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Abstract

Physical embodiment in VR enables users to easily interact with a virtual world
while realistically adhering to the physical framework of that world. Due to the
countless amount of different hardware and software in the VR area, this process
can be most efficiently realized using a modular, network-based approach. An
existing implementation that uses the framework Ubi-Interact in Unity with C#
already shows that it is possible to implement such software. A new implemen-
tation uses Ubi-Interact in the web browser with Babylon.js and WebXR. This
implementation uses the same structure as the Unity implementation and is, to
some extent, compatible. Modules of both implementations can be replaced with
their counterparts of the other implementation, demonstrating that Ubi-Interact is
a suitable framework for physical embodiment. However, the web platform still
has few suitable libraries, such as in the areas of Inverse Kinematics, which leads
to incomplete and incorrect data. Some insights are found regarding precision and
performance using an additional Ubi-Interact-based module for evaluation. In the
outlook, further improvements and questions surrounding the implementation and
the topic of physical embodiment are proposed.
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1.Introduction

Many kinds of devices and technical approaches related to Virtual Reality (VR)
and Augmented Reality (AR) exist. This variety is a challenge for developers who
want to create applications compatible with a vast range of hardware. It also makes
it hard to scientifically explore issues from this space because implementations
cannot be easily compared or combined. To solve these and other issues, S. Weber
et al. developed Ubi-Interact [1]. On a high level, it is a framework for coordinating
the communication of application modules in real-time over a network.

One fascinating research topic in VR is physical embodiment. In many VR appli-
cations, the user wants to interact with the virtual world and possibly even other
users in an immersive way. For that, users need a virtual counterpart – an avatar
closely resembling the user’s posture in real-time [2].

In the last two decades, web browsers have evolved from displaying textual content
to being hosts of many kinds of interactive applications. With the availability of
WebGL and WebXR, modern browsers have become an immersive platform of
interest for VR/AR developers [3]. Nevertheless, browsers run interpreted code
that must work reliably on a vast range of devices, so its performance is worse
than that of native applications.

This thesis will examine these three aspects by examining physical embodiment in
VR in web-based environments using Ubi-Interact. It will analyze the similarities
and differences between an own web-based implementation and an already existing
implementation written in C#/Unity [4].
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2.Previous Research

2.1. Definitions

2.1.1. Virtual Embodiment

Embodiment can be understood both as a practice and as a sense.

As a practice, the term embodiment is broad, as it is generally used to indicate that
something has certain qualities [5]. In the context of VR, embodiment may refer to
virtual embodiment. Virtual embodiment is often narrowed down, describing only the
process of virtual replication of a physical person’s body [6]. The term digital twins
is used when including virtual replication of non-animate objects[7].

Embodiment can also represent a sense. According to Kilteni et al., experiencing a
sense of embodiment towards a body depends on three aspects: whether the user
feels that he is inside the body, feels to be an agent of the body, and whether he
perceives it as his body [8]. Each aspect can be evaluated separately, for instance,
using specific questions in questionnaires. A full sense of embodiment can only
be experienced whenever all of the said aspects are felt at full intensity. Similar
concepts to sense of embodiment exist that highlight other aspects and are more
dependent on the virtual environment rather than just the body itself. These
include the sense of presence or the Being-There as well as the more general term
immersion [9, p. 392].

2.1.2. Embodiment and Re-embodiment

The meaning of the term embodiment in contrast to re-embodiment was discussed
by Besmer: For full embodiment, the user needs to receive feedback beyond visual
representation, such as tactile feedback [10]. S. Weber et al. follow this distinction
in research that this thesis builds upon [2]. While this work does not explicitly deal
with such additional feedback, extending the implemented software components,
for example, with tactile feedback, would be possible. In the context of modular
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2. Previous Research

solutions such as the one presented here, the exact implementation of the interface
that interacts with the user is dependent on the specific use case. It could very
well provide additional feedback to the user. From a network communication
perspective, the data sent from a user to a physical avatar and the data processing
in between would not differ. Given the modular nature of the process used in this
thesis, instead of making assumptions about how the components introduced here
are (not) going to be used, solely the term embodiment is used, even though the
demonstration implementation only uses visual feedback.

It is important to note that other definitions of re-embodiment in the context of
human-computer interaction define it as the movement of social presence between
multiple agents. An example of this context is home assistants, which are embodied
in different devices [11]. This thesis does not follow this definition because the
concept of embodiment in that work does not refer to virtual embodiment as it is
defined here – it also includes virtual entities that are embodied physically.

2.1.3. Physical Embodiment

The virtual avatar’s pose does not only have to resemble the user’s pose closely,
but it also has to behave physically correct in the virtual environment to support
immersion in virtual embodiment. Such realistic behavior can be achieved by applying
rules of physics to an avatar, such as gravity, by using a physics engine. Virtual
embodiment processes that use such techniques could therefore be called physical
embodiment. "Physical" in this definition does not oppose the concept of virtuality
because it does not stand for the actual existence of the avatar but because the
virtual avatar behaves like a physical person in its respective environment. How-
ever, when leaving the field of virtual embodiment and including robotics, physical
embodiment can be achieved with robots that resemble a user’s pose in the context
of real physics. The process would be similar but is not in the scope of this work.

3
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2.2. Process of Physical Embodiment

A physical embodiment implementation can be split into tasks from different
disciplines:

Due to the lack of complete input data to represent a whole avatar, Inverse Kine-
matics (IK) can be used to determine a full pose from so-called end effectors. A
myriad of IK algorithms exist, with varying computational effort and in various
fields, such as robotics, animation and games [12].

Virtual avatars and objects have to react to interactions similar to real ones to give
the user the option to interact with his surroundings immersively. To obtain this,
real-time virtual physics can be used as described in the previous section. In this
area, much research has been conducted, for example, in the context of simulation
for robotics [13] and character animation [14].

Unifying all of these aspects, Weber et al use a 3-stage process for physical embodi-
ment [1]. The following stages are executed repeatedly and in parallel:

Stage 1 Stage 2 Stage 3

Figure 2.1.: Communication between physical embodiment stages

• Stage 1: Partial pose data from a user is obtained, for example, from hand
tracking devices. The data is sent to stage 2.

• Stage 2: Using data from stage 1 and IK, a full pose is calculated to resemble
the actual user’s pose. The linear and angular velocities required to adjust
a physical avatar are calculated using additional data from stage 3. These
forces are being sent back to stage 3.

• Stage 3: The forces resulting from stage 2 are applied to a physical avatar.
The new pose is sent back to stage 2.

4



2. Previous Research

2.3. Networking and Ubi-Interact

The stages above are relatively independent and could even be distributed across
multiple hardware devices. Distribution can potentially be helpful to support a
wider variety of devices, send and process data efficiently in multi-user scenarios,
or make calculations on different hardware depending on dynamic performance
and delay requirements. Especially in the context of mixed reality, given that there
are a lot of different standards and devices, a framework that manages the real-time
network connections is required.

Ubi-Interact is such a framework. Ubi-Interact consists of a master node and client
libraries, which applications can use to communicate via the master node.

It abstracts endpoints using so-called devices. Devices can but do not have to
represent real devices. A device groups multiple components. Components define
whether they publish or receive data and a communication topic. Components may
also define tags so that they can be found by other Ubi-Interact applications that
may not know the exact topic name.

Another similar concept in Ubi-Interact is processing modules. Processing modules
also in- and output data but are defined more abstractly so they can be re-used.
Similarly to devices and components, assigning tags to processing modules is possible
for better discoverability.

