level programming
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Question Average answer (0-4) Standard deviation
Immersion 3.27 0.57
Clear introduction 2.87 0.88
Would revisit Z3VR 3.20 0.75
Prior experience4 2.93 1.34

Table 5.2.: Project-specific answers (Version 2, n = 15)

5.2. Introduction version 2

After the disastrous failure of the first introduction system, work began on designing
a new approach based entirely on visual indicators and the iterative introduction
of elements, with as little actual text as possible. This system is described in more
detail in Chapter 3. The amount of external guidance required during these tests was
drastically lower and kept decreasing as development continued and the introduction
was further refined. There are a few parts where the visual guidance was insufficient
and testees consistently required a quick explanation, so text had to be added to these
areas. Specifically, these are the text on the console to remind users that they have the
option to make the buttons bigger, a note to explain that the lit "Eintasten" field on
the console display means that a number input is requested, and some text to explain
that the numbers on the film puncher are buttons corresponding to instruction code
bits. Though even still, while testees got along fine with most scene elements, very few
people were enthusiastic about using the film puncher.

Gathered data

Tests of the new iteration of the introduction spanned over several weeks, during which
some aspects were further refined. All in all, this produced a sample size of 15, and
the average SUS score of 70.83 clearly shows the major step forward that this system
achieved. The data is also less spread out than in the first test, with outliers of 52.5 and
90, and a standard deviation of 11.89. The overall feedback from participants was also
generally positive. Few actively complained about any part of the interface, which also
dropped to zero as development went on.

As with version 1, the data from the project-specific questions is listed in table 5.2.

In total, 80% of testees gave an answer of 3 or 4 on the question of whether they
would revisit Z3VR in their spare time (if they had a VR setup), further indicating that

4Prior experience with low-level programming
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the experience was at least somewhat enjoyable and that there might be significant
interest in a public release of the project.

While on average most participants had some prior experience with low-level pro-
gramming languages, this question had the largest variance, with five testees answering
2 or less. Nevertheless, there appears to be no correlation between low prior experience
and lower SUS scores or perceived difficulty of the chosen challenge, with the latter
further indicating that the introduction was successful in conveying at least the bare
minimum of low-level programming knowledge required for the challenge.
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Figure 5.2.: Percentile distribution of SUS scores (Version 2, n = 15)

80% of participants chose to accept a challenge, with only two of those perceiving it
as harder than advertised, those being the two who chose a medium challenge. This
may be down to poor communication as to the difficulty of the challenge levels, but
a larger sample size would be necessary to determine this for sure. For the most
part, only people who answered 4 regarding their prior experience with low-level
programming chose a medium or hard challenge, the only exception to this is a single
testee who claimed to have "0" experience and yet chose a hard one. Of the people who
did choose to take a challenge, nearly all of them completed it successfully as well,
including users who claimed to have little to no experience with programming on a
per-register level. This would imply that the introduction was successful in imparting
at least some low-level programming concepts, though subsequent challenges would
have been necessary to confirm this.

While the new SUS score of 70.83 might suggest an above-average system, the
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Figure 5.3.: Challenges taken and their perceived difficulty (Version 2, n = 15)

standard deviation of 11.89 raises doubts, and a T-test against the SUS average of 68
all but confirms these. A one-sample T-test of the gathered SUS scores against the
general average SUS score of 68 (with the null hypothesis being that the implemented
interface performs about average) produces a t-value of 0.8905. The sample size of 15
and two-tailed α = 0.20 give a critical t-value of 1.345. Our t-value is well below that,
so it’s safe to say that the results of the interface version 2 are not significantly above or
below the expected average.

5.3. Summary and lessons learned

As the data shows quite clearly, version 2 of the introduction was a major improvement
in terms of approachability for users. This was also apparent during the tests themselves,
as most participants were quick to grasp the interface and core principles of working
with the machine. The SUS score could still see some improvement, but raising the bar
from below average to average is already a promising result, and even better performance
seems within reach if more tests and iteration are undertaken.

Unfortunately, some of the data gathered through the custom entries of the question-
naire is difficult to evaluate in absolute terms, and, due to the way smaller sample size
of the first test, a before-and-after comparison yields no valuable information. These
questions should have had more thought put into them. A redundancy system like in
the SUS format, where one metric is evaluated using multiple differently phrased ques-
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tions, would have certainly helped. However, when adding more and more questions
on top of the 10 SUS ones, participants are likely to start skimming over them and give
untruthful answers, which must be taken into account when designing them.

