
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

3D virtuality sketching: a freehand sketch
tool for conceptual urban design in

architecture

Violin Yanev

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masterarbeit in Informatik

3D virtuality sketching: a freehand sketch tool for
conceptual urban design in architecture

Virtuelles 3D-Skizzieren: ein Freihand-Skizzierwerkzeug
für die städtebaulichen Entwurfsphasen in der

Architektur

Author: Violin Yanev

Supervisor: Prof. Dr. Gudrun Klinker, Prof. Dr. Frank Petzold

Advisor: M. Sc. Eva Artinger, Dipl. Ing. Gerhard Schubert

Date: July 15, 2012

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 15. Juli 2012 Violin Yanev

I hereby declare that this master thesis is entirely the result of my own work. Where I have
consulted the published work of others, this is always clearly attributed.

Munich, July 15th, 2012 Violin Yanev

Acknowledgments

Thanks to my advisors Gerhard Schubert and Eva Artinger for their long-lasting support
and advice which was invaluable for the successful completion of this work.

My sincere thanks go to many friends and colleagues for scientific discussion, advice
and continuous support always so greatly appreciated. Thanks to everyone from the chair
of Augmented Reality in the TUM as well. Last but at no means least, I like to thank my
family for general education and never-ending encouragement and ongoing support!

ix

Summary (English)

Conceptual design is an important stage of urban development in architecture. To in-
tegrate computer tools into the workflow of architects, the Collaborative Design Platform
(CDP), which employs tangible interaction methods on a large-scale multi-touch table top,
has recently been developed. The platform supports finger gestures, fiduciary markers,
and also scans arbitrary objects converting them to digital 3D shapes.

The goal of the present project was to extend the CDP by 3D capabilities and add a
new kind of interaction with the system, namely through sketching. A large-scale vertical
touchscreen was connected to the CDP to visualize a virtual equivalent of the multi-touch
table top and its objects in a 3D perspective. The additional touchscreen was also used
as an input device for sketching. Both large-scale displays (horizontal and vertical) essen-
tially represent a different view of the same urban context. Thus, moving a building model
on the table also moves its virtual representation on the vertical display accordingly.

Four different sketching modes were developed in this work – standard, extended sur-
face, sketch paper and 3D mode. The sketching methods make use of the underlying vir-
tual environment to understand and embrace 3D ideas. The standard mode maps sketches
directly to the underlying urban 3D scene as if they were drawn with a laser pointer. The
sketch remains related to its underlying object even after changing the viewpoint, or if the
object itself moves. The second mode – extended surface – allows the user to select a sur-
face on which he wishes to sketch, and applies all strokes to the plane of this surface. The
third mode – sketch paper – employs a sheet of semi-transparent sketch paper commonly
used by architects. It is possible to sketch on different paper layers and switch from one to
another.

A special attention was devoted to the 3D sketching mode which performs 3D recon-
struction out of raw, inaccurate, and possibly incomplete sketches. It has the advantage
of speed compared to similar 3D sketching approaches and retains the roughness of the
initial sketch and its visual appearance as a collection of raw strokes.

The new features of the CDP were tested in an evaluation carried out with ten students
in Architecture. Participants were asked to perform a simple conceptual design task – to
design a living area in an urban scenario. The evaluation criteria included frequency and
time of use of each sketching mode as well as the user ability to conceive the dynamic
interaction between both displays.

The evaluation demonstrated that architects are willing to use the CDP and its newly
implemented presentation mode as supplementing tools for conceptual design. Neverthe-
less, they would hardly abstain from using traditional tools such as pen and paper. The
evaluation also showed a demand for more functionality and customization of the system,
which will be a task for a future research.

xi

Zusammenfassung (Deutsch)

Der Entwurfsprozess ist eine wichtige Arbeitsstufe im Rahmen des Städtebaus in der
Architektur. Um digitale Werkzeuge in den Entwurfsprozess einzubinden, wurde die
Collaborative Design Platform (CDP) entwickelt – ein multi-touch Tisch, welcher Metho-
den physischer Interaktionen mit einschließt. Der Tisch unterstützt Fingergesten, Fiducial
Marker und kann beliebige Objekte erkennen und in digitale 3D Formen umwaldeln.

Das Ziel des gegenwärtigen Projekts war es, die CDP um 3D Fähigkeiten zu erweit-
ern und eine neue Art von Interaktion einzufügen – nämlich das Skizzieren. Ein 65”
senkrechtes Touchscreen-Display wurde an die CDP angeschlossen, um das virtuelle Äquiv-
alent des multi-touch Tisch und der darauf liegenden Objekte aus einer 3D Perspektive zu
visualisieren. Das zusätzliche Display wurde auch als Eingabegerät für das Skizzieren
verwendet. Beide Anzeigen (horizontal und senkrecht) bieten eine unterschiedliche Sicht-
weise auf denselben städtischen Kontext. Das Verschieben eines Gebäudemodells auf dem
Tisch bewirkt daher die gleichzeitige Verschiebung seiner virtuellen Darstellung auf dem
senkrechten Display.

Vier verschiedene Zeichenmodi wurden in dieser Arbeit entwickelt – Standardmodus,
Erweiterte Flächen, Skizzenpapier, und 3D Modus. Die Zeichenmodi verwenden die darun-
terliegende virtuelle Umgebung der Stadt, um 3D Ideen zu verstehen und in die Szene
einzubetten. Der Standardmodus bildet Zeichnungen direkt auf das darunterliegende 3D
Modell der Stadt ab, als ob man mit einem Laser-Pointer zeichnet. Die Zeichnung ist am
darunterliegenden Objekt fixiert, auch wenn sich der Standpunkt des Betrachters ändert,
oder wenn sich das Objekt selbst verschiebt. Der zweite Modus – erweiterte Flächen – lässt
den Benutzer eine Fläche selektieren, und bildet alle Zeichenstriche auf die Ebene dieser
Fläche ab. Der dritte Modus – der Skizzenpapier-Modus – simuliert eine durchsichtige
Skizzenpapierrolle, welche oft von Architekten verwendet wird. Es ist außerdem möglich,
auf unterschiedlichen Papier-Blättern zu skizzieren und von Blatt zu Blatt zu wechseln.

Eine besonders Aufmerksamkeit wurde dem 3D Zeichenmodus gewidmet, welcher die
3D Form eines Objekts aus einer groben, ungenauen, und möglicherweise unvollständigen
Skizze rekonstruiert. Der 3D Modus hat einen Geschwindigkeitsvorteil im Vergleich zu
ähnlichen Ansätzen und bewahrt die Rauheit der ursprünglichen Skizze und ihre visuelle
Darstellung.

Die neue Funktionalität der CDP wurde im Rahmen einer Benutzerstudie mit zehn Ar-
chitekturstudentInnen getestet. Die Teilnehmer an der Studie wurden mit einer einfachen
Entwurfsaufgabe beauftragt – ein städtisches Mischwohngebiet zu entwerfen. Die Un-
tersuchungskategorien der Benutzerstudie schlossen die Häufigkeit und die Benutzungs-
dauer der vier Zeichenmodi ein, sowie das Vermögen der Teilnehmer, den Bezug zwischen
beiden Anzeigen (Tisch und Touchscreen-Display) herzustellen.

xiii

Die Benutzerstudie zeigte, dass Architekten die CDP und den neu implementierten
Präsentationsmodus als Ergänzungswerkzeugen im Entwurfsprozess gern verwenden
würden. Dennoch würden sie kaum auf die etablierte Werkzeuge wie Stift und Papier
verzichten. Die Benutzerstudie hat auch Nachfragen nach neuen Funktionalitäten und
nach grösserer individueller Anpassungsmöglichkeit des Systems aufgedeckt, welches ein
Gegenstand der zukünftigen Forschung sein wird.

Die Benutzerstudie zeigte, dass Architekten die CDP und den neu implementierten
Präsentationsmodus als Ergänzungswerkzeugen im Entwurfsprozess gern verwenden
würden. Dennoch würden sie kaum auf die etablierte Werkzeuge wie Stift und Papier
verzichten. Die Benutzerstudie hat ergeben, dass sich Nutzer neue Funktionalitäten und
grössere individuelle Anpassungsmöglichkeiten des Systems wünschen, welches ein Gegen-
stand der zukünftigen Forschung sein wird.

xiv

Contents

Acknowledgements ix

Abstract xi

1. Introduction 1

1.1. The CDP background . 1
1.1.1. Conceptual design in architecture . 1
1.1.2. The CDP . 3
1.1.3. The presentation mode . 4

2. Related work 9

2.1. Tangible User Interaction . 9
2.1.1. Interactive surfaces . 9
2.1.2. Constructive assemblies . 13

2.2. 3D sketching . 14
2.2.1. Taxonomy of methods for 3D sketching 15
2.2.2. Regularity-based reconstruction of 3D sketches 17

3. Concept 19

3.1. Case definition and setup . 19
3.1.1. Activities of classical conceptual design in urban architecture 19
3.1.2. Use-case of the CDP . 19
3.1.3. Use-case of the presentation mode . 20

3.2. Visualization . 21
3.3. Camera control and behavior . 21
3.4. GUI and interaction . 22
3.5. Sketching . 23

3.5.1. Standard mode . 24
3.5.2. Extended surface mode . 24
3.5.3. Sketch paper mode . 24
3.5.4. 3D sketching mode . 25

3.6. Integration and run-time behavior . 26

4. Implementation 29

4.1. Big picture . 29
4.2. Used hardware and software . 29

4.2.1. Hardware . 29
4.2.2. Software . 31

4.3. Datamodel . 32

xv

Contents

4.4. Software architecture of the presentation mode 33
4.4.1. Overview . 33
4.4.2. Visualization . 34

4.4.2.1. Review on existing visualization engines 34
4.4.2.2. Visualization Library features 37
4.4.2.3. Alternative rendering libraries 37
4.4.2.4. QT . 37
4.4.2.5. Implementation . 39

4.4.3. Sketching . 43
4.4.3.1. Mathematical model . 46
4.4.3.2. Standard mode . 49
4.4.3.3. Extended surface mode . 52
4.4.3.4. Sketch paper mode . 52
4.4.3.5. 3D sketching mode . 53

4.4.3.5.1. Constructing the sketch graph 56
4.4.3.5.2. Reconstruction of the 3D shape 57
4.4.3.5.3. Projecting the sketch to 3D space 67

4.4.4. GUI . 69
4.4.4.1. Visual appearance and interaction 69
4.4.4.2. Implementation overview 71

4.4.5. Camera control . 73
4.4.5.1. Tracking the fiduciary marker 74
4.4.5.2. Navigating with the 3D mouse 75
4.4.5.3. Alternative implementations 75

4.5. Bugs, problems, and performance issues . 76
4.5.1. Shared OpenGL contexts . 76
4.5.2. Numerical instability and depth fighting 77

4.6. Unimplemented features . 78

5. Evaluation 81

5.1. Design of the evaluation . 81
5.1.1. Evaluation criteria . 81
5.1.2. Participants, setup and task . 82
5.1.3. Dependent variables . 82
5.1.4. Interview . 83

5.2. Quantitative feedback . 83
5.2.1. Sketch mode usage and number of switches 83
5.2.2. SUS . 84
5.2.3. AttrakDiff . 86

5.3. Qualitative feedback . 87
5.3.1. Indirect feedback . 89
5.3.2. Direct feedback . 90
5.3.3. Interview . 91

5.4. Discussion . 92

6. Conclusion 95

xvi

Contents

Appendix 99

A. Projective space P
2 99

Glossary 103

Acronyms 103

Glossary 105

Bibliography 109

Bibliography 109

xvii

1. Introduction

The present work originates from a project on development of the Collaborative Design
Platform (CDP), a large-scale interactive table top which main application field is concep-
tual design in urban architecture. The challenges of urban conceptual design are tackled in
the CDP in order to improve the interaction between architects and computer in the early
stages of design.

Consequently, various requirements and properties of the CDP apply to the work pre-
sented in this thesis. An overview of the conceptual background of the CDP and its re-
quirements towards design and functionality will be given In this chapter; furthermore,
the need for an extension of the CDP for the purposes of conceptual design in architecture
as well as the approaches used for development of the CDP extension in this work will be
presented.

1.1. The CDP background

1.1.1. Conceptual design in architecture

Conceptual design in urban architecture refers to the process of conducting an initial shape
of a building(s), revising and improving existing concepts about the building(s), and ex-
ploring new and novel ideas. Conceptual design is considered an essential activity of the
workflow of an architect [1]. Many theories exist about what designing actually is. More-
over, the designing process is unique for an architect, thus it is hard to give a general and
universal definition of the process. But it seems easier to understand conceptual design
by taking a look at the topics it addresses. Figure 1.1 presents some of these topics. In
the early design stages of a building, architects are usually interested in its rough position,
orientation, and dimensions. Cost and efficient utilization of energy as well as legal reg-
ulations of the local authorities and topological connection to surrounding buildings are
also important factors.

Rittel et al. claim that architecture problems are usually open-ended [2]. The design
of an architectural concept is a non-linear, iterative process that involves prototyping and
decision-making. It aims to “devise a form for an object, without having that actual object
in front of you.” [3].

It is difficult to answer the question “What is design?” directly. It is much easier to dis-
cuss the alternative formulation “What is the archetypal activity of design?”. The almost
universal and most readily understandable answer to this question is: “sketching” [4].

In terms of architecture, sketching refers to more than drawing with a pen on a sheet
of paper. “Sketches represent a draft or design idea: they are tentative, not fully thought-
through [...] ideas, thoughts and visions that need further development and elaboration”
[5]. A sketch represents a rough idea, which can be refined, remodeled, or discarded.

1

1. Introduction

Figure 1.1.: Topics of conceptual design in architecture. (image property of Christoph Lan-
genhan, unpublished)

2

1.1. The CDP background

Thus, precision is not an important quality of a sketch. In fact, it is the roughness and in-
completeness of presentation which makes sketching such an attractive tool for designing.

Although sketching is convenient and fast, it does not allow for digital analysis, which
often requires a 3D shape. It is known that high-level discoveries may induce changes in
the basic shape of the model; for example, an architect could discover that his building
occludes an important landmark, using occlusion simulation. This observation would be
impossible to make by a hand-drawn sketch which lacks the surrounding buildings. But
the observation would force the architect to change the very basic shape of his building.

In order to overcome the limitations of commonly “established” tools such as sketching
on paper, architects have to repeatedly switch back and forth to digital tools. However, this
transition is not fluent, as the two worlds have a completely different interface. Hence,
switching between native, traditional tools, and Computer Aided Architectural Design
(CAAD) tools, interrupts the flow of ideas and generates additional overhead. The goal of
the CDP was to resolve this difficulty by fusing digital and traditional tools for the aim of
prototyping.

1.1.2. The CDP

The CDP introduces a multi-touch table top which combines traditional design tools, such
as sketching, with the computational power of the computer. To accomplish this, a new
kind of interaction is introduced. The architect can use the tools of his choice to design
a prototype, and then let the multi-touch table scan it. Once in the system, the model
becomes a part of a mixed reality world and can undergo digital processing. The CDP
was initially developed for the purpose of conceptual design in urban development, so
the virtual world consists of a city model. Other fields of interest, such as interior design,
or public transportation, might be also used in the future.

The CDP provides a real-time visual feedback directly on the table surface. It supports
several types of simulation programs in the form of plug-ins, which can be extended to fit
the users’ needs. Some of these simulations include [1]:

• Light and shadow

• Access and distance

• Legal regulations

The simulations are performed in real time on the augmented urban environment, which
consists of a 3D virtual city model and the scanned physical objects on the table surface. It
is possible to combine different simulations together to keep track of multiple features of
the physical model. The processing reacts to changes on the table surface. When objects
are added or removed, the running simulation is updated to include the new contextual
information.

This kind of human-computer interaction is seamless and intuitive. The designer does
not have to recreate his model using digital input methods such as mouse and keyboard –
it is sufficient to put the model on the table surface.

Furthermore, the large size of the table (1.45 x 0.95 meter) allows for better collaborative
work. In this regard, collaboration will gain even more attention in the future development

3

1. Introduction

of the CDP, as different parties such as architects, employers, investors, or customers can
be involved in conceptual designing.

The CDP attempts to combine digital and (traditional) analogous tools into a homoge-
neous, uninterrupted workflow. It needs a simple and self-revealing user interface, which
requires as little attention from the designer as possible and allows him to concentrate on
the actual task. The user interface should be intuitive, direct, and easy to learn. These
requirements are consistently incorporated into the presentation mode newly introduced
and presented in this work.

1.1.3. The presentation mode

Interactive table tops are not new in the field of human-computer interaction. There is a
lot of research on this topic (see section 2.1.1), including also some commercial products in
development [6, 7]. None of these products, however, has given the designer the complete
freedom of designing like the CDP does. The CDP project inspired a whole lot of new
ideas for applications for urban development, despite its prototypic stage of evolvement.
Some of the applications suggested during the design of the CDP were:

A. Version branching

B. Tangible sun simulation

C. Orientation-correct user interface

D. Remote collaboration

E. Augmented visualization of legal specifications

F. Augmented visibility simulation

Figure 1.2 visualizes these ideas and gives a short description to each of them. For some
of these applications (B, E, F, and possibly D), an additional opportunity for an interac-
tive 3D visualization may be substantial. The multi-touch table surface itself could not
enable this opportunity – its horizontal alignment suggests 2D visualization – and thus
representing 3D information with the CDP would require a new alternative solution.

The benefits of a 3D view are undisputable, especially in the context of architecture. The
information of interest for the CDP is often of three or more dimensions, including:

• 3D geometry

• Volume information

• 3D particle flow and/or distribution

• Energy distribution and/or propagation (4-D information)

• Spatial relationships such as distances, space, surface area etc.

4

1.1. The CDP background

Figure 1.2.: CDP application ideas; (A) Storing and managing a version history of proto-
types; (B) Simulating sun light using a tangible object, e.g. augmented real-
ity marker; (C) User interface elements follow the designer and are correctly
aligned; (D) Designing on multiple remote table tops; (E) Visualizing legal lim-
itations, such as permitted height and shape; (F) Simulation of point-to-point
or point-to-everywhere visibility. (property of Michael Mühlhaus, Nils Seifert, Vi-
olin Yanev, and Evi Andergassen-Sölva, unpublished)

5

1. Introduction

The ability to display such information would substantially enhance the capabilities of
the CDP for the purposes of conceptual design in architecture. Furthermore, being able to
interact with the virtual 3D environment is an additional invaluable feature, which allows
exchanging ideas in a familiar, but more powerful way.

The main aim of the present work was namely to develop an extension of the CDP which
provides a smart implementation of the desired additional features mentioned above. The
newly developed product of the current project was called and consistently referred as
“the presentation mode” throughout the thesis. The term refers to the target usage of the
new features, namely to present information to an audience, or as an assisting tool for the
architect to visualize his thoughts.

The following two approaches were considered suitable for visualization of a 3D scene
and enabling interaction with it:

A. Using one or several beamers to superimpose visual information horizontally on top
of the table surface (as in figure 1.2 - F).

B. Using a large vertical display (or a beamer) to present a mixed reality 3D scene, con-
taining physical objects on the table and virtual 3D data.

A direct comparison of these techniques is hardly possible due to their fundamental
difference. The first one has a closer connection to the real world 1, but introduces some
technical difficulties. For example, a reverse-mapping has to be performed on the beamer
image in order to display the 3D information on top of the facades correctly.

For the purposes of the “presentation mode” developed in this work, the second ap-
proach was chosen: a 65” screen supporting touch input was used as a basis for the new
working mode. While the table surface serves as a workbench for sketching and proto-
typing, the presentation mode provides possibilities for 3D visualization, discussion, and
comparison between different versions of the urban model. The touch capability of the
screen was also important for the main feature of the presentation mode developed here –
the 3D sketching.

Sketching is a fundamental tool for conceptual design in architecture. In fact all of the
established tools for conceptual design can be understood as a form of sketching [1]. In
this sense, the automatic object recognition of the CDP is also a form of sketching, or more
precisely, a way to accept and augment objects, or “sketches”, as analogous input.

In this work, a specific approach to sketching – drawing on a digital touch-screen – has
been explored. Artists often reject digital input devices with the argument of inconve-
nience, slow responsiveness, and lack of haptic feedback. In this case, a reasonable ques-
tion is “Why should be a digital input used provided that the goal of the CDP is to retain
analogous input (e.g. on paper)”. Several methods exist to receive sketching input from
analogous media. For example, in [8] a camera is used to scan sketches drawn on paper.
The main reason to use a digital medium for sketching in CDP is the immediate response
and processing provided by the computer. This is especially important when trying to
assign a stereoscopic meaning to a sketch (i.e. to sketch in 3D). Computer drawings have
further advantages – they are easier to edit, share, replicate, analyze, and provide conve-
nient features such as “undo”, “rotate”, “zoom”, etc.

1The data is displayed directly on top of the real objects

6

1.1. The CDP background

The presentation mode presented here explores possibilities to intuitively express 3D
spatial ideas by sketching using computer assistance. The mixed reality world (containing
the virtual model of a city and the physical objects scanned by the table) is displayed in
a 3D view on the vertical screen. The architect can draw directly on the screen using his
finger or a pen.

The following chapter 2 summarizes related work in the field of interactive table tops,
as well as literature concerning sketching in conceptual design. Chapter 3 presents the
schematic concept for development of the presentation mode, while chapter 4 describes its
implementation. Chapter 5 presents and discusses the evaluation of the presentation mode
and its results. Chapter 6 summarizes the results and proposes future work. Additional
information about projective mathematics, which is used in this thesis, can be found in
appendix A.

7

2. Related work

The development of the presentation mode outlined in section 1.1.3 was preceded by a lit-
erature search on two topics – Tangible User Interaction (TUI) and 3D sketching – to select
the best practices used and avoid repeating existing research. A vast amount of literature
is available on both topics. In the present chapter only reports related to conceptual design
and architecture will be reviewed.

2.1. Tangible User Interaction

Tangible User Interaction is a general term describing user interfaces, in which digital in-
formation is manipulated using physical objects. TUI is a subject to research since more
than 40 years. An early attempt to combine physical and digital interaction is the Digi-
talDESK [9]. This system lets the user write and sketch on real paper and uses a camera
mounted on top of the desk to track gestures and drawings, and a beamer to project digital
information back to the desk (figure 2.1). Despite the limitations of technology in the late
60’s, DigitalDESK was able to recognize alphanumeric signs, scanned and copied draw-
ings, and supported collaborative work on multiple remote desks.