When developing network applications that should handle large amount of data,
choosing an efficient data format for transmission is crucial for performance. Ubi-
Interact uses so-called Protocol Buffers (protobuf). Protobufs minimize data objects
by using integer indices instead of the original object’s keys. When both peers
know the protocol buffer definition, they both can translate inbetween indices and
keys and thus communicate [1].

2.4. Physical Embodiment Implementation in C# / Unity

S. Weber implemented a working implementation of the physical embodiment
process using the process described above with Ubi-Interact and C# / Unity. While

5
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still being in development due to the ongoing research and changes in Ubi-Interact,
it serves as a functioning demonstration of the feasibility of the process.

The Unity implementation runs all three stages on one physical device. By selec-
tively removing modules from the source code, it can be shown that the content
can be split across multiple application instances in a network.

Inverse Kinematics were implemented using the built-in Inverse Kinematics Ani-
mation controller. The documentation does not disclose which Inverse Kinematics
algorithm is used [15].

Similarly, the built-in 3D physics engine was used, which is an integration of the
Nvidia PhysX engine [16].

The Unity implementation has VR support in theory for demonstration purposes
but works mainly by emulating inputs by reading from animations rather than
using real controllers. Using animations simplifies debugging because of the lack
of necessity of using hardware and broad movements during development.

2.4.1. Resulting Protocol

Formal documentation of the data sent and received in the Unity implementation
is not available yet. From the implementation, the following standards could be
deduced that can be used in other implementations to guarantee compatibility:

Stages 1 and 3 are represented using a device. Each incoming and outgoing
connection from these stages represents a component. Stage 2 is represented using
a processing module. Each connection between the stages is communicated using
a distinct topic. Because all transmitted data is either positional, rotational, or
both, the defined protbuf format ubii.dataStructure.Object3DList as defined
in ubi-msg-formats [17] can be used for all topics.

The following IDs may be expected in objects on /avatar/ik_targets: HEAD,
VIEWING_DIRECTION, HIP, HAND_LEFT, HAND_RIGHT, FOOT_LEFT, FOOT_RIGHT.

The other topics allow 52 IDs, each referencing one bone. The list is included as an
Appendix. Many of the permitted values are effectively not in use because the data

6



2. Previous Research

from /avatar/ik_targets is insufficient to calculate exact poses for some bones,
such as fingers.

Table 2.1.: The following topics names and tags should be used.
Topic suffix, Involved Publisher Subscriber
prepended with device id stages Tags Tags

/avatar/ik_targets 1 to 2 avatar, n/a
user tracking,
ik,
targets,
ik targets,
inverse kinematics

/avatar/target_velocities 3 from 2 n/a avatar,
bones,
control,
velocity,
linear,
angular

/avatar/current_pose/list 3 to 2 avatar, n/a
bones,
pose,
position,
orientation,
quaternion

2.4.2. Open Questions from Unity

The Unity implementation proves that physical embodiment in VR over a network
is possible using the three previously discussed stages. However, it alone leaves
unanswered questions.

For example, the concept of modularity should be explored further in this context.
As mentioned before, the project in its current state is meant to run on one device,
in one application. How well does running different stages on different physical
devices over a network work, to what extent is that feasible, and does it compromise

7



2. Previous Research

the user experience?

Another aspect in the context of modularity is whether the modules are replaceable.
Given a different implementation that uses the same protocol, can stages from
such an implementation be used as a drop-in replacement of stages in the unity
implementation? Furthermore, in reverse, can stages of the unity implementation
be used to replace stages from a different implementation? If this is not possible
due to the necessity of tweaking values for every configuration or due to unfixable
incompatibilities, one would have to conclude that the modular concept of Ubi-
Interact failed on the topic of physical embodiment in its current form.

Also, as of now, there is no data on the accuracy and performance of the imple-
mentation. Such data needs to be measured as a basis for further comparisons.

The effect of mainly using animations for testing needs to be discussed. Actual
pose data might contain more noise than the one obtained from animations or
might differ in other, unforeseen ways.

Apart from the technical aspects above, scenarios in which physical embodiment
over a network is required must be discussed to put the available information into
context.

8



3.Related Work

This thesis and its underlying work are not the first work that combines the fields
of VR, networks, and embodiment. Existing research includes many application
areas, two of which will be highlighted in the following sections.

3.1. Robotics

Many single-user appliances of embodiment and networks can be found in robotics,
where humanoid and non-humanoid robots can re-enact users’ poses. For example,
VR controllers could be used in manufacturing to control robot arms.

Brizzi et al. examine the effects of Augmented Reality for teleoperated industrial
assemblies: Accuracy and the sense of embodiment differ depending on the kind
of feedback that the user receives. Especially influential for increasing the sense of
embodiment was displaying a virtual model of the robot that the user embodied.
Displaying much information increased the accuracy of task execution, but the
users felt a weaker sense of embodiment. In general, it was concluded that AR
could help simplify learning the teleoperation of a robot [18].

Not only in manufacturing but also in surgery, teleoperation can be used. Laaki
et al. prototyped a VR remote surgery solution that can be used even when only
4G mobile internet is available. Because of low bandwidth, instead of showing
the user an exact patient representation, a digital twin was used [19]. In this case,
both surgeon and patient are embodied – the surgeon in the surgery robot and the
patient virtually.

3.2. Multi-User Scenarios

The idea of using VR for more immersive communication has been discussed at
least since the 1990s, albeit prototypical implementations were not particularly
immersive [20]. Many problems that implementations of conferencing solutions

9
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had could already be solved due to better hardware; for example, [21] shows that
users felt present during usage of a conferencing solution with VR a headset.

With over 100,000 reviews on the video game platform Steam, a popular VR
platform is VRChat [22]. It enables users to embody an avatar of their choice in
virtual Reality and interact with other users’ avatars. The effects of embodiment in
VRChat have been studied from a psychological and social standpoint: Research
by Rzeszewski et al. indicates that users felt emotionally attached to virtual places
and that during lockdowns in the COVID-19 pandemic. For its users, VRChat
served as a substitute for non-digital social interaction [23]. There are different
interpretations on whether the free choice of an avatar in such a scenario support
dissolving societal norms, primarily cultural and gender norms [24, p. 33], or
whether the opposite is the case and users tend to embody highly stereotypical
avatars [25].

10



4.Goal of this thesis

4.1. Problem Statement

The work in this thesis consisted of two parts: implementing an alternative version
of the physical embodiment process (the "Web implementation") and evaluating
aspects of both implementations. It examines to what extent physical embodiment
is possible in the browser and whether Ubi-Interact can be used to reach cross-
implementation compatibility.

4.1.1. Implementation Requirements

The goal was to create a version that runs in a web browser. The selected framework
was Babylon.js for its WebXR support. A basic setup using Babylon.js was created
before this thesis, consisting of an animated avatar.

The web implementation should use the same communication standards as the
Unity implementation for compatibility. Rather than being a direct port, considera-
tions about chosen algorithms should be done according to the platform, which, in
some aspects, might have a more abstracted and thus potentially more limited and
slower access to system resources.

Further modularization is required to test efficiently and reuse code in further
research or non-scientific contexts. The goal was to make it possible to run every
stage independently by publishing them as entirely independent modules.

4.1.2. Evaluation Requirements

Any of the eight combinations of implementations of each stage should be tested
to obtain information on compatibility, time performance, and positional accuracy.
The results should be evaluated against each other and generally established rules
for real-time interaction.

11



4. Goal of this thesis

Because some results would not be precisely measurable by the eye of sight, the
evaluation process contains implementing an additional module that collects and
saves data both from the input pose and the resulting physical avatar’s pose.

