
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Working in VR: a Web-based approach
combining 2D and 3D Interfaces

Lorenzo Russo da Costa Auer

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Working in VR: a Web-based approach
combining 2D and 3D Interfaces

Arbeiten in VR: ein web-basierter Ansatz
zur Kombination von 2D und 3D

Schnittstellen

Author: Lorenzo Russo da Costa Auer
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: Sandro Weber
Submission Date: 15.08.2020

I confirm that this bachelor’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 15.08.2020 Lorenzo Russo da Costa Auer

Acknowledgments

Foremost, I would like to thank my supervisor, Prof. Gudrun Klinker, for giving me
the opportunity to write my bachelor’s thesis at her research group Forschungsgruppe
Augmented Reality (FAR).

I also have to thank my advisor, Sandro Weber for his constant support, helpful
advice and quick reactions.

Furthermore I want to thank Kilian Popp for his time and helpful advise.

Lastly I want to thank my family, my girlfriend and Kiba for all the support they
gave me during my time studying and writing this thesis.

Abstract

Working with virtual reality is gaining a lot of popularity. Its capabilities of taking the
user into a immersive 3D world, lead to it being used to simulate real world scenarios
and observe or interact with them. With VR now also being available for browsers,
a lot of new applications can be realized. One of them being, to introduce website
interaction inside a VR environment. This thesis describes the options of implementing
such a feature and the hurdles that were encountered, while trying to do so. The project
has been realized with the ubi-interact networking framework, Vue.js UI components
and the three.js 3D rendering framework. In the following text basic 3D rendering
terminologies and methods are explained. Followed by the introduction of modern
web technologies. The Three.js framework and and similar projects like mozilla hubs
are mentioned and described, along with other related topics. Leading to the actual
procedure of implementing the desired feature. Furthermore the hurdles like the same-
origin policy applied by browsers, or the current limitations to WebXR are discussed
and possible solutions to overcome them are introduced. Finally future plans and ideas,
on how this project can be further improved, are presented.

iv

Contents

Acknowledgments iii

Abstract iv

Glossary 1

1 Introduction 3
1.1 Motivation . 3
1.2 What is VR? . 3
1.3 Rendering 101 . 4

1.3.1 The world of spaces . 4
1.3.2 Camera Projection . 4
1.3.3 3D Transformation . 7
1.3.4 Blending . 7

1.4 The internet and its technologies . 8
1.4.1 HTML Events . 9
1.4.2 Cascading Style Sheets . 9
1.4.3 Same origin policy . 10
1.4.4 Vue.js . 11
1.4.5 Flux architecture . 11
1.4.6 WebSocket . 12
1.4.7 The Protocol Buffer Library . 14
1.4.8 WebGL . 14

1.5 Serialization methods . 15
1.5.1 JSON . 15

2 Related Work 16
2.1 three.js . 16
2.2 A-FRAME . 17
2.3 mozilla hubs . 19
2.4 ubi-interact . 20

v

Contents

3 The XR-Hub 21
3.1 Selecting the right framework . 21
3.2 WebXR, WebVR and browsers . 22
3.3 Combining websites and VR . 24
3.4 Interacting with the scene . 25
3.5 Interacting with others . 29
3.6 Limitations to iframes . 34

4 Future Work 38
4.1 Tackling the CORS issue . 38
4.2 Implementing VR interaction . 38
4.3 Introducing new features . 39
4.4 A future with mozilla hubs . 41
4.5 Testing . 42

5 Conclusion 43

List of Figures 44

Bibliography 45

vi

Glossary

attack vector method an attacker can gain unauthorized access to a network or com-
puter. 10, 35

backend describes the data layer of an application, the part responsible for all the logic
behind the scenes, that is not visible for the user, for example data transaction. It
interacts with the frontend. 1, 12, 19, 21–23, 29, 31

CORS Cross-Origin-Resource-Sharing: a mechanism, that allows browsers to execute
cross-origin requests, which normally would be forbidden by the same-origin
policy. 10

DOM Document Object Model: specification for programming interface, that repre-
sents HTML and XML files in hierarchical form. 9, 17, 28, 34, 35, 42

ECMAScript also known as ES; general-purpose programming language; standartized
by Ecma International; core of JavaScript. 15

frontend describes the presentation layer of an application, containing the graphical
user interface and everything the user can see. It interacts with the backend. 1,
19, 22

glb the binary version of gLTF, which stores the textures directly, instead of referencing
them as external images. 31, 33

gLTF file format for storing 3D scenes and models using the JSON standard. 1, 31, 33,
40

HTML HyperText Markup Language: textbase language to describe electronic docu-
ments containing texts, hyperlinks , images and other content. 9–11, 14, 17, 22, 26,
29, 33, 35, 37

HTTP HyperText Transfer Protocol: stateless protocol, developed for transfering data
in a network connecting multiple computers. 10, 12, 14, 15, 34

1

Glossary

HTTPS HyperText Transfer Protocol Secure: HTTP protocol with added layer of
security in form of SSL encryption. 23

HUD heads-up-display: display portraying information in the users view, while not
making the user have to look away to see it. 27

MobX JavaScript library that tries to simplify state management, by applying functional
reactive programming. 11

Proxy server application that acts as intermediary between clients and server, that want
to communicate. 23, 35, 36

React JavaScript library developed by facebook; used to build user interfaces. 11

REST Representational State Transfer; programming paradigm for distributed systems;
commonly used to describe webservices. 30

URL Uniform Resource Locator. 10, 27, 29–32, 35, 36, 39

vertex a vertex (plural vertices): point in 3D space where two or more lines meet. In
3D rendering vertices are used to describe 3D objects and their faces.. 4, 16

XML Extensible Markup Language: language to describe hierarchically structured
data. 9

2

1 Introduction

1.1 Motivation

Virtual reality (VR) has gained more and more popularity over the past years. Its
possibilities have developed a lot and its technology is improving further and further.
Applications that utilize virtual reality can be found in any field. Doctors use it, to train
for surgeries. Pilots use it to simulate their flights. Mechanics use it as a documentation
and simulate the steps needed to repair big machines. VR can be used for gaming,
learning, communicating and exploring, without having the need to leave the house.
With its introduction into web technologies, a whole new dimension of possibilities
has been added. Together with the ever improving technology of smartphones, virtual
reality got increasingly accessible for the the broad mass. This enables VR developers to
think bigger than before and create projects that are more focused day to day struggles
and connecting people, than on specific applications. One big topic when creating
such a VR space is the combination of 2D and 3D interfaces. The internet has become
a big part of the human life and contains an immense amount of information and
technologies. But those are only available in 2D. To bring this into virtual reality
environments, you have to find a way to combine those two worlds into one. This
thesis tries to develop and implement methods, that make the usage of regular online
websites available in VR.

1.2 What is VR?

VR describes a computer generated world. This world can be experienced, with specific
VR hardware, such as the Oculus Rift or the HTC Vive. Opposed to other extended
reality (XR) experiences, like augmented reality (AR) or mixed reality (MR), virtual
reality tries to completely detach you from the physical world. Its motto is immersion.
The VR headsets, often including earphones, make you dive in into an alternate reality,
without having much sense of what is happening outside of it. Due to its capabilities,
of making the scenario feel very real, it is often used to simulate extreme situations.
These simulations are then used to train people how to act, when confronted with such
circumstances. Present-day technology reduces the need of having to buy dedicated

3

1 Introduction

VR hardware, to experience virtual realities. Modern smartphones mounted to your
head can also function as a VR device, making the experience more accessible.

1.3 Rendering 101

In this section basic rendering techniques are explained. They help understand what
exactly is happening during the rendering process.

1.3.1 The world of spaces

In order to be able to see 3D objects on a 2D screens, a lot of calculations have to be
made. Calculations mostly regarding coordinates. Those coordinates have a long road
to go until they lead to a pixel being displayed on the screen. They start in object
space, which is the space defined by the Designer of an object. Let’s say a tea can is
designed. Then the center of the tea can is the origin of its coordinate system. Relative
to this system you then start building your vertices describing the tea can. Vertices are
points/vectors in 3D space which when connected, create a wireframe of the desired
object. Finally the finished tea can file, contains multiple vertices relative to said object
space (coordinate system). Upon placing multiple of those tea cans into a world, you
need to be able to compare the vertex positions from one can with vertices of another
can, in order to calculate lighting and collision etc. Thus every vertex of the tea can has
to be transformed into world space, by multiplying their positions with the a so called
worldMatrix, as depicted in Figure 1.1 Afterwards all vertices of all the tea are relative
to a new coordinate system (world space), which represents the whole world you are
working in. In order to render the scene from a specific perspective, a camera object is
placed somewhere in the world. To simplify the subsequent tasks like applying lighting
or calculating occlusion, you transform all objects in world space into a new coordinate
system. In this system, the camera is the origin and the negative z-axis represents the
direction the camera is looking at. This specific transformation is shown in Figure 1.2.
The new coordinate system, obtained after the transformation, is called view space,
also known as camera space.

1.3.2 Camera Projection

The view frustum from a camera in 3D space is defined by the near and the far plane,
shown by the light blue part displayed in Figure 1.2. It defines the visible space.
Everything outside of it will not be displayed. In order to get the visible part to show
on screen you first have to transform the frustum into a unit cube with coordinates from
-1 to 1. This step is called Camera Projection or only Projection. There are multiple types of

4

1 Introduction

Figure 1.1: The Image shows a tea cup mesh in object space, being transformed multiple
times into world space. Taken and altered from: [11]

Figure 1.2: In the left illustration, the camera is located and oriented as the user wants
it to be. The view transform relocates the camera at the origin looking along
the negative z-axis, as shown on the right. This is done to make clipping
and projection operations simpler and faster. The light gray area is the view
volume. Here, perspective viewing is assumed, since the view volume is
a frustum. Similar techniques apply to any kind of projection. Image and
caption taken from [18, p. 17, Figure 2.4]

5

1 Introduction

Figure 1.3: The left side depicts an orthographic, or parallel, projection; the right side
shows a perspective projection. Image taken from: [18, p. 18, Figure 2.5]

cameras, with different calculation steps in order to receive the camera projection. The
most common camera is the perspective camera, which mimics the human perception,
by making objects farther away from the camera look smaller. That is the reason the
frustum in Figure 1.2 is formed like a cone, opposed to the frustum of an orthographic
camera, which is represented by a cuboid. The difference between those two camera
projections can be seen in Figure 1.3. As already explained the projection consists of
transforming the view frustum into a unit cube. This is done by matrix transformation
as explained in subsection 1.3.3. After the projection the coordinates of the objects in
the scene have normalized device coordinates. While for orthographic cameras, this
process is trivial, perspective camera frustums have to be squished, inorder to fit the
desired output. Even though it is a transformation from one volume into another, it
is called projection, because the resulting image does not include z-coordinates. This
makes it a projection from 3D to 2D space. [18, p. 19]

6

1 Introduction

1.3.3 3D Transformation

3D transformation consists of three main procedures: translation, scaling and rotation.
Translation moves an object from one position to another, while scaling makes it bigger
or smaller and rotation rotates it around a certain axis. All three types of transformation
are realized via matrix calculation. This technique is very common in games or other
applications that are based on 3D rendering. In those types of applications, the above
procedures are applied to objects in 3D space.