Since then, TUI and augmented reality as a means for human-computer interaction
have evolved substantially. However, several questions/problems remained open for re-
searchers: for example, how can computers be utilized to assist creative thinking and pro-
totyping? TUI is still the most feasible supplement to accomplish such a task. Three main
categories of TUIs have been suggested: interactive surfaces, constructive assemblies, and
token + constraint systems [10].

The CDP resembles a mixture of the first and the second TUI categories – it is an inter-
active surface which allows the designer to build his own model. The third TUI cathegory
limits the interaction, allowing only certain combinations of the tokens. This behavior is
not applicable in conceptual design where freedom of action plays a prominent role; hence,
token + constraint TUIs are not revealed in detail here.

2.1.1. Interactive surfaces

The majority of TUI-based projects could be grouped in the category of interactive sur-
faces. These systems usually employ an augmented planar surface, where physical objects
are electronically tracked, computationally interpreted, and graphically mediated [10].
Early examples of such projects can be found in the literature [11, 12, 13, 14, 15, 16]. The
other way around, not every interactive surface uses tangible objects for interaction. Some
platforms position the surface vertically and receive input from fingers or a pen only.

Interactive surfaces have gained higher research interest in the last decade. Platforms
such as reacTIVision [7], Pictionaire [17] and Luminous table [18] extend the well-known

9

2. Related work

Figure 2.1.: DigitalDesk [9]

“multi-touch” concept beyond the simple finger-gesture interaction. Despite being a great
technology, the “multi-touch” input and gestures are by far not the only form of human-
computer interaction available on a luminous surface. The ReacTable, developed within
the reacTIVision project, uses fiduciary markers in order to recognize the position and ori-
entation of objects placed on the table (figure 2.2, left). Fiduciary markers are often used
in mixed reality applications to mark physical objects, which are then embraced by the
digital system. Usually, the markers resemble a black and white pattern, which is easy
to recognize from a computer (similar to bar codes). The markers used in ReacTable (see
figure 4.32) are optimized for robustness and consistency on a planar interaction surface
[19, 20] and are used to mark tangible objects on the table surface. The sound synthesizer
application developed for the ReacTable composes musical tracks by tracking these tangi-
ble objects and combining them in accordance with their topological ordering on the table.
Moving one of the objects changes the topology, which results in a different audio melody.
ReacTIVision is a great example how tangible objects can be used to support collaborative
work and improve the creativity process.

Another project, Pictionaire, emphasizes on the fusion between digital and physical in-
formation in collaborative scenarios (figure 2.2, right). The platform distinguishes differ-
ent users and their input devices (mice and keyboards) and gives them the opportunity
to create, lookup on the internet, or scan imagery on the table surface. Digital data and
the user interface are projected on the table top. A key feature of Pictionaire is that multi-
ple users can “join” with their own input device and collaborate with other users (e.g. to
type simultaneously in a document). A similar project was developed at the Upper Aus-
tria University of Applied Sciences [21]. Interesting about their platform is that it replaces

10

2.1. Tangible User Interaction

Figure 2.2.: Left: ReacTable and its sound synthesizer [7]; Right: Pictionaire [17]

Figure 2.3.: The BUILD-IT system by Fjield et al.[22]

physical palettes with digital projections. Designers can change the color of their pen by
tipping it in the projected palette.

An early attempt towards graspable interaction which is close to the CDP in terms of
design and construction has been introduced by Fjeld et al. [22] and Sharlin et al. [23].
The BUILD-IT platform presented by Fjeld et al. features seamless 2D and 3D views of the
design space. Graspable objects on the interactive surface correspond to pieces of informa-
tion in the 3D virtual world (figure 2.3).

Ishii and Ullmer present another TUI-based platform called Metadesk [24]. They coin
the terms “phicon” and “phandle” for physical interaction elements replacing conven-
tional icons and handles, respectively (figure 2.4, left). Phicons are used to substitute
digital information in the physical world, while phandles are used to interact with this
information. In addition, the system provides augmented views of the surface through
two types of lenses – “active” and “passive”. The active lens provides an arm-mounted
augmented view of the table top. The passive lens resembles a transparent frame, which is

11

2. Related work

Figure 2.4.: MetaDESK [24]; Left: Great Dome phicon in tangible geospace; Right: a pas-
sive lens.

Figure 2.5.: Lumino and its building blocks filled with glass fibers [25]

tracked and augmented by the back-projected display of the table to “see-through” differ-
ent layers of the map. The passive lens serves as a personal magnifying glass (figure 2.4,
right).

Baudisch et al. illustrate another mixture of interactive tabletops and constructive as-
semblies (figure 2.5) [25]. The so-called “luminos” introduced in the paper are small build-
ing blocks with a filling of glass fibers. The fibers have different colors and form a traceable
pattern. Moreover, the transparent fibers transmit light, enabling tracking several luminos
stacked on top of each other. The platform can even recognize tunnel-like constructs and
overhangs. Although the luminos can be combined arbitrarily, they don’t offer complete
freedom in modeling.

The Luminous planning table [18, 26] and its predecessor Urp [27] (“Urp” stays for “ur-
ban planning”) pursue the same objectives like TUI – connection between physical model-
ing and digital analysis via TUI (figure 2.6, left). The Luminous table tracks objects based
on a paradigm called I/O Bulbs [28] – entities which receive and emit visual information
simultaneously, in contrast to normal light bulbs, which emit light only. A camera is used
to capture the scene and present it on a large 3D view, projected by a beamer (figure 2.6,
center and right). The Luminous table is capable of handling arbitrary models, but it re-
quires the models to be constructed from wireframe materials. This limitation impedes
the perception of mass and density. Furthermore, object geometry is not recognized by the

12

2.1. Tangible User Interaction

Figure 2.6.: The luminous planning table. Left: the interactive table surface; Center: a cam-
era placed on the table; Right: a projection of the video stream of the camera.
Images according to [26]

system, but is rather loaded from a “shape file” and linked to its physical counterpart via
optical marker. This kind of interaction slows down the modeling process and impedes
rapid prototyping. Despite their limitations, the two platforms received a wide interest
from both academic and commercial sides.

Knecht from the Bauhaus-Universitaet Weimar developed an interactive table with a
setup very similar to the CDP [29]. The table employs a depth camera (Kinect) to track
arbitrary objects placed on its surface. The platform performs real-time simulation of light
and uses fiduciary markers to control the daytime or time interval of the simulation.

Following the demand for multi-touch devices, several commercial solutions have re-
cently emerged on the market. These platforms are not bound to a specific field of ap-
plication, but are intended for more general use and thus provide their own Application
Programming Interface (API). Among them is the Microsoft PixelSense [6]. The ReacTable-
community has also given birth to two commercial products – the “ReacTable live!” and
“ReacTable Experience” [30].

2.1.2. Constructive assemblies

TUIs based on constructive assemblies can be divided in two types – discrete and contin-
uous. Discrete assemblies employ a set of building blocks to construct physical models,
which are then digitalized. Continuous assemblies use a soft, deformable material to cre-
ate models.

There are plenty of systems based on building blocks, which are chained together elec-
trically or mechanically. Most of them are irrelevant for architectural applications due
to their level of restriction. The most noteworthy one is Frazer’s Universal Constructor
described in his book “An evolutionary architecture” [31, 32]. Small electronic cubes are
stacked and organized into cellular automata, which represent physical models of build-
ings as illustrated in figure 2.7).

The work of Schäfer, et al. embodies a concept called “real reality”, where the user
interacts with real objects using a special sensor glove [33]. The system tracks the gestures
of the glove and carries them out in the virtual world. The system provides feedback in
the form of acoustic signals, replacing classical GUI input/output paradigms. The system

13

2. Related work

Figure 2.7.: Frazer’s universal constructor (images taken from [31, 32])

Figure 2.8.: Left: Illuminating clay [34]; Right: SandScape [35].

was exemplified in industrial scenarios, where construction lines were assembled.

A more appealing method, at least from architectural point of view, is part of the research
of Ishii et al. at the MIT media lab, Massachusetts. They propose two continuous TUIs to
model, augment and visualize terrain data – Illuminating Clay [34] and SandScape [35].
The Illuminating Clay uses a deformable material to model the terrain and a laser scanner
to record its structure. The SandScape is a cheaper method, which uses glass beads and a
source of infrared light under the platform. The height is measured by the amount of light
passing through the pool of glass beads. Figure 2.8 depicts both systems.

2.2. 3D sketching

The sketching methods we considered applicable for the presentation mode developed in
the present thesis needed to fulfill the following requirements:

• A 2D touch-sensitive surface should be used as input

14

2.2. 3D sketching

• What You See Is What You Get (WYSIWYG) – the sketching input should not be
beatified or modified significantly

• Digital sketching should behave like sketching on paper (e.g. no line straightening)

• As little additional user interaction as possible, ideally only the sketch strokes

• Sketching directly on top of the augmented virtual world

• Ability to visualize 3D concepts

Thus, the literature search on 3D sketching and geometrical reconstruction was per-
formed with an emphasis on research topics conforming to the requirements listed above.
The following sections give an overview on, the taxonomy of existing sketching methods
and provide details on regularity-based reconstruction methods, which are considered to
be the most suitable methods for the requirements of the CDP.

2.2.1. Taxonomy of methods for 3D sketching

3D sketching can be generally described as the act of expressing 3D ideas in an informal,
imprecise way. In the present thesis, the term 3D sketching refers to the process of drawing
stereoscopic objects on a planar medium. Certainly, real 3D input devices for sketching are
also evident [36, 37, 38, 39], but have several limitations, such as:

• High complexity of the equipment

• Require training, or adaptation to their use

• Often are not perceived as natural and intuitive

These limitations dissociate methods using 3D input devices from classical sketching
and make them less suited for rapid prototyping. Hence, there is an almost unanimous
agreement among scientists that the term 3D sketching should be interpreted as “under-
standing 3D information from planar sketches”. Only research dedicated to this paradigm
was therefore considered for the review of related literature in this thesis.

Describing the geometry of 3D objects on a 2D surface has been of interest for scien-
tists for more than 2000 years [40]. The reverse process – deriving 3D information from a
2D drawing – is considerably more difficult. This process is usually called “geometrical
reconstruction” as it comprises the assembly of intended 3D shape by interpreting a re-
spective 2D drawing. Diverse methods for geometrical reconstruction have been reported
over the last 50 years. Their applicability depends to a great extent on the complexity of
sketched objects and the amount of required user intervention. Three main approaches to
3D modeling by sketching are presently well established [40]:

• Gestural, comprising systems which provide predefined gesture alphabets that en-
code some geometric modeling operations; basically these systems substitute the se-
lection of icons and menus by graphic gestures.

• Reconstructional, comprising systems which apply geometric reconstruction tech-
niques to build the object’s geometry from a sketch.

15

2. Related work

• Hybrid, comprising systems that combine the aforementioned two approaches.

The reconstructional systems were mainly considered for the development of the pre-
sentation mode described in this thesis. Gesture interaction requires the designer to keep
in mind the gesture alphabet of the software. Such complications distract the designer
from his primary intent, namely the design itself.

Sketch reconstruction methods can be further categorized into “single-view” and “multi-
view”, depending on how many different views of the object are captured. There is a clear
distinction between these two methods. The single-view method concentrates on inter-
preting the sketched object and constructing a psychologically plausible approximation
of its real shape. Multi-view methods, on the other hand, aim for precise reconstruction
based on correspondence of points in different views, which is frequently the goal in en-
gineering blueprints. Informally, a single-view reconstruction is closer to prototyping and
conceptual design than a multi-view. This thesis implements only on single-view methods
for sketching. The CDP targets early stages of conceptual design in architecture where the
shape of the designed object is not known yet. In order to sketch two or more views of an
object, the designer has to know its shape aforehead.

Single-view reconstructions can be classified according to:

• Method of reconstruction

• Support for curved surfaces or polytopes only [footnote: shapes consisting only of
planar polygons]

• Drawing of hidden lines or only visible lines

• One solution or several solutions are produced

There are different reconstruction methods organized into six categories according to
Company et al. [40]:

• Labeling (assigning a semantic label to each entity in the drawing – “outer edge”,
“orthogonal corner”, etc.)

• Gradient space (based on general coherence rules that the orientations of the surfaces
and edges must satisfy)

• Linear programming (solving a linear system to find the optimal solution)

• Progressive (performing the reconstruction continuously, after every few strokes or
a faces in the sketch)

• Primitive identification

• Regularities (detection of regularities in the image, such as parallel lines, symmetry,
orthogonality of faces and corners, etc.)

16

2.2. 3D sketching

Hybrid methods exist as well, and often produce more plausible results than the individ-
ual components they are built upon (an example is reported by Beom-Soo and Chang-Hun
[41]).

The regularity-based reconstruction is considered to be the most plausible approach for
interpretation of general sketches with included hidden lines. This type of reconstruction
has been subject to extensive research over the past decades due to its practical feasibility
and proximity to human psychology and cognition. In the next section, several regularity-
based algorithms are briefly introduced and characterized.

2.2.2. Regularity-based reconstruction of 3D sketches

One of the most influential studies on the topic of 3D reconstruction from sketches is the
Ph.D. thesis of Hod Lipson [42], which introduces geometrical regularities as fundamen-
tal source of information for the reconstruction. For instance, parallel lines in the image
space are with high probability also parallel in 3D space. This assumption is based on a
statistical analysis of both computer generated sketches and human drawings [42]. A typi-
cal regularity-based reconstruction method analyzes the sketch geometry and assembles a
compliance function. The compliance function maps the set of z-coordinates of the sketch
vertices to a so-called “compliance value”, which corresponds to the “psychological” plau-
sibility of the reconstructed shape. Hence, the global minimum of the compliance function
corresponds to the set of z-values yielding the 3D shape expected by a human observer
when looking at the sketch.

Geometrical regularities have become the de-facto-standard for reconstruction from sketches
with hidden lines included. The various proposed algorithms differ with regard to:

• type of investigated regularities

• dominance of the regularities (by importance)

• construction of the compliance function

• optimization method (Gauss-Newton, conjugated gradients, steepest descent, etc.)

• approximation of the initial solution

Table 2.1 chronologically encloses six of the regularity-based reconstruction applications
from the past decade. Only the most plausible for the requirements of this thesis applica-
tions were included. A more exhaustive list can be found in [40].

Kang et al. [46] refined the method proposed by Lipson et al., 1996 [42], by analyzing
dominant axis alignment of strokes in the sketch. Most technical drawings contain mu-
tually aligned lines (architecture drawings make no exception), so that it is possible to
partition the lines in several groups based on their alignment. This partitioning enforces
implicit constraints on the sketch, which speed up the reconstruction and improve the
quality of the recognized 3D shape.

Oh and Kim introduce a progressive solver, which performs the reconstruction continu-
ously after each drawn face [41]. By doing so, the algorithm achieves an almost run-time
execution. A significant advantage of this approach is that it allows the user to change the
viewing perspective while sketching.

17

2. Related work

Year Ref. Authors Reconstruction method Curves Hidden lines One solution

1996 [42] Lipson/Shpitalni Regularities Yes Yes Yes

1997 [43] Eggli Regularities Yes Yes Yes

2001 [44] Varley/Martin Labeling No No Yes

2003 [41] Oh/Kim Regularities/Progressive Yes Yes Yes

2003 [45] Company et al. Regularities No Yes Yes

2004 [46] Kang et al. Regularities No Yes Yes

Table 2.1.: Six sketch reconstruction methods suitable for drafting in architecture [40]

Eggli performs online interpretation directly on the input sketch and lets the user select
the desired recognition method and its accuracy [43]. 3D shapes can be created by extru-
sion or interpolation between curves. The system further includes an automated constraint
solver.

Company et al. refine the reconstruction by introducing the so-called “tentative models”
[45]. Tentative models are a fast and simple inflation of the sketch vertices, which speeds
up the optimization process. Moreover, their method increases the chance to obtain the
global minimum of the optimization function instead of running into a local minimum.

An important topic in the context of digital sketching is the pre-processing and analysis
of sketch strokes. A reliable reconstruction requires precise partitioning of the sketch into
lines, arcs, and face circuits. Wolin et al. present a robust algorithm for segmentation
of sketch strokes, which analyzes pen speed and curvature of stroke segments to qualify
them as lines and arcs [47].

In general, regularity-based reconstruction is a computationally intensive process, be-
cause it ultimately solves a highly non-linear optimization problem of dimension N, where
N is the number of edges in the sketch. Proposed methods attempt to speed-up the com-
putation by increasing the user control, making implicit assumptions about the sketch, or
performing the reconstruction progressively during sketching. For example, the method
proposed for development of the presentation mode in this thesis employs the contextual
information provided by the sketching environment (the buildings and the plane of the
underlying virtual city). However, one should consider that increasing the speed and pre-
cision of a reconstruction generally reduces its diversity, meaning that fewer object types
can be reliably reconstructed.

18

3. Concept

In this chapter, the initial concept of the present project including desired features and
functions of the presentation mode will be presented. As basis, the functionality of the
CDP is described with some of the specific activities during conceptual design in its clas-
sical form. In addition, a typical use case of the original multi-touch table is presented as
well as a use case describing the desired functionality of the presentation mode. Not all
features described in this chapter were finally implemented in the presentation mode. For
details on the implementation of the presentation mode, refer to chapter 4.

3.1. Case definition and setup

3.1.1. Activities of classical conceptual design in urban architecture

There is no generally approved way to design. It is a unique creative process which may be
easier understood by observing activities and tools utilized while designing. Frequently
employed techniques by architects at the TU Munich, without pretension of completeness,
include:

• Sketching on a piece of transparent sketch paper

• Cutting simple models out of rigid styrodur foam

• Cutting and folding objects from cardboard materials

• Shaping figures from deformable materials, such as clay

• Using all kinds of tangible objects to visualize thoughts (e.g. an old ticket to represent
a subway station)

Furthermore, architects reach out to digital tools to perform advanced analysis on top
of the conceptual model. But their use for rapid prototyping appears to be limited by
complicated and cumbersome user interface of available CAAD tools. For this reason,
digital analysis is rarely performed in early stages of conceptual design and is usually
conducted at later stages when the design has reached a level of maturity which is worth
the efforts to construct a precise digital model.

3.1.2. Use-case of the CDP

The CDP project has been developed to enhance conceptual design in urban architecture
by incorporating digital analysis directly into the design flow. The CDP surface – a multi-
touch table – displays a digital model of a city loaded from a database. The CDP surface
operates on 3D data of the city objects, but displays a 2D view of the data, as if the user is

19

3. Concept

Figure 3.1.: Two views of the same world: the CDP surface (left) and the vertical presenta-
tion screen (right)

working with a map. The user can also scroll, rotate and zoom into and out of the map on
the surface.

The designer can place his physical model (e.g. a block cut of styrodur rigid foam, or
an arbitrary object) on the CDP surface where he wants to position his new building. The
CDP scans its 3D shape and position on the surface (cf. figure 4.2b). Using this data,
numerical simulations can be performed in real time. Simulations take into account the
virtual buildings loaded from the database as well as the physical model(s) placed on the
CDP surface. The CDP can perform various simulations, such as distribution of sun light,
spatial relations between buildings, visibility, etc.

An additional feature initially included in the concept was that the designer should be
able to paint on the multi-touch table using a special pen or to interact with the virtual
objects and the simulation using touch gestures and tangible objects (e.g. remove a build-
ing, or change the direction of the sun). However, this feature was not implemented in the
presentation mode presented in this thesis (see section 4.6).

3.1.3. Use-case of the presentation mode

The presentation mode extends the functionality of the CDP surface by an additional
screen (here called presentation screen) placed vertically in proximity to the multi-touch
table. Furthermore, it offers a 3D view of the scene shown in 2D on the multi-touch table.
Physical objects are also displayed on the presentation screen, so that the viewer gets the
impression that they are part of a virtual city (figure 3.1 right). The designer(s) can navi-
gate a virtual camera in order to change the 3D view and explore the augmented city. They
can sketch directly on the buildings in the presentation screen in order to share conceptual
ideas visually. The presentation screen is linked to the CDP surface, which means that
moving a physical object on the table would cause a respective change of the object on the
presentation screen; also, sketches drawn by users on the presentation screen would be
displayed back on the CDP surface.

The presentation mode transforms the mixed reality of the multi-touch table (i.e. the 2D
city map and the 3D model placed on the table top) into a full virtual reality setting. The
architect can navigate in the virtual world and sketch ideas directly on the objects con-
tained there. He can also customize the presentation mode to fit his personal preferences.

20

3.2. Visualization

In order to realize this use-case, the concept of the presentation mode should implement
means for 3D visualization, space navigation, user interaction, and sketching. The concept
for each of these features is described in the following sections 3.2, 3.3, 3.4, and 3.5.

3.2. Visualization

Given that the presentation mode provides the 3D view on the scene using a large-scale
vertical display, essentially it works like a virtual camera view, as commonly seen in CAAD
programs. The presentation screen represents a single view to the scene and is controlled
by a tangible object, representing a camera (the camera concept is explained in detail in
section 3.3). It is possible to partition the screen in multiple views, each corresponding
to an instance of a camera. However, this would reduce the usability of the system to
novice users (with no experience with CAD software) and impair their ability to recognize
the correspondence between the 3D and 2D views. The CDP is designed to provide one
consistent view for multiple users, not multiple views for one user. Moreover, the presen-
tation mode employs a tangible camera for navigation, which is much easier to use than
traditional Windows Icons Menus Pointer (WIMP) camera controls.

Nevertheless, it is not excluded that future refinements may add multi-view functional-
ity to the presentation mode. At present, one view is sufficient to explore the applicability
of the additional CDP display. Having one view is also more efficient in terms of space –
objects are bigger and better to select and sketch on. It is also easier to work on a bigger
view if there is more than one user working on the CDP.

One of the most important requirements, namely that the designer should be distracted
as little as possible from the actual design process, is also relevant for the visualization of
the city. The presentation mode has to be simple and clean. Having these considerations
in mind, the following concept for the visualization was made:

• The 2D visual information, which is present on the table surface, should be also
present in the 3D view mapped to the city terrain. This includes sketches, anno-
tations, and the output of digital simulations (e.g. displaying shadows). Moreover,
simulations can generate 3D information. In this case the display should also display
this information.

• The background (the sky) should be very simple and light, but still feel real.

• The used colors should be neutral. The buildings should be emergent.

• The GUI elements (menus, buttons, palettes and similar) should be collapsed, unless
they are needed and explicitly invoked by the user.