4.2. Structure

Stage 1W Stage 2W Stage 3W

Stage 1U Stage 2U Stage 3U

Figure 4.1.: Possible communication configurations between physical embodiment
stages across the implementations Web (W) and Unity (U). There are
23 = 8 possible configurations.

4.2.1. Stage Modules

As mentioned before, the three stages shall be implemented as modules. Those can
be published separately in the npm registry. They further abstract the communica-
tion with Ubi-Interact for this specific use case – a developer would not have to
have a deeper understanding of Ubi-Interact concepts: They could initialize each
step with one line of code. These modules should work as standalone applications
with graphical configuration interfaces for demonstration purposes and as an API.

• Stage 1 publishes a simple movement by default. When used as API, custom
pose data, such as input from tracking devices, can be passed in.

• Stage 2 uses a general-purpose IK library from another module and calculates

12



4. Goal of this thesis

the pose for a human skeleton.

• Stage 3 publishes a standard pose by default and does not consider the
velocities. A physics engine can be used by configuring the API to callback a
velocity receiving function and publish a different calculated pose.

4.2.2. Main Application

Additionally, a main application, also referred to as Babylon.js implementation
or demonstration application, should be implemented. The main application
should be based on the 3D engine Babylon.js. It connects stage 1 to the debugging
animation or actual input devices, displays the pose of all three stages, and applies
physics using a physics engine for stage 3.

4.2.3. Evaluation Module

Figure 4.2.: Integration of an evaluation module in the physical embodiment pro-
cess. To fully compare input and output poses, stage 1 needs to be
modified to publish the full pose, not just IK targets. Without modifica-
tion, only target positions can be compared. Based on [1].

The evaluation module should work similarly to the stage modules, but the in-
tended way to use it is the graphical interface. Two topics can be given to the
evaluation module, which will then record everything published.

13



5.Implementation Process

5.1. General Process

The plan for implementation was to start with the basic communication structure
in the stage modules. This process was chosen to start broadly, which would help
to identify problems early. To make the modules communicate correctly, mock
data was used. After those modules were written, the next step was connecting
them with the Babylon.js project. Given that the structure was set up, the mock
data could be replaced at this point. The last step was to implement the evaluation
module and to modifying parameters according to testing results.

web target publisher1

vr physics embodiment babylonjs5 web ik f orce computation2 IK.ts4

web avatar applier5

web evaluation6

Figure 5.1.: Overview over implemented projects. Dotted lines represent communi-
cation via Ubi-Interact.

14



5. Implementation Process

5.2. Usage of TypeScript

TypeScript was chosen as the programming language for the projects. TypeScript
is a superset of JavaScript which is compiled to JavaScript. It checks type safety
at compile time. Given the way Ubi-Interact’s library ubii-msg-format, which
uses protobuf, works, publishing data in the wrong format may not lead to error
messages, but to empty published objects [17]. Having type evaluation at compile
time helped speeding up the process of development.

For using TypeScript efficiently with this existing library ubii-msg-formats, type
definitions had to be generated, which were added in the respective repository.
Future development in TypeScript will be easier due to the included definition
files, and even JavaScript developers can profit from this, because modern code
editors like Visual Studio Code show better suggestions in JavaScript projects using
TypeScript definitions [26].

5.3. Usage of Ubi Interact

5.3.1. Browser Limitations Regarding Graceful Exits

During the process of closing a native application, it is common that applications
perform actions such as closing open connections. For some of the most common
ways of leaving a website, like closing the tab, the possibilities perform such actions
are severely limited. More specifically, a web application cannot send data to
a server signaling that it was closed. In the context of Ubi-Interact that means

1Represents stage 1 of the PE process. Source code and online instance available at https://github.
com/goldst/ubii-web-target-publisher

2Represents stage 2 of the PE process. Source code and online instance available at https://github.
com/goldst/ubii-web-ik-force-computation

3Represents stage 3 of the PE process. Source code and online instance available at https://github.
com/goldst/ubii-web-avatar-applier

4Inverse Kinematics library. Source code available at https://github.com/goldst/IK.ts
5Main project, in which all components are used. Source code available at https://github.com/
SandroWeber/ubii-vr-physics-embodiment-babylonjs/tree/feature/leonard

6Evaluation module. Source code and online instance available at https://github.com/goldst/
ubii-web-evaluation
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5. Implementation Process

that, even though methods for disconnecting exist, it would be common to exit
without disconnecting. After a short period of time, The Ubi-Interact master node
notices that no response from the client is given and performs necessary cleanup
by itself. Nevertheless, there are scenarios in which this is not sufficient and has
to be accounted for from the client side: The development server of the main
application reloads the page when the code is changed. After such a reload, in
case that the old components would not yet be de-registered and the new ones
would not be finished registering, modules would connect to old topics that are
not in use anymore. With some additional code, such problems were be avoided.

5.3.2. Devices versus Processing Modules

Devices and processing modules are similar concepts: Both can receive and publish
data. However, the areas in which they are used usually differs. Processing
modules are defined in a more abstract manner and thus can be mapped to inputs
and outputs after establishing devices.

In the Unity implementation, stage 2 is implemented using a processing module.
The Ubi Interact C# libraries allow running processing modules in a dedicated
node – which is implemented as part of the Unity application.

In JavaScript, there were two options:

1. A client node can send a stringified JavaScript function to a master node.
The master node can then run the code. This is the way that an example
contained in the web browser library processes data.

2. A separate node can run dedicated processing modules, similar to the C#
version.

The Ubi Interact library for web browsers only implements option 1. Option 2 is
implemented in the ubi interact library for Node.js servers and is not usable in web
browsers due to storage functionality that requires direct access to the file system.

One of the main objectives of the JavaScript implementation is to examine the ability
of browser environments to execute the whole process of physical embodiment.
None of the available options would execute stage 2 code in the browser itself. Thus,
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originally, stage 2 was implemented using a device in the JavaScript implementation.
This implementation worked, but using a device instead of a processing module had
several disadvantages. This stage 2 implementation has to listen to available topics
first and can only then create the device. Also, it is potentially less performant,
because the code would run on the main thread.

Figure 5.2.: Comparison of the original implementation with the implementation
using a processing module. The in- and outputs of each stage remain
unchanged, making all versions compatible with any other implemen-
tation. Based on [1]

Those issues could possibly be resolved by further adjusting the code. Instead
of that, the decision was made to adapt the option 2 code to the web browser
library. For that, some functionality had to be removed, such as permanent storage.
This solution uses the workerpool library. The workerpool library allows running
functions in separate threads – in this case, this would be used for the processing
function.

Limitations of the TypeScript compiler and the used bundler webpack make it
impossible to import all required dependencies such as the inverse kinematics
library in a web worker directly [27], thus the current version still runs on the main
thread, which might negatively affect the performance of the stage 2 execution.
By configuring an additional build target in a potential future version, it would
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be possible to include the dependencies in the worker function and thus run the
worker more efficiently. However, this would potentially complicate displaying the
stage 2 avatar.

In the future, depending on the further direction of the Ubi Interact project, it
should be considered to merge the browser compatibility of the adapted version
with the original Node.js implementation, so that the Node.js library can be used
both for web client nodes and separate server-side nodes. For permanent storage
in browser environments, the File System Access API [28] might become an option,
which is only partially available for about 40% of internet users at the time of
writing [29] and will likely not be fully adapted by all major browsers in its current
state, as Mozilla considers the feature harmful [30].

An easier solution could be to add the modified parts to the browser library
only. This would still require some refactoring and design decisions, because the
currently used version in the stage 2 module is partially converted to TypeScript.