The way this works is by extending the vectors of the objects vertices by one ex-
tra dimension. So the earlier three dimensional vectors, become four dimensional,
while the forth coordinate always is a 1. These extended vectors are then multiplied
by the according transformation matrix, which is a 4x4 matrix. Depending on what
desired outcome is, your matrix looks different. For example when scaling an object,
the diagonal of the matrix is filled with the corresponding factors for the x, y and
z value, as displayed in Figure 1.4. A translation matrix on the other hand, has the
corresponding offset values of the three axes, placed on the bottom row. Opposed to
the other two transformation methods, rotation matrices are axis specific and thus there
are three of them.

Objects often need to be transformed in multiple ways. This can be accomplished, by
combining the mentioned matrices in a matrix multiplication. To assure the correct
behaviour of the transformation, you first apply the scaling, then the rotation and
finally the translation. Which leads to this equation: RM = TM ∗ RM ∗ SM, where
SM is the scaling matrix, RM is the rotation matrix and TM is the translation matrix.
Applying the resulting matrix to the vertices of an object, leads to the same result as
applying each of transformation matrices, by itself, in a sequence. This characteristic is
used to create a worldMatrix, which transforms an object from object space into world
space, as described in subsection 1.3.1.

1.3.4 Blending

Blending is one of the last steps in a rendering pipeline and is used to calculate the
effect of transparent objects on the scene. It takes place after all lights, shadows, textures
etc. have been applied to the objects and each part of the scene is mapped to the exact
pixel it represents. So what you have is a big map of pixels containing an array of
color values for the object colors at the pixel position. Those color values per pixel
are also called fragments. The so called blending is the process of traversing through
the fragments of each pixel and combining their color values according to the alpha

7

1 Introduction

Figure 1.4: The image shows the scaling of a vector by a 3D scaling matrix. The matrix
scales all three values, x, y and z by the same factor k. Image taken from [11]

values. The alpha values indicate the transparency of an object material. Staring at
one pixel, the fragment that is the farthest away is chosen and the current pixel color
is overwritten with the fragments color. Now each fragment of the pixel is trespassed
in order of their z values and the current pixel color is combined with the fragment
color. The resulting color is then set as new pixel color. This combination can happen
in multiple ways and is completely programmable. The most common approaches are,
to either completely ignore the previous value and always overwrite the pixel value
with the closer fragment color, or to use the alpha values of the fragments to implement
some transparency. One basic way to do this is to use the alpha value directly as the
color factor. The corresponding equation looks like this:

C = α ∗ B + (1 − α) ∗ A

Where A is the previous pixel color, B is the current fragment color, α is the alpha
value of the current fragment and C is the new pixel color value. When applying this
equation for each fragment most colors still will get overwritten, because the fragments
mostly have ones as alpha values. This means the second product equates to 0. But for
example a red window would let the previous color shine through and still add some
of its red to the final pixel color. Summarized: blending describes the process of the
fragment combination and in most cases is completely programmable. [18, p. 23-24]

1.4 The internet and its technologies

This section introduces modern web technologies, their advantages and limitations.

8

1 Introduction

1.4.1 HTML Events

Most of the times when creating a web application a reaction to user input is desired.
In order to realize that, you first have to be aware of what the user does. This can be
accomplished by listening to DOM events sent by the browser. Each user interaction
and even other interesting things, like the change of the network status, triggers an
events. Each element of the HTML document can be extended by event attributes.
These attribute values can be filled with a callback method, which gets executed every
time the corresponding event occurs. For example if you want to track where the
mouse is at any given time. The desired event you want to listen to in that case, is
the mousemove event. It gets triggered every time the mouse is moved by the user.
By adding the onmousemove attribute to the documents body element and setting the
value of that attribute to a callback method in your code, you can listen to the event.
Alternatively this eventListeners can be added directly do the root document. Those
listeners also are initialized with a callback method. Now every time a mousemove
event is triggered the passed method will be executed. The executed code additionally
receives the current mouse state in form of a MouseEvent object. This object contains
information like the position of the mouse relative to the client (browser), screen and
page. It also contains information like how far the mouse is away from its previous
position, which mouse buttons are currently pressed and even if keys like ctrl or alt are
pressed. [12] Your callback methods then can react accordingly to the given information.
Other mouse related events like mousedown or dblclick all deliver MouseEvents, while
other events like for example the wheel event, deliver a different event object called
WheelEvent. Opposed to pixel values for the mouse position it contains the delta values
of the mouse wheel, describing how much the wheel has been turned. All those events
enable you to track most of the users interactions and react to input. Events also can
be triggered manually via JavaScript by creating a corresponding event object in the
code. Afterwards the DOM element that you want to react to the created event has to
be obtained from the document. Lastly the element can be told, to dispatch the event,
by passing the event object into a dispatchEvent() function. This will trigger all listeners
listening to given event on that element. Note that events only only can be triggered
directly on an element. They cannot be dispatched directly on the browser.

1.4.2 Cascading Style Sheets

Cascading Style Sheets also known as CSS is a styling language used to describe the
rendering of structured documents, such as HTML or XML, on screen and paper.
[3] It has been developed in multiple small modules and can describe the layout an
appearance of a document in many ways. For example you can set the fonts and colors

9

1 Introduction

of texts or define the position of elements. Even placement of objects in 3D space is
possible, by using the CSS 3D transformation module. One of the more recent modules,
called flexible box module solves a lot of scaling issues, by removing the need of setting
exact pixel values for positions. Instead the parent properties describing the desired
behaviour can be set and the browser takes care of the positioning. The advantage
of such a styling language is that is detached from the actual content. This way both,
the styling and the content become easier to maintain and adjust. Furthermore the
cascading part is very helpful, it makes the children of a document element inherit the
parents styles. This removes the need of duplicating styles for each child and in general
reduces the amount of styling code needed.

1.4.3 Same origin policy

"The same-origin policy is a critical security mechanism that restricts how a document or
script loaded from one origin can interact with a resource from another origin. It helps isolate
potentially malicious documents, reducing possible attack vectors."[15] An origin is defined
by the host, the protocol and the port (if specified). So two URL’s have the same
origin, if all three properties are the same. If one of them differs, the interaction
between those two resources is called cross origin. Cross origin interactions underlie
specific regulations determined by the same-origin policy. For example reading from a
cross origin is mostly disallowed, while embedding and writing often still is possible.
Embedding also can be influenced by the site, by using HTTP header called X-Frame-
Options and Access-Control-Allow-Origin. The X-Frame-Options header defines wether
a site wants to be embedded in general or not. In the Access-Control-Allow-Origin a
site can define origins, which are allowed to share cross origin resources. But even
when embedding is allowed, the same-origin policy strongly limits the API access to
the embedded HTML document, since you most probably are not on their whitelist to
CORS access. The actual limitations depend on the browser, but for example Firefox
only allows four functions on a cross origin window element. Blur, focus, close and
postMessage. Furthermore attributes, except for the location are read only. When trying
to use other API methods or modify the attributes it leads to an error, which also
is protected. It can’t be interpreted in JavaScript. The code leading to the error just
receives a generic error. The actual error message is only visible for the user in the
console. Additionally the browser storage is separated by origin and JavaScript code
from one origin cannot access the storage from another origin. [15] All of this is to
prevent phishing and other malicious attacks from happening and most other browsers
have similar implementations of the same origin policy.

10

1 Introduction

1.4.4 Vue.js

"Vue (pronounced /vju:/, like view) is a progressive framework for building user interfaces.
Unlike other monolithic frameworks, Vue is designed from the ground up to be incrementally
adoptable. The core library is focused on the view layer only, and is easy to pick up and integrate
with other libraries or existing projects. On the other hand, Vue is also perfectly capable of
powering sophisticated Single-Page Applications when used in combination with modern tooling
and supporting libraries." [9]

It is a component based JavaScript framework, like React JS or Angular JS. Your
own, so called Vue components, can be built, which can receive properties and im-
plement component specific logic. The components consist of the HTML part, where
you can insert any type of HTML element, like a <button>, <image> or even other
Vue components. Those components can then be inserted into the body of the HTML
document. A big advantage of Vue are the built in data bindings. For example an object
containing a text value can be passed as a property. It then can be bound to a <label>
element in the component, so the text is displayed. When changing the text of the object
through any other code, the component notices the change and immediately updates
the value displayed in the component. This shortens the code base, since property
updates do not have to handled by yourself. Other frameworks like React need external
libraries like MobX to accomplish the same thing. Vue.js is very light weight, but still
powerful, so a good basis to build an web application on.

1.4.5 Flux architecture

"Flux is the application architecture that Facebook uses for building client-side web applica-
tions." [7] It assumes a global application state that is accessible from all components
responsible for the rendering, which most single page application have. Flux is based
on four main components: Actions, a Dispatcher, one or more Stores and the View com-
ponents. It enforces single direction data flow. The general structure can be observed
in Figure 1.5.

Actions are small objects containing information about the user interaction. The
Dispatcher is the distribution layer, that delivers all the actions to the stores. There’s
always only one dispatcher. Stores are responsible for the application state or parts of
it and the only entity allowed to alter the state. Small applications only need one store,
while big applications mostly use more stores that are logically separated from each
other. View components are the components visible to the user. Since the architecture
is from facebook, in most cases the components consist of facebooks React components,

11

1 Introduction

but the architecture is applicable to any other UI component. The View components
derive their local state from the application state and emit new actions when the user
interacts with them. [7]

For example if a user changes text in an input field and presses enter. The View
component containing the text field, reacts to the enter press. It calls an action creator
for a TextChangeAction and passes the text id and the new text as a parameter. As the
name implies, the action creator creates new instances of Actions, but it also can have
more logic to it. Often action creators are in charge of interacting with the backend of
the application. In such a cases, they first send a request to the server and only after
receiving a positive response, they create the corresponding Action and dispatch it. In
this example it would be a TextChangeAction containing the id and the new text. This
Action is dispatched by passing it to the dispatch method of the Dispatcher. The Action
is then distributed to all the subscribers subscribed to the Dispatcher. The subscribers
consist of Stores. A Store can subscribe to a Dispatcher by calling the subscribe function
and passing a callback as parameter. This callback is part of the Store and contains the
logic to process the Actions received. Upon arrival of the TextChangeAction in the Store,
the application state gets updated according to the Action. In this case, this would
mean that the text for given id gets replaces by the new text. When finished a changed
event is emmited by the Store. The View components listen to that changed event and
retrieve the new data from the Store. Usually only a few big View components called
controller-views are listening to the stores and pass the retrieved data to their children.[7]

The main purpose of this architecture is to simplify the data flow and lead to more
transparency regarding the behaviour of the application. It removes two way bindings
and thus also cascading updates, where one update leads to multiple other updates and
so on. The application state is only maintained in the Stores, which makes it possible
for the other components to be mostly decoupled from each other. That makes the
system as a whole more predictable and modular. [7]

1.4.6 WebSocket

The WebSocket Protocol enables two-way communication between a client running untrusted
code in a controlled environment to a remote host that has opted-in to communications from
that code. The security model used for this is the origin-based security model commonly used by
web browsers. The protocol consists of an opening handshake followed by basic message framing,
layered over TCP. The goal of this technology is to provide a mechanism for browser-based
applications that need two-way communication with servers [...]"[6, p. 1] It’s advantage over
the common HTTP, is that there is no request response data flow. Instead data can

12

1 Introduction

Figure 1.5: The image shows the abstract data flow of a application built with flux
architecture. The arrows show the direction the data is flowing and each
node has a text describing the general approach on how the data is processed
in each step. Taken and resized from: [7]

13

1 Introduction

pushed form party to party, whenever it is necessary. This makes it easier to keep
client and server states consistent. For example when having a server state that can
be influenced by multiple clients at the same time. Those clients would have to keep
polling with HTTP requests, to know if something has been updated. With WebSocket
the clients can be updated by the server whenever its state changes, without having to
ask for it.