Not all ideas could be finally implemented in the presentation mode. For details in this
regard, refer to section 4.6.

3.3. Camera control and behavior

The 3D view of the urban model is controlled by a single camera. The camera is controlled
by a combination of a 3D mouse [48] and a fiduciary marker glued on its bottom (figure 3.1,

21

3. Concept

left). The fiduciary marker is used to track the 2D position and orientation of the camera
by the infrared cameras below the table surface. The 3D mouse controls the height and
forward tilting of the camera.

In general, the 3D pose of a camera has 6 Degrees of Freedom (DOF) – three DOF for
the position and three DOF for its orientation in space. In addition, the camera has a view
frustum consisting of six planes – up, bottom, left, right, near and far. The view frustum
is usually fixed unless advanced zooming is needed. Controlling all these parameters
together can be cumbersome, especially for a user with little experience in CAAD. Hence,
the design of the camera in the presentation mode has been simplified and constrained.

The camera model of the presentation mode is reduced to five DOF. Three DOF are used
to describe the position of the camera, one DOF for its orientation in the horizontal plane
(corresponds to a rotation around the UP-axis of the camera), and one DOF for tilting the
camera up and down (corresponds to a rotation around the SIDE-axis of the camera) 1.
There are some further constraints on the camera movement – it cannot sink below the
ground level and can be tilted from -90 to +90 degrees which corresponds to looking at the
ground and at the sky, respectively.

These restrictions are imposed on the camera model to simulate human behavior. The
camera moves exactly like a casual person, but able to fly. People rarely tilt their head
to the side, or look at a building upside-down, so there is no need for the camera to do
so. Furthermore, the camera is positioned by default at 1.7 meter above the ground, cor-
responding to the average human height. Sinking below the ground level is also useless,
because none of the objects in the city is underground. Restricting the camera movement
makes it easier to control and helps the architect feel as being inside the virtual world.

The reason why the 3D mouse is used to control only two DOF (and not all of them)
is that the mouse sensor is extremely sensitive, so that only experienced user can operate
with it with all DOF active. Even after dampening its sensitivity, the sensor still feels stiff
and uncontrollable to a novice. Thus, it is necessary to lock out four DOF and use only
two.

In addition to tracking the camera position, the fiduciary marker has one more function.
It is used to switch the presentation mode on and off. As soon as the marker is placed on
the table surface, the presentation mode is switched on and starts the 3D view. Likewise,
if the marker is removed from the table surface, the presentation mode is shut down.

It is possible to use more than one camera, but this is not the primary goal of the pre-
sentation mode which aims to present and share ideas. Having more than one physical
camera representation would disrupt the one-to-one relation between the tangible camera
object and the 3D view, and would probably cause more confusion than it would help. In-
stead, several “views” can be stored and referenced back later using the so-called “sketch
paper mode” (see section 3.5.3).

3.4. GUI and interaction

In order to interact with the system in presentation mode, a user interface is required.
The CDP system provides two types of interface – graphical (on two multi-touch displays)
and tangible (using the interactive table surface). For the purposes of the presentation

1Essentially, the camera can not “roll”, i.e. it cannot rotate around the “VIEW”-vector.

22

3.5. Sketching

mode, a special GUI was developed. Both multi-touch displays are capable of receiving
input and producing visual output; hence, both displays are suitable for GUI interaction.
The advantages of the table surface in this regard are that it can track shapes, fiduciary
markers and an unlimited number of fingers, which finally can provide rich user interface.
The presentation screen is limited to only two fingers, but provides better precision at
recognizing the fingers. Thus, the presentation screen is used to implement the GUI, as
quality of interaction is more important than quantity at this stage of development of the
CDP.

The GUI’s main requirement is to draw as little attention as possible. Therefore, it is
hidden and its elements can be “pulled” into the screen. Single touches are normally in-
terpreted as sketch strokes and are projected directly on the object they collide with.

The GUI has one general-purpose menu to control common settings and customize the
user interface. In addition, there are two more interaction elements which are used to
activate two of the drawing modes – the sketch paper mode and the 3D mode (see section
3.5). In addition, the user can pull a palette from the top of the presentation screen to
change the thickness and the color of the pen.

Thus, the options menu on the presentation screen is supposed to provide the following
functions:

• adjust the camera sensitivity

• unlock the camera (so that all degrees of freedom of the 3D mouse can be used)

• switch between drawing modes

• activate the eraser tool

The eraser tool is used to wipe sketches from a surface.
The menu for the sketch paper mode looks, when closed, like a paper edge; when the

user pulls on the edge, a semi-transparent paper scroll is unrolled over the entire screen
which serves as a temporary sketching surface. The user can sketch in 2D over the 3D
scene and discard the drawing or save it. It is possible to “jump back” to the drawing later,
using the same perspective. Since this involves the camera being moved without the usage
of the fiduciary marker, the virtual camera is used to display the position of the current
view.

3.5. Sketching

Conceptual design is a creative process – a function of the personal experience, preferences
and character of the designer. Architects joke that fifty architects would yield fifty different
design approaches. A digital tool for sketching should be either extremely customizable
(so that everyone can adjust it to his own personal needs) or highly flexible (so that it meets
everyone’s needs). Both alternatives are not technically achieved yet. Therefore, architects
and other engineers still prefer pen and paper to advanced CAD tools.

In order to create an attractive tool for sketching in urban conceptual design, it was
necessary to study how architects work individually and in groups. Important require-
ment for this study was that participants are constrained as little as possible. In order

23

3. Concept

to maximize the learning effect, four different sketching modes were implemented in the
presentation mode, including:

• Standard mode (figure 4.8a).

• Extended surface (figure 4.8b).

• Sketch paper (figure 4.17a).

• 3D mode (see figure 4.8c and d).

3.5.1. Standard mode

The standard mode is the least constrained one. It can be used to draw 2D drawings on
top of the 3D objects in the scene. The standard mode works as if the designer would use
a laser pointer to sketch his drawing in the virtual world. When the pen glides on the
presentation screen, the system identifies the underlying object (i.e. the object on which
the user is currently drawing) and performs perspective correction on the stroke to match
the underlying object. It is not a real 3D process, but rather an extension to the common
2D drawing architects are used to in their daily work (figure 4.12).

There are several problems raising from this concept. First, if the designer accidentally
draws a line over two adjacent surfaces, which are not coplanar, then the resulting line
must not necessarily be a straight line in 3D (figure 4.13). This might be intended or unin-
tended but the system has no way of recognizing the intent of the user.

Sometimes a sketch may be desired not directly on a building but “in the air” or close to
a building. For example, if the intent is to draw an extension of an existing building, one
would like to be able to draw on the extension of a wall in space (figure 4.8b). In this case,
the concept proposed above is useless, as it will project the line somewhere else and not on
the “invisible plane” of the extended wall. This problem is tackled by the second drawing
mode – the extended surface mode.

3.5.2. Extended surface mode

The “extended surface mode” is activated by a click on a surface (e.g. a facade) while
using the standard mode. In the extended mode, user drawings are mapped on the plane
of the particularly selected surface. This way, the architect can extend buildings and objects
easily, by selecting the facade wanted to be extended.

In order to enhance the visual perception and the feeling for space and orientation, the
active plane is blended using a semi-transparent color and a regular grid with square cells
(see figure 4.8b). A second click deactivates this mode and returns to the standard mode.

3.5.3. Sketch paper mode

The sketch paper mode is activated upon pulling on a paper edge at the top-left corner of
the presentation screen, which unfolds a roll of semi-transparent paper. Any further draw-
ing takes place on the paper, as if the architect is holding it in front of him. Sketches from
the paper sheet can be “applied” to the image at any given moment, as if they were drawn

24

3.5. Sketching

using the standard mode. The advantage of this mode is that it can discard drawings easily
by folding the paper roll, or by changing the sheet, just like real sketch paper.

Changing the sheet does not delete the previous sheet, but rather “saves” it in a special
thumbnail bar, where all sketches drawn in the sketch paper mode are stored. From there,
the user can switch from one sketch to another, discard sketches, or “apply” a sketch to
the scene. Applying a sketch projects it to the underlying urban environment, as if it was
drawn using the standard mode.

The user can draw everywhere on the presentation screen, not only on surfaces, al-
though drawings which were not on a surface cannot be “applied” to the world later. The
disadvantage of this mode is that the user cannot move the camera while using it. Every
paper-sketch is bound to the particular camera position and orientation and by switching
to that sketch the camera “flies” back to the position it was when the sketch was drawn.
This behavior ensures that sketches remain related to the background on top of which they
were drawn.

3.5.4. 3D sketching mode

The 3D sketching mode is considered the most advanced one of all developed in this thesis.
It is activated similarly to the sketch paper mode – by pulling an edge of paper at the
top-right corner of the screen. In contrast to the sketch paper mode, underlying objects
appear with enhanced edges in the 3D mode. The edge enhancement serves as a hint that
edges can be used as starting points for sketching. Linking sketch strokes to existing edges
“connects” the sketch to its context. For example, drawing an extension of a building
would bind the imaginary extended part to the existing one (figure 4.18).

The user has the freedom to sketch a 3D object as he would do it on a piece of paper.
The advantage of the 3D mode is that the sketch, in contrast to the paper drawing, does
not remain planar in shape, but is “inflated” to create a 3D structure.

After pressing a designated button, the system attempts to reconstruct the real 3D shape
of the object and place it at the most plausible position in space. The resulting shape
resembles a wireframe model, which projection coincides exactly with the drawn planar
sketch when taken from the viewpoint it was drawn. The source sketch should not be
resampled and no beautification of the final shape should be approached.

The reconstruction approach applied in this thesis has the following specifications:

• No support for curved lines and surfaces

• The camera cannot be displaced while sketching (off-line sketching)

• Imperfections in the sketch are tolerated

• Processes hidden lines

• A single solution is generated

In addition to sketching from edges of an existing object, the user can sketch a com-
pletely new object on the screen. In this case, the system assumes the object as “lying” on
the virtual city plane. In urban design, this assumption is reasonable since new buildings
reside on the ground or extend existing constructions.

25

3. Concept

Figure 3.2.: Digital simulation within urban architecture. Left: visibility simulation;
Right: simulation of sunlight (image property of Michael Mühlhaus and Niels Seifert,
unpublished)

3.6. Integration and run-time behavior

This section describes two very important characteristics of the presentation mode – its
integration into the CDP project and its behavior with respect to the highly dynamic and
multi-user environment of the multi-touch table.

The multi-touch table is a dynamic system, which tracks the outline of any object placed
on its surface and scans its 3D shape. The objects’ position and orientation are synchro-
nized with the presentation mode, resulting in a visual correspondence between the table
and the presentation screen. Hence, moving a physical object (or the camera) on the ta-
ble surface causes a respective movement of its virtual representation on the presentation
screen. However, sketching on the presentation screen necessitates that all objects remain
static.

The presentation mode developed here overcomes this difficulty by detaching the vir-
tual world from the physical table for the duration of sketching activities. This mechanic
ensures that sketches are done in a static scene and prevents buildings, on which the user is
currently drawing, to be moved away or deleted. Changes in the physical world occurring
during sketching are cached and applied after completion of the drawing. It is therefore
possible that a building “slips” under the pen after the stroke is finished. The resulting
sketch will be still applied to the moved building, unless the building was removed from
the table surface.

Sketches are also attached to the building they have been drawn on. Thus moving a
building will also move any sketches drawn to it, and deleting a building will delete its
sketches too.

An additional feature discussed was that the user can sketch on the table surface directly
using a special pen, which can be distinguished from a finger. The sketches done using this
pen should be also displayed on the presentation screen. Similarly, sketches done in the
presentation mode should be also displayed on the table-top, so far they can be visualized
on a planar surface. This way the designer can choose which surface to use for his sketch,
but the result will be visualized simultaneously on both displays. This holds only for
sketches made on the city plane and not on the buildings, because the table can display
only a top-view of the city plane on its 2D display. However, both ideas were finally not
implemented (see section 4.6).

26

3.6. Integration and run-time behavior

Another feature of the table is to execute numeric calculations on the city objects, such
as sun light distribution, wind flow, or visibility analysis (figure 3.2). These simulations
are usually computationally expensive and therefore must be calculated iteratively (they
refine the result iteratively until the data does not change significantly). The 2D visual data
provided by them is displayed on the table surface continuously. It was also desired that
the presentation mode should display that data on its city plane whenever a simulation
is running. It is also possible to extend the output of a simulation to generate 3D data
and display it in the presentation mode. For example, to visualize how buildings throw
shadows on each other, not only on the city plane.

27

4. Implementation

4.1. Big picture

A general overview of the CDP together with the presentation is illustrated in figure 4.1.

4.2. Used hardware and software

4.2.1. Hardware

The full list of hardware used originally for the CDP table top environment includes the
following devices:

A Glass plate with projection screening.

B OPTOMA full high-definition beamer [49].

C A clear mirror with high reflectance.

D Four infrared projectors.

E Two Firefly MV2 infrared cameras, each with an infrared filter (which filters other
wavelengths out).

F A computer with two firewire ports and two High-Definition Multimedia Interface
(HDMI) ports (one for the table beamer, and one for the presentation screen).

G Microsoft Kinect [50]

The left side of figure 4.2a presents the arrangement of the above components. In turn,
the presentation mode requires the following hardware:

H Samsung TS650-2 65” touch display [51] (capable of recognizing two touches at a
time)

F A powerful graphics card for parallel computing with Compute Unified Device Ar-
chitecture (CUDA) – nVidia GeForce 580 GTX [52]

Z A 3Dconnexion 3D mouse [48] (not shown in the figure)

The hardware setup used in the CDP does not differ considerably from other multi-
touch table top configurations. The technology used to track gestures is “diffuse illumina-
tion”, or DI [53]. Four projectors are used to create a smoothly lighted environment under
the table top.

29

4. Implementation

Shadow/sunlight
simulation

Access and
distance

Legal
regulationsUser level

Hardware
level

CDP Framework
Middleware

level Visualization GUI Sketching

Presentation mode

…

Camera Control2D rendering

3D
 re

nd
er

in
g

To
uc

h
in

pu
t3D Object

regocnitionProcessing
level

- touch gestures
- fiducial markers
- pen
- object contours
- finger orientation

Tracking

3D mouseTable beamerKinect Presentation
screen

IR Cameras

Figure 4.1.: Component overview of the CDP arranged in layers. The dashed line separates
the components of the presentation mode from the rest of the system.

(a) (b)

Figure 4.2.: The CDP and the presentation mode; (a) hardware setup (for explanation, see
4.2.1); (b) a photograph of the system.

30

4.2. Used hardware and software

The table’s dimensions (145 x 95 cm) are rather big for using a single camera to capture
the entire table surface, hence there is a need for two cameras. The images of the two
monochrome cameras are stitched together and adjusted in a pre-configuration step. Each
frame is processed with a set of filters in order to ensure smooth user interaction and lower
noise and shadow effects.

The table can detects finger movements, touch gestures, fiduciary markers, and objects
placed on the table. In addition, a special pen has recently been developed by Saburo
Okita within a separate interdisciplinary project. The pen can be distinguished from fin-
gers and used for sketching directly on the table surface. For more details regarding the
implementation of the CDP table, please refer to [1].

4.2.2. Software

Several libraries, drivers, and software tools were included in the development of the CDP.
They are listed here for the sake of completeness. The interested reader can follow the
references for more information accordingly:

• OpenCV (for the image manipulations and tracking of object/gestures) [54]

• CUDA (to enhance the performance of OpenCV) [55]

• 1Dollar [56] – for the gesture recognition

• OpenTK (an OpenGL wrapper) for rendering on the table surface (with C#) [57]

• PointClouds library (for the manipulation of depth images, generated by Kinect) [58]

• OpenNI and the drivers for Kinect [59]

• Boost (for smart pointers, file operations, and others) [60]

• FlyCapture (the Software Development Kit (SDK) of the IR cameras)

• Drivers for the IR cameras

• Autocad MAP [61] and ORACLE (to manipulate and store geospatial data sets) [62]

The presentation mode requires additionally the following software:

• Visualization Library, an OpenGL based rendering framework (to render the 3D
scene) [63]

• QT (to manage the GUI, component interaction, event handling, and more) [64]

• Assimp, a library for loading and saving 3D scenes [65]

The CDP project is developed in a 64-bit Microsoft Windows environment, using the Vi-
sual Studio 2010 64 bit compiler set and CMake [66]. The main reason for this choice is that
architects are used to work on Windows computers and their skills in programming are
mostly in .NET languages such as Visual Basic and C#. The given configuration (Windows
+ CMake + Visual Studio) seemed to be the best choice for these requirements.

31

4. Implementation

Facade

Surface

Virtual
Building

Physical
Building

City plane

Building

Table Surface

line P2

Line

Point

Point P2

Joint

Projective
Sketch Point

Sketch Point

3D Sketch
Point

Projective
Stroke

Stroke

3D
Stroke

1

1

1

1

1

4...*

3...*

3...*

2...*
1

11...*

adjacency

*

*

(a)

(b)

Figure 4.3.: An UML diagram explaining the data model of the presentation mode. (a)
object classes; (b) fundamental geometry classes .

4.3. Datamodel

A consistent and unified data model is critical for data transport and processing. The
requirements of the data model are as follows:

• minimum redundancy

• good structure in terms of hierarchy, semantics, aggregation, and generalization

• easily extensible through further data types and objects

These three principles were upheld when developing the data model concept (see fig-
ure 4.3). The data model classes can be divided mainly into two categories: scene objects
and sketching geometry [footnote: in future refinements of the CDP, a third category may
be included - simulation data]. Even though they have some common classes, these cate-
gories generally describe two distinct concepts.

Scene objects refer to parts of the physical or virtual world of the CDP. These include
buildings (both physical and virtual), streets, subway stations, etc. Currently, there are four
kinds of scene objects – virtual and physical buildings respectively, the infinitely large city
plane, and the representation of the table surface. Figure 4.3a depicts the classes which
describe these objects.

32

4.4. Software architecture of the presentation mode

Sketching geometry includes points and lines generated by user input – 2D and 3D
sketches, annotations, and labels. These data structures contain more than just the 2D
or 3D coordinates of sketch points (see section 4.4.3). For example, they store the camera
position at the time of sketching, an intermediate representation of the sketching geometry,
and can contain other contextual information. Figure 4.3b presents the classes describing
this kind of objects.

One of the major concerns of the data model is the metric system: which units (meters,
centimeters, decimeters...) should be used to describe the scene geometry? How many of
these units correspond to one internal unit in the presentation mode? This question gains
even more importance when considering the following problems:

• Too small scales (1 unit = mm) cause numerical inaccuracies (see figure 4.36a)

• Too large scales (1 unit = 10m) cause artifacts in the depth buffer (see figure 4.36b)

• Metrics are also relevant for data interchange with other components, so all values
should follow the same metric system.

The first two problems arise from technical limitations. Using small coordinate val-
ues cause numerical calculations to be imprecise and produce visible offsets. On the
other hand, using large coordinate values increases the absolute distance between ver-
tices, which essentially causes depth-fighting. The bigger the scale, the more visible are
the depth artifacts. Hence, reducing one error increases the other one and vice versa.
Therefore, a balance between these two errors had to be found. The technical background
of these problems is explained in more detail in section 4.5.2.

The unit metric was empirically chosen so that both numerical and visual errors are
minimized. The best results are achieved when using the following metric:

1 v i r t u a l uni t = 1cm

This metric produces no visible numerical oscillation, and negligible z-bleeding artifacts.
However, centimeters are too small units when talking about rough conceptual design in
urban development where errors in the range of meters are common. Thus, meters were
used to exchange data within the CDP framework, and centimeters were used internally
in the presentation mode. Whenever data is received or transmitted by the presentation
mode, an extra division/multiplication by 100 is needed in order to keep data representa-
tion consistent.

4.4. Software architecture of the presentation mode

4.4.1. Overview

Figure 4.4 presents the three main components of the presentation mode – “visualization”,
“GUI”, and “sketching”. Each component is isolated from the others as much as possible,
so that interfaces and data transfer remain consistent and cyclic dependencies are elimi-
nated. The following sections present each component of the presentation mode in details.

33

4. Implementation

GUIColor
Table

Visualization Sketching

App 1

App 2

…

Standard Mode

Extended Surface

Sketch paper

3-D mode

Figure 4.4.: Components of the visualization mode and data transfer between them.

4.4.2. Visualization

The CDP project is essentially a novel attempt at human-computer interaction, in partic-
ular the interaction between architects using a digital medium. This kind of interaction
typically involves digital visualization – in this case, it is performed on two surfaces. Vi-
sualization is an important topic within the CDP and especially within the presentation
mode. Visualization is particularly important with regard to the expected visual output,
which is a large volumetric data set comprising an urban environment.

4.4.2.1. Review on existing visualization engines

There is a wide variety of methods used in modern software for data visualization and
manipulation of geometric structures. Some of them are listed here, starting with the low-
level frameworks and ending with the most-powerful and least performant ones:

• native graphics APIs such as OpenGL and DirectX

• managed wrappers and libraries such as OpenTK and SlimDX

• scene-graph and game libraries like Ogre, XNA, VTK, OpenInventor and Coin3D

• data visualization frameworks such as ParaView and OpenCASCADE

Many of these frameworks are optimized for a specific purpose, such as games in the
case of Ogre and scientific data and vector fields in the case of ParaView. Generally, they
represent a trade-off between performance and convenience. The more convenient and
automatized a library becomes, the less performant it is and therefore offers a lower frame
rate compared to other libraries for the same task.

In order to choose a library, three criteria should be considered:

• Magnitude and complexity of rendered data

• Effects and features needed or useful for the future

34

4.4. Software architecture of the presentation mode

• How critical is performance

These criteria are hard to estimate at the very beginning of a project. Then again, it is
very hard to change the visualization library at a later point in the development since it
also offers the fundamental mathematical structures (vector and matrix formats and oper-
ations, geometry primitives, camera model etc.). These structures are used by other system
components, such as sketching. Changing the visualization library would most probably
require the entire project to be rebuilt from scratch. Therefore, the visualization engine
should be chosen carefully still at the beginning of product development process.

The following subsections attempt to give an approximation of the three criteria given
above, considering not only the current requirements but also future extensions of the
CDP project. These subsections also attempt to give a justification for the choice of soft-
ware tools for the presentation mode. The software tools themselves are covered in the
subsequent sections.

What is the magnitude and complexity of the rendered data?