5.4. Implementation of Inverse Kinematics

For stage 2, a Inverse Kinematics library had to be chosen. The following require-
ments were necessary:

• The library has to be performant enough to run in real time on low-end
devices. More than half of the worldwide web traffic is generated through
mobile devices [31], so it is a reasonable consideration not to exclude them
on a library level already.

• The library should be documented, actively maintained and easy to install.

• The library should not have dependencies to 3D engines such as THREE.js (or
Babylon.js). Module two is specifically designed to work with every engine
and potentially having to load two large libraries due to using another one
would cause unnecessary overhead – especially in scenarios where they are
downloaded from the internet on each reload, which would be the case in
many usage scenarios.
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• The library should allow long enough chains and bone constraints for human
bodies.

No library met all requirements. Some observed options were:

• The built-in IK functionality in Babylon.js [32] doesn’t support longer
chains than chains consisting of 2 bones, constraints or operating separately
from Babylon.js.

• BussIK-js [33] uses the Selectively Damped Least Squares algorithm, which
supports multiple end effectors and converges fast [34]. However, this im-
plementation takes up to multiple seconds to converge in Firefox, while
the performance in Chrome is better. This library does not support joint
constraints.

• closed-chain-ik-js [35] is well-documented and supports joint constraints
based on limiting degrees of freedom. However, it lists THREE.js as a peer
dependency. When testing the online demo, this library appeared to take
longer to compute a stable state than other libraries and tended to diverge or
even lock in wrong states that it cannot escape from afterwards, which was
the reason that this library was not chosen.

• Fullik [36] has no documentation apart from uncommented examples and
was not actively maintained at the time of the start of this thesis, but is a port
of the well-documented Java IK library Callico, using the FABRIK algorithm
[37, 38]. It does require THREE.js as a dependency. It is not uploaded
as a node module to the npmjs package registry and did not run without
modifications in the Babylon project. Nevertheless, Fullik seemed to be the
best contender due to the lack of other documented libraries with all features
and a suitable performance..

To use the code from Fullik, a fork named IK.ts was created: IK.ts is ported to
TypeScript. It is using the class notation instead of the object notation that Fullik
made use of1. It also doesn’t require THREE.js. THREE.js was previously used only
in a few points in the library – however, removing it makes the demos dysfunctional

1After the fork and modifications were already mostly implemented, Fullik introduced similar
modernization changes in May and June 2022.
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and connecting it to a THREE.js project more complex. A potential improvement
of IK.ts would be adding adapter classes for popular 3D and 2D libraries, but this
is not in scope for this thesis. Furthermore, some documentation was added.

Other than that, the code was not modified, meaning that the available constraints
and limitations are the same as in Fullik.

5.4.1. Excursion: The FABRIK Algorithm

A kinematics algorithm calculates an end point of a chain, given a start point,
lengths of chained segments and angles between the segments or segment positions.

Inverse kinematics algorithms do the opposite: Given a number of chained seg-
ments n, segment lengths l1 . . . ln, a start position S and a target position T also
known as end effector, an inverse kinematics algorithm calculates a possible combi-
nation of segment end points P′′

1 . . . P′′
n so that the chain reaches the end effector as

close as possible. Some inverse kinematics algorithms also support start positions
P1 . . . Pn as an input to support smooth movements.

Given differing requirements in fields such as robotics, game development and
simulation a myriad of inverse kinematics algorithms exist – some of which are
geared towards precision, others leaning towards fast execution time. A popular
algorithm is FABRIK by Aristidou et al. [38]. FABRIK is a comparably simple and
efficient heuristic algorithm. An advantage of FABRIK over other algorithms is
that the needed precision and time can be adjusted using a set margin of error. In
a case where the hardware specifications might differ from case to case, such as in
the scenario of this thesis, such a margin could be re-adjusted during runtime.

FABRIK iterates through the list of segments repeatedly, adjusting their direction
by rotating them towards the next segment. By repeatingly adjusting the rotations
in both backwards and forwards direction, the last segment will move towards the
end effector. As soon as the last end point is close enough to the end effector, the
algorithm terminates.

The algorithm can be extended to support not only linear chains, but also tree
structures.
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Besides these features, FABRIK can be extended by adding constraints to the
segment’s rotations. Available options differ depending on whether a 2- or more-
dimensional calculation is being performed [38].

Simplified description of the FABRIK algorithm

1. If goal is as far or further away than sum of lengths (∑ l), fully elongate
the segments on a straight line to goal. End.

2. Set P0 := S

3. Set P′
n := T

4. Backwards algorithm:

a) From last calculated P′
i , calculate P′

i−1 by going to the direction of
Pi−1, but only as far as the length li

b) Repeat step 4 until P′
0 is found

0

5. Set P′′
0 := S

6. Forward algorithm:

a) From first calculated P′′
i , calculate P′′

i+1 by going to the direction
of P′

i+1, but only as far as the length li+1

b) Repeat step 6 until P′′
n is found

7. repeat steps 3 - 6 until P′′
n is close enough to T (margin of error)

Figure 5.3.: Visualisation of a first iteration of the FABRIK algorithm: (1) Input
data. (2) Application of the backward algorithm. (3) Application of the
forward algorithm.
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5.4.2. Problem: Insufficient Joint Constraints

In 3D mode, Caliko and therefore Fullik and IK.ts support ball (BALL) and hinge
(GLOBAL_HINGE, LOCAL_HINGE) joint constraints2.

Ball joints allow a bone to tilt and rotate freely at its start point, as long as they
do not tilt further in any direction than to a predefined angle in relation to the
previous bone.

Hinge joints allow a bone to only tilt in one direction up to a specific angle, which
makes it a potential solution for bones such as lower legs, which mostly only tilt
for- and backwards at the knee.

When using global hinges, the direction is set in relation to world space. For a
virtual avatar that can in theory move in any direction, fixing rotations to a world
space direction is not feasible.

When using local hinges, the direction is set in relation to the previous bone. If
any previous bone is not constrained using a hinge, that previous bone can have
any rotation, so that the hinge behaves, from a world perspective, like a ball joint –
it can tilt to any direction. This restricts the usefulness of hinge joints for human
bodies.

Therefore, the given joint types are not versatile enough to ensure realistic poses
for human skeletons.

5.4.3. Problem: Missing Bone Rotation Output

In the previous section, it was described that in most cases, any bone can rotate
freely around its own axis. For this reason, Caliko and the derived implementations
do not calculate an actual rotation in these cases. Even when local hinges are being
used, the rotations that are calculated in the process of solving are not preserved
for the library user, who only has access to the start and end points. In many
cases, those rotational values are not required, such as when modeling a spider

2Basebones have slightly different available constraints, these are not discussed in this problem
description for the sake of simplicity.
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or a shower hose, but especially in cases like human head and chest rotation, just
picking one possible direction is not enough.

Figure 5.4.: Example of unrealistic poses as a result of insufficient joint constraints.
The upper leg uses a ball joint (orange cone), so that it can move in any
direction, not just forward and backward. The lower leg uses a hinge
joint (blue) to resemble the way a knee works. Because the upper leg
can also rotate, the hinge ends up being on the wrong side after some
movement of the target (red ball).

Nevertheless, it partially had to be done to achieve results. The following formula
was used to determine the quarternion rotation Q given the start and end point of
a bone P1 and P2 and a normalized reference vector v̂:

Q = (1 + û · v̂, û × v̂)

where û is the unit vector with the direction from P1 to P2 [39].

Significantly improving the IK library in these aspects was not in the scope of
this thesis – refactoring it to not use THREE.js was already more work than what
was planed originally. For efficiently conducting further research in the areas of
physical embodiment in browsers, it would be a first important step to improve
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this aspect.