1.4.7 The Protocol Buffer Library

"Protocol Buffers [(protobuf) are a] language-neutral, platform-neutral, extensible mechanism
for serializing structured data".[1] This mechanism has been developed by Google and
claims to be a smaller, faster and simpler option compared to the Extensible Markup
Language (XML) "The protobuf library defines a fast binary format for messages. Message
structures (so called ‘descriptors’) are defined in a simple C-like language in .proto files. An
example is given in [Figure 1.6]. From these, interfaces for different programming languages
can be generated using the provided extensible compiler, protoc. A given interface contains
the code describing a set of classes providing the (de)serialisation functionality tailored for a
given .proto file and platform. The descriptors themselves can be serialised as protobuf messages,
facilitating the inspection of arbitrary serialised messages without needing the descriptors at
compile time. In summary, the relevant features of the protobuf library are the following:

• Fast serialisation and de-serialisation of structured data in the form of messages
• Separation of data structure definition and code
• Extensible code generators for different programming languages2
• Messages can be nested
• Repeated fields can store data in a manner similar to dynamic arrays
• Content can be omitted from optional fields, and does not take up space in this case
• Thread safety"[10]

1.4.8 WebGL

"WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics API based on
OpenGL ES, exposed to ECMAScript via the HTML5 Canvas element." [21]

In other words it is a OpenGL port for the browser, to make shader language ac-
cessible via JavaScript. With WebGL you can access the graphics card via JavaScript and
make use of its calculation power, to display 3D scenarios in real time. The scenarios are
visualized, by drawing on a HTML canvas element. This element has been introduce,
to make it possible to draw via JavaScript.

14

1 Introduction

Figure 1.6: Example for a protobuf message definition for a three dimensional vector.
Image retrieved vai screenshot from the ubii-msg-formats project. [2]

1.5 Serialization methods

1.5.1 JSON

JavasScript Object Notation, also known as "JSON[,] is a lightweight, text-based, language-
independent syntax for defining data interchange formats. It was derived from the ECMAScript
programming language, but is programming language independent. JSON defines a small set
of structuring rules for the portable representation of structured data."[16] "[It] is a syntax
of braces, brackets, colons,[...] commas [...] [and] provides a simple notation for expressing
collections of name/value pairs." [17] JSON is used in web applications, to exchange data.
A JSON construct can be attached to a HTTP request body and sent together with
the request. As the name implies, the JavaScript Object Notation (JSON) is based on
JavaScript objects. This makes for a native support by the programming language.
Every JavaScript object can be serialized into JSON format and every string in JSON
format can be deserialized into a JavaScript object, making JSON a perfect tool for web
applications, that do not have fixed typing.

15

2 Related Work

2.1 three.js

"Three.js is a 3D library that tries to make it as easy as possible to get 3D content on a webpage."
[19] It is based on WebGL and tries to minimize the necessary work to set up and
work with 3D scenes. Thus removing the need for low level API calls directly on the
WebGL interface. "It handles stuff like scenes, lights, shadows, materials, textures, 3d math, all
things that you’d have to write yourself if you were to use WebGL directly." [19] Everything
combined creates a interactive 3D world displayable in the browser. To understand
how three.js works its structure has to be observed.

An example for a typical three.js setup can be seen in Figure 2.1. The base of such a
setup are geometries and materials. Geometries store the vertex position for all vertices
defining a shape for e.g a cube, a sphere, a plane, or more complex thing like a tea
can. Materials consist of multiple parameters describing the surface of an object. They
are defined by a texture or a simple color value and contain things like normal maps,
opacity values, blending and lighting options. When combining a material with a
geometry a mesh is obtained. Those meshes can either be directly added to a scene or
combined to an object. Those objects can then be grouped even further. For example if
you want a squadron of space ships to fly around a space ship geometry and a material
describing its surface is needed. Then multiple meshes can be instantiated with those
and be grouped into a squadron. This way all of the space ships can be moved at once
just by moving the group. To see reflections when they fly by on the screen a light
source has to be added. This source emits light and changes the way materials look, for
example materials that try to mimic metallic surfaces, will reflect this light, leading to
changes in the pixel colors. There are multiple types of lights like point lights, ambient
lights and directional lights. These are used to replicate the real world lighting in a
digital 3D space. All those objects combined define a scene.

After the scene has been generated, a camera of the desired type (mostly perspec-
tive) can be instantiated. This camera together with the scene is then passed to a
renderer. A renderer is instantiated with some render options defining if antialising is
enabled, or alpha values shall be considered in the color calculations. Also the width

16

2 Related Work

and height of renderer has to be set to the desired output picture size in pixels. Upon
render all objects in the scenes and their meshes are put through a complete rendering
piepeline. Meaning that they get transformed into camera space, projected into a unit
cube and rasterized. Additionally lighting etc. is applied. Finally the color values for
each pixel are calculated and drawn on a HTML canvas element. There are multiple
types of renderers but the most common one is the WebGLRenderer, which uses the
WebGL API, described in subsection 1.4.8, to draw. Another renderer that comes with
three.js is the CSS3DRenderer. This one is used, to display HTML elements in 3D space.
Similar to the WebGLRenderer, it takes a scene and a camera into a render function
and renders the scene accordingly. The main difference being, its rendering procedure.
The scene it takes doesn’t consist of Meshes or lights, it solely consists of CSS3DObjects.
CSS3DObjects are inherited from the base Object3D but instead of being placed using
the usual matrix transformation, the objects rea transformed via CSS 3D transformation.
This is the reason the scale of CSS3D scenes can differ from WebGL scenes. CSS uses
pixel values as measure, while WebGL has its internal measurement system which
tries to mimic the metric system. More about CSS can be read in subsection 1.4.2. The
CSS3DRenderer also is not responsible for rendering anything itself. Its only purpose is
to position and scale the HTML elements in the scene relative to the camera. The result
is then attached to the DOM. The actual visualization is performed by the browser.
Another thing to mention is the fact, that every object in a scene is inherited from the
Object3D class. So meshes, lights and even cameras are Object3D instances, with some
more functionality on top. This way every object can be attached to every other object.
For example when having a moving object in the scene, a camera can be attached to
it, to make the displayed image update according to to movement of the object. The
other way around is also possible. Objects can be attached to cameras, which makes
them move around with them. This is specifically useful in VR, for making something
always visible in the users peripheral.

2.2 A-FRAME

"A-Frame is a web framework for building virtual reality (VR) experiences. A-Frame is based
on top of HTML, making it simple to get started. But A-Frame is not just a 3D scene graph or a
markup language; the core is a powerful entity-component framework that provides a declarative,
extensible, and composable structure to three.js. Originally conceived within Mozilla and now
maintained by the co-creators of A-Frame within Supermedium, A-Frame was developed to be an
easy yet powerful way to develop VR content. As an independent open source project, A-Frame
has grown to be one of the largest VR communities. A-Frame supports most VR headsets such as
Vive, Rift, Windows Mixed Reality, Daydream, GearVR, Cardboard, Oculus Go, and can even

17

2 Related Work

Figure 2.1: This Image shows the an exemplary structure of a three.js project, displayed
as a tree. It consists of a renderer, a scene, multiple objects, meshes and a
camera. Each mesh consists of a material geometry pair, while the material
can be defined by a texture. Image taken from [19]

18

2 Related Work

be used for augmented reality. Although A-Frame supports the whole spectrum, A-Frame aims
to define fully immersive interactive VR experiences that go beyond basic 360[-degree] content,
making full use of positional tracking and controllers." [8] It is one of the best frameworks
currently on the market, to develop VR content for the web. Built on top of three.js
A-Frame tries to simplify the implementation of VR worlds. Features like a built-in
visual inspector, where you can move and observe the objects in an A-Frame scene,
make the development process a lot easier.

2.3 mozilla hubs

Described in one sentence: "Hubs is a virtual collaboration platform that runs in your browser.
With Hubs you can create your own 3D spaces with a single click. Invite others to join using
a URL. No installation or app store required." [23] It is an Open Source project initiated
by the company Mozilla. Mozilla Hubs allows you to create you own Virtual Reality
room and invite other people into it. Such a room has multiple features. The world is
interactive, so objects can be moved, and even freehand paintings can be created with
the pen tool. The main focus is communication and sharing. That’s why there is a
text chat, an emoji feature, a voice chat, and an option to share your desktop screen,
or your webcam input. Additionally multiple video and streaming sources can be
embedded, like YouTube, or Twitch. Those are aslo interactive, meaning a video can
for example be started and stopped, or the volume can be modified. All those things
are shareable with multiple people. Every room has its own link which can be sent
to the persons you want to invite. Every member joining a hub can choose from a
collection of predefined avatars, that will be visible for all other members and indicate
the persons position. All members of the room can be managed by the room creator.
Mozilla hubs has authentication and authorization implemented, so one person has the
ownership of a room. Interaction restriction, like what object is allowed to be moved,
can be defined per user from that person having ownership. [5] Mozilla also offers
their own servers. They can be used to test the environment and meet with a small
amount of people. If a bigger events with 25 or more people is planned, a room can be
rented from Mozilla. But since it is Open Source, you can also simply host it yourself,
by setting up the whole project on your own hardware.

The frontend or client side of this project is built with A-Frame and the underly-
ing three.js. In order to enable user to user communication, a connection to two
backend services is established. One is responsible for voice and video communication.
It collects all video and voice output from the clients and distributes it to all other
clients connected to a room. The other service takes care of the remaining interactions,

19

2 Related Work

like drawing, moving objects etc. Both services consist of a big stack of different server
technologies.