Both displays – the table surface and the presentation screen – are synchronized and basi-
cally display the same objects (buildings, streets, parks). However, the table presents the
city from a 2D isometric orthogonal view, whereas the presentation mode has a potentially
unconstrained 3D view from any point in space. Thus, the view frustum of the table is lim-
ited by the position and scale of the city map, while the presentation mode can possibly
display the entire city with all its structures (see figure 3.1).

The upper bound of the objects which need to be displayed in the 3D view is therefore
the entire city. However, the designer is mostly interested in his own conceptual design.
The most common and frequently encountered working case is shown on figure 4.2, right
and can be described as follows:

• The designed model is placed near the middle of the table

• The city map is centered around the model

• The camera is positioned close to the model, looking towards it

• The camera is either close to the sea level, or

• The camera is slightly above the average building height, slightly tilted downward

Taking the above information and the camera viewport width of 60 degree into account,
it is reasonable to assume that about 25-50% of the city buildings are visible in the 3D view
at a time. This assumption was confirmed during the user evaluation phase (chapter 5).

The 3D scene has to display a vast number of objects. In addition, sketching results also
have to be displayed on top of the urban environment. In future releases of the presenta-
tion mode, even more data will have to be displayed such as subway stations, infrastruc-
ture, terrain data etc. Therefore, an important requirement to the visualization engine is
performance.

The buildings themselves are displayed using simple polygons. As of the current imple-
mentation, all buildings have prismatic shape – an extruded polygon without holes. This

35

4. Implementation

will probably remain so in the future, since most urban data is simplified and optimized
to save space.

Even though they are very vague and imprecise, the estimations given above served as
a rule-of-thumb. In conclusion, the 3D view has to display a lot of information, which
should be taken into account when choosing the visualization library.

Which effects and features are needed or might be useful in the future?

The most basic use case for the visualization module is to display the city as a collection
of solid buildings within an urban environment. This is a very basic scenario and one can
expect that the CDP framework will require more functionality in its future development.
Still, the main purpose of CDP is to aid conceptual design, so the features offered by the
visualization library do not have to exceed the requirements of conceptual design.

Figure 1.1 in chapter 1 presents the most important topics of conceptual design in ar-
chitecture. A topic could have several aspects to consider; for example “proportion” may
include dimensionality, distance, volume, etc. Furthermore, one aspect may be visualized
in different ways. This explosion of features makes it difficult to anticipate all possible
requirements of visualization in conceptual design in architecture. In practice, however,
the following visual effects are often applied:

• Phong Lighting

• Gouroud shading

• Transparency and alpha blending

• Texturing (in order to display simulation data such as light distribution)

• Connection to CUDA/ComputeShader to speed up computation of simulated re-
sults

• Geometry manipulation and interpolation

• Text rendering and manipulation (in order to visualize numeric or textual data)

Some other useful features, which are not directly related to conceptual design, include:

• GUI creation/event management

• Image input/output and manipulation

• Scene management (spatial and semantic organization of objects)

The above features slightly exceed the capabilities of current native graphics APIs such
as DirectX and OpenGL. Even though it is possible to use one of these in favor of perfor-
mance, a more high-level library would be a better solution.

36

4.4. Software architecture of the presentation mode

How critical is performance?

As discovered later in the implementation, performance is indeed an important factor for
sketching quality. The presentation mode performs real-time perspective correction on the
drawn sketches, which is a computationally intensive task. Therefore, the higher the frame
rate of the visualization library, the more time remains to perform sketching calculations
and thus the better the sketching quality is. Hence, having a visualization library which
operates fast is beneficial.

Having the above considerations in mind, the final choice fell on the OpenGL-based
“Visualization Library” [63].

4.4.2.2. Visualization Library features

The best quality of Visualization Library (VL) is that it has a rich set of features while
maintaining a native profile with great performance. The complete set of features can
be found at [67]. Table 4.1 summarizes the features important for the presentation mode
development.

A very convenient feature of VL are the bindings to GUI frameworks, in particular the
QT bindings (see section 4.4.2.4).

4.4.2.3. Alternative rendering libraries

There are alternatives to VL, which also fulfill the discussed requirements.

A more performant library is OpenGL (or the Windows alternative DirectX). The disad-
vantage of OpenGL is that more advanced features have to be implemented manually. One
such feature is transparency, which needs correct polygon z-ordering in order to produce
plausible results.

Scene-graph based renderers, such as Ogre, Coin3D, and OpenInventor, operate on a
similar level as VL, but lack some of its more sophisticated features, such as volume ren-
dering and terrain rendering. These features are commonly used in scientific applications,
while scene-graph renderers are used primarily in game development. Therefore, this kind
of renderers is not the optimal choice for the visualization of architectural content.

A very powerful visualization framework is OpenCASCADE. It can do everything that
VL can do and more, but at a performance cost. Moreover, OpenCASCADE is a large
and heavyweight framework, in contrast to VL, which is small, fast, and easy to learn.
Therefore, VL was selected as a rendering framework.

4.4.2.4. QT

Even though the presentation mode primarily displays 3D data, a pure 3D visualization
library is not sufficient for the requirement of the presentation mode, which also requires a
graphical user interface. For instance, the “sketch paper” drawing mode requires a scroll-
bar with thumbnail images (see section 4.4.3.4). The thumbnails have buttons on their part
and can be selected, moved, or deleted. This kind of interaction requires a true 2D GUI
framework.

37

4. Implementation

Feature Description

Lightweight Low-level, fast, fine-grained C++ middleware on top of OpenGL.

Simplification Size of the library is kept to a minimum and only the most efficient
rendering paths are used.

Scene-graph support Topological organization of the world into scene graphs is supported.
Scene-graphs are lightweight and easy to maintain.

GUI bindings Bindings to popular GUI frameworks, such as QT, MFC, GLUT, etc.

High performance Very close to OpenGL; buffer optimization; render state sorting; occlu-
sion culling; hierarchical frustum culling; Level-of-Detail geometry; (...)

Transparency manage-
ment

Automatic ordering of polygons for correct alpha blending results.

Image I/O Loading and saving images and textures, automatic mip-map genera-
tion, palette management.

Terrain rendering Rendering of textured terrain data.

Automatic memory
management

Smart pointers, which make memory management easier, without de-
creasing performance too much.

Volume rendering Rendering of volumetric data, such as the inside of a building, or heat
distribution.

Geometry manipulation Simple primitives, tessellation of polygons, generating geometry by ex-
trusion, automatic calculation of normal vectors, and much more.

Table 4.1.: Features of VL important for the presentation mode.

38

4.4. Software architecture of the presentation mode

Furthermore, future extensions of CDP, and in particular the presentation mode, will
probably require more advanced 2D drawing techniques such as brushes, gradients, dif-
ferent kind of pens, palettes, etc. VL is capable of manipulating 2D images, but this feature
is not a main application field of VL and is therefore highly limited.

Fortunately, VL has bindings to many GUI frameworks. The one which was used in
the presentation mode is QT [64]. QT is a large framework and is not limited only to 2D
visualization and GUI creation. Some of the QT features used in the presentation mode
include:

• GUI management

• Threading

• Synchronization (mutexes, locks and semaphores)

QT also uses a very convenient communication method called “signals and slots”. The
latter enable asynchronous event-handling in the communication between multiple com-
ponents. This is a very useful feature as the CDP framework consists of several modules
which have to communicate and exchange data very frequently and asynchronously. Us-
ing the QT slots and signals, one does not need to care about synchronization and event
triggering/intercepting.

VL uses QT to create the OpenGL rendering context (see section 4.5.1 for more detail
concerning context creation), which is not a trivial task, and also to manage the windows
and the event chain. This way the presentation mode could almost abstain from commu-
nication with the operating system, as this is taken care of by QT. The only exception is the
communication with the 3D mouse used to control the camera, as it is not automatically
handled by the Windows event queue.

Another benefit of QT is that it is open source and platform independent. The latter is
not a requirement for the CDP project, as it is designed to run specifically on a 64-bit Mi-
crosoft Windows machine. But platform independence is an advantage in case of sharing
the framework with a third party, exporting the presentation mode to another project, or
publishing it as an open-source project.

4.4.2.5. Implementation

The visualization module is the foundation for everything else, as it also defines the data
structures used to represent the various objects in the scene. The visualization module
accomplishes the following tasks:

• Geometry and transform management

• Shader organization and effect switching

• Lighting

• Emulation of sky

39

4. Implementation

Contour Height vector Extrusion

result of polygon tesselation

Figure 4.5.: Polygon tessellation and extrusion.

Geometry management comprises the conversion of geometrical data into the OpenGL
display format, consisting of vertex arrays, index buffers, draw calls and/or display lists.
Geometry input may come from a file, a database, or from the program itself. It can be also
a physical object scanned on the table surface.

The current implementation renders the following types of geometry:

• Virtual buildings (coming from a database, a file, or an online service)

• Physical buildings (tracked on the table surface)

• The city plane

• Sketches which the user draws

The visualization module has to load (or generate) the geometry of these objects. This is
not always a trivial task. For example, the object recognition of CDP (at the time of writing)
scans only the bottom contour of an object, then measures its height. Thus, an object is
composed out of its base contour and a height value. This representation is sufficient for
numerical computations and analysis, but in order to render an object, the exact mesh is
required. In order to create a volumetric object, the base contour is lifted in the “up”-
direction with magnitude equal to the height. This process is known as “extrusion” (see
figure 4.5).

Extrusion, as well as many other tools for managing geometry, is a part of VL. VL can
tessellate complex polygons into lists of triangles, simplify meshes, interpolate shapes,
and even combine complex polygons and remove holes. Although these features are cur-
rently not utilized in the presentation mode, they will certainly be needed once the object
recognition module delivers more precise meshes of the physical models.

The city plane is displayed as a large regular grid, which creates the illusion of infinity.
The grid cells are supposed to assist the perception of spatial dependencies, such as dis-
tance between buildings and space quadrature. The physical table surface is represented
in the virtual world as a rectangle on top of the city plane. This way the designer can have

40

4.4. Software architecture of the presentation mode

Figure 4.6.: Navigation of the table top view and its effect on the presentation screen. The
light quadric area corresponds to the table top; the four pink buildings corre-
spond to physical objects on the table top. Left: the city before moving the
table; Right: the city after moving the table.

a feeling of what part of the city is also visible on the table and how the physical models
relate to the virtual context. The designer can also navigate the view of the table top, which
changes the content of the presentation screen too as it is directly related to the table top
(see figure 4.6).

Sketches are displayed as line strips (a set of interconnected line segments). See section
4.4.3 for more details about sketching and the computation of sketch geometry.

No terrain data, such as streets and subway stations, and no semantic data are presently
displayed on the table. The urban environment is loaded from a simple COLLADA file 1,
which contains only building geometry for the purpose of testing. Loading more complex
and detailed data is the subject of a future project.

Transform management refers to the process of assigning a proper transformation matrix
to each object. Objects are usually positioned relatively to some other object or to the world
coordinate system. This kind of relation between objects yields a so-called scene-graph
in which the root node is the world coordinate system. The state of an object (position,
material, geometry...) is defined by its position in the graph.

A good implementation of a scene graph should try to assign as few matrices as possible
and to cache them whenever possible in order to save time. Objects which are completely
static should have only one matrix, which positions them in world space. An even better
solution is to directly transform the geometry of static objects as soon as they are loaded.
Frequently moving objects should have a dynamic matrix which is actualized before each
frame. Objects which move occasionally should have their matrix cached and update it
only upon movement. Having a well optimized transform tree greatly enhances the over-
all performance.

VL is better than common scene graph libraries in that sense that it does not update the
entire transform tree automatically and gives a lot of freedom to the developer when it
comes to customization of the rendering process.

Having a good transform management is important mainly for the sketching. The
sketching module captures the position of the pen continuously and computes its inter-

1Collaborative Design Activity (COLLADA) is an open format for storing 3D geometry and physics data. It
is designed for exchange between content providers, such as CAAD software.

41

4. Implementation

B A
D

C
x

z

y

A

D

B

C

Origin of the table surface
Position of a physical object
Origin of the virtual city
Position of a virtual building

(0,0)
(0,0) ~>
(0,0) ~>
(0,0) ~>

(1m, 0,8m)
(5m, 1m)
(5m, 1m) ~> (1,2m, -2m)

z

zx
A

B

D

C
x

z

x

1m

0,8m

5m

1m

2m

1,2m

Figure 4.7.: Transform distribution within the virtual world. The following color codes are
used: black: the coordinate system of the virtual table (the root coordinate sys-
tem); green: the physical objects and their transforms; red: virtual objects and
their transforms. Upper: the coordinate system of the table surface; Lower: a
close-up, showing the connection between the physical and the virtual coordi-
nate systems. A, B, C, and D: examples of transformation chains for various
objects; only 2D translation is considered here for simplicity.

42

4.4. Software architecture of the presentation mode

section with the city objects simultaneously. To do so, the sketching needs access to the
exact vertex positions of scene objects as well as the lines and faces connecting the ver-
tices. This naturally involves computing the transformation matrix for each point and for
each face normal. In case of a large transform chain (e.g. a point is attached to three ma-
trices) this would considerably slow down the computation of intersection, resulting in a
worse quality of the drawn sketches due to fewer computed intersections.

In order to minimize the amount of transforms for scene objects, the following transform
distribution was implemented (see figure 4.7):

• The table surface defines the world coordinate system. The middle of the table is
the origin (0, 0, 0), the direction of the long table edge is the ‘x’-axis and the shorter
edge corresponds to the ‘z’-axis, respectively. The ‘up’-axis is the positive ‘y’-axis.

• Physical objects (the ones scanned by the table) are placed relatively to the table
surface and their transform is cached (objects on the table are not supposed to move
constantly, so this is a reasonable optimization)

• Virtual objects (the city model loaded from an external source) are also placed rel-
atively to the table surface. Their transform is also cached, since the table is not
supposed to be permanently navigated.

• The camera is positioned relatively to the table surface, similarly to the positioning
of physical objects.

This transform distribution is not the most intuitive one: one would expect that the
table surface is defined relatively to the city model, as it is the table surface which “moves
around the city” and not the other way around. However, this kind of positioning would
mean that physical objects on the table have one additional transform and would also need
to be updated every time the table is navigated.

Shader management refers to the process of assigning effects to rendered objects (e.g.
color, transparency, light, etc.). The presentation mode organizes visual data into “apps”,
each app having its own set of effects. This allows for quick switching between different
visualization modes without having to recreate the entire scene. The most basic one is the
solid app, which displays buildings as solid blocks lit by the sun and the city plane as a
grid.

A skybox is also shown at the background. A skybox is a simulation of sky, which uses
the shape of a box and maps a texture of celestial bodies to it. The skybox is always ren-
dered first and moves together with the camera, creating the illusion that the scene is
surrounded by a sky. The skybox of the presentation mode is very bright and simplified
in order to avoid distracting the designer with effects. Still, the scene looks much deeper
with a sky than with plain color.

4.4.3. Sketching

The most-important component of the presentation mode is sketching. It transforms the
3D viewer into interactive whiteboard for 3D drawing. As described in section 3.5, the
purpose is to simulate drawing in 3D, thus enabling sharing of stereoscopic ideas without

43

4. Implementation

(a) (b)

(c) (d)

Figure 4.8.: Sketching in the presentation mode. (a) standard mode; (b) extended mode; (c)
3D mode; (d) resulting sketch from the 3D mode.

having to recreate the entire environment on paper. Figure 4.8 illustrates examples of
several sketching modes.

It is difficult to create true 3D sketches out of 2D input without involving additional
user interaction. Conventional CAAD software tackles this problem by defining multiple
2D views on the same 3D environment, and lock out one of the camera axes in each view.
The user can draw a shape in 2D space which is placed in its correct 3D position depending
on which view was used to draw the shape. This kind of interaction is more complex than
sketching in plain 2D. It requires a deeper understanding of conventional CAAD and 3D
modeling tools. The presentation mode attempts to simplify this approach by introducing
new ways of sketching.

Even though humans are able to recognize the shape of an object by looking at a 2D
drawing, this ability is enhanced by the knowledge of how objects look or should look like
in the real world. For example, a drawing of a circle can be seen as a circle or as an ellipse
which is being drawn exactly from the angle which makes its projection a circle. But if the
drawing is the wheel of a car, the observer will naturally decide that its shape is indeed a
circle.

From mathematical point of view, due to the transition from 3D space to 2D space one

44

4.4. Software architecture of the presentation mode

Figure 4.9.: Ambiguity of representation of a 2D sketch (figure according to [42]); Upper:
possible 3D interpretations of a 2D sketch; Lower: common interpretation of
the sketch by most humans.

dimension is lost and cannot be reconstructed deterministically (see figure 4.9). There are
many empirical and theoretical approaches which try to solve this problem (reconstruct-
ing 3D objects from 2D drawings), most of which are based on constraints – assumptions
that the shape of the drawn object must obey specific laws [68, 40, 42]. Technically, this
is an attempt to simulate human behavior. Humans tend to recognize shapes based on
experience and knowledge of similar shapes.

Many of the 3D sketching algorithms found in literature achieve very good results in
terms of similarity of the reconstructed object to the real prototype. However, they require
several tenths of seconds up to few minutes in order to reconstruct the object, because the
algorithm optimizes a potentially large set of constraints over a large set of points/lines/-
surfaces.

Long waiting intervals violate the requirements of the presentation mode where a de-
lay in the calculation could distract the designer from his intent. Therefore, a simple and
fast approach to the problem was desired and implemented in the presentation mode de-
veloped here. This approach uses the drawing environment (the virtual city) and tries
to estimate which plane the user is drawing on. This concept is implemented in differ-
ent variations within the presentation mode of CDP, resulting in four different sketching
modes.

The next two sections describe the basic mathematical model used to map each stroke to
its corresponding surface (section 4.4.3.1) and the individual sketching modes which use
this model (sections 4.4.3.2, 4.4.3.3, 4.4.3.4, and 4.4.3.5).

45

4. Implementation

Vector Based Texture Based

Line strip Texture

Vector projection Texture projection

Input

Conversion

Application

(a) (b)

Figure 4.10.: Two possible sketching approaches – (a) vector based and (b) texture based.

46

4.4. Software architecture of the presentation mode

Figure 4.11.: A sketch stroke drawn on a surface (left) and the same stroke when zoomed
in (right)

4.4.3.1. Mathematical model

How does the presentation mode know where and what the user is trying to draw? The
basic method used in this thesis is to find the surface lying directly under the pen and
project the sketch onto that surface. This method resembles the standard sketching mode
(see section 4.4.3.2).

There are two approaches which were considered for the implementation of this behav-
ior – vector based and texture based (see figure 4.10). The vector based approach rep-
resents the drawn stroke as 2D coordinates in the screen space and as 3D coordinates in
the virtual city space. For each screen coordinate, a P-2 ray (see Appendix A) is computed,
which starts at the position of the camera and goes “into” the scene. Its intersection with an
object defines the 3D position of the sketch point. Connecting all points from a sequence
forms the 3D curve (figure 4.10a). The texture based approach captures the drawing in
screen space as a sequence of 2D points and renders it on a texture. The texture is then
“projected” to whatever geometry lies behind it (figure 4.10b).

The vector based approach was chosen for the implementation of sketching in the pre-
sentation mode. It is simpler in terms of implementation, portability (it is easier to trans-
port and map a set of points than a texture) and program logic. It has the only disadvan-
tage to produce jagged artifacts sometimes which become visible when the view is zoomed
closer to the drawing (see figure 4.11 right). The reason for these artifacts is that the 2D
screen coordinates are pixels. Therefore, lines drawn on the screen are jagged and their
projection is also jagged.

A single sketch stroke starts when the pen touches the presentation screen and ends
when the pen is removed from the screen surface. Each pixel touched by the pen between
these two events is considered part of the stroke (a stroke point). The set of these points
defines a stroke. A set of strokes resembles a stroke sequence.

A stroke point has the following components:

(A) The 2D screen coordinates

(B) The P-2 projective coordinates

(C) The 3D coordinates

47

4. Implementation

Figure 4.12.: Corresponding views of the table top and the presentation screen, demon-
strating the stable relation of sketches to the scene. The sketches remain
“glued” to their surface, whenever the camera or the building moves.

‘A’ measures the point as a pixel in screen coordinates. ‘B’ is computed based on the
current camera position. A ray passing through the middle of the pixel defined by ‘A’ is
constructed, which corresponds to the visual ray through that pixel of the camera view-
port. This P-2 ray represents all points in 3D space whose projection falls on that viewport
pixel. The third component, ‘C’, is the actual 3D position of the sketch point. This com-
ponent is unknown at the time of drawing and needs to be computed. The way how it
is computed is different for the various sketching modes. Once the 3D positions of the
points of the sketch are determined, the sketch will appear as if it was “glued” to its sur-
face whenever the camera moves (see figure 4.12).

The following sections illustrate the implementation details about the developed sketch-
ing modes (standard, extended, sketch paper and 3D). For the conceptual description of
each mode, please refer to chapter 3.

4.4.3.2. Standard mode

The standard sketching mode is active by default until the user activates a different mode.
It is not the simplest one in terms of program logic, though. It maps each sketch stroke to
the surface lying directly underneath the pen (see figure 4.13).

In order to assign each point of the sketch to its correct 3D location, the algorithm has to
accomplish three steps:

1. Compute the P-2 ray of the point (using the 2D screen coordinates and the camera
position);

48

4.4. Software architecture of the presentation mode

Figure 4.13.: The standard sketching mode. Left: while sketching; Right: after moving the
camera slightly (it indicates that the mode is not well suited to “sketch in the
air”)

2. Find the underlying surface;

3. Find the intersection of the P-2 ray with the surface.

After performing these steps, one can determine the 3D position of a point uniquely and
assign it to a surface. Unfortunately, having many objects in the scene consumes a lot of
computation time at step 2, causing a significant delay which diminishes the amount of
stroke points that can be handled and results in a bad sketch quality. Moreover, if imple-
mented without optimization, the calculation of step 2 blocks the CPU for a short duration
which also causes the GUI to freeze and results in bad user experience.

A relatively simple solution to this problem is found in threading. Assigning each point
to a different thread caused the computation to speed up significantly. Tested on a system
with 8-core CPU, the standard drawing mode performed well even when the table surface
was densely populated with building models.

Threading causes some complications, though. The following conditions need to be
maintained:

• Each point is assigned to exactly one thread.

• Access to the point data is synchronized.

• Points are processed in the order they were drawn.

All these tasks are solvable with standard multithreading techniques – a priority queue
to hold the points in a sequence, semaphores to count the thread access to the queue, and
mutexes to synchronize the access to the queue.