Another option would be to reimplement stage 2 using a different library like
closed-chain-ik-js [35], which was considered the second-best option upon selection.
It would be necessary to separate the module from the THREE.js peer dependency.
The available constraints seem to be more suitable for human IK, but it would have
to be tested whether the performance requirements would be met.

5.5. Physics Engine

Because physics in many use cases are tightly coupled with the visual representa-
tion and the environment in which the user plans to use the physical embodiment,
the decision was made not to implement physics as a part of the stage 3 module,
but to implement it in the main project. Similarly to IK, Babylon offers built-in
methods for physics, although built-in physics support is much more mature than
built-in IK support in Babylon. Babylon offers support for the physics engines
Cannon.js, Oimo.js and Ammo.js. Because stage 3 only requires basic features,
all three libraries can be used interchangeably. Ammo.js is included in the imple-
mentation, Cannon.js and Oimo.js are downloaded as well when connected to the
internet. The debugging GUI allows switching the engine during runtime (See
subsection 5.7.3).

5.6. WebXR Support

To show the theoretical possibility of using VR inputs and outputs, WebXR support
was added using the Babylon.js WebXR feature. The optional use of a WebXR
compatible headset and two controllers as hand targets can be enabled using a
button. This feature was tested using Mozilla’s WebXR emulator [40]. While this
proved that the feature is functional, to use it in real scenarios, values might have to
be adjusted and an option for calibration would be necessary to make the controls
more realistic.

24



5. Implementation Process

5.7. User Interfaces

5.7.1. Stage Module GUI

To demonstrate that every stage can be used on its own, without the main project,
each stage contains a user interface that can be used to configure and start the stage
independently. The configuration options in the user interfaces are more limited
than when using programmatic configuration. For example, it is not possible to
pass callbacks into the module. A list of available configuration options can be
retrieved from the screenshots in the appendix.

5.7.2. Evaluation Module GUI

Similar to the stage module GUIs, an user interface for the evaluation module was
implemented. It does not serve as a demonstration interface like the stage module
GUIs, but is the intended way to use the module. It supports export of the collected
data in JSON format.

5.7.3. Main Project Debugging GUI

Running the project in differing configurations, restarting certain application parts
and adjusting parameters was required during development and evaluation. To
make this process easier, a user interface was added that allows to control these
aspects of the main application.
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Table 5.1.: The following options are present in the debugging GUI.

Option Default value, Description

skipUbii Disabled. Enabling will skip the use of Ubi-Interact and
will route all data internally.

runStage1
Enabled. Allows to disable the respective stage 1 when
it is supposed to run in a different implementation.

runStage2
runStage3
useXR Disabled. Stops animation and displays button to enter

the XR mode. XR mode works with two controllers,
tested using the WebXR API Emulator [40]

selectedAnimation Walk. Allows the user to chose between a walk, idle or
run animation, and manual mode.

animationSpeed 1. Slows down or speeds up the animation.

engine Ammo. Choice of physics engine. Ammo is included
in the installed packages, the other engines are fetched
from the internet during runtime if a internet connection
is available.

masses 0.01. The weight of each individual bone.
Gravity (0, -9.81, 0). Simulated gravity for the weighted bones.

The default value is equivalent to the gravity on earth.
constraintDistances Disabled. When enabled, the distance of the bones in

stage 3 is constrained using joints in the selected physics
engine. This may reduce misrepresentations due to bad
connectivity or miscalculations in stage 2.

maxVelocity 3. Stage 3 physics limit the linear velocity from stage 2
in each direction to the set value.

scaleVelocities 10. Before limiting to a maxVelocity, the linear velocities
from stage 2 are multiplied with the given value.
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6.1. Considerations

6.1.1. Measurement Techniques

There are two ways of measuring durations, either directly in the code or using the
evaluation modules.

Measuring durations in the code does usually not contain the time it takes to send
to or receive from Ubi-Interact. It should lead to more uniform and reproducible
results. However, the comparability across implementations – not just the two, also
potential future implementations – is not necessarily given. Different implementa-
tions might fire events and do calculations at different points in time. Comparing
measured durations needs to be done very carefully to avoid wrong conclusions.

Measuring durations using the evaluation module includes the time that the
communication with the master node takes. Depending on the setup, there may be
other traffic that may be prioritized. Thus, results should only be compared with
each others when using local servers and measurements should be taken over a
longer time frame to avoid artifacts due to network spikes.

One should also keep in mind that all evaluation runs use prerecorded and opti-
mized animation loops. This has the advantage that there is a full pose to compare
to – when using controllers, there is no way to programmatically tell whether
the calculation was correct. However, using animations might lead to different
behavior different than when using real inputs: Noisy data, connectivity issues,
a larger range of possible movements and different body types can lead to issues
that cannot be caught by this evaluation. Perspectively, it would be insightful to
try the software with a tracking suit that tracks all 7 targets.
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6.1.2. Sense of Embodiment

High delays lead to a bigger discrepancy between avatar and user pose, which
potentially influence the sense of embodiment. However, from low delays, one
cannot deduce that a full or high sense of embodiment is given. As described
previously, many aspects fall under that term. To make conclusions about the sense
of embodiment in a certain configuration, a user study with actual VR hardware
would be necessary.

6.2. Desirable Outputs

6.2.1. Delay of Visual Feedback

To create a sense of presence, experiments have shown that a low delay of feedback
even more important than pictorial realism [41]. However, there are many other
potentially variables that can influence sense of presence and thus sense of embodi-
ment, such as the duration of usage [42] or HMD update rates [43], so literature
does usually not give a suggestion of acceptable delays in VR. Welch et al found
significant limitation of the sense of presence at an increase of delays from about
200ms to about 1700ms [41]. The delay in a VR application should therefore be
significantly lower.

As an observer who looks at somebody else who is embodied, higher delays are
justifiable in comparison to the delay of the person who is embodied – the exact
value that needs to be achieved differs depending on the exact use case: In a VR
sword fight, less delay might be acceptable than in a VR conference. Also one
should keep in mind that physics as they are used in this work might dampen
fast movements. Smoothened movements could look worse in the data than they
would visually appear during actual usage.

There are scenarios in which delayed feedback might even be desirable: Objects
may appear heavier when a higher visual delay is applied [44]. In the previous VR
sword fight example, this could create a sense of weight of the weapon. However,
it could be argued that this kind of desirable delay should be added artificially, so
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that it is not bound to specific hardware and network circumstances.

6.2.2. Displacement

This thesis evaluates whether physical embodiment is possible. Because the IK
framework has limited features, bigger location displacements are possible. As
long as the targets are not displaced by more than a 1-2 centimeters, that does not
mean that the output is not suitable. It again depends on the use case whether a
pose that looks realistic and points at the right place with his hand, but his knees
and elbows are at a wrong location, is correct.

Certainly undesirable are misplaced targets, unrealistic poses and (temporarily)
disconnected body parts.

6.3. Evaluation Process

Data of different configurations was collected using the evaluation module. The
stage 1 modules were not modified to send a full pose instead of the targets –
this evaluation will focus on delays rather than precision of inverse kinematics
algorithms.

In the following sections, any combination of web stages (W) and unity stages (U)
will be denoted by a three letter combination. For example UWU represents the
configuration using the first and third Unity stage, as well as the second web stage.
A "*" may denote any of the two implementations.

Evaluation data was recorded using the following process:

1. Modules that were not required were disabled. Additionally, the tag web was
added to web modules and to the Unity component search requests whenever
it helped preventing potential ambiguity.