2.4 ubi-interact

Ubi- interact, also known as ubii, is a project developed by the "Forschungsgruppe
Augmented Reality" (FAR) from the Technical University of Munich (TUM). Used as a
framework for building reactive and distributed applications, it can send and receive
data from any client connected to it. One advantage is its subscription feature, where
topics can be created and subscribed to by clients. When a message regarding that
topic is published by a client, all subscribers receive a WebSocket message, with the
corresponding update. Furthermore ubi-interact implements Googles protocol buffers,
making it easy to define additional data formats and accelerating the serialization and
communication between clients. The framework allows for custom definitions of your
systems behaviour, based on the received topic data. These so called interactions can be
stored and retrieved from the backend and thus can be reused. Ubii is developed in a
very modular way, making it possible for your implementations, to be decoupled from
the specific devices or environments. By having context neutral interfaces, interactions
become reusable in multiple environments and devices become exchangeable, which
makes the framework as a whole very flexible. [20] Storage functionality is also brought,
which cannot just store files locally, but also retrieve it from an online database. This
storage is also easily extended, by custom implementations. But it does not just come
with a backend. There is a fully functioning frontend developed by FAR too. It
contains multiple former projects in form of applications. For example a VR Keyboard
implementation, where the smartphone can be used as a keyboard, while being in a
virtual reality experience. Another example is the XRHub which implements a three.js
room, and supports VR. This is the par, that will be further developed in the course
of this thesis. The frontend also brings a lot of tools with it, like a topic inspector,
or performance tests and even has isolated interface access. Interfaces like cameras,
smartphose or the self developed Ubii Controller can be accessed and tested without
any other code being involved. The frontend is built with Vue.js components and a
lot of the applications use three.js for the visualization. The last part of the project is
the ubii-msg-formats git repository. There the data formats and interactions are defined
in .proto files, which later on can be used by the back- and frontend, to serialize
and distinguish the individual messages. This is also where new data types can be
introduced.

20

3 The XR-Hub

3.1 Selecting the right framework

Planning a Software project is similar to planning a house. While of course it is impor-
tant to plan for doors, windows and lights, the most important part is the foundation
and the materials you’re using. A house is built to last for ages it should be built with
as little hurdles as possible. Thus the ground on which your house is placed and the
type of bricks your house will be made of, has to be chosen wisely. Same goes for
the Software. Since the code should be designed to last as long as possible, without
having to adjust it, a solid foundation is needed, which gives the needed capabilities of
building a good software on it.

One very promising candidate as a ground to build on, was mozilla hubs. It al-
ready implements most of the features we need for a collaboration tool and even
more. Features like drawing, voice chatting, video, desktop and camera sharing are
all features that fit exactly what we are triying to build. So why not use it?. Of course
the idea behind hubs is very similar to ours. The fact that it is Open Source and the
community is actively developing it, also is a reason to go for it. Most of the features
they have implemented, also make sense for this exact use case. But one main feature
we want to implement is missing. The interaction with websites. In hubs only videos
and streams are able to be embedded. Other sites, like Google Maps for example, are
not supported. But that should not be a drawback, since we wanted to implement that
feature anyways. The main reason, that lead to not using mozilla hubs, was its project
size. The client side code let alone consists of over 221 thousand lines of code (number
from 11.08.2020, retrieved by using the GitHub Gloc Chrome extension on the official
GitHub repository), not mentioning the two backends. And to work on it locally, all
three applications have to be running on your machine. In order to even analyze if the
features we want to implement are realizable in mozilla hubs, it would take weeks of
going through the code and understanding it. With the possibility that we come to
the conclusion, that it does not work. Thus the decision to leave mozilla hubs for now
and create a smaller scale prototype has been made. When having success with the
prototype, mozilla hubs could still be extended with it.

21

3 The XR-Hub

So instead we chose ubi-interact as our foundation. As mentioned in section 2.4,
it is designed for applications with external devices like vr-headsets and works with
modern technologies like the protbuf protocol from google to spread the interactions
from the user to other clients. So it does not just have a working frontend, which
is easily extendable, it also comes with a fully functioning backend, that also can be
adjusted to our need. The main part used, was the already existing XRHub application
inside of the ubi-interact frontend, which consists of a small three.js scene with VR
capabilities. Furthermore the already implemented routing and the backend has been
used. The main features utilized from the backend, were the topic subscription, the
storage and the services. So a solid ground has been set up. Now the right tools for
building have to be chosen. The goal so to build a VR-Application in the browser, so we
are limited to browser technology, which luckily is not such a big limitation nowadays.
There are a few established frameworks that support VR-developement. Libraries like
A-Frame ReactVR, or WebXR are all valid candidates, that have a lot to offer. Since the
ubi-interact frontend was built with Vue.js components, ReactVR would mean a break
in the architecture, so it was not the favoured solution. A-Frame is very focused on
the VR part and has little possibilities, to display other websites or HTML elements
within a scene. It still comes with a lot of advantages like its scene inspector and its
big community, so it also is a valid way to go, but at the time being, we didn’t see it
as superior to three.js. This was due to the fact, that we would have to use three.js
anyways, to be able to display the HTML part. This leaves us with WebXR and three.js.
WebXR is a pretty low level API on WebGL, so it would mean a lot of work, a lot of
other people already had done, to setup a working VR Scene. This lead to the decision
to use the three.js library, which is built on top of the WebXR standards, instead of
reinventing the wheel. Further Vue.js components were used to realize, buttons, links
or text boxes inside the scene.

3.2 WebXR, WebVR and browsers

"Hardware that enables Virtual Reality (VR) and Augmented Reality (AR) applications are
now broadly available to consumers, offering an immersive computing platform with both new
opportunities and challenges. The ability to interact directly with immersive hardware is critical
to ensuring that the web is well equipped to operate as a first-class citizen in this environment.
Immersive computing introduces strict requirements for high-precision, low-latency commu-
nication in order to deliver an acceptable experience. It also brings unique security concerns
for a platform like the web. The WebXR Device API provides the interfaces necessary to enable
developers to build compelling, comfortable, and safe immersive applications on the web across a
wide variety of hardware form factors."[13] It is the successor of the WebVR API, which

22

3 The XR-Hub

"[...] provides purpose-built interfaces to VR hardware to allow developers to build compelling,
comfortable VR experiences." [22] The WebVR development has halted in favor of being
replaced by the WebXR Device API, but most browsers still support WebVR while
WebXR is in development. [22]

Right now we are in between two API’s. One is deprecated and will be replaced
soon and the other is under developement and subject to change at any time. This
makes it difficult to develop VR content. Most frameworks like three.js already hopped
onto the WebXR train, only implementing WebVR with older versions. Three.js for
example remove WebVR support colpletely, since december 2019. [14] Most browsers
on the other hand, do not support WebXR yet. Firefox and Chrome have some flags and
settings WebXR features can be enabled, but those are experimental and very unstable.
Plus even the way those features are enabled has changed from time to time. Firefox
tries to keep it up to date and also developed a WebXR Device emulator for people that
do not have access to XR-Devices, but it still does not work every time. Firefox also
has the downside of having updated their same-origin policies recently, which makes
it impossible to connect to the ubii backend without refactoring a big portion of the
existing code and using a reverse Proxy.

Another hurdle is the security policy regarding WebXR. Since the ability to track
the whole body movement can be abused and used in a malicious way. Browsers
lock the XR features for normal http connections and only enables them if a secure
connection is established. Which means the client has to be delivered via HTTPS. This
has been solved by using a self signed certificate and delivering the built project via
nginx, which is a web server software. Nginx supports HTTPS, making it possible to
use the WebXR features. This solution also influenced the development, since to test
your code the whole application has to be built. It only takes around ten seconds, but
compared to the sub one second recompile time in the development mode, it is big
difference.

During the process of writing this Thesis, most of the time it wasn’t possible to
develop for VR. Either because of the COVID-19 pandemic limiting the access to the
necessary devices, or because of the fragile browser support. This is the reason, that
the usage of VR in this project is theoretically possible, but no VR interaction has
been tested, nor implemented. Which means the scene can be observed through a VR
headset if a working browser setup is found, but no interaction with it is possible. The
WebXR support situation is subject to change and when the API stabilized it will be
very easy to develop for VR, but as of now it is not practicable.

23

3 The XR-Hub

3.3 Combining websites and VR

The main idea of the project is, the ability to insert websites from multiple sources
into a VR Scene and interact with them. This scene should then be accessible for all
invited persons, to also have a look at the displayed websites. So first of all way to
display a website inside a three.js scene has to be developed. Three.js already comes
with a functionality to display CSS content in a scene with its CSS3DRenderer and
CSS3DObjects, but those on their own do not support VR. In order have the ability to
ender VR and move around on virtual ground a separate scene using a WebGLRenderer
has to be created. The issue is how to combine those two. Since two different scenes
are involved, the objects in one scene do not interact with the objects in the other scene.
Either the CSS3DObjects are not visible at all, or they cover all other Objects3D objects
in front and behind them, no matter where they are placed.

To make those CSS3DObjects look like they belong to the WebGL-scene, you can
use a trick as described in this article [4]. The trick and how it works is explained in
the following part. First of all a plane has be created in the WebGL-scene, that plane is
made transparent by setting the opacity of its material to zero. Now a CSS3DObject is
placed at the exact same place in the CSS3DScene. Since the plane is transparent, the
CSS3DObject is visible through the plane. The problem is, when another object in the
WebGLScene is located behind that plane, it also appears through it, because of the
opacity of the plane and the fact that the WebGL renderer has priority. That is not what
the desired outcome. The plane should represent the website and only the website, so
it looks like the website is a texture on the plane in the WebGL scene. To accomplish
that, a three.js blending option is used. As explained in subsection 1.3.4, blending is a
calculation, to determine pixel colors. Three.js has the "THREE.NoBlending"-option
for materials, which changes the blending calculations for that material. When now
calculating the pixel color, by iterating through the fragment colors, fragments with
the "NoBlending"-material option set are treated differently. Those fragment colors are
not combined with the previous calculated color according to its alpha value, instead
they overwrite the previous color. This leads to the desired behaviour in our WebGL
scene. The only thing left to do, is setting the material color of the WebGL plane to
black. This is to prevent alteration of the colors of the website or other transparent
objects in the scene, placed in front of the plane. So the rendering problem is solved,
but there are more issues that have to be tackled. For example the website should be
able to move and not be stuck in one place. The ability to move and rotate the websites
is needed. In order to gain this ability, both the CSS3DObject and the WebGL-plane,
need to be able to move simultaneously. This is realized by the ThreeWebsiteCanvas
class, which creates the previously discussed plane together with a CSS3D object and

24

3 The XR-Hub

makes them act as one. Another point to mention, is the scaling of the CSS3D object.
The scales in a CSS3D scene differ from the ones in a WebGLScene. That has to be
taken into account. So when scaling the plane to x and y the CSS3D object cannot be
scaled with the same values. Width and height of the iframe have to be considered
too. This has been solved by introducing a resolution variable, which stores the iframes
dimensions. When the CSS3D object containing the iframe is scaled, the x value is
multiplied with 1/resolution.x and the y value with 1/resolution.y, which makes
it look the same size as its WebGL counterpart. After all these adjustments a website
could be appreciated via a VRHeadset, as long as VR is available.

3.4 Interacting with the scene

Even though the base for moving and rotating the websites has been set, it is still not
possible, since there is no way to interact with the scene. This still has to be imple-
mented. The application should be usable by multiple devices not just VRHeadsets, so
the most common interaction has to be implemented too. The mouse and keyboard
interaction. First of all the mouse movement has to be tracked. Fortunately the standard
browser MouseEvents, described in subsection 1.4.1, can be used to do so. Together
with eventListeners custom callbacks can be hooked onto those events. Those listeners
execute the method defined and passes the event that triggered them, to it. This way
the mouse state, at the time the event was triggered, can be tracked by the application.
This information now has to be used.