Further studies should also include a questionnaire for the test supervisor to fill
out, as some valuable data could have been gathered through observation alone, for
instance, whether a person actually completed the challenge they chose successfully,
how long they took to get through the introduction, how long exactly each test lasted
altogether, or how often they got stuck and the supervisor had to intervene.
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6.1. Further work on Z3VR

The initial implementation of the simulated Z3 went so quickly that plans were made
to include two more calculating machines, but as the extent of work to be put into the
VR interface became clear these were ultimately scrapped.

6.1.1. Original Z3

Figure 6.1.: A sketch of the original Z3 [18]

As mentioned previously, while the rebuilt Z3 and the original are functionally
mostly the same, there are some differences that affect how programs can be written,
and implementing this machine as an alternative option would allow for teaching more

41



6. Future work

about the history of it and its replicas. The original featured the extra instructions of ∗2,
: 2, ∗10, and : 10. While ∗2 can be replicated easily by adding a number onto itself, all
of the other operations require a constant to be stored in memory and take significantly
longer to execute than the hard-coded implementation. The extended memory of 64
cells would make longer and more complex programs possible, though the number of
people who could use this effectively is likely quite limited.

While there are no photos of this machine, there exists a sketch of it by Zuse which a
3D model could be based on (Fig. 6.1). Given that the design language of the Z4 (which
has survived the war and was until recently on display in the Deutsches Museum) is
nearly identical to the rebuilt Z3, it’s safe to assume that the original Z3 also looked
similar.

6.1.2. Z3+

During development, the question arose about how working with the machine would be
affected if simple conditional jumps, subroutines, and instructions for immediate values
were added. As such, plans were made for a hypothetical Z3+ with such functionalities,
with consideration that each of them could have been implemented on the real machine
with only minor changes.

Way after the implementation of this variant was cut, a closer look into the specifica-
tions of Zuse’s next computer, the Z4, revealed that it (eventually) did have all of these
features, as such a far more interesting and historically significant idea would be to
recreate this machine instead. The Z4 also bore other features that are very useful and
extremely interesting and further warrant recreation of it in future works. For instance,
it had a lamp matrix on the console where one cell would be lit, which could be moved
around through program instructions. The point of this was to make putting in the
values of a matrix easier, by placing a labelled piece of paper on top of the display and,
while expecting an input, highlighting the cell of the matrix which was requested.

Nevertheless, the original plans for implementing these concepts in the alternative
Z3 will be elaborated on and compared to how they actually were realised within the
Z4.

Jumps

The jump system would have consisted of two new instructions; a jump label and a
jump/jumpIfNegative operation. Both would use the lower 6 bits of the instruction code
to define the address of a label, to declare where one is in the code or which one to
jump to respectively. The decoding unit of the memory could then be reused to decode
these labels, and a single extra relay (bit) per memory cell would allow the machine
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to "remember" which labels it has already gone past by setting that new bit in the
corresponding memory cell to 1. Once a jump instruction is read, a check of the marker
bit would reveal whether that label has been visited already or not, in turn deciding
whether the reader has to backtrack until it reads that label again (setting the marker
bit of other labels to 0 along the way) or to skip ahead instead. The fill state of R1

would determine whether the jump is conditional or unconditional: If R1 is empty,
always jump. If R1 has a value, only jump if its sign is negative.

Assigning instruction codes to these could either be done by limiting the memory to
32 cells (as with the rebuilt Z3) and using bit 6 as an indicator whether the operation
is a memory access or jump-related. Alternatively, a special instruction functioning
as an escape character could mark an upcoming operation as a jump. This variant
would also enable the other new instructions to be implemented more easily but would
complicate finding labels during backtracking. Getting around this would involve
adding a buffer to store a read address, or striking backtracking and the marker bits
entirely and forcing all programs with jumps to loop such that skipping ahead will
always reach the target label eventually.

Zuse solved this in a fascinating manner for the Z4. First, he introduced a separate
set of instructions that operate on R1 and produce a "boolean" value of either −1 or +1
(effectively clearing R1 and using the sign bit). Examples of these are x = 0, |x| ≥ 1,
and x =? (the Z4 also had a form of NaN’s). The operation x(−1) could be easily used
to quickly invert a boolean value. Then, he added three conditional operations, that
were only executed if the preceding boolean operation produced +1 [13]:

• Fin’→ Conditional stop. If executed in the secondary reader (explained in the
next section) this actually stops execution rather than returning to the main reader.
A conditional switch to the main reader would instead be done by a conditional
jump over a regular stop instruction.