The intersection of each point with its underlying surface yields a 3D point. Connecting
these 3D points yields a 3D stroke. Moving the corresponding surface however would
leave the stroke “floating” in space, which is not the desired behavior of the sketching
tool (see figure 4.14); a stroke should move together with its surface. Thus, the world
coordinates of the stroke points are replaced with coordinates relative to the corresponding
surface. Also, the stroke points are attached to the transform of the surface so they follow
whenever the surface moves. The transform is split using the following scheme:

49

4. Implementation

Figure 4.14.: A sketch without connection to its underlying building. Left: sketch drawn
on a building; Right: the same sketch after moving the underlying building
away.

_

?? ?

(a) (b) (c)

Figure 4.15.: Flaws in the sketch strokes in the standard mode and their respective correc-
tions; (a) a stroke segment crosses a surface boundary; (b) a stroke leaves a
building; (c) a stroke segment crosses two surface boundaries.

Let P be the 3D position of a point in world space, and S – the surface it is attached to. Let Ts be
the transform of S, Tp the transform of P and Pnew the new 3D position of P . Then the point P is
transformed using the formula:

Pnew ← (Ts)
−1 ∗ P

Tp ← Ts

The new position of P is Tp ∗ Pnew, which equals P (the initial position of the point) if
the surface remains static. If the surface moves, then P will move in world space together
with the surface, but will stay static relative to the surface.

Another difficulty regarding this (vector-based) sketching method comes from the fact
that the presentation screen has a finite precision (1920 x 1080 pixels). The sketch is es-
sentially a set of pixels which are converted to rays and intersected with the surfaces in
the scene (see Appendix A). Very often, two consequent P 2 rays P1 and P2 from a stroke
will intersect two adjacent surfaces S1 and S2 each and none of the pixels will lay on the

50

4.4. Software architecture of the presentation mode

Figure 4.16.: Adding an additional point on boundaries improves the quality of the sketch.
Left: without the additional points; Right: after adding the additional points
on the boundary.

common edge Ec between the surfaces 2. Since the algorithm connects the two consecutive
points with a line, that line lies inside of the object defined by the surfaces and will not
be visible from outside (see figure 4.15a). In the case of a concave edge, the line segment
would “hang in the air”, which is also not desired.

In order to enhance the sketch strokes on surface boundaries, a new point P’ is created
with has the following properties:

• It lies on the edge Ec

• It lies on the plane π defined by P1, P2, and the camera position

This point is unique, because Ec cannot be parallel to π (otherwise, S1 and S2 would be
rendered as a line on the screen and the user would not be able to draw on them). Thus,
Ec intersects π in exactly one point. However, sometimes the sketch stroke crosses several
edges at once, not just one (see figure 4.15c). This case was not handled as it may occur
very rarely and could be therefore neglected.

Intuitively, the forged point P’ is the point where the interpolated curve of the stroke
crosses the edge Ec between S1 and S2. Figure 4.16 shows the result of adding this new
point.

The last difficulty causes the transition of the pen from one surface to another when
the two surfaces have no common edge. This happens, for example, when the designer
is drawing on two building models, one occluding the other, and the pen jumps from a
surface of the front building to a surface of the back building (see figure 4.15b). In this
case, two new points have to be added – on the boundary of each surface. These points
split the stroke into two parts – one finishing at the boundary of the “old” surface, and one
starting at the boundary of the “new” surface.

2This case occurs even more often if the computer performance is not sufficient, or if the scene has many
polygons.

51

4. Implementation

4.4.3.3. Extended surface mode

The extended surface sketching mode is activated whenever the user clicks on a surface.
Every next stroke is projected to the plane of this surface. This mode is much simpler than
the standard mode as it does not have to care about surface boundaries and transition
between surfaces.

Whenever the extended mode is active, the selected surface is highlighted with a blue
elliptic semi-transparent overlay gradient, which is approximately three times bigger than
the surface itself and fades towards the outer borders of the surface. In addition, a trans-
parent grid is displayed over the gradient in order to enhance the perception of space and
proportion.

If a different surface is clicked, that surface gains focus and strokes are projected to
its plane. If the same surface is clicked twice, the extended mode is deactivated and the
standard mode is restored.

Technically, the extended mode works just like the standard mode, using the same inter-
section method. The only difference is that in the extended mode only one plane is used
to project the sketch points.

4.4.3.4. Sketch paper mode

The sketch paper mode is activated by dragging a paper edge from the top left corner of
the screen. The paper edge unfolds into a sheet which covers the entire screen except for
a scrollable thumbnail area at the bottom. The sheet is semi-transparent can be dragged
away with the same edge which was used to pull it into the screen area.

The paper mode mimics real sketch paper. The user can pull a new sheet at any given
moment, without losing the contents of the old sheet. All sheets are visible at the bottom
of the screen as thumbnail images. One can switch to a sheet by clicking on its thumbnail,
or pull a new sheet by dragging a button at the left of the thumbnail bar. It is also possible
to scroll the thumbnail bar if the number of sheets is too large to fit in the bar. Selecting a
sheet also moves the camera to the position where it was at the time the sheet was created.

Each thumbnail has two buttons – a “discard” button and a “bake” button. The function
of the discard button is to delete the thumbnail and its corresponding paper sheet. The
bake button applies the sketch drawn on the current paper sheet to the scene objects ly-
ing underneath. Figure 4.17 depicts an example usage of the sketch paper mode, where
two layers are used to visualize the conceptual infrastructure of an urban area. Projection
works similarly to a beamer, which projects an image to whatever geometry lies in front of
the beamer frustum.

In order to project the sketch, the sketch paper mode uses the same algorithm as the
standard mode. Thus, sketching in the sketch paper mode and using the “bake” button
has the same effect like drawing when using the standard mode. The advantage of using
the paper mode though is that the sketch is not permanently applied, but can be discarded
and redrawn.

There are other features of the sketch paper mode that can be offered over the standard
mode but not yet implemented. For example, it is possible to stack multiple sketch paper
layers on top of each other, just like architects usually do when using real sketch paper (see
figure 4.31). As the sheet is light and transparent, one can overlay several sheets without

52

4.4. Software architecture of the presentation mode

Figure 4.17.: Usage of the sketch paper mode. Top left: drawing an inner yard on the paper;
Top right: drawing streets in a separate paper layer; Bottom left: Projecting
both layers; Bottom right: Projection remains intact even after changing the
view.

completely obscuring the bottom image (in this case, the virtual city environment).
Another advantage of the sketch paper mode is its planarity, which brings it closer to

traditional tools in architecture. An imaginable feature of this mode is an eraser tool, which
can wipe parts of the sketch before being applied to the virtual city. It is much easier and
intuitive to implement this feature in the 2D sketch paper mode than in 3D space.

4.4.3.5. 3D sketching mode

The most advanced drawing mode – the 3D mode – estimates the real shape of a volu-
metric object drawn by the user. This mode is considerably more complicated than the
three modes described so far, but it is also more powerful. In the following, a simplified
overview of the 3D sketching algorithm is presented. More details regarding the individ-
ual stages of the algorithm will be given in paragraphs 4.4.3.5.1, 4.4.3.5.2, and 4.4.3.5.3.

After the user activates the 3D mode with the sliding paper edge at the top right corner
of the screen a semi-transparent paper sheet slides over the screen. The paper sheet looks
like in the sketch paper mode, but here the edges of the buildings in the scene are enhanced
with overlaid lines (see figures 4.18a and 4.18b). Edges and corners of buildings in the
virtual city play a major role in the reconstruction phase. The reconstruction phase is
explained in more detail in paragraph 4.4.3.5.2.

The designer must select a virtual building which serves as a reference for the sketch,
as shown in figure 4.18b. This selection is necessary, otherwise the algorithm will have to
check every virtual building in the city for collision with the sketch strokes. The selected

53

4. Implementation

building is used to assign the sketch real dimensions in the virtual world. This process is
explained in detail in paragraph 4.4.3.5.2.

The designer can sketch on the sheet like when using the sketch paper mode. The strokes
are drawn with a dashed line to indicate that it is not complete yet. Once the sketch is
projected to 3D space, the dashed lines are converted to solid lines.

While the designer draws, the following actions are performed in the background:

• Each stroke is subdivided into straight lines (see figure 4.18c and 4.18d)

• At both ends of each line, “connecting points” are added, so-called “joints”, and
displayed (see figure 4.18d and 4.18e)).

• Each stroke segment is connected to other stroke segments or building edges, if their
ends are touching or almost touching. Their respective joints are also merged.

The whole process is visualized in figure 4.18. It produces an undirected graph, which
consists of the lines in the sketch (the edges) and the joints connecting them (the nodes).
The graph is an intermediate representation of the sketch. After the designer clicks the
“apply”-button, an attempt is made to estimate the shape of the sketch and project it into
3D space, as depicted in figure 4.18f.

The following limitations are imposed:

• The sketch is reconstructed to a shape only upon user’s request. No intermediate
results are visible.

• The camera cannot be dislocated while drawing.

The algorithm attempts to gather as much information as possible before computing the
final 3D shape. An alternative approach is to refine the 3D shape iteratively with every
further stroke. Iterative methods are much more complicated though, and will be a subject
of further research.

The reconstruction algorithm can be subdivided into three logical steps:

• Constructing the sketch graph

• Reconstruction of the 3D shape

• Projecting the sketch to 3D space

The first step constructs a graph out of the raw sketch. The reconstruction step converts
the graph into a 3D shape consisting of 3D vertices and topological connection between
them. The last step – projection, transforms the 2D strokes of the raw sketch into 3D curves
so that the final result looks similar to the original sketch. The following sections provide
a more detailed insight into each single step.

54

4.4. Software architecture of the presentation mode

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4.18.: The 3D sketching mode in use. (a) A scene with one object; (b) Selecting the
object; (c) Drawing a wall with one stroke; (d) After releasing the pen, the
stroke is segmented, and the lines - connected with joints; (e) Drawing the
rest of the sketch; (f) Reconstruction result; (g) Rotating the camera; (h-i) A
more complex sketch.

55

4. Implementation

Threshold

Figure 4.19.: The threshold parameter of the Douglas-Peucker algorithm. Black dots cor-
respond to the original curve. The blue lines correspond to the approximated
curve. All distances, marked with red, have to be smaller than the given
threshold.

4.4.3.5.1. Constructing the sketch graph

The construction of the sketch graph comprises stroke subdivision and stroke connection. The
first handles the subdivision of curved strokes into line segments, while the second han-
dles the topological connection of strokes within the graph. Both actions are performed
for each stroke after the designer lifts the pen.

Stroke subdivision refers to the segmentation of strokes into a set of lines. It is necessary
whenever the designer draws two or more lines without lifting the pen, or when drawing
curves.

Stroke subdivision is performed using the OpenCV [54] function approxPolyDP, which
takes a contour and returns a set of lines along that contour to achieve best approxima-
tion. The function is based on the Ramer-Douglas-Peucker algorithm [69]. The algorithm
accepts a precision value for the approximation. The value corresponds to the maximal
tolerated distance between any of the curve points to the approximated line sequence (see
figure 4.19). For the purposes of the 3D sketching mode, a relatively large tolerance is cho-
sen, so that fewer line segments are produced. The more line segments, the more calcula-
tions are needed later on. Besides, the line segmentation has almost no effect on the final
visual appearance of the sketch. It influences only the topology of the produced graph,
which is used for the 3D reconstruction.

Stroke connection is performed immediately after stroke subdivision. It ensures that
every stroke is linked to the graph based on its topological relation to other strokes. Each
stroke end is tested for collision with any of the existing joints in the graph and with all
structures within the urban environment. There are four possible entities which can lie
under a stroke end. Hence, the following collision outcomes are possible depending on
the underlying structure (see also figure 4.20):

• An already existing joint. In this case, the ending is linked to the joint.

• A corner of a building. In this case, a new static joint is created at the corner and
linked to the stroke end. This means the new joint has a fixed 3D position – the
position of the building corner.

56

4.4. Software architecture of the presentation mode

(a)

(b)

(c)

(d)

(e)

Figure 4.20.: Five cases encountered when connecting a stroke to the existing graph de-
picted in the order they are checked: (a)another joint, (b) a building corner, (c)
a building edge, (d) another stroke, and (e) none of the above.

• An edge of a building. This case is processed like (2) and yields again a fixed joint

• An existing stroke. In this case, a new joint is created at the intersection. This joint
splits the colliding stroke and has three incident edges accordingly.

• None of the above. In this case, a new joint is created and linked to the stroke.

These five cases are tested in the same order as they appear in the list. Hence, a building
corner has precedence over a building edge. This way if the designer draws a stroke end
at the corner of a building, the stroke will snap to the corner and not to an edge starting
from that corner, even when the end point of the stroke does not coincide exactly with the
corner. An image of the graph produced in this way is shown in figure 4.21.

4.4.3.5.2. Reconstruction of the 3D shape

The actual reconstruction starts as soon as the user activates the “apply”-button at the top
left corner of the screen. It takes as input the graph generated in the previous step and
estimates the 3D positions of the joints within the graph. The result of the estimation is a
mesh with 3D vertices and 2D stroke segments connecting them. Strokes are projected in
the next step of the algorithm described in 4.4.3.5.3.

Figure 4.22 shows the taxonomy of algorithms approximating a 3D shape out of a sketch.
The algorithm implemented here uses graph propagation. It traverses the sketch graph
and updates the position of each joint according to a set of rules (constraints). Each joint
is assigned a type defining also its processing priority. Table 4.2 presents a list of all joint

57

4. Implementation

Figure 4.21.: Conversion of a sketch into a graph. Left: the source sketch (dashed line) and
an auxiliary building (solid blue line); Right: the resulting graph. Red nodes
are “floating”, dark blue nodes belong to the base contour of the physical
building, and light blue nodes belong to side edges.

Figure 4.22.: Approaches to 3D reconstruction from sketches. (image according to Hod Lipson

[42])

58

4.4. Software architecture of the presentation mode

FLOATING 100 Not yet computed joint

BUILDING FOUNDATION CORNER 0 Coincides with the corner of a building
foundation

BUILDING FOUNDATION EDGE 1 Lies on the edge of a building founda-
tion

FOUNDATION PROLONGED 2 Lies on the city plane

RAISED VERTICALLY 3 This joint was “raised” vertically by an-
other joint. The line between the two is
orthogonal to the city plane

PROLONGED HORIZONTALLY 4

BUILDING ROOF CORNER 5 Coincides with the corner of a roof

BUILDING ROOF EDGE 6 Lies on the edge of a roof

BUILDING SIDE EDGE 7 Lies on a vertical edge of a building

Table 4.2.: Types of joints and their processing priority. The underlined joints are with fixed
3D positions.

types and their description. A graphical explaination of joint types is illustrated in figure
4.23.

The lower the priority number of a joint, the earlier it is processed. The reconstruction
starts from the joints with a fixed position lying on the base contour of a building. Strokes
starting from these joints most probably describe a base contour. After all joints of this
type have been processed, the execution proceeds to joints with the next priority class,
until there are no more joints to process.

The main characteristics of the reconstruction algorithm (Input, initialization, iteration
step) are presented below, followed by a discussion about the functionality, side effects
and limitations of this approach.

Input

The algorithm receives an undirected graph with vertices (joints, V) and edges (strokes,
E). Each joint has an initial type (see table 4.2) which might be either a fixed type or type
FLOATING. Fixed joints are these which are linked to a structure in the scene. Joints of
type FLOATING are without a fixed 3D position yet; they need to get one assigned.

Pseudo code:
G = (V ⊂ R2 ×R× T,E ⊂ V × V)

59

4. Implementation

Prolonged Horizontally

Building Side Edge

Building Roof Edge

Building Roof Corner

Building Foundation Edge

Building Foundation Corner

Foundation Prolonged

Raised Vertically

Figure 4.23.: Different types of joints.

where G is the graph, V are the joints, T are the joint types, and E is the set of strokes.
R2 is the 2D screen space domain, and R is the depth value of a joint. We introduce the
following notation to access the individual components of a joint:

coord2d(v) := { c2d | v = (c2d, d, t) ∧ v ∈ V }

depth(v) := { d | v = (c2d, d, t) ∧ v ∈ V }

type(v) := { t | v = (c2d, d, t) ∧ v ∈ V }

Initialization
All joints with a fixed position are organized in a priority queue. The priority is derived

from the joint type, meaning that joints of specific type are processed earlier than others.
Note: fixed joints are used to initialize the processing queue, but they are not necessarily processed
before other joints. A newly inserted joint displaces all joints with lower priority than its own. This
is exactly the behavior expected from a priority queue.

Pseudo code:

Vi ← {∅}
for all v ∈ V do

if type(v) ∈ Tf then

Vi ← Vi ∪ v
end if

end for

where Tf is the set containing all fixed joints (see table 4.2) and Vi is the set containing the
initialization joints.

Iteration step
At each step, the joint with the highest priority is extracted from the priority queue and

processed. Let this joint be vp. Within one iteration of the algorithm, all adjacent to vp joints

60

4.4. Software architecture of the presentation mode

- ceiling corner

- base corner

Figure 4.24.: Estimation of the type of corner based on the direction of the orthogonal edge
starting from the corner. A direction pointing “up” indicates a base corner
(here green), whereas “down” indicates a ceiling corner (here red).

Graph

Vadj

VP

Vadj
Vadj

Figure 4.25.: The neighborhood Vadj of a joint vp.

61

4. Implementation

are collected and their 3D position calculated according to a given rule (constraint). Let the
set of these joints be Vadj (see figure 4.25). If an adjacent joint has a 3D position already,
then it is skipped. At the end of the iteration, all joints from the set Vadj are inserted into the
processing queue, unless they were already processed. This guarantees that the algorithm
terminates, as no joint can be processed twice, and each step processes exactly one joint.
To avoid confusion, the joint vp is already positioned in 3D space. Only the adjacent joints
Vadj are calculated. All joints in the priority queue have a 3D position already. The queue
is used merely to traverse the graph G, not to hold the joints which are not calculated yet.
Thus, a joint is inserted into the queue only after its 3D position has been calculated.

A constraint in the context of this algorithm is a rule applied locally on vp, which influ-
ences the position of the adjacent joints Vadj . The type of the applied constraint depends
on the arrangement of the processed joint and its neighborhood. Currently, only two con-
straints are implemented, which correspond semantically to a base corner and a ceiling cor-
ner of a building, respectively (see figure 4.24).

A corner is a joint which is incident to at least three strokes from which exactly one
stroke is upright (orthogonal to the city plane). If the orthogonal stroke points “upwards”,
then the corner is assumed to belong to the base of a building and the rest of the strokes
are assumed to describe the base contour. Similarly, if the orthogonal stroke points “down-
wards”, it is part of a ceiling corner and the rest of the strokes belong to a ceiling contour.
More information about measuring angles of strokes in the projective space is given in
appendix A.

Let’s label the joints from Vadj as v0, v1, ..., vn, and the strokes which connect them to
vp, as e0, e1, ..., en accordingly. Let the strokes ei be ordered after their proximity to the 90
degree axis in a typical polar coordinate system 3 as illustrated in figure 4.27a , so that e0 is
closest to 90 degree and en is closest to 270 degree (see figure 4.27). Table 4.3 presents the
cases which can occur depending on the angular arrangement of the strokes.

Pseudo code:

Q← { empty queue }
Qp ← {∅}
for all v ∈ Vi do

insert(Q, v)
end for

while Q 6= {∅} do

vp ← max(Q)
Vadj ← neighborhood(vp)

⊲ Apply a constraint
ctype← detect constraint(vp, Vadj)
if ctype == BASE CORNER then

vmax ← max edge(vp, Vadj)
raise vertically(vp, vmax)
type(vmax)← RAISED VERTICALLY
Vadj ← Vadj ∪ vmax

end if

for all v ∈ Vadj do

3a stroke pointing to the right is of 0 degree, with angles increasing in a counter-clockwise direction.

62

4.4. Software architecture of the presentation mode

=> in the priority queue - BUILDING_FOUNDATION_CORNER
=> not in the priority queue - BUILDING_SIDE_EDGE
=> computed position - FOUNDATION_PROLONGED
=> joint currently in process - RAISED_VERTICALLY

1 2 3

4 5 6

7 8 9

Figure 4.26.: Several iteration steps of the reconstruction algorithm (1 to 9). Different colors
indicate the type of a joint as specified in the legend. Unmarked joints are of
type “floating”

63

4. Implementation

Condition Applied

constraint

Procedure

n ≥ 3 and
|e0 − 90| < 7

Base corner v0 is placed above vp in the 3D space and is as-
signed type RAISED VERTICALLY. vi , (i from
1 to n) are placed so that the line (vp, vi) is
parallel to the city plane and are assigned type
FOUNDATION PROLONGED.

n ≥ 3 and
|en + 90| < 7

Ceiling corner vi , (i from 1 to n−1) are placed so that the line (vp,
vi) is parallel to the city plane and are assigned
type PROLONGED HORIZONTALLY.

None of the
above is true

No constraint
identified

vi , (i from 0 to n) are placed so that the line (vp, vi)
is parallel to the city plane and are assigned type
PROLONGED HORIZONTALLY.

Table 4.3.: Application of the defined constraints. n: number of adjacent joints; v0... vn : ad-
jacent joints; e0 ... en: incident strokes connecting these joints with the processed
joint vp. The strokes ei are ordered in descending fashion by their proximity to
90 degree.

180°

270°

0°

90°

30°

max

min

92°

30°170°

e = 30°1

e = 170°2

e = 92°0

Figure 4.27.: Ordering of strokes by their proximity to 90 degree. Left: a typical polar co-
ordinate system; Middle: a joint with three strokes and their respective angle;
Right: the resulting order of the strokes.