First of all comes navigation. There is no ability to navigate in the scene yet, which
means a user is stuck with standing at the spawn location. For the mouse keyboard
interaction, the FirstPersonControls.js, which already existed in the ubi-interact project,
has been used with minor adjustments to the key mapping. This file is an example file
from three.js showing how controls can be implemented. As the name already implies
its behaviour is leaned on the navigation of first person games. So the "WASD"-keys
are used to move forward, left, backward and right. The right mouse button combined
with mouse movement is used to turn the camera, which also affects the direction you
move with "WASD".

Further, the decision has been made to use an actual Obejct3D in the WebGLScene to
represent the mouse position. This way most part of the logic can be kept as similar
to the VR interaction, as possible. In VR instead of having a mouse, two controllers
function as input method, which also are represented in the scene via objects. To map
the mouse position of the event to scene coordinates a few calculations have to be made.

25

3 The XR-Hub

Three.js fortunately already brings a lot to the table, for example the camera has an
unproject() function, which transforms normalized device coordinates mentioned
in subsection 1.3.2 into a position in world space. In order to be able to use this
function, the MouseEvent coordinates first have to be converted into normalized device
coordinates (NDC). The MouseEvent coordinates are given in pixels, from the upper
left corner of the page, by substracting the offset to the parent HTML element from
them, normalizing them and shifting the range from 0 to 1 to -1 to 1 the needed NDC’s
are obtained. To fix the distance the mouse sphere has to the camera, those coordinates
are unproject and then subtracted by the camera position. The resulting vector is then
normalized and multiplied by a fixed scalar. This calculated position is then applied
to the mouse sphere. When those calculations are applied in the eventListener callback
for the mousemove events, the mouse sphere becomes a real time representation of the
mouse position inside the WebGL scene.

From that point on the objects the user is pointing at can be determined, by us-
ing raycasting. It works by sending a ray from the camera position through the mouse
sphere position into the scene and collecting all objects intersecting with the ray. The
first one in that list will be the mouse sphere, but any other object after that is the one
the user is pointing at. Sending the ray also can be done without the mouse sphere just
by sending the ray into the direction calculated before, but this isn’t the only purpose
of the sphere. It is used to enable the user to move objects. There are multiple ways to
realize movement in a 3D scene. A move mode can be implemented where the three
axes of the scene are displayed via arrows from the center of an object. Pull those
arrows leads to a movement along the corresponding axis. Combined with a display for
the actual position numbers, this is perfect for exact placement, but not really intuitive
and quick to use, when just a rough positioning is desired. The other way is to make
objects abled to be grabbed. Those grabbed objects can then be moved by moving the
mouse. Since we do not expect the user to need a high amount of precision placing the
websites the second approach was preferred. But this could idea still could be realized,
by only using the mouse offset given from the mouse move events, without using an
actual object in the scene. So why the mouse sphere? The idea was to stay as close as
possible to the way it would be implemented in VR, in order to be able to reuse code
and already experiment with the way it works. In VR the plan was to attach the object
that the user wants to move, to the controller pointing to it. That way the controller will
act as an extended arm enabling the user to precisely place the objects where he wants.
So to replicate that behaviour the mouse sphere got implemented. When a user grabs
an object its position gets transformed to the object space of the mouse sphere. Then
it is attached as a child to the mouse sphere. So when the mouse is moved around,
the user does not just update the mouse sphere position, but also the object position,

26

3 The XR-Hub

because it is a child object of the sphere. After ending the grab, the transformation from
before is undone, so the object is back in world space and then the object is detached
from the mouse sphere. As a side note: every other Object3D object would’ve done the
trick as mouse representation in the scene. A sphere has been used because it also can
be used as a visualization.

With that implementation, objects can be moved around, but one issue stays. All those
calculations etc. are only done in the WebGL scene. What about the CSS3DObjects?
Those do not move at all. This is solved by replicating the same logic in the CSS3DScene,
i.e. another mouse sphere is created for the CSS3D scene and position is kept in sync
with the sphere of the WebGL scene. But there is one difference, when reacting to grab
actions from the user. The fact, that every object in the WebGL scene maps to exactly
one object in the CSS3D scene, can be used as advantage. Instead of having to use the
raycast technique in the CSS3D scene and to determine which CSS3D object is getting
grabbed, a reference of the corresponding CSS3D object is attached to every WebGL
plane representing a website. This has multiple advantages. First of all it reduces the
amount of calculations made, which is always good when dealing with mousemove
events. Those events fire very often, so you want to keep the calculations bound to such
events at a minimum. Secondly possible future bugs can be eliminated, by making sure
the objects picked are the ones belonging together.

More advantages can be observed when looking at the method used to change the URL
of a website. That is an important feature to enable the user to change the content of a
website canvas. There are multiple solutions on how to implement such a feature. For
example a text box could be placed above the website containing the URL, or an overlay
like in a HUD could be created, which always displays the URL of the website the user
is pointing at. Since that action has to do with text it is very important that the user is
able to read it. This can be an issue in VR. You do not always have the optimal distance
to a website and if its canvas is tilted sideways to the user it becomes even worse. So the
text box option is not a good solution. The HUD idea would solve the problem of the
readability, but it can be difficult for the user to associate the information displayed in
the HUD with the object in the scene. So both ideas are not optimal. The solution lastly
implemented is something in between. Instead of a HUD, there is a ThreeConfigCanvas,
which is displayed similar to the websites. It also consists of a WebGL plane and a
CSS3D object, but opposed to the website canvas it does not contain an iframe, it is
filled with a self made Vue.js component. This component contains a text box filled
with the URL and a reload button. The ThreeConfigCanvas only exists once per room
and is only visible when toggled. It can be toggled with a WebGL website object as
a parameter, which is used to calculate the desired position. The ThreeConfigCanvas

27

3 The XR-Hub

lays itself on top of the website, tilts itself towards the camera and always has a fixed
distance to the camera, to ensure readability.

Another design decision was made, for the movement of the websites. Moving objects
is already implemented, but what is quite difficult, is to rotate them into the desired
position. Due to this fact handles got introduced. One handle for general movement
and one for rotation. The movement one is a simple block placed above the website
and the rotation one is located below the website represented by a thin cylinder. So
instead of grabbing the website directly, you grab one of those handles and either turn
the plane or move it around. Those handles do not just simplify the rotation of the
website they also visually separate the interaction with the 3D object of the website
from the interaction with the actual iframe.

This leads to the most important feature. The interaction with the website itself.
When implementing the website canvases as described in section 3.3, they are displayed
but not interactive. The iframe content cannot be altered in any form. This is due to
the way the browser events work. Since the parent of the iframe, namely the three.js
scene already interprets all pointer events, the iframe itself does not notice any user
input. The initial idea was to retrigger every event manually directly onto the iframe. It
works by taking advantage of the raycast, that is used to determine where the mouse
is pointing at. It does not just store the objects it intersects with, but also the position,
where in the scene the intersection took place. This information can be used to calculate
an exact position on the iframe. That point defines the element on the iframe from
which the event has to be manually triggered. Now the event object just has to be
duplicated and the desired element has to be retreived from the iframe. The event
then lastly has to be dispatched on the retrieved element. The standard approach to
dispatch a mouse event via JavaScript, is by getting the element you want to react to
the mouse event from the DOM and dispatching the event via the element. Since exact
position is know, the document function elementFromPoint(x, y) can be used, to get
the desired element. With that element the event can then be dispatched as described
in subsection 1.4.1. But here is the clou. When working with websites with the same
origin, everything works fine. But the moment you try to embed a website from a
different source, e.g. youtube.com or google.com, you have to deal with the browsers
security policies. Those are very strict regarding Same-origin-policy, as explained in
subsection 1.4.3, and make it impossible to interact with elements inside a foreign
iframe via JavaScript.

The next idea was, instead of emitting the event on top of an element, a click on
a certain position could be emulated. This comes with two problems. First of all it

28

3 The XR-Hub

is not possible to simulate MouseEvents via JavaScript, in any way, without using
an actual input device. Secondly the parent would still swallows the event, leaving
the iframe with nothing to react to. This lead us to our final solution. The CSS style
"pointer-events". When set to the value "none", this style disables all pointer events
for that HTML element. So setting the the pointer-events style of the three.js scene to
"none" prevents the mousemove and mousedown events from being swallowed. That
way the iframe can receive the mouse events and react to them, making it possible
to interact with it as expected. The downside of this approach is, that it breaks the
whole navigation and movement controls. So the interaction with the iframe is fixed,
but the ability to move objects and navigate in the scene has been lost. That’s why
the "Toggle Website Interaction"-button got introduced, which switches between a
website interaction mode and a scene interaction mode, by either setting or removing
the mentioned CSS-style. Even though it was introduced due to lack of options, the
distinguishing between the website interaction and the scene interaction, can be seend
as an usability improvement. It prevents the user from accidentally interacting with a
website while trying to move an objects and vice versa.

But this solution raises the question, on how to implement website interaction in
VR. In VR there is no mouse, let alone mouse events. Only the controllers and their
input are accessible, but the input does not directly communicate with the browser and
trigger pointer events. It has to be interpreted by JavaScript. Which lastly means the
mouse events have to be triggered manually. As explained before, this is impossible,
when dealing with iframes, which do not have the same origin as the site your code
is running on. There are little to none ways to work around this. Further ideas and
approaches on how to tackle this issue, can be read in section 3.6.

3.5 Interacting with others

The interaction with the local scene is important, but the actual idea is to connect
multiple people in one room, thus we also need a interaction in between the clients. For
that purpose the already existing ubi-interact backend described in section 2.4, is used.
Its topic subscription functionality perfectly fits our needs. It allows for subscriptions
for custom topics, which will be created if not already existing. So we a topic can be
created for each room and each client can subscribe to them. To distinguish the rooms
from each other, a so called room id got introduced. When accessing the base XRHub
URL a new room id gets generated and a new topic is created on the server. When
adding a room id to the end of the URL, such a subscription to the room topic with the
given id, is initialized. Every client only subscribes to one room and the rooms are com-

29

3 The XR-Hub

pletely separated from each other. No room can retrieve information from another room.

In order to invite people to the room, a link on the headerbar has been added, which
contains the XRHub URL with your own room id attached to its end. That way an
information transfer between clients has been established. Now is the question what
should be transferred? The first idea, was to create an architecture leaned on face-
books Flux architecture (subsection 1.4.5). This means every interaction from the user,
does not lead directly to the user changing the scene. Instead an action creator is
called, which first interacts with the server and upon successful transaction, created
and dispatches an according action. The scene itself listens to actions and changes
the scene depending on the action. For example when a user moves an object. The
objects does not get moved immediately. First the moveObject action creator is called,
which sends an update to the server, containing the object id, the action type and the
action parameters, so the direction the object gets moved to. Since the messages are
published via WebSocket, there is no response to wait on. Thus the action creator can
continue with creating and dispatching a move object action. The scene then acts as
the XRHub equivalent to the flux model store. It accepts the action and moves the
object accordingly. The format we send the updates to the server is string, or more
specific a string in JSON format. The format is explained in subsection 1.5.1. The
ubi-interact framework is very customizable and the ubi-message-formats repository
could be easily extended by custom actions. But since it wasn’t yet determined what
such an action contains, JSON was the format of choice. This keeps the application very
flexible regarding the information sent and received. This architecture works really
well when working with servers using REST, since it can be assured, that an action got
approved by the server before it gets applied it to the local state. It helps keeping the
server and the client state the same. But using WebSocket, makes the advantages of the
architectural idea obsolete, since the server does not reply to the WebSocket messages.
Thus the application cannot know if message has been received by the server. Another
disadvantage comes with that architecture. Actions only define the transition between
the previous state and the future state. So upon application of an action it has to be
assured that the previous state from receiving client is the same as the one from the
sending client. Since there is no persistency layer, this cannot be done. The room is
instantiated locally. When a user joins a room, that already has been modified, he still
starts with the base room. The then received updates are applied to the base state of
the room, which is completely different from the one sending the updates. This leads
to wrong outcomes, on both ends. One solution to that problem, is to store all actions
applied since the creation of a room. Those can be then applied to the room of any
joining user. This solution leads to an immense amount of data, that has to be stored
on the server, for each room currently active. Also it can lead to a really high loading

30

3 The XR-Hub

time. If a user joins after an hour and the other participants were constantly modifying
the room, he has to wait until all those actions get applied to the local room, which can
take multiple minutes.