• Spr → Conditional jump. All following instructions are skipped until a start
instruction is reached.

• Up’→ Conditional switch to secondary reader.

As you can see, jumps would only move forward and would always end at the next
start instruction. This makes jumps to specific points in the program difficult, as a jump
to a given target section would be interrupted if there was another target between the
jump and the intended target, so programs had to be designed around this limitation.
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Subroutines

Subroutines would be implemented by adding one or more secondary readers to the
machine. A "switch to coroutine" instruction would be added which would contain an
index, and a selector circuit would switch to the given reader, funnelling all further
reading impulses and read codes between the control unit and the selected reader
until the subroutine reached a stop instruction. Subroutines that need to be executed
multiple times would of course have to be loops. To keep the number of structural
changes to a minimum, no call stack was planned, instead any stop instruction would
return execution to the main reader, but subroutines would still be able to call other
subroutines.

Such a system, especially in combination with jumps, could eliminate the need for an
operator for most metaprograms. In the Pi approximation example from Chapter 4, the
pre- and post-processing programs could be combined into one program on the main
reader, with two subroutine calls between the two halves. The loops could replace their
exception-based stopping mechanism with a section in the program that contains a stop
instruction, which gets jumped over until their stop condition is reached. Subroutines
could also be used to implement a mentioned metaprogram case where two loops
alternate repeatedly, with each calling the other subroutine in their stop section. Both
would contain a second, "strong" stop section containing a final stop instruction.

The Z4 was fitted with a secondary reader, with capabilities to be extended by up
to 4 more (never actually done). The Up (= "Unterplan") instruction was only valid in
the main program and would move execution over to the secondary reader. Once a
stop instruction was reached there, execution continued on the main reader [13]. In
combination with conditional jumps, the single secondary reader could be used to
hold any number of non-looping subroutines. By placing the index of the desired
subroutine in a predetermined memory address in the main program, each subroutine
in the secondary program could start with loading that value, subtracting its own index
from it, and jumping to the next subroutine if the result differs from 0 [12].

Immediates

Instructions for immediate values would use the 6 lower bits to give the desired value
in fixed point binary and act similarly to an input or memory read operation. Loading
the number into a register would merely require a normalization step, as such it should
take the same number of cycles as an Add operation or fewer.

In the Z4 this was implemented in a far more clever way, which allowed for constants
that used its full 32-bit word length. The instruction At0 denoted that the next 5
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instructions would be the four bytes of a constant followed by a no-op, and the bits
would be transferred straight to R1 (or R2) [13].

To better differentiate between the machines once the user was in their respective
scene, the room and aesthetics would have changed as well to attenuate the different
scenarios. The original Z3 would have been placed in the office of an aeroplane hangar,
as it saw use in calculating wing surfaces during its short lifetime [11]. As the Z3+ is
not based on actual history, it would have been put in a steampunk setting, to coincide
with the "alternate history" aspect. If any future work does implement the Z4 in a
similar way, an appropriate place to put it would be in the ETH Zurich, as the Z4 was
rented out to it after the war [13].

6.1.3. Gamification

While some testers have already found the project to be somewhat enjoyable, an
interesting opportunity would be a separate gamified mode, to reward users for their
learning and leave them with a feeling of accomplishment. One suggestion that came
up was a sort of "story mode", where the user was put in an exaggerated scenario
where some electromagnetic impulse event has rendered all transistor-based technology
inoperable and they must use the Z3 to calculate the trajectory of an incoming meteorite
or similar.

The gamification can of course be much simpler and more reasonable, like an interface
in the scene supplying users with tasks (not unlike the challenges testees received)
and somehow rewarding users if they complete them, perhaps by unlocking further
functionalities. Such a system could also be integrated into the introduction system,
giving users very simple tasks at first and then incrementally increasing the difficulty
level to gradually imbue them with the mindset necessary to write programs for the
machine.

6.1.4. General improvements

Accuracy

Once the machine is back on display or if a collaboration with the Deutsches Museum
can be arranged after all, acquiring higher resolution photos would allow for making
the model far more accurate and modelling details that were hardly seen before, and
extracting textures from photos directly may be possible. The machine hasn’t been
demonstrated publicly in decades due to fire hazard concerns and it’s unknown if it
will be brought up to modern standards once the exhibit reopens, so recording custom
audio might not be possible, but if the raw footage of the Museum’s later Z3 video
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still exists, their recorded audio would be a far better alternative to the currently used
sound effects, as those contain a lot of noise that was impossible to remove entirely.