64

4.4. Software architecture of the presentation mode

project to plane(v, horizontal plane(vp))
⊲ Switch vp

if type(vp) == FLOATING then

error(“This case branch can never be reached.”)
end if

if type(vp) == FLOATING ∨
type(vp) == BUILDING FOUNDATION EDGE ∨
type(vp) == FOUNDATION PROLONGED then

type(v)← FOUNDATION PROLONGED
end if

if type(vp) == PROLONGED HORIZONTALLY then

type(v)← PROLONGED HORIZONTALLY
end if

if type(vp) == FLOATING ∨
type(vp) == BUILDING ROOF EDGE ∨
type(vp) == BUILDING SIDE EDGE then

type(v)← PROLONGED HORIZONTALLY
end if

end for ⊲ mark vp as processed
Qp ← Qp ∪ vp
for all va ∈ Vadj do

if va /∈ Qp then

insert(Q, va)
end if

end for

end while

where

• Q is the priority queue or joint processing

• Qp is the set of processed joints

• insert(Q, v) inserts an element v into a queue Q

• max(Q) returns the element with the highest priority in a queue

• neighborhood(v) returns all nodes in the graph adjacent to v

• project to plane(V , p) projects all joints from V to the plane p

• max edge(v, Vadj) returns the joint vmax from Vadj , so that the edge (v, vmax) is closest
to 90 degree in the polar coordinate system

• raise vertically(vp, v) projects the joint v “above” the joint vp, i.e. so that the projection
of v on the city plane falls on vp

• horizontal plane(v) returns the plane which contains the joint v and is parallel to the
city plane

65

4. Implementation

Discussion

In addition to the precise, formal specification of the reconstruction algorithm outlined
in the sections above, here a more verbal description of the algorithm will be given by
answering the following questions:

• How and why does the presented reconstruction algorithm work?

• What are the requirements and assumptions about the drawn sketch?

• What is the final result? What is the quality of the reconstructed shape?

The algorithm assumes the sketch represents a prismatic shape which has mostly hor-
izontal or orthogonal to the city plane edges. It “travels” along the vertices (joints) of
the sketch graph and applies the presented constraints until there are no more vertices to
process.

The algorithm starts with the base contour. Joints which lie on the base contour but are
also connected to a vertical edge “raise” this edge and set the position of the adjacent joint
connected by this edge. After all base contour joints have been processed, the algorithm
starts processing the “raised” joints. If such a joint has at least three strokes that start from
the joint, it is considered a ceiling corner. Strokes which start from a ceiling corner and
are not orthogonal to the city plane are projected to the plane parallel to the city plane
and passing through the ceiling corner. This process continues until all joints have been
processed. In the end, all joints are assigned a 3D position.

The algorithm does not always yield the correct 3D shape of the sketch. It depends
to high extent on line precision, orthogonality of angles, and connectivity of the input
graph. None of these conditions is universally maintained in hand-drawn sketches. On
the contrary, drawings are usually imprecise and incomplete, which is also their advantage
towards CAAD modeling [42].

The approach presented here is rather an exploration attempt towards 3D reconstruction
than a robust solution. Nevertheless, it works for many sketches. In order to produce a
plausible result, the following requirements should be fulfilled:

• The sketch contains only straight lines or lines close to being straight.

• There is a clearly recognizable base contour of the drawn building which lies on the
city plane and is attached to the base contour of another building.

• Straight lines are drawn uninterrupted (without lifting the pen).

• Vertical edges are orthogonal to the city plane. In general, all facades should be
vertical (90 degree with the city plane).

• Hidden lines must be drawn, too.

• Every line describes an edge and there are no accidental joints (joints which occur
due to accidental edge or vertex collision).

• No lines are missing.

66

4.4. Software architecture of the presentation mode

At first, these assumptions seem to be too hard and constraint the sketching to a great
extent. In practice, designers follow them even when drawing on normal paper. For in-
stance, if two corners coincide in the 2D view of the sketch, the user can fail recognizing
them as different corners. Designers also rarely lift the pen in the middle of a straight line
as it is hard to prolong it without reducing its quality.

Some requirements impose limitations, indeed. For example, common sketches often
have a missing line or even few faces, which does not impede the ability of the reader
to understand it. The presented algorithm, however, will probably fail to reconstruct the
correct shape. Thus, the designer is forced to draw all lines.

Despite its simplicity and the large set of requirements, the presented approach pro-
duces good results. A more advanced and generalized algorithm is going to be a part of
future research.

4.4.3.5.3. Projecting the sketch to 3D space

The steps of the algorithm described so far delivered the following information:

• The 3D positions of the vertices in the sketch

• The strokes which connect the vertices, in 2D screen space

This information is sufficient to construct the 3D shape. The next step is to create the
lines connecting 3D vertices and compute the faces of the 3D shape. One way to do this
is to connect the 3D vertices with straight lines and compute the faces out of the graph
topology (this can be easily done with a face-search algorithm [70]). However, this repre-
sentation would differ visually from the original sketch. Formally speaking, the resulting
sketch would not coincide with the original one, if back-projected to the 2D screen space.

The goal of the 3D mode is to stay as close to the original sketch as possible, not to
convert the hand-drawn strokes to a perfect 3D shape. The reconstructed sketch should
therefore look like it is drawn by hand. To achieve that, all points of the stroke are projected
on a plane defined by the ends of the stroke.

There are infinitely many planes which pass through two points. The one which mini-
mizes the distortion caused by the projection is finally chosen and designated as plane P .
The distortion refers in this case to the summed average distance from the projected point
to the approximated 3D line (see figure 4.28). It can be minimized by choosing the plane
being orthogonal to the one defined by the camera position and the two stroke ends (see
figure 4.29). The latter is computed with the following formula:

L← (J2 − J1)× (C − J1)
L← L/ ||L||
Op← J1
Np← (J2 − J1)× L
Np← Np/ ||Np||

where J1 and J2 are the two joints connected to the stroke, C is the camera position, L is
an auxiliary line which lies on the plane P , and Op and Np are the origin and the normal
of the plane respectively. Op and Np are the parameters which define P uniquely. P has
the following properties:

67

4. Implementation

Stroke

Projection

Distortion

Figure 4.28.: Projecting imperfect strokes increases the error and sometimes causes visible
distortion.

j - j2 1
j2

C

C - j1

j1

L

Np

Figure 4.29.: Finding the plane P which minimizes distortion. C: camera; J1 and J2: two
stroke ends; L: a line on P ; Np: the normal of P . Green quad: the plane P .

68

4.4. Software architecture of the presentation mode

• Both joints J1 and J2 lie in the plane

• It is orthogonal to the drawing direction

All points of the stroke are then projected to this plane using simple ray-plane intersec-
tion. Notice that sketch points are represented as rays shot through pixels in the viewport.

4.4.4. GUI

The user interaction in the presentation mode is slightly different than traditional WIMP
user interfaces can supply. The reason for this is the interaction medium - a large scale
multi-touch screen. The interaction consists mostly of sketching, but also requires buttons,
menus, and a means to change the sketching mode. To fulfill these needs, a specialized
GUI framework was developed. The framework is largely based on QT, but implements
some features unique for the presentation mode.

The following section 4.4.4.1 gives an overview of the framework and how this frame-
work incorporates the design goals of CDP. This provides a more detailed insight into the
implementation.

4.4.4.1. Visual appearance and interaction

One of the goals of CDP is to minimize the distraction caused by the system on the de-
signer. The user interface should be therefore simple, smooth, and self-revealing 4. It
should be also clearly arranged and easily extendable.

At the beginning, the display is almost free of UI elements. The screen space is optimized
for the standard sketching mode since this mode is intuitive, easily explored, and requires
no additional interaction.

A click on a surface selects it and activates the extended surface mode. Clicking on
another surface transfers the focus to the respective surface. Clicking the same surface
again leads back to standard mode. The more advanced sketch modes are activated using
the GUI.

Table 4.4 lists the three GUI elements which are always visible on the screen. All of them
can be activated by “pulling them out”. The two paper-edge elements have an additional
icon to distinguish them from one another and to give a hint about their function.

When opening the sketch paper mode, a sheet of sketch paper slides over the screen and
covers it, leaving small gaps at the top and bottom edges to remind the designer that this
is a layer over the virtual 3D scene. In addition, there is a thumbnail bar at the lower end
of the screen which contains snapshots of the sketches drawn on the paper. Each snapshot
corresponds to one layer and clicking the thumbnail makes that layer the current layer.
Each thumbnail has two buttons – one to apply (or “bake”) the sketches to the scene and
one to discard the layer. In addition, there is a slightly larger “bake” button on the top-left
of the current layer (see figure 4.30).

The bar has also a button on the left which generates new layers. The newly created
layers slide smoothly from the left. This way the visual appearance of the “new layer”

4“Self revealing” refers to the intuitiveness of a user interface. A user interface is self revealing if it requires
no training before usage [71]

69

4. Implementation

Figure 4.30.: The UI elements of the sketch paper mode.

GUI Element Location Function

Sheet edge with a
pen-icon

Top-left corner Activates the sketch paper mode

Sheet edge with a
cube-icon

Top-right corner Activates the 3D sketching mode

Cog-wheel Centered in the lower
edge, semi-hidden

Opens the settings menu

Table 4.4.: Main GUI elements and their properties.

70

4.4. Software architecture of the presentation mode

button gives a hint about its function. The “new layer”-button, similarly to the paper
edge which activates the sketch paper mode, is designed to mimic the appearance of real
sketching paper, which is essentially a roll with one loose end. Pulling the end uncoils
more paper from the roll.

The thumbnail bar can be swiped left and right to scroll over the thumbnails in case that
not all of them could fit in the display. This way of interaction also mimics real sketch
paper. Architects commonly overlay the sketch paper on top of other drawings to redraw
or extend their content. In order to generate additional versions of the same drawing,
architects slide the paper tape to a new position and sketch again. The result is a paper
tape with different versions of the same sketch arranged in a row. The designer can slide
the tape over the original drawing and compare the versions against each other. Figure
4.31 illustrates common usage of sketch paper in architecture.

Closing the sketch paper mode is done similarly to opening it – one has to slide the edge of
the paper towards the screen boundary. By doing so, the program returns to the standard
sketching mode.

The 3D sketching mode is started by pulling the paper edge at the top right of the screen.
It has a similar GUI like the sketching mode, but it has no thumbnail bar in the current
implementation.

The settings menu can be used to adjust program related parameters or to activate addi-
tional functions. In the current implementation, the following options are available:

• Free camera. This option will unlock all axes of the 3D mouse controlling the cam-
era. It could be useful to people used to working with a 3D mouse and aware of its
sensitivity.

• Clear scene. This option will clear all sketches drawn so far.

• Eraser. When this option is activated, a single click will erase the sketch strokes
belonging to the clicked surface instead of triggering the “extended surface” mode.

• Camera sensitivity is a slide bar, which controls the sensitivity of the 3D mouse. Slid-
ing it towards its maximum will increase the speed the camera moves with.

The GUI has no “turn off” button. The presentation mode is switched on whenever the
3D mouse is put on the table surface, and switched off as soon as the mouse is missing
from the table for several seconds. Unfortunately, the current implementation of the fidu-
ciary marker tracking module, which tracks the mouse, is slightly unstable and sometimes
cannot find the camera marker. This causes an unexpected shutdown of the presentation
mode. To avoid this problem, the presentation mode was programmed to run until the
whole system is shut down. This setting will be changed in the future when a more stable
fiduciary marker tracking algorithm is developed.

4.4.4.2. Implementation overview

This subsection gives some implementation details about the GUI framework used to im-
plement the user interface presented in this thesis. The framework consists of three classes:

• Element class

71

4. Implementation

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 4.31.: Common use of sketch paper for conceptual design. Paper transparency

makes it ideal for layering and versioning. Changing the sheet is easy, one
has to unveil the roll further.

72

4.4. Software architecture of the presentation mode

• Container class

• Menu class

An element is the base class for all GUI elements – it handles mouse and keyboard events,
and can gain or lose focus. It is also the basis of the GUI hierarchy which arranges elements
in a parent-child relation tree. The element’s parent can serve as a coordinate system ori-
gin, causing an element to move together with its parent. For example, buttons in the
settings menu move together with the menu when it slides across the screen.

A container is a specialized type of element which can hold an arbitrary number of el-
ements (children). The children are organized in a list which defines their order of ap-
pearance. This order is also used to capture mouse events – elements which are displayed
on top are transitioned first when propagating a mouse event. The framework checks
each element in a container for collision with the mouse pointer using this ordering. If
the collision detection returns “true” for a given element, the event is passed to it. Each
element can choose if it will consume the event or pass it further to other elements. For
example, the thumbnail bar of the sketch paper mode can be used to select a thumbnail
or to slide the bar. If the detected gesture is a “drag”, the bar slides in the drag direction
and consumes the event. If the gesture is a “click”, the bar passes it further to the clicked
thumbnail image.

A menu is a specialized type of container. Menus can be shown and hidden with an
animation. The animation mechanism which is used is simple interpolated morphing with
two frames [72]. The animation is defined by two key-frame images (one for a hidden and
one for an open menu respectively), start and end transparence values, and time interval
between the two frames. The result is a smooth fading from one appearance to the other,
simulating movement. It is possible to extend this concept to full key-point animation if
necessary.

The menu class is used not only for the settings menu but also for the sketch paper mode
and for the 3D mode. The appearance of these modes closely resembles that of a menu –
they are pulled into the screen, have to be animated, and contain further UI elements.

There are also other GUI elements which extend the base Element class. These include:

• Button

• Slider (has values between 0.0 and 1.0)

• Switch button (has “on” and “off” states)

• Drag button; this button can be dragged and influence the position of another UI ele-
ment; it is used to model the paper edges activating the additional sketching modes.

The sketch paper layers and the thumbnails used in the sketch paper mode also extend
the base UI elements class.

4.4.5. Camera control

The camera is controlled by a 3D mouse [48], which has a fiduciary marker glued on its
bottom. The fiduciary marker is used to track the position and orientation of the camera
on the table top, while the 3D mouse controls the height and forward tilting of the camera.

73

4. Implementation

Figure 4.32.: The “amoeba” fiduciary markers used in reacTIVision [7].

(a) (b)

Figure 4.33.: Berensen threshold. (a) The source monochrome image; (b) The binarized
image after performing a Berensen threshold.

4.4.5.1. Tracking the fiduciary marker

The algorithm used to track the fiduciary marker is taken from the open-source project Re-
acTIVision [7]. The fiduciary marker tracking library used there is called “libfidtrack” and
has several advantages over older implementations, such as d-touch [20]. For instance, it is
up to 16 times faster, supports fiduciary markers with 50% smaller size, or alternatively a
larger set of markers as compared to d-touch. The fiduciary markers used by “libfidtrack”
are called “amoeba” (see figure 4.32) and are generated according to a technique called
“left heavy depth sequences” [19]. The relation between a marker and its identification
number is computed based on the topological structure of the marker, which results in
a better resistance against noise and distortion. Furthermore, it is less probable that two
markers will be recognized as one and the same marker.

Libfidtrack uses an adapted Berensen thresholder [73] to binarize the image (convert
it to black and white pixels) – see image 4.33. Then, a segmentation step is performed,
which constructs an adjacency graph containing all black and white regions. This graph is
traversed and searched for fiduciary markers which have a specific topology. Finally, the
position and orientation of the fiduciary markers is computed. Libfidtrack can also handle
fiduciary markers which are only partly detected or distorted due to fast movement.

74

4.4. Software architecture of the presentation mode

x
y

r
forward

- tilt down

- lift / sink
- tilt up

- locked
- free

Y

Z

X

Figure 4.34.: Fiduciary marker and 3D mouse used for camera control. Left: 2D position
and orientation (x, y and r) of the camera is determined by the fiduciary
marker on the table surface; Middle: permitted directions of movement of
the 3D mouse to control the camera; Right: free and locked axes of the 3D
mouse controller.

4.4.5.2. Navigating with the 3D mouse

The implementation of the camera uses 3Dconnexion [48], a popular 3D mouse used fre-
quently for navigation CAAD applications. Although it provides a complete freedom of
movement (all 6 DOF in 3D space), it takes time to get used to precisely navigate with
the mouse. Since one of the requirements of the CDP is to be usable by novice users and
people without background in architecture, the mouse usage was simplified.

Only two axes of movement were used – one translational (the “z”, or “up”, direction)
to lift or sink the camera, and one rotational (the rotation around “x”, or “side”) to tilt
it. Figure 4.34 illustrates the permitted movement directions. The other four axes remain
locked, unless the designer explicitly set them free. This way, everyone can use the mouse
in an intuitive way but it is also possible to customize it for more advanced users.

This approach has a small disadvantage – the 3D mouse is wired via USB cable to the
computer, and the cable lies on the top of the table, which could be misinterpreted as
user interaction. In practice however, the cable was never an issue and participants in the
evaluation later barely noticed its presence.

4.4.5.3. Alternative implementations

There are alternative ways to implement a camera in an augmented virtuality environment
such as CDP. One alternative would be to put the camera on a stand with several flexible
joints which can be twisted and bent until the desired camera orientation is reached. The
tip of the construct would hold a marker. The position and orientation of the marker
would be tracked by a camera above the table (see figure 4.35). This is a valid and likewise
intuitive implementation of a virtual camera. However, it is far more difficult to implement
and it involves the design of additional hardware.

75

4. Implementation

Figure 4.35.: An alternative camera implementation with 3D markers on a flexible arm.

It is also possible to implement camera control entirely on the table top. The user would
move and rotate the camera with finger gestures and there would be an additional slider
to adjust the vertical position. This approach is simpler to implement, but it is also less
convenient. The designer has to redirect his attention to another user interface every time
he needs to move the view, which is more demanding than just moving a physical object.

4.5. Bugs, problems, and performance issues

The current implementation has surprisingly only a few bugs, considering the many li-
braries, tools, and methods used within the project. This chapter points to some of the
fundamental problems encountered during the development to which no direct solution
was found.

4.5.1. Shared OpenGL contexts

The presentation mode uses two libraries which are based on OpenGL and render to the
screen – VL and QT. VL renders the 3D content of the scene, while QT draws the GUI
elements on top of it. Consequently, these libraries need to share a common OpenGL
context in order to render to the same frame buffer. Although QT supports shared OpenGL
contexts, which come from other applications, it was extremely difficult to get this feature
to work. The final solution used a graphics context generated by QT and adopted by VL.
Both libraries had to be adjusted accordingly:

• QT has to make sure to reset all OpenGL rendering states before the end of a render-
ing cycle

76

4.5. Bugs, problems, and performance issues

(a) (b)

Figure 4.36.: The two types of computational errors which depend on the chosen metric;
(a) numerical errors; (b) depth artifacts.

• VL has to call special QT methods prior to and after rendering the GUI – beginNa-
tivePainting() and endNativePainting(), respectively

Even with the proposed work-around, it was impossible to use native QT GUI elements
and all GUI classes had to be implemented from scratch.

4.5.2. Numerical instability and depth fighting

A seemingly unimportant property of data representation is the unit metric (i.e. what is
the corresponding length of one virtual unit in the real world?). One could argue that
choosing the scale is merely a cosmetic matter. However, this property introduces two
major computational problems – numerical instability (if the scale is too small) and depth
fighting (if the scale is too large).

Numerical instability refers to the limitations imposed by floating point arithmetic on
modern computers. A small value transformed several times with matrices which also
have small values results in a visible offset on the screen (see figure 4.36a). Using numbers
with double precision might solve this problem, but would also slow down the compu-
tation. Moreover, graphics hardware is optimized for single precision calculations. Thus,
coordinate values should not be too small.

The coordinates cannot be large numbers either. The reason for this can be traced back
to the way conventional graphics hardware works. In order to resolve polygon ordering in
the scene, the rendering pipeline utilizes a so-called “depth buffer” [74]. The depth buffer
stores depth values of rendered polygons and uses them to discard polygons, which lie
farther than what was already rendered. This ensures that polygons are rendered in the
correct order and overlapping polygons are showed correctly. The depth buffer technique
works very well and has the advantage of speed, but fails in case of almost-co-planar
polygons.

The presentation mode superimposes sketches over surfaces, but also surfaces over
other surfaces. This causes so-called depth fighting, if the displayed primitives are copla-
nar [74]. Depth fighting, or “z-bleeding”, is a common phenomenon in 3D computer
graphics which produces unpleasant visual results (see figure 4.36b). A work-around to

77

4. Implementation

this problem is the OpenGL extension “polygon-offset” [75], which modifies the depth
values of selected polygons, so that these do not “bleed through”. This technique works
only if the unit distance between polygon vertices is relatively small compared to the size
of the camera frustum (more precisely, the distance between the near and the far clipping
planes).

Using larger coordinate values increases the absolute distance between vertices, which
causes z-bleeding. The bigger the scale, the more visible are the depth artifacts. Therefore,
a sufficiently small scale had to be chosen.

A balanced metric system was found empirically:

1 v i r t u a l uni t = 1cm

This metric reduces the numerical error to less than a pixel (such that rendered objects
appear on their correct position). The z-bleeding effect on the other hand is not entirely
eliminated but it appears only on distant polygons far into the horizon, which are barely
visible.

4.6. Unimplemented features

For various reasons, some of the features presented in the concept were not implemented
in the presentation mode and remain subject to further research. The following list sum-
marizes unimplemented topics.

• Visual synchronization between the CDP table top and the presentation mode (i.e.
sketches drawn in the presentation mode to appear on the table surface).

Currently, the CDP is in a protypical stage and its software framework is in a pre-
liminary transient state. Therefore, the software framework has no unified semantic
data model yet. Effort is made to create such model and to implement consistent
interfaces, which will enable transparent data flow between the components of the
CDP, including the presentation mode. As soon as the software model supports this
kind of data flow, the presentation mode will be synchronized with the table top.

• Visualization of data produced by the simulation applications (e.g. simulation of
sunlight).

Currently, simulations produce only 2D data. Although it was possible to visualize
the 2D data in the presentation mode (i.e. as a texture on the city plane), it was
considered a better solution to transform the simulations to produce 3D data first,
and then work on a solution that visualizes the 3D data. Creating simulations which
produce 3D data depends on the software framework (see above), thus it is also a
part of future research.

• Unlocking the camera (so that it can be navigated solely using the 3D mouse).

This feature raises additional conceptual problems which could disrupt the consis-
tency of the presentation mode. “Freeing” the camera implies that it is no longer
bound to the fiduciary marker on the table surface. Consequently, the relation be-
tween the physical controller and the virtual camera is destroyed, as the virtual cam-
era no longer corresponds to the physical position of the 3D mouse. This feature

78

4.6. Unimplemented features

could confuse users and requires further conceptual clarification (end probably a
user study) before implementing it.

• Sketching on the table top.

Sketching on the table top is a separate interdisciplinary project developed by Saburo
Okita. A special pen is used which emits infrared light with a specific frequency to
let the table distinguish between finger gestures and sketching on the table surface.

79

5. Evaluation

The presentation mode was evaluated in few pilot case-studies which will be presented in
this thesis. The goal of the evaluation was to measure the usability of the CDP system, in
particular, the usability of the presentation mode in collaborative conceptual designing.