Those reasons lead to the introduction of a different update mechanism. Instead
of using Flux the changes to the scene are directly applied and afterwards the whole
object that has been modified get sent to the server. Opposed to the transition between
states, the information now defines the final state of the object. This means it can be
applied to any other client, without having to compare previous states. For example if
a user joins late, the objects that get modified afterwards, will have the same positions
for everyone. It’s not a perfect solution since objects that do not get touched after a user
joins will not be updated for that user and new users can overwrite previous work, by
modifying such inconsistent objects on their own client. Still a better solution than the
Flux one. But the persistency is not the only issue regarding the updates.

Since every client has its own instance of three.js, because the room gets instanti-
ated locally, the object ids are different for each client. This makes it impossible to
match updates from one client to the scene of another client. To solve that custom
object ids have been introduced, that are stored in the userData property of the object.
Those are set by the application and not three.js and follow a pattern, so they stay the
same for each client. For example a website object has the id composed by the prefix
"WebsiteCanvas" and the URL it is currently showing. This helps to identify objects
cross client, but comes with its downsides. With this logic, website canvases showing
the same website have the same id. Additionally by generating the ids on each client
side there are multiple sources for the same information, which is not recommended.
When working with data, you always should have a single source of truth, to be sure
that the data stays consistent. So what is needed, is a storage on the server, which
stores the scene state with its objects and object ids.

The ubi-interact-backend already comes with a storage functionality, which can be used
for that purpose. The base storage can be inherited and its methods can be modified
to fit the requirements for a room storage. The question i: How do the rooms get
stored? The storage itself only manages the information. The type of information has
to be defined by ourselves. The JSON format described in subsection 1.5.1, was used
as serialization. JSON was the winner because, even though other formats as gLTF or
glb are more efficient and standards for storing 3D environments, they are difficult
to modify after serialization. But exactly this is what is needed, since the server side
also has to update a scene, in order to stay consostant. The server only has access
to the serialized form though. JSON is also very well supported by three.js. Each

31

3 The XR-Hub

Object3D in three.js, including top level classes, like scenes, have a toJSON() function,
which immediately serializes them to the JSON format with a three.js specific scheme.
Furthermore three offers an ObjectLoader which can transform JSON objects back into
Object3D objects. This makes it possible to easily im- and export three.js scenes and
objects. One more big advantage, is the fact, that when using the three.js scheme, the
uuids of the object also get serialized and deserialized. This eliminates the need for
custom object ids.

Since each room has two scenes, the WebGL scene and the CSS3D scene, an object with
two scene properties and a roomId, to identify the room, has to be stored. The scene
properties contains the exported JSON content as a string. This object is delivered every
time a client requests a room. Rooms can be requested by a GET service. The request
is sent with the room id at the end of the room get service URL. If the server has a
room stored with the given id, the room is returned, otherwise a base room object gets
copied, which is always present. It gets saved into a new room with a new id and then
sent back to the client. Which means the client always receives a valid room. If the
room id received from the server differs from the requested room id, the client room id
will be overwritten. The advantage of this setup is, that every client now has a single
source of truth, which is the server. This secures, that the ids of the objects are the same
for every client and that the updates sent back and forth can be applied.

Also important is how the way the updates are sent has been modified. A update
can be triggered by every mouse move event, which happens every few milliseconds.
Sending data that often can easily overwhelm the connection or even the servers or
clients themselves. This can lead to crashes and data loss. To prevent that the updates
are not sent every time a mouse event occurs, instead a map with the updates, using
the object uuid as the key, is filled. So if an update for that object already exists it
gets overwritten by the new one. Additionally the JavaScript function setInterval() has
beed used, which keeps executing a given callback in a certain time interval. The time
interval has been set to 800 milliseconds and a callback, that iterates through the map
pass a and sends the corresponding updates, has been attached. After being sent, the
updates get deleted from the map. This way updates are only sent once every 800
milliseconds and only once per object. If an object has been moved multiple times in
that time frame, does not affect the outcome, since the map contains its final position.

In order to persist a rooms state even after reloading the site, the server needs to
keep an updated state in the storage. This happens by incrementally updating the
saved room, when receiving an update. The server then takes the specified room and
searches for the object that has been updated. The existing instance of that object in the

32

3 The XR-Hub

room, is then replaced with the updated version. Finally the room is saved again. This
would not be possible with a gLTF or glb serialization, since glb is stored in binary
form and really costly to be deserilazed on the server. gLTF and glb store no ids for the
objects, which leads to the problem of having to identify objects across all clients. Both
also have a way more complex structure than the JSON scheme from three.js. That’s
why JSON won.

That settles it for the distribution of the user interactions regarding the scene ob-
jects. But what about the interaction with the website itself. Everybody should be able
to see the same thing, so the websites also need to be synchronized. This can be done in
various ways. For example by sending each MouseEvent, that occurs on an iframe and
applying it to the iframe in the other clients. This is easy to implement since the ubii
already supports a message format for MouseEvents. Another solution would be to
have only one client being able to interact with the site and the others only get an image
of that site. Both of these solutions work fine, when working with same origin websites,
but the moment you embed a foreign website, things become way more difficult to
realize. More on why those approaches do not work and how you could still solve it,
can be read in section 3.6.

Another important thing to mention is the way the scene is deserialized in the client.
Since the iframes cannot be serialized with the toJSON method from three.js, the scenes
deserialzed by three.js do not contain them. Even more information is missing. For
example the reference from a WebGL plane, to its CSS3D counterpart is not present
anymore. All this information has to be redefined. This is done, by instantiating a
ThreeWebsiteCanvas with the already existing objects passed to the constructor. But
how can the WebGL and CSS3D object pairs be extracted the from the two scenes? By
introducing a canvas id, which is unique for each ThreeWebsiteCanvas. Both parts
that build such a canvas object have the same canvas id, which makes it possible to
identify the wanted pairs. The contructor receving the two pobject, now has to fix
them. The WebGL part is straight forward, since only the reference to the CSS3D
object has to be redefined. The CSS3D part is not that easy. The problem is, that after
creating an CSS3D object, the once inserted HTML element cannot be replaced. Since
the deserialization from thee.js could not deserialize the iframe, the received CSS3D
object has no HTML element attached to it. Which means it does not display anything.
This can be solved, by instantiating a new CSS3D object, with a new iframe with the
same url. When complete, the old object is swapped with the new one and the scene
renders as expected.

33

3 The XR-Hub

3.6 Limitations to iframes

The common way to embed other websites into your own is by using iframes. There
are other ways, like using the <object> or <embed> tag, but the difference between those
three is small. Formerly iframes were considered having security flaws, since the same
origin policy was not that established yet and there was no way for the browser to
check if the iframe origin is secure or not. Nowadays with HTML5, those concerns no
longer apply and iframes are as secure as the other two options. No matter which way
you embed the website, you’ll always encounter the same drawbacks.

Most websites only allow specific parts of them to be embedded, for example YouTube.
The website itself prohibits being embedded, by using the X-Frame-Options HTTP-
header and setting its value to "DENY". Only the videos themselves can be embedded.
This already limits the amount of websites that can be embedded and forces the way
they have to embedded. But this is only one of the "issues" regarding iframes. The
main problem is the strict same-origin policy described in subsection 1.4.3.

This policy makes it impossible for websites to interact with each other on one client.
Of course it has its reasons to do so, since not having this limitations would open
endless possibilities for malicious attacks to take place. But in our case it mostly just
hinders the implementation of 2D interaction in a VR environment. As explained in
section 3.4, a way to trigger MouseEvents manually is needed, in order to map the user
input to events the website can react to. Same goes for the issue described at the end of
section 3.5. This is impossible due to the fact, that the DOM elements of a cross origin
iframe cannot be accessed. But those elements are needed to trigger the events on them.
Meaning thanks to the same origin policy neither the VR interaction with websites,
nor the website synchronization across all clients can be implemented. To be fair you
are not completely locked out of the iframe. There are still ways to communicate. The
HTML5 feature postMessage can be used to send and receive messages across origin
borders. The problem is that this feature also has to be implemented by the site that
is embedded, which for most sites is not the case. And even if so, you are limited to
what has been implemented by the third party which can be completely different, for
each website you access. There is only one scenario where this feature comes in handy
and this is when embedding videos or streams. Most media platforms like twitch.tv or
youtube.com have implemented a poseMessage API. And is is very similar across those
platforms. The API allows for videos to be played an paused and in some cases even
the volume is adjustable and the video can be skipped. So at least videos could be
made interactive. But it would need you to know when a video is displayed and when
not and adjust the messages sent according to the site.

34

3 The XR-Hub

The same origin policy also denies the second solution for the syncing, which is
sending the image of the website. To see why you need to understand how screenshots
are taken in browsers via JavaScript. There are multiple frameworks simplifying the act
of taking screenshots, like html2canvas (https://html2canvas.hertzen.com/), but all of
them work the same way. They use the HTML <canvas> element. It is used to draw
graphics via JavaScript and has multiple methods for drawing, including a method to
draw the content from other HTML elements. So any HTML element together with a
position you want to draw it at, can be passed into the drawImage method. The canvas
then iterates through the element and all its children and redraws their current content
onto itself. Afterwards the canvas contains a snapshot of the given HTML element.
Next it can be transformed into png via its toDataURL() method. This method converts
the image inside the canvas into the desired format and returns a data URL, which
either can be embedded into an <image> element, or used to download the image. The
standard format returned by toDataURL() is png. This seems perfect for us to use,
since we can simply pass the iframe we want a screenshot of to the canvas and do not
even have to worry about angles or distances, because the canvas will always draw the
iframe in 2D as if it was displayed directly on the page. But here the same-origin policy
comes into play again. Since the canvas needs to iterate through the HTML element in
order to draw it, it needs access to the element and its children. This access is denied if
the canvas is from a different origin than the element it wants to draw, thus making
it impossible for the canvas to draw the content. So not even screenshots are allowed,
because they could also be exploited and used as an attack vector.

Taking a screenshot directly via the three.js renderers, also has been attempted. The
WebGL renderer works with a canvas element and uses the WebGL library to draw
onto it. So its DOM element already is a canvas, which can be directly converted into a
png. Sadly the iframe is in the CSS3D scene not the WebGL scene. The CSS3DRenderer
works completely different and does not actually render anything itself. Its only respon-
sibility is to place the objects in the given scene correctly. Which means it transforms
all objects into camera space. Since each object consists of plain HTML the actual
rendering is done by the browser, leaving us with the same problem from before.