More details

As it stands, all the relays of the 3D model are currently static. A short-lived experiment
during development involved separating each memory cell into an independent mesh,
where each of its 24 relays could be set to an ON or OFF position, to reflect the
corresponding bit of the stored number. This turned out to take a large toll on
performance, which is a crucial metric for any VR application. However, this trial
took place before numerous performance improvements in other areas, and without
consideration for instanced rendering (a large performance optimization which has to be
enabled manually in Unity3D), so it may well be feasible to add this functionality after
all. If successful, this approach could also be applied to the arithmetic unit. While a
full simulation of every one of its 600 relays is out of scope for this project, at least the
machine’s registers could be simulated like this.

Interface

Another interesting addition would be a toggleable abstract representation of the
arithmetic unit. It would reflect the contents of the registers at all times, and users
would have the option to slow down time or stop it entirely and proceed one algorithmic
step at a time, to be able to understand how the machine works out its results. As text
objects can be manipulated like any other, further animations could be performed to
show things like a mantissa being shifted during addition, or values being passed from
one register to another. Since the Z3’s arithmetic unit is virtually identical to that of
any current-day processor [11], this would be a tremendous tool for teaching users
about modern computers as well. As part of research into the Z3’s architecture, Georg-
Alexander Thurm created a Java simulation of it with just such a visual (minus the
mentioned animations), as can be seen in figure 6.2 [11]. Unfortunately, this simulation
is no longer available, and there appear to be no archived versions of it, hence it was
omitted from Chapter 2.

As briefly mentioned in Chapter 5, few people enjoyed working with the film puncher.
Some testees struggled to make the logical connection of the instructions being encoded
as bits which in turn were encoded through holes in the film, and of those who did
make that leap, not many went ahead and actually punched the program on the board
in front of them. Evidently, this interface requires some more work to make it more
approachable and encourage its use. One way would be to add something like the
console’s watchdog, but more aggressive. Instead of only showing what the user has
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Figure 6.2.: Thurm’s Java Z3 simulation

punched so far to the left of the puncher, a copy of the program on the programming
board could be displayed instead, with yet-unpunched instructions being greyed out
and only the bit-levers corresponding to the next instruction being able to be pushed
down in the first place, perhaps highlighting them as well. This would more explicitly
guide users to press the right levers and prevent them from accidentally punching an
invalid instruction, which unfortunately happens somewhat frequently with virtual
fingers that can easily slide across nonphysical levers. This latter issue specifically was
planned to be solved by making the fingertip "stick" to the middle of a lever, but this
could not be implemented in time.

Trivia

As briefly mentioned in Chapter 3, Z3VR currently features an info book that, among
other things, holds trivia about the machine itself and things like the program films.
What it does not yet cover, however, are more "meta" bits of trivia, such as who Konrad
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Zuse was, under which circumstances he built the machine, that the machine users
see is not the original Z3, etc. It was originally planned to have a second room in the
scene, where a lectern would stand in the middle on which various trivia books could
be placed to see larger text on a projector screen about the relevant subject. In fact, the
walls of this second room are included in the current scene, but it is closed off with a
non-interactable door.

Since these extra historical facts would need longer texts to fully cover, it may be
more approachable to produce audio recordings or even small videos to explain them,
and show those on the projector screen instead, though this would require a lot more
work.

6.2. Lessons learned

6.2.1. Research goal

The research goal of evaluating how effective Z3VR is for teaching about the Z3 and
low-level programming wasn’t defined well enough when the first tests began and
the questionnaire was created. As such the chosen project-specific questions are far
from optimal for this evaluation, as mentioned in Chapter 5. If enough time and testers
were available, a further study with a new set of questions would be desirable. A
subset of questions to determine the participant’s knowledge of the Z3 and low-level
programming before and after the test could be interesting, but care must be taken not
to make the questionnaire too lengthy to ensure testers would still answer properly.

6.2.2. Interface

The workload required to implement a full VR interface that handles well and intuitively
was drastically underestimated. While the creation of 3D assets and implementation of
the Z3’s simulation only took a few weeks, the interface and introduction demanded
about two months of work. This was further extended by the required total overhaul of
the introduction and several interface systems that were too unintuitive for testers. The
most prominent example of this is the info book and program folder interaction model.
In their original form, opening and closing them required users to first hold them in
one hand, then to grab them with their other hand as well. Turning pages in the book
was done by moving a hand across them (without grabbing) as if you were swiping the
page along. Telegraphing these behaviours to users was very difficult and left many
confused.

