

Master Seminar: Machine Learning in Neuroimaging

Fabian Bongratz, Nuno Wolf, Bailiang Jian,

Yitong Li, Prof. Dr. Christian Wachinger

Lab for Artificial Intelligence in Medical Imaging Department of Radiology School of Med & Health, School of CIT Technical University of Munich

www.AI-Med.de

09.07.2024, 1pm

Lab for AI in Medical Imaging

Research topics:

- Segmentation -
- Registration -
- Neuroimaging -
- Shape modeling -
- Interpretability & -Explainability
- Disease progression -
- Causal inference

...

Generative models

Prof. Dr. Christian Wachinger Professor for AI in Radiology

www.ai-med.de

Lab For AI in Medical Imaging

Morteza Ghahremani Postdoc

Bailiang Jian PhD student

Tom Nuno Wolf PhD student

Anne-Marie Rickmann PhD student

Yitong Li PhD student

Fabian Bongratz PhD student

Depression rates by age, 2009–2017

Percent of population in each age group that has reported a Major Depressive Episode

Major Depression Among Teens

Figure 1.1. Percent of U.S. teens (ages 12–17) who had at least one major depressive episode in the past year, by self-report based on a symptom checklist. This was figure 7.1 in *The Coddling of the American Mind*, now updated with data beyond 2016. (Source: U.S. National Survey on Drug Use and Health.)

Mental Illness Among College Students

Figure 1.2. Percent of U.S. undergraduates with each of several mental illnesses. Rates of diagnosis of various mental illnesses increased in the 2010s among college students, especially for anxiety and depression. (Source: American College Health Association.)

Alzheimer's disease

https://link.springer.com/article/10.1007/s11065-021-09496-2#Fig1

Machine Learning in Neuroimaging: Overview

Shape modeling

Exemplary Topics

- Deep learning architectures (CNN, GNN, Transformer)
- Multi-modal data analysis
- Generative models
- Disease prediction (e.g. Alzheimer's)
- Supervised and unsupervised learning strategies (and in-between, e.g., semi-supervised)
- Shape analysis, geometric deep learning
- Explainable Al
- Causal inference

See also topics from previous semesters in the <u>wiki</u> (the wiki is the central platform)

Learning outcomes

- How to read a paper in a structured way?
- How to phrase complex ideas in an understandable blog post?
- How to present research findings to an audience?

What to deliver?

• Paper presentation (20 min. presentation, 10 min. discussion)

70% of final grade

Blog post (~4 pages DIN A4, working with ChatGPT encouraged) about the selected paper
30% of final grade

Preliminaries (recommended)

- Machine learning principles (e.g. IN2357 Machine Learning for Computer Vision, IN2064 Machine Learning)
- Fundamentals of deep learning (e.g. IN2346 Introduction to Deep Learning)
- Medical image analysis (e.g. AI in medicine I/II, CAMP I/II)
- Computer vision (e.g. IN2228 Computer Vision II: Multiple View Geometry)

Timeline

Matching Results			Kickoff (1h)			Block seminar 2 half days	
July	August	September	October	November	December	January] >
Pre-Course Meet your Meeting supervisor							

Holbeinstr. 11, 3rd floor

Copyright OpenStreetMap

Schedule

09.07.24: Pre-course meeting (today)

25.07.24: Matching results

October: Kickoff (Holbeinstr. 11, attendance mandatory)

During the semester: Meet your supervisor (not mandatory but recommended)

Early January (2 days): Block seminar (Holbeinstr. 11, attendance on both days mandatory)

Contact

seminars@ai-med.de

Find these slides at https://wiki.tum.de/display/mlneuro (TUM Wiki)

Don't forget to register in the matching system (matching.in.tum.de)!