2. For *WU, a line of unity code was replaced in stage 3, because the lack of
angular rotation in the web implementation lead to errors. The necessary
change is documented in the web implementation documentation.
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3. For *UW, scaleVelocities was reduced from 10 to 1, because in the web
implementation, smaller values have higher impacts on physics.

4. For U** the animation was started with the space key. W** runs an animation
on start.

5. The applications were started, connections were awaited.

6. The evaluation module was started. After about 10 seconds of recording, the
animation was stopped using the space key in Unity or the debug option
animation: manual in the web interface.

7. After a few more seconds, the evaluation module was stopped and the result
was copied from the evaluation console.

8. All other modules were stopped completely to ensure that no data from an
evaluation run affected the next one.

Unless mentioned differently, the default settings were used in the Unity and
Web implementations and Chrome was used to run the main web application
and the evaluation module. The evaluation computer specifications are listed in
Appendix A. Besides all 8 module combinations, data for WWW was also recorded
once using constraints on the physics model and once in Firefox.

6.4. Results and Interpretation

6.4.1. Manual Observations

UUU seemed most realistic and fluent. WWW seemed similarly fluent, but some
movements were less realistic due to the missing rotational capabilities of the
inverse kinematics library, which was discussed in subsection 5.4.3. It is not
surprising that each implementation worked best when used on its own, because
that was the main way they were tested during development. Some combinations
like UWW worked well.

In general, Unity processing seemed to result in more "overshooting" output from
stage 2 – stage 3 avatars would slightly bob up and down.
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*WU implementations did not work satisfyingly. The stage 3 avatar would stop
moving shortly after the start, in an unrealistic pose. This may be related to the
missing rotational data from stage 2 web.

UW* implementations behaved unstable, sometimes they ran well, other times they
froze. The reason was not found, but given that the freezing seemed to occasionally
stop in Unity while switching windows, it might be related to a a technical detail
in the Unity implementation.

In terms of performance, no visible difference was observed with bare eye using
Firefox or the additional constraints on the physical model on the evaluation com-
puter. During development on the Laptop, performance in Firefox was observed to
be significantly worse than in Chrome.

6.4.2. Observations using the Evaluation Module

All of the following examples refer to the left arm target in comparison to the
X-coordinate of the left arm of the physical model. The raw data is available online1.
In the following graphs, orange represents stage 1 output, while grey is the pose
from stage 3. The horizontal axis is time, while the vertical axis represents position
in meters.

Figure 6.1.: Evaluation of configuration UUU

The presumption that UUU is comparably precise was correct. The previously
described effect that the stage 2 module tends to overshoot its results is visible too,

1JSON files and conversion scripts at github.com/goldst/ubii-evaluation-data
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especially after the big gradient, which results from the jump animation.

WWW appears to be similarly performant from what can be read from the data,
but a new observation can be made:

Figure 6.2.: Evaluation of configuration WWW

By default, the web implementation, more specifically the web implementation,
displaces the result in the X direction. While the amount of displacement in this
direction is not big enough to have a big visual impact in real scenarios, it may
contribute to unstable calculations due to incorrect feedback to other modules.

Not in all cases, the data from the evaluation module was a precise representation
of the process. In some cases, such as the UWW run, the evaluation module did
not receive data during periods where the physical embodiment process seemingly
went well. Visually, it might have had low impact, because of the continuous
movement while no new velocity data is received. Possible reasons contain the
already big amount of data that is being sent over the network, and that the browser
could limit tabs in background. Therefore, future evaluation modules should not
be created for browsers and should run for a longer time.
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7.1. Potential future work on implementation

The following is a summary of ideas to improve the existing implementation
further.

Stage 2 IK needs to be improved. Either additional constraints and rotation data
must be added to the existing library, or a different library should be chosen if the
performance proves adequate.

Performance does not seem to be the main bottleneck, but if it becomes a problem
due to a library switch, porting parts of the application to WebAssembly or
increasing the use of multithreading could be considered.

An interesting test would be to use actual inputs instead of recorded ones. This
would enable the user to test a more considerable variety of poses but comes at the
cost of not being able to compare all bone positions to the actual ones, which are a
part of animations.

The evaluation module can save much more data than what was analyzed in
the evaluation. This data should be analyzed further to find more weak points,
similarities, and differences in the implementations. Additionally, for test purposes,
stage 1 could publish not only targets but the whole pose. By doing that, it would
be possible to compare the actual pose to the IK pose.

7.2. Potential research beyond the physical embodiment
process

The following are some possibilities to continue research in and beyond the topic
of web-based physical embodiment using Ubi-Interact.

Even the Unity implementation could be considered a high level implementation -
for applications in which performance is crucial, an implementation that compiles
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to machine code could be beneficial. However, it is questionable to what extent the
performance could be improved in that way because the performance bottleneck
likely stems from local network communication.

The bone rig used in this thesis is equivalent to the one in the Unity implementation,
a human rig. Often, physical embodiment requires other avatars. For example,
some applications might only want to embody a more exact model of the user’s
hand. Furthermore, applications in which the user is a different animal, for
example, a dog, are thinkable. This would require using a different avatar too.

There are many users and avatars in many scenarios requiring physical embodi-
ment. While performance seems not to be a big issue on a simple implementation
with one avatar, this might be different in such applications. It should be evaluated
separately whether browsers using Ubi-Interact are a suitable solution to such
problems.

The avatar being physics-based opens many possibilities for interaction with virtual
objects. For example, an avatar might trip over a stone that only exists virtually.
In Human-Computer Interaction, such situations could be explored further. How
does a human react if the avatar falls due to a virtual stone? How significant
can the discrepancy between the avatar and his pose be without the user feeling
disconnected? This also plays a role due to possible delays because of low network
speed.

Finally, avatars do not have to be virtual. In the field of robotics, there are
several examples of humanoid robots. On the one hand, replacing the virtual
representation with a robotic one could result in a different set of problems because
the forces that must be applied might differ significantly. On the other hand, this
would potentially open many possibilities for using Ubi-Interact across other fields
of research.
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Physical embodiment with Ubi-Interact is viable in Browsers. This thesis showed
that all parts of the process could run in browsers. Reusable modules that serve as
a base for physical embodiment on the web were developed and are available as
open-source software for usage and modification.

Furthermore, it was shown that communication between the web and Unity imple-
mentations is possible. Thus, any combination of modules across implementations
can be used to realize the physical embodiment process with some adjustments.
However, the implicit nature of parts of the projects often made compatibility hard.
Many details that indirectly come from IK and physics implementations might be
taken for granted in one implementation but work differently in the other. More
documentation and a precise protocol that all implementations shall follow may
simplify the process in the future.

During development and evaluation, some caveats for physical embodiment in
browsers were found that should be considered when planning the development
of applications that depend on this process:

Technical limitations exist. One example is the typically ungraceful application
exits in browsers. In cases such as closing or reloading the tab, it is impossible to
properly disconnect Ubi-Interact, which can lead to incorrect component data at
the next load.

However, technical limitations are less severe than libraries’ unavailability, which
may be related to the fact that browser environments are still uncommon as
platforms for 3D software, such as games. The libraries created during this thesis
are a first step towards overcoming these limitations. More work will be necessary
to create stable and feature-complete libraries, especially in Inverse Kinematics.

This thesis also illustrated how versatile Ubi-Interact could be used. Devices can
not only be used for simulating real devices or representing an entity in a visual
process; in this project, a device also served the purpose of data analysis. Many
more use cases are conceivable.
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8. Conclusion

It was illustrated that the projects developed in this thesis are prototypes and
bases for potential future work. The topics of this thesis cover a wide range of
technologies and ideas that could be used to improve the physical embodiment
process further.
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A.General Addenda

A.1. List of bone names used across implementations

Extracted from ubii-vr-physics-embodiment-unity [4].