These issues could have been identified and addressed far sooner if more testing had
taken place during development, as such future endeavours within this project or on
others will certainly involve way more testing way sooner.
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7.1. Summary

To conclude, Z3VR has shown to be an effective tool for teaching people about the Z3
and how to operate it. It presents users with an approachable interface that allows them
to experience this machine first-hand in an immersive and accurate fashion, mastering
which takes most only 15 minutes. Whether the project is as effective for teaching
concepts of low-level programming is difficult to determine through the gathered data
alone, and further research would be necessary to come to a definitive conclusion,
however, most test participants successfully applied what they learned in their given
challenges. The project is also a prime example of the importance of early and frequent
testing, which didn’t start soon enough in this case, and the data-gathering methods
left a lot to be desired. Nevertheless, the end product is a viable teaching tool with a
lot of potential for future improvement and expansion.

7.2. Outlook

Use in musems

As for the future of the project itself, one can imagine it being used as part of exhibitions
in museums. Cooperation with the Deutsches Museum would be especially beneficial,
as the real machine can’t be demonstrated anymore due to fire safety concerns and a
full rewiring to fulfil requirements may not be possible1. As such, Z3VR could be an
accompanying part of the exhibit to still let people see the machine in action without
risking damage to the Z3 or its surroundings.

To better facilitate use in museums, a separate "guided tour" mode may be interesting.
Since the general public (and especially children) are not versed in programming
concepts at all and likely not too interested in learning how to program an 80-year-old
computer, it would merely guide visitors around the different parts of the machine and
run some predetermined programs. The occasional genuinely interested viewer would
still have the option to switch to the programming mode.

1https://www.youtube.com/watch?v=TbW-qNxD1lE
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Museum visitors would also inadvertently be playtesters, and while handing them
questionnaires to fill out would likely be unproductive, merely observing their inter-
action with the project and potentially gathering some in-game metrics would be a
tremendous help in finding further shortcomings and things to improve about the
interface. Watching users fumble with some grabbable object or button was the major
method of finding weak spots during development, often more so than the testee’s own
feedback.

General distribution

As stated in Chapter 2, there is currently no working, publicly available and accurate
simulation of the Z3. With this historically significant machine being relatively unknown
outside of select groups, there really ought to be something like Z3VR which anyone
can access at home to learn about it. To this end, a non-VR version of the project would
need to be made as well, as the adoption of VR is still fairly limited among consumers,
even if the significant immersion factor would be mostly lost.

Distribution on a popular site for independent projects like itch.io2 may then spark
more interest in computer history and teach a new generation of internet dwellers
about the works of Konrad Zuse.

2https://itch.io/
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Figure A.1.: Info sheet
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1. I think that I would like to use this system 
frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use

4. I think that I would need the support of a 
technical person to be able to use this 
system.

5. I found the various functions in this system 
were well integrated.

6. I thought there was too much inconsistency 
in this system.

7. I would imagine that most people would 
learn to use this system very quickly.

8. I found the system very cumbersome to 
use.

9. I felt very confident using the system.

10.I needed to learn a lot of things before I 
could get going with this system.

● I felt immersed in the virtual space

● The introduction was clear and 
concise

● I would revisit Z3VR in my spare time 
(if I had a VR setup)

● I’ve worked with low level 
programming before

● The time I had for the challenge was 
sufficient

● The challenge I was given was rated 
as ___

● I felt the challenge was ___

Strongly 
disagree

Strongly 
agree

System Usability Scale
© Digital Equipment Corporation, 1986

Easy    Medium   Hard

way 
easier

way 
harder

Strongly 
disagree

Strongly 
agree

Figure A.2.: Questionnaire

57


	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Previous Z3 simulations
	Simulations of other historic computers
	Other VR learning environments

	Recreating the Z3 in VR
	Z3
	Implementation
	Interface
	Visuals
	Audio

	Findings from working with the Z3
	Metaprograms
	Flooring
	Stopping loops
	Example program

	Evaluation
	Introduction version 1
	Introduction version 2
	Summary and lessons learned

	Future work
	Further work on Z3VR
	Original Z3
	Z3+
	Gamification
	General improvements

	Lessons learned
	Research goal
	Interface


	Conclusion
	Summary
	Outlook

	List of Figures
	List of Tables
	Bibliography
	appendix