There’s one more way, to get the website interaction realized and even enable screen-
shots. The browser can be tricked into thinking, that embedded site is from the same
origin. This can either be done, by a Proxy server manipulating the headers of the
request, or by manually manipulating the HTML. The first idea is to use a Proxy
server, which acts as man in the middle between you and the desired site. Instead
of requesting the URL directly from the client, it is encoded and a request is sent

35

3 The XR-Hub

containing the encoded URL to the Proxy server. So the src attribute of the iframe
is set to the Proxy request with the encoded URL. The URL gets decoded from the
server, which then sends a request to the actual source. Upon receiving a response,
the Proxy takes the response and manipulates its headers. It sets the value of the
Access-Control-Allow-Origin and X-Frame-Options attributes to the origin of the actual
requester. Finally the manipulated response is sent to the client. By doing this, the
browser thinks, the received website is okay with sharing resources and stops enforc-
ing the same-origin policy limitations. This is also part of the way mozilla hubs has
realized their video embedding feature. It has more to it, but they also are using a Proxy.

The second way is to not even use an iframe. Instead the URL is directly requested in
your code. The received response is then stored in a <div> element as its innerHTML
attribute. This div can then be inserted into a CSS3D object. Now the browser does not
even know that it contains content from a different site, because the content directly has
been added directly, without embedding it. But there is a problem with this approach.
All references to images, scripts and links, that are relative to the actual origin are now
broken. The browser tries to get them from the parents origin, which, in this case, is
our client, but they do not exist at that location. So the site gets rendered, but most of
it is not displayed correctly. In order to solve this the div element created earlier on
is taken and a recursive iteration through its children is started. When encountering
a reference that does not start with "http", which means it is a relative reference, the
requested URL gets added in front of the original reference. This way the browser
requests the resources from their actual origin. Now the site looks close to normal,
but it is still does not look as when importing it with an iframe. This is because the
CSS styles of the client overwrite some of the styles of the embedded website. Since
the website is now treated as a child and not as a distinct website, it inherits the styles
from the parent, leading to black backgrounds instead of white ones etc. This could
be fixed by manipulating the styles of the website and setting the !important tag on all
of their values, which makes them overwrite the parents styles. But most websites do
their styling via a separate file, which means the file name containing those style has to
be found out. Then it has to be manually requested from the website. Next its values
have to be adjusted and finally the styling element in the div element has to be found,
and the original file reference has to be swapped out by a dataURL reference to the
modified styles. After doing that, most of the site should look as expected.

Both approaches are not recommended, since they bypass the built in browser se-
curity measures. Other sites can exploit this, by extracting information from our page
or manipulating its content. And users can abuse the fact that a proxy is implemented
and use it as a gateway to bypass country restrictions, or do malicious things to others.

36

3 The XR-Hub

Due to the lack of remaining options, one of those methods has to be realized. If you
have to chose between them, the better solution would be the proxy. First of all there
is no need to go through the whole HTML document. Secondly the chances of the
website looking and functioning as expected are way higher. But no matter which way
you go, it is important to implement security measures by yourself. An option would
be to keep white a white list containing all allowed websites. You only embed the site,
if it is on that list. This is not that user friendly, since if a user wants to embed a site not
already known, he first has to request that it gets added to the white list, but it would
assure that all sites accessed by the user are secure.

In conclusion iframes are a good way to import foreign websites, as long as no inter-
action via JavaScript is needed. If that is the case, the only option to still realize that
wanted behaviour, is to trick the browser. This comes with loss of security, because
the actions of the embedded site cannot be controlled. On the other hand it makes it
possible to develop a better VR experience. Since by bypassing the browser security, all
same-origin policy restrictions are no longer apllied. Meaning all methods mentioned
in section 3.4 and section 3.5 for implementing VR interactions and synchronizing the
users clients, can be applied.

37

4 Future Work

This chapter contains ideas for further improvements, that can be implemented in the
future.

4.1 Tackling the CORS issue

One of the first things that should be worked on, is the embedding of foreign websites.
As explained in section 3.6 the interaction with iframes is strongly limited, which finally
lead to the project not being finished completely. But there are ways to work around
it. The solutions from section 3.6 could be implemented or even a better one could be
developed. Other solutions could be taken into account, like the one mozilla hubs used
for their video embedding feature.

4.2 Implementing VR interaction

Even though the XRHub already supports VR, the current state of the WebXR API
makes it impossible to use the functionality. While this can’t be changed. You can
wait for WebXR to stabilize and then try to get a running combination of three.js and
browser versions. Then you could start implementing the VR interaction in XRHub.
Most of the code should be applicable from the mouse and keyboard interaction already
implemented, since it was implemented to be as close to VR as possible. Furthermore
you could start making usability adjustments. Of course usability was a big factor in
this thesis, but since we lacked the possibility to try things out or even implement
them, there is no real idea of how the introduced interaction concepts translate to VR.
It would be interesting to know which interactions can be improved and how so.

Additionally you could implement interactions for multiple types of XR hardware. E.g.
the Microsoft HoloLens or just smartphones. Especially smartphones would increase
the user base by a lot, since they are way more accessible than actual XR hardware. It
would also mean a completely different interaction approach, since you have different
types of input. While the Holo Lens has gestures instead of controllers, smartphones
only have a gyroscope.

38

4 Future Work

Smartphones also could be used in a different way. You could try to combine the
XRHub with former ubi-interact projects, like the textitVR Keyboard or the VR Laser
Pointer. This would prdouce even better user experience. The VR Keyboard for example,
could facilitate website interaction a lot. Typing in VR is quite difficult and time
consuming, which makes a lot of people rather take off their headsets and use the
keyboard. This constant switch between the real world and the virtual reality can
be very exhausting. With the smartphone feature, users could change the URL of a
website, login or fill in a form, without having the need to exit the VR experience.

4.3 Introducing new features

The base idea of XRHub already is a viable product which introduces new ways of
communication, but it can be extended. There are multiple other features, that would
improve the user experience, when using the XRHub. Mozilla hubs for example gives a
lot of inspiration on what to implement next.

Things like video communication would be helpful. By being able to share your
computer screen or the input of your smartphone camera, you can demonstrate things
you otherwise would have to show via third party software on a 2D interface. It also
enables you to redesign your workplace inside VR. For example you could implement
a browser extension, that enables you to split your screen onto a browser window.
With this possibility you could bypass physical limitation, like only having space for
one monitor. You could use a VR headset and create a setup with 3 or more monitors
inside XRHub, with which you could work instead. While the feature of splitting
your desktop onto browser windows is a more futuristic idea. Just implementing the
ability to share your screen, would already enable you to visualize way more things at
once while working on something. Instead of having to tab out to search something,
you could just open a new website in the XRHub and place it next to your desktop
sharing plane. And this are only the possibilities without the interaction between two
users. The collaboration woth such a feature could be way easier and more efficient.
Furthermore you would not be limited to only one of them sharing the screen, like it is
in most 2D communication tools. Everybody could do so.

Voice and text communication is also something that should be considered for the
future. To understand the context of the visible information it can be very helpful to
have an audio explanation of what is going on. So a person being able to explain what
is being displayed would help a lot. Additionally it would enable the users to have a

39

4 Future Work

discussion. Text would also find its use and if it only was for copying code from one
client to another, it would erase the need to write things off.

All the above features make sense to be introduced to XRHub. But even though
they are very valuable, the priority to implement them does not necessarily have to be
that high. When implemented correctly, the base version of the XRHub could already
be able to do realize most of the scenarios described above. It could use the internet to
its advantage. Since in the best case, any website is reachable from within a XRHub
room, you could use already established communication tools like glsdiscord or Google
Hangouts to do the communication for us. Instead of having to implement a Desktop
sharing feature, you just have client specific instances of websites. Those are not shared
to other rooms, but they still can be used as a gateway to the others. For example,
by logging into your glsdiscord account and streaming your desktop in there. But it
doesn’t stop there, multiple other tools already existing in the world wide web could be
used. For example draw.io or other drawing websites could be used instead of having
to implement drawing to the XRHub itself. Of course drawing in the 3D space would
have more advantages, since you also could draw outside of the websites frame, but it
would fullfill most needs. And that is where the true power of the XRHub lies. It is not
limited to its own features, it can extend and evolve in any imaginable way, as long as
there is a website for it.

Another future extension could be to introduce avatars. A lot of XR hardware has the
capabilities to track the users body. This information could be used to display their
bodies inside the room as an avatar. It would drastically increase the immersion and
make the whole interaction between the users more personal. Users could support
their vocal expressions with gestures and point at specific things in the room. It would
also enable them to interact with the room without using the controllers. You could
make those avatars collide with other objects in the scene. This way a user could push
things and objects would bounce off of them, which makes the experience as a whole
feel more realistic and engaging.

Another point on the list is implementing a room creation tool. A tool, where the user
can insert objects and place them all around the room. First you could offer a selection
of predefined objects, but later on you could introduce the ability to import objects
and add those to the room. This could be realized with the GLTFImporter already
implemented by three.js. Since most 3D objects can be described in the gLTF format,
it would allow for an immense amount of options when designing a room. But why
should it stop at objects? You could implement an import for whole rooms or other
types of 3D scenes. One very attractive feature, would be the ability to import scripted

40

4 Future Work

rooms, like games or simulations. The addition of a web browser in VR games or
simulations could change the way they are played or used. For example scientist could
have a running simulation of an artificial intelligence or a physical experiment and
watch it from close up. While simultaneously being able to open a website containing
the specifics about the simulations, like for example the state of the neural network, or
specific values about the pressure or force generated in the physical simulation. Without
being limited to one person only, multiple scientist could join that room and experience
the events together, while discussing and elaborating the results. It is very helpful
to be in there together, since it is hard to explain a VR experience to others, without
them having had the same experience. Those extension also come with downsides and
dangers that have to be thought of. For example enabling others to insert their own
scripts is a big security issue, since they can run any type of JavaScript. This could be
abused to spy on others or exploit the system in some other way.

Opposed to the approach of trying to bring more features into the XRHub, you also
could think in the other direction and see the XRHub as a feature for others. It could
be designed as a module, that can enable 2D interfaces in VR. This module then could
be used by anyone developing in VR to extend their own projects. It would open up
way more possibilities for others to design and implement their ideas.

4.4 A future with mozilla hubs

As explained in section 2.3 mozilla hubs already comes with a lot of features, that
would fit perfectly to the XRHub. So instead of reimplementing all those features by
ourselves, one could use the already existing platform and its community and realize
the XRHub there. Since mozilla hubs is an open source project, there is no barrier
preventing us from extending it. When a good solution for the 2D interaction in VR has
been found, it is a valid option to try to implement it inside of mozilla hubs. Depending
on the solution this can be impossible. But if realizable, it would immediately upgrade
the XRHub with a lot of features. This comes with the downside of being stuck with the
technology and design decision, that have been made by the mozilla hubs developers.
For example a mozilla hubs room does not include any scriptable objects. This means
it is not designed for games or simulations, where objects have logic applied to them.
This reduces the amount of use cases you could realize with the mozilla hub/XRHub
fusion. Nonetheless it should be looked into.