The usability of a tool for the aims of conceptual design in architecture depends to a
great extent on psychological factors, such as personal preferences, experience, and feeling
of comfort. Hence, usability appears to be subjective. Given that designing is an individ-
ual process, it is not sufficient to assess the usability of a tool by simply calculating the
average feedback of all participants in the evaluation tasks. For this reason, the evalua-
tion tasks in this thesis strive more towards qualitative than to quantitative feedback. One
should consider, however, that a comprehensive answer to the question “How usable is
the presentation mode?” could be provided when the system is tested by more users in
later, more advanced stages of its development. Here, our attention is focused on evaluat-
ing the most frequently used features of the system by users and how well users interact
with the system.

5.1. Design of the evaluation

5.1.1. Evaluation criteria

The hypothesis of the evaluation was that the new tool for visualization and sketching
does not impede the creative thinking of the architect; furthermore, it helps discover and
express new ideas with ease. It is difficult to prove this hypothesis with significance due to
the limited number of cases analyzed here and the missing control – another established
mixed reality designing tool – for plausible comparison to the presentation mode of CDP.
A comparison with the traditional pen-paper approach is not plausible, since creativity
and spatial cognition differ significantly for strictly physical and for augmented design
tools [76].

Thus, the aim of the evaluation presented in this thesis was to explore and provide
rationale for this hypothesis by means of the following test criteria:

• Ability of the user to recognize the correspondence between the mixed reality envi-
ronment on the multi-touch table and the presentation screen

• Easy and intuitive navigation using the tangible camera

• Switch frequency between the sketching modes

The first two criteria are subjective and could not be quantitatively measured. Hence,
architects had to give their verbal feedback for the analysis of these criteria. The last crite-
rion was automatically measured by the software. Switch frequency refers to the rate with
which users need to switch from one sketching mode to another.

81

5. Evaluation

We assume that these three criteria influence the concentration of the user on his actual
task of designing. The more time and efforts is invested into understanding the system and
interacting with its user interface, the higher the probability that architects could diverge
from their current activity or even forget it. This is exactly the effect we wanted to test
here.

In addition, the usage duration of each of the four sketching modes was recorded (only
the total duration and not the individual sessions spent with each mode were recorded).
This data was used to evaluate which kind of interaction is most natural and desired by
architects.

5.1.2. Participants, setup and task

A total of 10 students in architecture participated in the evaluation. In groups of two
students, they had to solve a given task together. The concrete setup used in the evaluation
and the formulation of the task given to the participants were as follows.

A static figure-ground diagram [footnote: a map where buildings are colored in black
and the background is white] of a city is loaded on the multi-touch table. The scene is also
displayed on the vertical screen in 3D. The 3D scene contains both virtual and physical
objects. The participants can sketch directly in the virtual scene. Both pens are assigned
the same color in order to obtain a collaborative concept.

In addition to sketching, physical models can be cut from styrodur foam using a styrocut
device and utility knife. The goal is to create collaboratively a conceptual design of a living
area. The exact formulation of this task (the one provided to the students) is as follows:

“Design the concept of a living area on the provided free urban space within the Mari-
ahilfplatz in Munich. The objectives are to explore the initial distribution of space and
volume, as well as basic ideas about the design of the facades. As supplementary tools
you can use the provided materials and the interactive sketch tools based on the CDP
platform. Mind the principles of urban design, the internal relationships of the build-
ings to each other, as well as the design of the facades. The height of all buildings has
to be 20 meters1.

Let your ideas flow freely, and try to ignore the technical limitations of the system in
its development stage.

The quality of the design is not part of the evaluation.”

5.1.3. Dependent variables

During the evaluation, the following information was gathered:

• Which activities are performed on the table surface and on the presentation screen,
respectively?

1The limitation that all buildings have to be 20 meters was dictated by the fact that the 3D object recognition
was in a development stage during the evaluation of the presentation mode. Therefore, it was not possible
to scan the precise height of the buildings. To compensate for this technical difficulty, all objects were
assumed to be of height 20m.

82

5.2. Quantitative feedback

• Is the camera view aligned with the view of the table surface? Do the users have
difficulties to recognize the correspondence between the two displays?

• Where do users look when moving the building blocks – at the blocks on the table
top or at the presentation screen?

In addition, the use duration and frequency of switching between the sketching modes
were recorded as part of the evaluation.

5.1.4. Interview

At the end of each evaluation session, the participants of each group were interviewed.
The questions and answers of the interview are presented in section 5.3.3. The partici-
pants were also asked to fill in a standard SUS survey (System Usability Scale [77]) and
an AttrakDiff survey [78]. The SUS measures the overall usability of a system in a “quick-
and-dirty” fashion, without considering the context it is used for. AttrakDiff measures the
attractiveness of interactive systems by exploring their pragmatic and hedonic properties.
AttrakDiff consists of numerous word-pairs, each one representing the extreme opposite.
Each word-pair provides rating on a 7-point Likert-scale.

The results of both surveys as well as the data obtained about mode usage and switches
between different sketching modes are presented in the following chapter. The results
obtained by verbal communication with the participants are summarized in chapter 5.3.

5.2. Quantitative feedback

Quantitative feedback refers to the (quantitative) data collected from the SUS and AttrakD-
iff surveys, the usage duration of the sketch modes, and the switch rate from one sketch
mode to another.

5.2.1. Sketch mode usage and number of switches

The data demonstrating how long each sketching mode was used and how often the users
switched from one mode to another was recorded automatically by the software of the
presentation mode. No distinction between the participants within a group could be done
in this regard as the system cannot detect who is sketching at a certain time. Furthermore,
the system records only active usage of the sketching modes and neglects idle states. A
sketching activity is considered active in the time span between touching the screen sur-
face and lifting the pen up. A switches is defined as the transitions from an arbitrary
sketching mode to a different sketching mode. Only four groups were measured by the
system because of technical difficulties.

Figure 5.1 shows the duration of use for each of the four sketching modes (by user group)
in seconds. Data about four user groups are displayed. The results indicate a high devi-
ation between the groups regarding time of use of different modes. In addition, mean
percentage of usage duration per sketching mode was calculated (100% = total time spent
for drawing). The lowest mean value was observed in the case of the 3D mode (8% total
usage). This can be explained with the low level of stability of the 3D mode at the time of

83

5. Evaluation

0

20

40

60

80

100

120

140

Standard Extended surface Sketch paper 3-D

S
e

c
o

n
d

s
 G1

G2

G4

G5

Figure 5.1.: Usage duration of a sketching mode by each group (G1, G2, G4, and G5)

evaluation. Users were disappointed when the 3D mode failed to recognize the original 3D
shape of the drawn sketch. The mean values for the other modes were as follows: standard
mode – 34%, extended surface – 28%, and sketch paper – 29%. For all sketching modes, a
high deviation from the mean values was observed. (standard mode: 34% total use, SD:
26%; extended surface: 28% total use, SD: 34%; sketch paper: 29% total use, SD: 28%; 3D
mode: 8% total use, SD: 9%), which points that all five groups taking part in the evaluation
are likely to have very diverse preferences regarding the use of sketching modes.

The total execution duration of the assigned task was about 30 minutes. The sketching
modes were changed in average 27.75 times (SD: 14.81) during the execution. This corre-
sponds to about one switch per minute. The high standard deviation indicates that some
participants in the system evaluation felt more often the necessity to change the sketching
mode than others.

5.2.2. SUS

The SUS survey was evaluated using the scheme given in [77] where a score of 100 in-
dicates the highest usability and score of 0 indicates the lowest general usability of the
system. Figure 5.2 presents the results of the SUS survey by questions. Answers indict-
ing stronger agreement in the case of odd-numbered questions (Q1, Q3, Q5, Q7 and Q9)
increase the usability score, while answers indicating stronger agreement in the case of
even-numbered questions (Q2, Q4, Q6, Q8 and Q10) decrease the usability score of SUS.
This dependence belongs to the design of the SUS where odd-numbered questions are
positively formulated and even-numbered questions are negatively formulated.

The mean usability score calculated from the SUS data of all participants in the evalu-
ation was 85.83 (SD: 9.27), pointing to relatively high usability of the presentation mode.
The results on questions 8 and 9 indicate a need for improvement towards better user
experience and increasing the confidence of users when working on the CDP and its pre-
sentation mode. The higher variance in the answers to question 4 could be explained with
the different levels of experience of the participants. The rest of the questions indicate a
good usability of the presentation mode.

84

5.2. Quantitative feedback

0 1 2 3 4 5

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

5-point Likert scale (1-strongly disagree; 5- strongly agree)

Q
u

e
st

io
n

s

Figure 5.2.: Average response to the SUS questions. List of questions:
Q1: I think that I would like to use this system frequently
Q2: I found the system unnecessarily complex
Q3: I thought the system was easy to use
Q4: I think that I would need the support of a technical person to be able to use
this system
Q5: I found the various functions in this system were well integrated
Q6: I thought there was too much inconsistency in this system
Q7: I would imagine that most people would learn to use this system very
quickly
Q8: I found the system very cumbersome to use
Q9: I felt very confident using the system
Q10: I needed to learn a lot of things before I could get going with this system

85

5. Evaluation

Figure 5.3.: AttrakDiff average values of the presentation mode assessment.

5.2.3. AttrakDiff

The results of the AttrakDiff survey were processed on the official website of the survey
[78]. With AttrakDiff the user ranks 28 properties of the product on a 7-point Likert scale
ranging from -3 to 3. The properties are described by 28 word-pairs presented in figure
5.3. The results of the AttrakDiff survey are shown in figure 5.4 as graphical presentation
of mean values of the presentation mode properties assessed by all participants in the
evaluation.

The 28 properties are grouped in four categories:

• Pragmatic quality (PQ)

• Hedonistic quality – identity (HQ-I)

86

5.3. Qualitative feedback

• Hedonistic quality – stimulation (HQ-S)

• Attractiveness (ATT)

The first category relates to the usability of the product and how well it assists users in
their task. The second and third categories describe how well users can identify themselves
with the product and how well the product stimulates users’ need to improve their skills
and be more productive, respectively. The last category of questions measures the general
product attractiveness to users.

According to the average values of the AttrakDiff data, the presentation mode is clearly
structured, practical, and simple to use regarding its pragmatic quality (figure 5.3). On
the negative side, it seems that users had slight difficulties to cope with the system (see
word pair “unruly-manageable” (figure 5.3). This could be explained with the insufficient
calibration of the multi-touch table which caused some objects and the camera to shake
sometimes.

Regarding its hedonic quality, users perceived the presentation mode as innovative,
stylish, and bringing users together (figure 5.3). However, there is a demand for more chal-
lenge and professionalism (see word-pairs “unprofessional-professional” and “undemanding-
challenging” (figure 5.3).

By analyzing AttrakDiff data, mean values of the pragmatic and the hedonic quality
are plotted in a graph to shape the compound desirability of the product. A confidence
interval based on the homogeneity of the values is also computed. The confidence rectan-
gle corresponds to the certainty of the obtained result. Figure 5.4(a) shows the respective
AttrakDiff data obtained for the presentation mode. The participants evaluated the prod-
uct as highly attractive. The position and the size of the confidence rectangle in figure
5.4(b) indicate the product is highly desired with good confidence. But there is also a room
for improvement towards better pragmatic quality and better hedonic stimulation of the
presentation mode.

5.3. Qualitative feedback

This section summarizes the qualitative feedback (direct and indirect) received during the
evaluation of the presentation mode. This information was gathered by means of:

• observing user activities, difficulties, and communication during the task perfor-
mance (indirect feedback)

• gathering remarks and suggestions of the participants during the task performance
(direct feedback)

• interview with all participants after completing the task

During the interview, both direct and indirect feedback was collected. For example,
during the interview some users came across to ideas being provoked by a particular ques-
tion, but not directly related to the answer of the question. These were analyzed as direct
feedback. An example for indirect feedback collected during the interview is when users
started playing with the presentation mode while answering a question. To present the

87

5. Evaluation

(a)

(b)

Figure 5.4.: AttrakDiff results for the presentation mode. (a) Diagram of average values
representing the average score of each of the four AttrakDiff categories. (b)
Medium value and confidence rectangle based on PQ and HQ data of the pre-
sentation mode.

88

5.3. Qualitative feedback

qualitative feedback consistently and avoid confusions, all results are grouped in three
categories – indirect feedback, direct feedback, and interview – and presented in the fol-
lowing three sections – 5.3.2, 5.3.3, and 5.3.1 respectively.

5.3.1. Indirect feedback

Observing activities and behavior of the participants during the execution of the assigned
task aimed to provide indirect information about how users perceive and interact with the
system.

Most participants started prototyping by cutting models from the styrodur foam. Once
they had a first version of their model, they put it on the table top started sketching on
the presentation screen. One group took the inverse path, first sketching an outline of the
model on the presentation screen and then cutting it out from styrodur foam.

The sketching modes were sometimes used differently than initially intended by the
presentation mode. For example, users sketched two different versions of a single idea,
overlapping these two sketches while using the standard mode, even though they could
have used two different layers for each sketch within the sketch paper mode. Another
example was activation of the extended surface mode in cases when the drawn sketch did
not exceed the boundaries of the selected surface.

Participants often sought collaboration while working together. For example, they often
tried to sketch simultaneously on the digital model 2. Two groups divided the work – one
user was sketching on the presentation screen while the other one was cutting styrodur
shapes.

A few activities were not successful when using the presentation mode. For example,
buildings with closed inner yards were recognized as if they had no yard. Also, selecting a
surface failed sometimes; in these cases, the system recognized the click-gesture by mistake
as a short stroke and did not mark the selected surface. Furthermore, two groups had
difficulties with the thumbnail bar of the sketch paper mode. Sketching on the bar failed
as the system interpreted the strokes as an attempt to scroll the thumbnails.

Some user expectations could not be optimally fulfilled by the system. All groups re-
marked the lack of precision in object recognition and placement of objects. In addition,
digital buildings shook slightly sometimes, while their physical counterparts stood still.
The system performed even worse when buildings were placed near the edge of the table.
Such technical limitations often frustrated the users and impeded their work.

All participants had almost no troubles with learning to interact with the system. They
tend to act intuitively and tried to apply features which were not implemented. In other
cases, feature implemented in the system were not intuitively found and used. For ex-
ample, participants often tried to zoom into the screen – a feature which is not directly
supported by the screen but enabled by moving the camera in the desired direction.

All participants were fascinated from the system’s ability to scan and digitalize objects
interactively. The option to draw directly on the virtual world was accepted with satisfac-
tion and curiosity. Users highly appreciated that the sketches did not disappear when
moving the underlying building; moreover, the sketches move along and remain con-
nected to the building.

2This produced scrambled sketches, because the presentation mode supports input from only one user at a
time

89

5. Evaluation

5.3.2. Direct feedback

Each participant was given the possibility to share his own ideas for new features of the
presentation mode or suggest changes for improvement of its functionality. The most in-
teresting and novel ideas of the participants are summarized in this section.

A major part of all suggestions concerns additional utilities for editing and manipulat-
ing content in the presentation mode. All groups criticized the lack of different colors and
stroke sizes for the pen. Three groups demanded implementation of the widely accepted
“undo” and “redo” options. Furthermore, four groups suggested the option to export and
import data, to take snapshots of the current workspace and to organize these snapshots
in a consistent versioning mechanism. Two participants shared the opinion that a platform
for sharing conceptual information in a collaborative scenario should be able to store the
generated ideas consistently and methodologically, so that the collected ideas can be re-
viewed later. They suggested to achieve that by storing content changes cumulatively in a
branch-like fashion.

Another set of suggestions referred to an improved semantic classification of buildings.
Assignment to multiple colors, for example, to designate different types of buildings (liv-
ing, industrial, commercial...) was suggested by three groups of participants. Their idea
was that the system may provide different visualization styles based on semantic informa-
tion as well. In addition, two groups suggested an option to hide all buildings temporarily
and show only the urban terrain.

Four groups liked using the sketch paper mode, but lacked some beneficial features.
Two groups proposed that the layers can be stacked on top of each other, arranged in a
specific order, and even grouped semantically, similar to CAAD software. Users associ-
ated the sketch paper mode with pictograms frequently used in conceptual design in ar-
chitecture. It was suggested the sketch paper mode can be used to create such pictograms
and place them permanently into the virtual world.

A demand for less constrained and more customizable camera control was indicated.
Some of the ideas were to create and use several modes for the camera; for example, a
pedestrian mode and a “free-flight” mode in addition to the standard mode. Three groups
asked for an option to instantly fly the camera into a “bird’s eye” perspective to enable a
view on a large part of the scene.

Three groups suggested an elaborated volume manipulation. One participant proposed
an option for creating cavities into existing objects by drawing a contour and “cutting” the
contour into the volume along a given direction. Another idea was to pull facades and
surfaces along the direction of their normal vector in order to adjust an existing building,
similar to SketchUp by Google [79].

All participants felt constrained that they couldn’t sketch on the table surface. Partici-
pants of two groups lacked the option that more than one user can draw on the presenta-
tion screen simultaneously. Three groups also felt the absence of a compass and a precise
indication of scale. One of the suggestions was to visualize these dependencies on the table
surface, similarly to land maps.

One of the participants proposed two operation modes for the CDP – “basic” and “ex-
pert” – in order to optimally fit the requirements of both unprofessional and professional
users.

90

5.3. Qualitative feedback

5.3.3. Interview

The interview comprised nine questions, grouped into three themes. In the following, the
questions together with the most frequently given answers are summarized.

Theme 1: GUI and sketching

Q1: What was positive or negative about the sketching modes – “standard”, “extended
surface”, “sketching paper”, and “3D mode”?

In general, participants liked the user interface provided for sketching. The most posi-
tive impressions were expressed for the sketch paper mode and the 3D mode, despite that
the 3D mode was not in a mature state during the evaluation. The users pointed out some
missing functionality as well, such as “undo/redo” and an option for control of pen color
and stroke width.

Q2: What was positive or negative about the way how each mode is activated?

Users found the switching mechanisms convenient and intuitive. The only flaw con-
cerned the transition between the standard mode and the extended surface mode, where
a click on a surface was sometimes recognized as a short stroke.

Theme 2: Camera and orientation

Q3: What was positive or negative about the control of the camera?

All participants liked how the camera is controlled. Three groups criticized that the cam-
era moves a bit sluggish and slow. One group suggested that positioning the presentation
screen along the length of the table top would improve the navigation in the virtual world.

Q4: Did you have problems recognizing the correspondence of the two views?

There were no problems in this regard. All participants were of the opinion that archi-
tects are used to work with several views of the same data.

Theme 3: Ideas, collaboration, distraction

Q5: Did you feel constrained by the system while exploring ideas? Did you give up
ideas, because the system was unable to express them?

The users were constrained mostly by the bugs in the system, such as inaccurately rec-
ognized objects and improperly reconstructed sketches in the 3D mode. Three groups
remarked that the system should be faster and more dynamic to better face the needs of
architects for a rapid move and change of objects while using the system. Two participants
expressed difficulty in sketching with the pen due to its large size and bad ergonomics.

Q6: What is better using the digital system and using traditional tools, such as pen
and paper?

91

5. Evaluation

Answers to this question were very diverse as every participant had a different working
style. While some prefer to start sketching on paper and move to digital tools later in
the development, others would do it in a reverse order or even could mix both styles
iteratively. All participants agreed that the approaches are quite different and each has
unique advantages. For example, digital tools can visualize the prototype within a real or
imaginary environment, while paper feels more realistic by the user and provides better
haptic experience. Nine of ten users conveyed that they could not abstain from using
traditional tools, but all of them demonstrated interest in new and innovative digital tools
with a natural user interface such as the CDP.

Q7: Would you prefer the digital system or traditional tools? Why?

None of the users provided a definite answer to this question. In general, users pointed
out that the choice of tools depends on the task and that digital tools could not entirely
replace traditionally employed methodology. One participant conveyed that he would lay
his choice on the CDP, if he was forced to exclusively choose one tool.

Q8: To what extent did the system supplement the creative process?

All five groups agreed on that the system supplies and enhances creation of ideas. As
an argument, the users pointed out the possibility to design the buildings directly in their
future environment. “Also, the virtual camera gives you the feeling of navigation, which
is invaluable for the early stages of conceptual design“, says one of the participants, while
putting her palms on the table surface and observing the result. “Cool”, she says, when
seeing two virtual buildings with the shape of her hands.

Q9: How would you improve the camera navigation, sketching modes, and the mode
switching?

For summary on this question, refer to section 5.3.2.

5.4. Discussion

The assumption that architects use different approaches to design was confirmed during
the evaluation of the CDP and its presentation mode. This observation was not only based
on the significant difference in the usage duration of each of the four sketching modes
but also on the manner they were used. There was no clearly distinguishable common
workflow among the five groups. Each of them approached the given problem differently.

With regard to collaboration, users often divided their work or attempted to work si-
multaneously on the same concept. They also tried sometimes to sketch at the same time,
neglecting the information that only one pen can be recognized by the system. Apparently,
architects strive to collaborate in a dynamic and parallelized manner.

With respect to the hedonic quality, users perceived the presentation mode as highly
attractive, innovative and desirable. They found the user interface easy to use and well
structured. However, the values in AttrakDiff word-pairs “undemanding-challenging”
and “unprofessional-professional” could mean that users wish a more complicated and
mature user interface.

92

5.4. Discussion

Another important observation was that users require more functionality. Both CDP
and the presentation mode were designed with simplicity in mind, with a requirement to
be easy to learn and easy to use. The evaluation results showed that users would rather
sacrifice simplicity in favor of more features of the system. One of the participants sug-
gested implementation of an “expert mode” which can be activated by more advanced
users. This mode could resolve the issue of “simple interface versus rich functionality”.

The sketching modes were designed to mimic the behavior of a physical pen in order
to bring the presentation mode closer to a real-life experience. However, users demanded
features for editing such as “undo/redo” and volume operations, although these features
are typical for CAAD tools and not for the pen-and-paper approach. It appears that users
expect a digital tool to provide features typical for digital tools, even if it is designed to
mimic non-digital tools.

In summary, architects will most probably not abstain completely from using tradition-
ally established methods such as pen-and-paper, no matter how good a digital equivalent
could work. On the other hand, they declare interest and readiness to use the CDP and
the presentation mode as a supporting tool. Furthermore, they would switch to the CDP
due to the advantage of its 3D capabilities and its ability to visualize buildings in the con-
text of a city during early stage of conceptual design. Interestingly, one of the participants
claimed that if he has to choose between the CDP and traditional tools, he would choose
the CDP. It can be speculated that architects are less used to working with digital tools for
conceptual design, because they never used them in this stage of design. If they had a tool
that is more convenient and less restrictive than established CAAD software, they will be
more willing to use it.