Hips, LeftUpperLeg, RightUpperLeg, LeftLowerLeg, RightLowerLeg,
LeftFoot, RightFoot, Spine, Chest, Neck, Head,
LeftShoulder, RightShoulder, LeftUpperArm, RightUpperArm,
LeftLowerArm, RightLowerArm, LeftHand, RightHand, LeftToes,
RightToes, LeftThumbProximal, LeftThumbIntermediate, LeftThumbDistal,
LeftIndexProximal, LeftIndexIntermediate, LeftIndexDistal,
LeftMiddleProximal, LeftMiddleIntermediate, LeftMiddleDistal,
LeftRingProximal, LeftRingIntermediate, LeftRingDistal, LeftLittleProximal,
LeftLittleIntermediate, LeftLittleDistal, RightThumbProximal,
RightThumbIntermediate, RightThumbDistal, RightIndexProximal,
RightIndexIntermediate, RightIndexDistal, RightMiddleProximal,
RightMiddleIntermediate, RightMiddleDistal, RightRingProximal,
RightRingIntermediate, RightRingDistal, RightLittleProximal,
RightLittleIntermediate, RightLittleDistal, UpperChest

A.2. Computer specifications

A.2.1. Desktop computer, used for evaluations

Windows 10 Enterprise LTSC, 64bit
Intel(R) Core(TM) i7-8086K CPU @ 4.00GHz
GeForce GTX 1080
16.0 GB RAM
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A.2.2. Laptop, for further observations

Arch Linux 5.18.3-arch1-1, 64bit
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz,
builtin GPU
8 GB RAM
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B.Figures

Figure B.1.: Screenshot of the web implementation. Only stage 1 is enabled, the
other two stage avatars are in a unused state. The debugging UI on
the right was used to make this configuration, along with enabling
constraintDistances, which has no effect due to the disabled stage
3. The Scene Explorer on the left was kept in the application to allow
examining the skeleton’s structure.

39



List of Figures

2.1. Communication between physical embodiment stages . . . . . . . . 4

4.1. Possible communication configurations between physical embodi-
ment stages across the implementations . . . . . . . . . . . . . . . . . 12

4.2. Integration of an evaluation module in the physical embodiment
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1. Overview over projects . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2. Comparison of the use of Ubi Interact when using only devices

versus a processing module . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3. Visualisation of the FABRIK algorithm . . . . . . . . . . . . . . . . . . 21
5.4. Unrealistic poses as a result of insufficient joint constraints . . . . . . 23

6.1. Evaluation of configuration UUU . . . . . . . . . . . . . . . . . . . . . 31
6.2. Evaluation of configuration WWW . . . . . . . . . . . . . . . . . . . . 32

B.1. Screenshot of the web implementation . . . . . . . . . . . . . . . . . . 39

40



List of Tables

2.1. Ubi-Interact topics and tags for physical embodiment . . . . . . . . . 7

5.1. Main debugging GUI options . . . . . . . . . . . . . . . . . . . . . . . 26

41



Bibliography

[1] S. Weber, M. Ludwig, and G. Klinker. “Ubi-Interact: A modular approach to
connecting systems”. In: EAI Endorsed Transactions on Mobile Communications
and Applications 6.19 (2021), e5.

[2] S. Weber and G. Klinker. “Vr re-embodiment in the neurorobotics platform”.
In: Mensch und Computer 2019-Workshopband (2019).

[3] B. Maclntyre and T. F. Smith. “Thoughts on the Future of WebXR and the Im-
mersive Web”. In: 2018 IEEE International Symposium on Mixed and Augmented
Reality Adjunct (ISMAR-Adjunct). 2018, pp. 338–342. doi: 10.1109/ISMAR-
Adjunct.2018.00099.

[4] S. Weber. ubii-vr-physics-embodiment-unity. Github repository. 2022. url: https:
//github.com/SandroWeber/ubii-vr-physics-embodiment-unity (visited
on 02/24/2022).

[5] embody. In: Cambridge Academic Content Dictionary. Cambridge University
Press. url: https://dictionary.cambridge.org/dictionary/english/
embody (visited on 05/09/2022).

[6] B. Spanlang, J.-M. Normand, D. Borland, K. Kilteni, E. Giannopoulos, A.
Pomés, M. González-Franco, D. Perez-Marcos, J. Arroyo-Palacios, X. N. Mun-
cunill, and M. Slater. “How to Build an Embodiment Lab: Achieving Body
Representation Illusions in Virtual Reality”. In: Frontiers in Robotics and AI
1 (2014). issn: 2296-9144. doi: 10.3389/frobt.2014.00009. url: https:
//www.frontiersin.org/article/10.3389/frobt.2014.00009.

[7] E. Negri, L. Fumagalli, and M. Macchi. “A review of the roles of digital
twin in CPS-based production systems”. In: Procedia Manufacturing 11 (2017),
pp. 939–948.

[8] K. Kilteni, R. Groten, and M. Slater. “The sense of embodiment in virtual
reality”. In: Presence: Teleoperators and Virtual Environments 21.4 (2012), pp. 373–
387.

[9] D. Kasprowicz and S. Rieger. Handbuch Virtualität. Springer, 2020.

[10] K. M. Besmer. “What robotic re-embodiment reveals about virtual re-embodiment”.
In: Postphenomenological Investigations: Essays on Human-Technology Relations
(2015), pp. 55–72.

42

https://doi.org/10.1109/ISMAR-Adjunct.2018.00099
https://doi.org/10.1109/ISMAR-Adjunct.2018.00099
https://github.com/SandroWeber/ubii-vr-physics-embodiment-unity
https://github.com/SandroWeber/ubii-vr-physics-embodiment-unity
https://dictionary.cambridge.org/dictionary/english/embody
https://dictionary.cambridge.org/dictionary/english/embody
https://doi.org/10.3389/frobt.2014.00009
https://www.frontiersin.org/article/10.3389/frobt.2014.00009
https://www.frontiersin.org/article/10.3389/frobt.2014.00009


Bibliography

[11] M. Luria, S. Reig, X. Z. Tan, A. Steinfeld, J. Forlizzi, and J. Zimmerman.
“Re-Embodiment and Co-Embodiment: Exploration of social presence for
robots and conversational agents”. In: Proceedings of the 2019 on Designing
Interactive Systems Conference. 2019, pp. 633–644.

[12] A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir. “Inverse kinematics
techniques in computer graphics: A survey”. In: Computer graphics forum.
Vol. 37. 6. Wiley Online Library. 2018, pp. 35–58.

[13] J. Collins, S. Chand, A. Vanderkop, and D. Howard. “A review of physics
simulators for robotic applications”. In: IEEE Access (2021).

[14] T. Geijtenbeek, N. Pronost, A. Egges, and M. H. Overmars. “Interactive
Character Animation using Simulated Physics.” In: Eurographics (State of the
Art Reports) (2011), pp. 127–149.

[15] Inverse Kinematics. In: Unity User Manual 2021.3 (LTS). url: https://docs.
unity3d.com/Manual/InverseKinematics.html (visited on 05/09/2022).

[16] Built-in 3D Physics. In: Unity User Manual 2021.3 (LTS). url: https://docs.
unity3d.com/Manual/PhysicsOverview.html (visited on 05/09/2022).

[17] S. Weber, D. Dyrda, ate362, M. Lohr, baumlos, and L. Goldstein. ubii-msg-
formats. Github repository. 2022. url: https://github.com/SandroWeber/
ubii-msg-formats (visited on 02/24/2022).