41

4 Future Work

4.5 Testing

One major thing the XRHub is lacking are tests. It has not been built test driven. This
means most of the logic isn’t tested at all. Test are very important when continuously
developing a software. There are multiple types of tests in software development. Unit
tests for example, try to split the code in as small parts as possible and test the logic of
these parts separately. They do not just assure, that the code logic does not get altered,
they also can serve as on board documentation for people that have not worked with
the code. Since they are designed to be as small and simple as possible, they mostly
are easy to understand and help to clarify how certain code parts work. Opposed to
unit tests, end to end (E2E) tests try to test the application as a whole. Those tests,
also known as black box tests, take the built application and check if it performs as
expected in the given scenarios. One benefit both types of tests have, is that they can be
executed automatically. This helps to counteract quality regression, which is a common
issue in software development. You cannot completely prevent your software from
having bugs, but you can fix a lot of them to improve your software quality. Now when
implementing new features, new bugs can be introduced and even old ones can find
its way back into the code. This is where the tests come in. They test the application
on a regular basis and make sure everything works as intended. Whenever you find a
bug and fix it, you can write a test case testing the scenario that lead to the bug, so in
the future you will immediately know when a bug reappears. XRHub lacks both test
types. While unit tests are easy to append, the implementation of automated E2E test
would bring a real challenge. One would have to implement those tests for a all the
supported devices, which on itself already is a demanding task. But most importantly
you would have to develop E2E tests for virtual reality environments. There is no good
solution yet, to test web-based VR interactions, thus XRHub would fit very well as
platform, to elaborate possible methods. It eventually could be realized, by extending
the existing WebXR Device API emulator from Mozilla, in order to be able to generate
WebXR interactions via code. This could then be used to simulate scenarios in VR. the
assertion of the outcome could be done by checking the position of the objects in the
room, comparing the rendered images to each a expected image, or by accessing the
DOM elements directly.

42

5 Conclusion

Websites in VR are not easy to realize. They already exist via implementations like the
Oculus Browser, but those are only usable locally. Trying to implement such a feature
in the web environment, leads to a lot more issues. The main problem is security.
The same-origin policy of browsers prevents the interaction between two cross origin
websites, thus eliminating all options to produce a VR application with interactive
websites. It can be bypassed by tricking the browser via reverse proxies, but it the
policy is not implemented for fun. Bypassing the security feature means a lot of danger,
since all JavaScript code can now simply cross origin borders and spy on or modify
other websites. This is not just an issue for the XRHub itself, it also could enable attacks
on other sites opened in XRHub. With all those downsides this risks still seems to be
worth taking. The ability to visit any website within a VR experience, opens the door to
a new dimension of possibilities. It welcomes all web technologies into the VR world.
An endless amount of combinations between web technologies and 3D worlds can lead
to completely new ways of experiencing VR and the web. Combined with the ability to
have this experience from any device that has a browser, without having to download
or install anything, the XRHub would probably enable a lot of people, to do things they
would not be able to do otherwise. So websites in VR are not just possible, they also
seem to be worth the effort. Now they only need to be implemented.

43

List of Figures

1.1 The Image shows a tea cup mesh in object space, being transformed
multiple times into world space. Taken and altered from: [11] 5

1.2 In the left illustration, the camera is located and oriented as the user
wants it to be. The view transform relocates the camera at the origin
looking along the negative z-axis, as shown on the right. This is done to
make clipping and projection operations simpler and faster. The light
gray area is the view volume. Here, perspective viewing is assumed,
since the view volume is a frustum. Similar techniques apply to any kind
of projection. Image and caption taken from [18, p. 17, Figure 2.4] . . . 5

1.3 The left side depicts an orthographic, or parallel, projection; the right
side shows a perspective projection. Image taken from: [18, p. 18, Figure
2.5] . 6

1.4 The image shows the scaling of a vector by a 3D scaling matrix. The
matrix scales all three values, x, y and z by the same factor k. Image
taken from [11] . 8

1.5 The image shows the abstract data flow of a application built with flux
architecture. The arrows show the direction the data is flowing and
each node has a text describing the general approach on how the data is
processed in each step. Taken and resized from: [7] 13

1.6 Example for a protobuf message definition for a three dimensional vector.
Image retrieved vai screenshot from the ubii-msg-formats project. [2] . 15

2.1 This Image shows the an exemplary structure of a three.js project, dis-
played as a tree. It consists of a renderer, a scene, multiple objects,
meshes and a camera. Each mesh consists of a material geometry pair,
while the material can be defined by a texture. Image taken from [19] . 18

44

Bibliography

[1] url: https : / / developers . google . com / protocol - buffers (visited on
08/12/2020).

[2] url: https://gitlab.lrz.de/IN-FAR/Ubi-Interact/ubii-msg-formats/-
/blob / develop / src / proto / topicData / topicDataRecord / dataStructure /
vector3.proto (visited on 08/12/2020).

[3] CSS Snapshot 2018 W3C: Working Group Note, 22 January 2019. url: https://www.
w3.org/TR/CSS/#css (visited on 08/09/2020).

[4] A. Etienne and J. Etienne. Mixing HTML Pages Inside Your WebGL. 2013. url:
http://learningthreejs.com/blog/2013/04/30/closing-the-gap-between-
html-and-webgl/ (visited on 08/07/2020).

[5] Hubs Features. url: https://hubs.mozilla.com/docs/hubs-features.html
(visited on 08/11/2020).

[6] A. M. I. Fette. The WebSocket Protocol. url: https://www.hjp.at/doc/rfc/
rfc6455.html (visited on 08/11/2020).

[7] In-Depth Overview. url: https://facebook.github.io/flux/docs/in-depth-
overview (visited on 08/09/2020).

[8] Introduction. url: https://aframe.io/docs/1.0.0/introduction/ (visited on
08/11/2020).

[9] Introduction - What is Vue? url: https://vuejs.org/v2/guide/ (visited on
08/09/2020).

[10] P. W. Johannes Ebke. The A4 project: physics data processing using the Google protocol
buffer library. url: https://iopscience.iop.org/article/10.1088/1742-
6596/396/2/022012/pdf (visited on 08/12/2020).

[11] C. Labs. Article-World, View and Projection Transformation Matrices. url: http:
//www.codinglabs.net/article_world_view_projection_matrix.aspx (visited
on 08/07/2020).

[12] MouseEvent. url: https://developer.mozilla.org/en-US/docs/Web/API/
MouseEvent (visited on 08/11/2020).

45

https://developers.google.com/protocol-buffers
https://gitlab.lrz.de/IN-FAR/Ubi-Interact/ubii-msg-formats/-/blob/develop/src/proto/topicData/topicDataRecord/dataStructure/vector3.proto
https://gitlab.lrz.de/IN-FAR/Ubi-Interact/ubii-msg-formats/-/blob/develop/src/proto/topicData/topicDataRecord/dataStructure/vector3.proto
https://gitlab.lrz.de/IN-FAR/Ubi-Interact/ubii-msg-formats/-/blob/develop/src/proto/topicData/topicDataRecord/dataStructure/vector3.proto
https://www.w3.org/TR/CSS/#css
https://www.w3.org/TR/CSS/#css
http://learningthreejs.com/blog/2013/04/30/closing-the-gap-between-html-and-webgl/
http://learningthreejs.com/blog/2013/04/30/closing-the-gap-between-html-and-webgl/
https://hubs.mozilla.com/docs/hubs-features.html
https://www.hjp.at/doc/rfc/rfc6455.html
https://www.hjp.at/doc/rfc/rfc6455.html
https://facebook.github.io/flux/docs/in-depth-overview
https://facebook.github.io/flux/docs/in-depth-overview
https://aframe.io/docs/1.0.0/introduction/
https://vuejs.org/v2/guide/
https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022012/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022012/pdf
http://www.codinglabs.net/article_world_view_projection_matrix.aspx
http://www.codinglabs.net/article_world_view_projection_matrix.aspx
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent

Bibliography

[13] M. G. Nell Waliczek Brandon Jones. WebXR Device API - W3C Working Draft, 24
July 2020. url: https://www.w3.org/TR/2020/WD-webxr-20200724/ (visited on
08/11/2020).

[14] r112. url: https://github.com/mrdoob/three.js/releases/tag/r112 (visited
on 08/11/2020).

[15] Same-origin-policy. url: https://developer.mozilla.org/en-US/docs/Web/
Security/Same-origin_policy (visited on 08/09/2020).

[16] Standard ECMA-404 The JSON Data Interchange Syntax. url: https://ecma-
international . org / publications / standards / Ecma - 404 . htm (visited on
08/12/2020).

[17] The JSON Data Interchange Syntax. url: http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf (visited on 08/12/2020).

[18] N. H. Thomas Akenine-Möller Eric Haines. Real-Time Rendering Third Edition.
Natick, Massachusetts: A K Peters, Ltd., 2008.

[19] Three.js Fundamentals. url: https : / / threejsfundamentals . org / threejs /
lessons/threejs-fundamentals.html (visited on 08/07/2020).

[20] Ubi-interact. url: https://wiki.tum.de/pages/viewpage.action?pageId=
71313835 (visited on 08/13/2020).

[21] WebGL Overview. url: https://www.khronos.org/webgl/ (visited on 08/07/2020).

[22] WebVR Editor’s Draft, 12 December 2017. url: https://immersive-web.github.
io/webvr/spec/1.1/ (visited on 08/11/2020).

[23] Welcome to Hubs. url: https://hubs.mozilla.com/docs/welcome.html (visited
on 08/07/2020).

46

https://www.w3.org/TR/2020/WD-webxr-20200724/
https://github.com/mrdoob/three.js/releases/tag/r112
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://ecma-international.org/publications/standards/Ecma-404.htm
https://ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://threejsfundamentals.org/threejs/lessons/threejs-fundamentals.html
https://threejsfundamentals.org/threejs/lessons/threejs-fundamentals.html
https://wiki.tum.de/pages/viewpage.action?pageId=71313835
https://wiki.tum.de/pages/viewpage.action?pageId=71313835
https://www.khronos.org/webgl/
https://immersive-web.github.io/webvr/spec/1.1/
https://immersive-web.github.io/webvr/spec/1.1/
https://hubs.mozilla.com/docs/welcome.html

	Acknowledgments
	Abstract
	Contents
	Glossary
	Introduction
	Motivation
	What is VR?
	Rendering 101
	The world of spaces
	Camera Projection
	3D Transformation
	Blending

	The internet and its technologies
	HTML Events
	Cascading Style Sheets
	Same origin policy
	Vue.js
	Flux architecture
	WebSocket
	The Protocol Buffer Library
	WebGL

	Serialization methods
	JSON

	Related Work
	three.js
	A-FRAME
	mozilla hubs
	ubi-interact

	The XR-Hub
	Selecting the right framework
	WebXR, WebVR and browsers
	Combining websites and VR
	Interacting with the scene
	Interacting with others
	Limitations to iframes

	Future Work
	Tackling the CORS issue
	Implementing VR interaction
	Introducing new features
	A future with mozilla hubs
	Testing

	Conclusion
	List of Figures
	Bibliography