93

6. Conclusion

This thesis presented the implementation and evaluation of the presentation mode – a
novel approach for conceptual design in urban architecture which combines the conve-
nience of physical tools for designing with the power of digital processing. The presenta-
tion mode is built on top of the CDP, a large-scale multi-touch table top which is able to
scan physical models of buildings and embed them into an augmented virtuality setting,
containing also the geospatial context of a virtual city. The presentation mode visualizes
the augmented virtual world using an additional large-scale vertical presentation screen.
The user can navigate in the world by moving a tangible camera on the multi-touch table.
The user can also sketch directly on the display using four different sketching modes –
standard, extended surface, sketch paper, and 3D mode.

The usability and the attractiveness of the presentation mode were tested in a pilot eval-
uation with ten students in Architecture, who designed a small living area using the CDP
and the presentation mode. The students liked the new user interface and its features, es-
pecially the possibility to navigate freely in a virtual city and to sketch within the city in a
natural manner. All participants were of the opinion that the presentation mode assisted
them in being more creative and offered possibilities for being innovative, exploring and
sharing ideas.

The evaluation pointed to a demand for a richer and more customizable user interface
which would make better use of digital technology. Users would like to customize the
sketching, to have more freedom controlling the virtual camera, and to be able to create
custom profiles fitting their personal requirements. The users also require more function-
ality from the system, such as storing of version history, working with different content
layers, and improved content management.

Very high interest provoked the 3D sketching mode, despite of its early stage of devel-
opment. Users liked the idea to let the system recognize the 3D shape of their drawing and
would like to see a more elaborate and better working version of this feature.

In conclusion, the participants in the evaluation admitted they would not abstain from
traditional tools such as pen and paper in favor of a digital tool for conceptual design,
regardless of the quality and the power of the tool. However, they showed high interest
towards the CDP and the presentation mode and would readily use them as supplement-
ing tools for conceptual design.

95

Appendix

97

A. Projective space P
2

Sketches produced using the presentation mode are based on a 2D input mechanism, but
are assigned a 3D meaning within a 3D virtual world. This paradigm requires 2D and 3D
information to be related to each other in an intuitive and understandable way for the user.

In computer vision, the mathematical tool used to convert 3D into 2D information and
vice-versa (a process called projection and reverse-projection) is called “projective space”.
There is a lot of literature on this topic. Details on the mathematical foundation of projec-
tive space can be found in specialized literature [80, 81].

The projective space, like any other mathematical space, can be of arbitrary dimension.
In this thesis, 2D projective space (P2) is used since we deal with 2D projections of a 3D
world. 3D computer graphics applications usually employ the 3D projective space since
they deal with 3D projections.

In the P
2 space, camera viewpoint coincides with the origin of a 3D cartesian coordinate

system and camera view-vector of the camera coincides with the z-axis of the coordinate
system, whereas the up-vector coincides with the y-axis of the coordinate system 1. A 2D
image of a 3D scene can be seen as the projection of the 3D scene objects on the plane z = 1.
The reverse process, inverting a 2D image back to the original 3D shape, is possible only if
the depth of each pixel is known.

In P
2, a 2D pixel is represented by a 3D ray passing through the middle of the pixel

(x, y) in image space (see figure A.1). There are infinitely many rays starting at (0, 0, 0)
and passing through (x, y, 1) and all of them correspond to the same pixel (x, y). The set
of these rays is called the homogeneous coordinate of image point (x, y). If the depth of
the image point is known, it is possible to compute its 3D position by taking the single ray
which has length equal to the depth of the pixel.

The presentation mode attempts to find the depth of all pixels along a 2D stroke in image
space by examining the underlying 3D scene as seen from the camera. For example, in the
standard mode for sketching, the intersection of the P

2 ray (representing a pixel in image
space) with the closest surface is computed. The distance from this intersection to the
camera origin is assumed to be the depth of the corresponding pixel.

An important characteristic of the projective space is that it adds the so-called “line at
infinity”, which is a plane in the 3D case. Parallel lines in Euclidean space intersect at a
point on this line. Consequently, the notion of parallelism, orthogonality, and all other
kinds of angular dependencies, are different in the projective space and do not correspond
to their equivalent in the Euclidean space.

Currently, the only angular comparison is made in the 3D mode for sketching. The mode
checks whether a stroke (drawn in the projective image space of the presentation display)
is orthogonal to the city plane in the 3D virtual world 2. Strictly seen, such a comparison

1In a realistic 3D scene, the camera is not positioned at the origin of the coordinate system, but can be moved
freely in the virtual world. In that case, the projection plane moves together with the camera.

2The stroke is simplified to a line segment, which is defined by the start and the end point of the stroke

99

A. Projective space P
2

Figure A.1.: Conversion of a pixel coordinate to a homogeneous coordinate in the P
2 space.

is mathematically not plausible, because the stroke in projective space corresponds to in-
finitely many strokes in 3D space (due to the lost depth component). However, the stroke
with the minimal angle among all possible 3D strokes can be found. All 3D strokes lie in
one plane – the plane which describes the stroke in projective space. The minimal angle of
all lines in this plane to another plane in 3D space (in this case, the city plane) is the same
as the dihedral angle between these planes.

respectively.

100

Glossary

101

Acronyms

API Application Programming Interface.

CAAD Computer Aided Architectural Design.

CDP Collaborative Design Platform.

CUDA Compute Unified Device Architecture.

DOF Degrees of Freedom.

GUI Graphical User Interface.

HDMI High-Definition Multimedia Interface.

SDK Software Development Kit.

TUI Tangible User Interaction.

WIMP Windows Icons Menus Pointer.

103

Glossary

Application Programming Interface is an interface implemented by a software program
that enables it to interact with other software. It facilitates interaction between dif-
ferent software programs similar to the way the user interface facilitates interaction
between humans and computers.

Computer Aided Architectural Design refers to software for creation of digital content
in architecture design. CAAD programs are used to create a precise digital model
instead of drawing it by hand.

Collaborative Design Platform is a large-scale interactive table top which supplements
the early stages of conceptual design in urban architecture.

Compute Unified Device Architecture is a technology developed by nVidia, implement-
ing the principle “single instruction, multiple data” (SIMD) on graphical processing
units. Hardware and software emloying this paradigm enable massively parallelized
algorithms to be executed in interactive time, whereas a sequential execution would
take much more time to execute.

Degrees of Freedom is the minimum number of independent parameters which define
the state of a system.

Graphical User Interface is a type of user interface which communicates with the user
over images instead of textual input/output. Graphical interfaces are very common
nowadays in almost all kinds of computer software, ranging from personal comput-
ers to complex CAD tools for 3D design.

High-Definition Multimedia Interface is an interface for transferring high definition video
and audio data, typically to high-resulution output devices.

Software Development Kit is typically a set of development tools that allows for the cre-
ation of applications for a certain software package, software framework, hardware
platform, computer system, video game console, operating system, or similar plat-
form.

Tangible User Interaction is a kind of user interaction where the user communicates
with a system via physical manipulation of graspable tokens.

Windows Icons Menus Pointer is a user interface paradigm implementing the four in-
teraction elements – windows, icons, menus, and pointers. This kind of user inter-
face was developed by Xerox PARC in the early 70’s and popularized by Apple’s
Macintosh and Microsoft Windows in the following decades.

105

Glossary

Fiduciary Marker or fiducial, is an object used in computer vision and augmented re-
ality applications to mark a location and/or orientation. Typically, the fiducial is
recognized and tracked by a vision system and represents a virtual object in the aug-
mented scene.

106

Bibliography

107

Bibliography

[1] G. Schubert, E. Artinger, F. Petzold, and Klinker G. Tangible Tools for Architectural
Design. In ACADIA, 2011.

[2] H. W. J. Rittel and W. D. Reuter. Planen, Entwerfen, Design: Ausgewählte Schriften zu
Theorie und Methodik. Stuttgart: W. Kohlhammer, 1992.

[3] C. Gänshirt. Tools for ideas: an introduction to architectural design. Basel: Birkhäuser,
2007.

[4] W. Buxton. Sketching user experience: Getting the design right and the right design. San
Francisco, Calif: M. Kaufmann, 2007.

[5] Dimitra Figa and Gernot Nalbach. The first sketch. Förderkreis Dortmunder Modell
Bauwesen, 2003.

[6] http://www.microsoft.com/en-us/pixelsense/default.aspx.

[7] Ross Bencina and Martin Kaltenbrunner. The design and evolution of fiducials for
the reactivision system. In Conference on Generative Systems. Music Technology Group,
Audiovisual Institute, 2005.

[8] O. Bergig, N. Hagbi, J. El-Sana, and M. Billinghurst. In-place 3d sketching for au-
thoring and augmenting mechanical systems. In Mixed and Augmented Reality, 2009.
ISMAR 2009. 8th IEEE International Symposium on, pages 87 –94, oct. 2009.

[9] Pierre Wellner. Interacting with paper on the digitaldesk. Commun. ACM, 36(7):87–96,
July 1993.

[10] Brygg Anders Ullmer. Tangible Interfaces for Manipulating Aggregates of Digital Informa-
tion. PhD thesis, Massachusetts Institute of Technology, 2002.

[11] K. Galloway and Rabinowitz. Hole in space. http://www.ecafe.com/getty/

HIS/.

[12] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning, and Lucy
Suchman. Beyond the chalkboard: computer support for collaboration and problem
solving in meetings. Commun. ACM, 30(1):32–47, January 1987.

[13] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput. Commun.
Rev., 3(3):3–11, July 1999.

[14] Hiroshi Ishii, Minoru Kobayashi, and Kazuho Arita. Iterative design of seamless
collaboration media. Commun. ACM, 37(8):83–97, August 1994.

109

Bibliography

[15] Nobuyuki Matsushita and Jun Rekimoto. Holowall: designing a finger, hand, body,
and object sensitive wall. In Proceedings of the 10th annual ACM symposium on User
interface software and technology, UIST ’97, pages 209–210, New York, NY, USA, 1997.
ACM.

[16] Norbert A. Streitz, Jörg Geis̈ler, Torsten Holmer, Shin’ichi Konomi, Christian Müller-
Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Steinmetz. i-land:
an interactive landscape for creativity and innovation. In Proceedings of the SIGCHI
conference on Human factors in computing systems: the CHI is the limit, CHI ’99, pages
120–127, New York, NY, USA, 1999. ACM.

[17] Björn Hartmann, Meredith Ringel Morris, Hrvoje Benko, and Andrew D. Wilson. Pic-
tionaire: supporting collaborative design work by integrating physical and digital
artifacts. In Proceedings of the 2010 ACM conference on Computer supported cooperative
work, CSCW ’10, pages 421–424, New York, NY, USA, 2010. ACM.

[18] Eran Ben-Joseph, Hiroshi Ishii, John Underkoffler, Ben Piper, and Luke Yeung. Ur-
ban simulation and the luminous planning table. In Journal of Planning Education and
Research. Journal of Planning Education and Research, December 2001.

[19] R. Bencina, M. Kaltenbrunner, and S. Jorda. Improved topological fiducial tracking in
the reactivision system. In Computer Vision and Pattern Recognition - Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on, page 99, june 2005.

[20] Enrico Costanza and John Robinson. A region adjacency tree approach to the detec-
tion and design of fiducials. In VVG, pages 63–69, 2003.

[21] Michael Haller, Peter Brandl, Daniel Leithinger, Jakob Leitner, Thomas Seifried, and
Mark Billinghurst. Shared design space: Sketching ideas using digital pens and a
large augmented tabletop setup. In Zhigeng Pan, Adrian Cheok, Michael Haller,
Rynson Lau, Hideo Saito, and Ronghua Liang, editors, Advances in Artificial Reality
and Tele-Existence, volume 4282 of Lecture Notes in Computer Science, pages 185–196.
Springer Berlin / Heidelberg, 2006. 10.1007/11941354 20.

[22] Morten Fjeld, Kristina Lauche, Martin Bichsel, Fred Voorhorst, Helmut Krueger, and
Matthias Rauterberg. Physical and virtual tools: Activity theory applied to the de-
sign of groupware. Computer Supported Cooperative Work (CSCW), 11:153–180, 2002.
10.1023/A:1015269228596.

[23] Ehud Sharlin, Benjamin Watson, Yoshifumi Kitamura, Fumio Kishino, and Yuichi
Itoh. On tangible user interfaces, humans and spatiality. Personal Ubiquitous Com-
put., 8(5):338–346, September 2004.

[24] Brygg Ullmer and Hiroshi Ishii. The metadesk: models and prototypes for tangi-
ble user interfaces. In Proceedings of the 10th annual ACM symposium on User interface
software and technology, UIST ’97, pages 223–232, New York, NY, USA, 1997. ACM.

[25] Patrick Baudisch, Torsten Becker, and Frederik Rudeck. Lumino: tangible blocks for
tabletop computers based on glass fiber bundles. In Proceedings of the 28th international

110

Bibliography

conference on Human factors in computing systems, CHI ’10, pages 1165–1174, New York,
NY, USA, 2010. ACM.

[26] Hiroshi Ishii, Eran Ben-Joseph, John Underkoffler, Luke Yeung, Dan Chak, Zahra
Kanji, and Ben Piper. Augmented urban planning workbench: Overlaying drawings,
physical models and digital simulation. In Proceedings of the 1st International Sympo-
sium on Mixed and Augmented Reality, ISMAR ’02, pages 203–, Washington, DC, USA,
2002. IEEE Computer Society.

[27] John Underkoffler and Hiroshi Ishii. Urp: a luminous-tangible workbench for urban
planning and design. In Proceedings of the SIGCHI conference on Human factors in com-
puting systems: the CHI is the limit, CHI ’99, pages 386–393, New York, NY, USA, 1999.
ACM.

[28] John Underkoffler and Hiroshi Ishii. Illuminating light: an optical design tool with
a luminous-tangible interface. In Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, CHI ’98, pages 542–549, New York, NY, USA, 1998. ACM
Press/Addison-Wesley Publishing Co.

[29] Katja Knecht. Augmented urban model. Bauhaus Universität Weimer.

[30] http://www.reactable.com/products/.

[31] John Frazer. An Evolutionary Architecture, 1995.

[32] J. Frazer. Three-dimensional data input devices, 1982.

[33] Kai Schäfer, Volker Brauer, and Willi Bruns. A new approach to human-computer in-
teraction – synchronous modelling in real and virtual spaces. In Proceedings of the 2nd
conference on Designing interactive systems: processes, practices, methods, and techniques,
DIS ’97, pages 335–344, New York, NY, USA, 1997. ACM.

[34] Ben Piper, Carlo Ratti, and Hiroshi Ishii. Illuminating clay: a 3-d tangible interface
for landscape analysis. In Proceedings of the SIGCHI conference on Human factors in
computing systems: Changing our world, changing ourselves, CHI ’02, pages 355–362,
New York, NY, USA, 2002. ACM.

[35] H Ishii, C Ratti, B Piper, Y Wang, A Biderman, and E Ben-Joseph. Bringing clay and
sand into digital design - continuous tangible user interfaces. BT Technology Journal,
22:287–299, 2004. 10.1023/B:BTTJ.0000047607.16164.16.

[36] P. Lapides, E. Sharlin, M.C. Sousa, and L. Streit. The 3d tractus: a three-dimensional
drawing board. In Horizontal Interactive Human-Computer Systems, 2006. TableTop 2006.
First IEEE International Workshop on, page 8 pp., jan. 2006.

[37] E. Sachs, A. Roberts, and D. Stoops. 3-draw: a tool for designing 3d shapes. Computer
Graphics and Applications, IEEE, 11(6):18 –26, nov. 1991.

[38] Mark Billinghurst, Sisinio Baldis, Lydia Matheson, and Mark Philips. 3d palette: a
virtual reality content creation tool. In Proceedings of the ACM symposium on Virtual

111

Bibliography

reality software and technology, VRST ’97, pages 155–156, New York, NY, USA, 1997.
ACM.

[39] I. Poupyrev, N. Tomokazu, and S. Weghorst. Virtual notepad: handwriting in im-
mersive vr. In Virtual Reality Annual International Symposium, 1998. Proceedings., IEEE
1998, pages 126 –132, 18-18 1998.

[40] Pedro Company, Ana Piquer, Manuel Contero, and Ferran Naya. A survey on geo-
metrical reconstruction as a core technology to sketch-based modeling. Computers &
Graphics, 29(6):892 – 904, 2005.

[41] Beom-Soo Oh and Chang-Hun Kim. Progressive reconstruction of 3d objects from a
single free-hand line drawing. Computers & Graphics, 27(4):581 – 592, 2003.

[42] Hod Lipson. Computer Aided 3D Sketching for conceptual design. PhD thesis, Israel
Institute of Technology, 1998.

[43] Lynn Eggli, Ching yao Hsu, Beat D Brüderlin, and Gershon Elber. Inferring 3d models
from freehand sketches and constraints. Computer-Aided Design, 29(2):101 – 112, 1997.
¡ce:title¿Solid Modelling¡/ce:title¿.

[44] P. A. C. Varley and R. R. Martin. The junction catalogue for labelling line drawings of
polyhedra with tetrahedral vertices. In International Journal of Shape Modeling (IJSM),
2001.

[45] D. Kang, M. Masry, and H. Lipson. Reconstruction of a 3d object from a main axis
system, 2004.

[46] Pedro Company, Manuel Contero, Julian Conesa, and Ana Piquer. An optimisation-
based reconstruction engine for 3d modelling by sketching. Computers & Graphics,
28(6):955 – 979, 2004.

[47] A. Wolin, B. Paulson, and T. Hammond. Sort, merge, repeat: an algorithm for effec-
tively finding corners in hand-sketched strokes. In Proceedings of the 6th Eurographics
Symposium on Sketch-Based Interfaces and Modeling, SBIM ’09, pages 93–99, New York,
NY, USA, 2009. ACM.

[48] http://www.3dconnexion.com/products/spacenavigator.html.

[49] http://www.optoma.co.uk/projectordetailshe.aspx?PTypedb=High%

20Definition%20Home%20Cinema&PC=HD87.

[50] http://www.xbox.com/en-US/kinect/.

[51] http://www.samsung.com/us/business/commercial-display-solutions/

LH65TCPMBC/ZA.

[52] http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-580.

[53] http://wiki.nuigroup.com/Diffused_Illumination.

112

Bibliography

[54] http://opencv.willowgarage.com/.

[55] http://www.nvidia.com/object/cuda_home_new.html.

[56] http://depts.washington.edu/aimgroup/proj/dollar/.

[57] http://www.opentk.com/.

[58] http://pointclouds.org/.

[59] http://www.openni.org/.

[60] http://www.boost.org/.

[61] http://usa.autodesk.com/autocad-map-3d/.

[62] http://www.oracle.com/us/products/database/overview/index.

html.

[63] http://www.visualizationlibrary.org/.

[64] http://qt.nokia.com/.

[65] http://assimp.sourceforge.net/.

[66] http://www.cmake.org/.

[67] http://www.visualizationlibrary.org/documentation/pag_key_

features.html.

[68] H Lipson and M Shpitalni. Optimization-based reconstruction of a 3d object from a
single freehand line drawing. Computer-Aided Design, 28(8):651 – 663, 1996.

[69] http://en.wikipedia.org/w/index.php?title=Ramer%E2%80%

93Douglas%E2%80%93Peucker_algorithm&oldid=499894315.

[70] M. Shpitalni and H. Lipson. Identification of faces in a 2d line drawing projection
of a wireframe object. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
18(10):1000 –1012, oct 1996.

[71] G. Schubert, E. Artinger, F. Petzold, Klinker G., and Yanev V. Tangible Tools for Ar-
chitectural Design. Accepted 06.2012, 2012.

[72] http://en.wikipedia.org/w/index.php?title=Interpolation&oldid=

498656992.

[73] J. Bernsen. Dynamic thresholding of grey-level images, 1986.

[74] http://www.opengl.org/archives/resources/faq/technical/

depthbuffer.htm.

[75] http://www.opengl.org/archives/resources/faq/technical/

polygonoffset.htm.

113

Bibliography

[76] Mi Jeong Kim and Mary Lou Maher. The impact of tangible user interfaces on design-
ers’ spatial cognition. Human-Computer Interaction, 23(2):101–137, 2008.

[77] J. Brooke. Sus-a quick and dirty usability scale. In Usability evaluation in industry, 1996.

[78] M. Hassenzahl, M. Burmester, and F. Koller. Attrakdiff: Ein fragebogen zur messung
wahrgenommener hedonischer und pragmatischer qualität. In Mensch & Computer,
pages 187 – 196, 2003.

[79] http://sketchup.google.com/.

[80] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge
Univ Press, 2003.

[81] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint. The MIT Press,
1993.

114

	Acknowledgements
	Abstract
	Introduction
	The CDP background
	Conceptual design in architecture
	The CDP
	The presentation mode

	Related work
	Tangible User Interaction
	Interactive surfaces
	Constructive assemblies

	3D sketching
	Taxonomy of methods for 3D sketching
	Regularity-based reconstruction of 3D sketches

	Concept
	Case definition and setup
	Activities of classical conceptual design in urban architecture
	Use-case of the CDP
	Use-case of the presentation mode

	Visualization
	Camera control and behavior
	GUI and interaction
	Sketching
	Standard mode
	Extended surface mode
	Sketch paper mode
	3D sketching mode

	Integration and run-time behavior

	Implementation
	Big picture
	Used hardware and software
	Hardware
	Software

	Datamodel
	Software architecture of the presentation mode
	Overview
	Visualization
	Review on existing visualization engines
	Visualization Library features
	Alternative rendering libraries
	QT
	Implementation

	Sketching
	Mathematical model
	Standard mode
	Extended surface mode
	Sketch paper mode
	3D sketching mode
	Constructing the sketch graph
	Reconstruction of the 3D shape
	Projecting the sketch to 3D space

	GUI
	Visual appearance and interaction
	Implementation overview

	Camera control
	Tracking the fiducial
	Navigating with the 3D mouse
	Alternative implementations

	Bugs, problems, and performance issues
	Shared OpenGL contexts
	Numerical instability and depth fighting

	Unimplemented features

	Evaluation
	Design of the evaluation
	Evaluation criteria
	Participants, setup and task
	Dependent variables
	Interview

	Quantitative feedback
	Sketch mode usage and number of switches
	SUS
	AttrakDiff

	Qualitative feedback
	Indirect feedback
	Direct feedback
	Interview

	Discussion

	Conclusion
	Appendix
	Projective space P2

	Glossary
	Acronyms
	Glossary

	Bibliography
	Bibliography