[18] F. Brizzi, L. Peppoloni, A. Graziano, E. Di Stefano, C. A. Avizzano, and E.
Ruffaldi. “Effects of augmented reality on the performance of teleoperated
industrial assembly tasks in a robotic embodiment”. In: IEEE Transactions on
Human-Machine Systems 48.2 (2017), pp. 197–206.

[19] H. Laaki, Y. Miche, and K. Tammi. “Prototyping a digital twin for real time
remote control over mobile networks: Application of remote surgery”. In:
Ieee Access 7 (2019), pp. 20325–20336.

[20] C. Greenhalgh and S. Benford. “Virtual reality tele-conferencing: Implemen-
tation and experience”. In: Proceedings of the Fourth European Conference on
Computer-Supported Cooperative Work ECSCW’95. Springer. 1995, pp. 165–180.

[21] P. D. Pazour, A. Janecek, and H. Hlavacs. “Virtual reality conferencing”. In:
2018 IEEE International Conference on Artificial Intelligence and Virtual Reality
(AIVR). IEEE. 2018, pp. 84–91.

[22] VRChat Inc. VRChat. url: https://store.steampowered.com/app/438100/
VRChat/ (visited on 05/09/2022).

43

https://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.unity3d.com/Manual/InverseKinematics.html
https://docs.unity3d.com/Manual/PhysicsOverview.html
https://docs.unity3d.com/Manual/PhysicsOverview.html
https://github.com/SandroWeber/ubii-msg-formats
https://github.com/SandroWeber/ubii-msg-formats
https://store.steampowered.com/app/438100/VRChat/
https://store.steampowered.com/app/438100/VRChat/


Bibliography

[23] M. Rzeszewski and L. Evans. “Virtual place during quarantine–a curious case
of VRChat”. In: Rozwój Regionalny i Polityka Regionalna 51 (2020), pp. 57–75.

[24] C. Montemorano. “Body Language: Avatars, Identity Formation, and Com-
municative Interaction in VRChat”. In: (2020).

[25] A. S. Kim. “Virtual Worldmaking: A Phantasmal Media Approach to VR-
Chat”. PhD thesis. Massachusetts Institute of Technology, 2021.

[26] Working with JavaScript. 2022. url: https://code.visualstudio.com/docs/
nodejs/working-with-javascript (visited on 02/24/2022).

[27] Stoplion, J. de Jong, and abhishekmatta999. josdejong/workerpool. Possible to im-
port libraries into Worker? url: https://github.com/josdejong/workerpool/
issues/47 (visited on 05/09/2022).

[28] M. Kruisselbrink. File System Access. Draft Community Group Report, 11 April
2022. Web Platform Incubator Community Group, 2022. url: https://wicg.
github.io/file-system-access/ (visited on 05/09/2022).

[29] A. Deveria. File System Access API. Can I use... Support tables for HTML5, CSS3,
etc. 2022. url: https://caniuse.com/native-filesystem-api (visited on
05/09/2022).

[30] Mozilla. Mozilla specification propositions. File System Access. 2022. url: https:
//mozilla.github.io/standards-positions/#native-file-system (vis-
ited on 05/09/2022).

[31] StatCounter. Percentage of mobile device website traffic worldwide from 1st quarter
2015 to 4th quarter 2021 [Graph]. 2022. url: https://www-statista-com.
eaccess.ub.tum.de/statistics/277125/share- of- website- traffic-
coming-from-mobile-devices/ (visited on 02/24/2022).

[32] R. Weber, PirateJC, idutta2007, and Popov72. Babylon.js Documentation. Bones
and Skeletons. url: https : / / doc . babylonjs . com / divingDeeper / mesh /
bonesSkeletons#boneikcontroller (visited on 05/09/2022).

[33] J. Friend. BussIK-js. GitHub repository. https://github.com/jsdf/BussIK-js.
2022. (Visited on 05/09/2022).

[34] S. R. Buss and J.-S. Kim. “Selectively damped least squares for inverse
kinematics”. In: Journal of Graphics tools 10.3 (2005), pp. 37–49.

[35] G. Johnson. closed-chain-ik-js. GitHub repository. https://github.com/gkjohnson/
closed-chain-ik-js. 2022. (Visited on 05/09/2022).

44

https://code.visualstudio.com/docs/nodejs/working-with-javascript
https://code.visualstudio.com/docs/nodejs/working-with-javascript
https://github.com/josdejong/workerpool/issues/47
https://github.com/josdejong/workerpool/issues/47
https://wicg.github.io/file-system-access/
https://wicg.github.io/file-system-access/
https://caniuse.com/native-filesystem-api
https://mozilla.github.io/standards-positions/#native-file-system
https://mozilla.github.io/standards-positions/#native-file-system
https://www-statista-com.eaccess.ub.tum.de/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www-statista-com.eaccess.ub.tum.de/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www-statista-com.eaccess.ub.tum.de/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://doc.babylonjs.com/divingDeeper/mesh/bonesSkeletons#boneikcontroller
https://doc.babylonjs.com/divingDeeper/mesh/bonesSkeletons#boneikcontroller
https://github.com/jsdf/BussIK-js
https://github.com/gkjohnson/closed-chain-ik-js
https://github.com/gkjohnson/closed-chain-ik-js


Bibliography

[36] lo-th. Fullik. GitHub repository. https://github.com/lo-th/fullik. 2022.
(Visited on 05/09/2022).

[37] A. Lansley, P. Vamplew, P. Smith, and C. Foale. “Caliko: An inverse kinemat-
ics software library implementation of the FABRIK algorithm”. In: Journal of
Open Research Software 4.1 (2016).

[38] A. Aristidou and J. Lasenby. “FABRIK: A fast, iterative solver for the Inverse
Kinematics problem”. In: Graphical Models 73.5 (2011), pp. 243–260.

[39] R. Eisele. Proof: Quaternion from two vectors. url: https://www.xarg.org/
proof/quaternion-from-two-vectors/ (visited on 05/09/2022).

[40] Mozilla Mixed Reality. WebXR API Emulator. url: https://addons.mozilla.
org/de/firefox/addon/webxr-api-emulator/ (visited on 05/09/2022).

[41] R. B. Welch, T. T. Blackmon, A. Liu, B. A. Mellers, and L. W. Stark. “The effects
of pictorial realism, delay of visual feedback, and observer interactivity on the
subjective sense of presence”. In: Presence: Teleoperators & Virtual Environments
5.3 (1996), pp. 263–273.

[42] L. C. Van Dam and J. R. Stephens. “Effects of prolonged exposure to feedback
delay on the qualitative subjective experience of virtual reality”. In: PloS one
13.10 (2018), e0205145.

[43] M. P. Snow. “Charting presence in virtual environments and its effects on
performance”. PhD thesis. Virginia Polytechnic Institute and State University,
1996.

[44] V. van Polanen, R. Tibold, A. Nuruki, and M. Davare. “Visual delay affects
force scaling and weight perception during object lifting in virtual reality”.
In: Journal of neurophysiology 121.4 (2019), pp. 1398–1409.

45

https://github.com/lo-th/fullik
https://www.xarg.org/proof/quaternion-from-two-vectors/
https://www.xarg.org/proof/quaternion-from-two-vectors/
https://addons.mozilla.org/de/firefox/addon/webxr-api-emulator/
https://addons.mozilla.org/de/firefox/addon/webxr-api-emulator/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Previous Research
	Definitions
	Virtual Embodiment
	Embodiment and Re-embodiment
	Physical Embodiment

	Process of Physical Embodiment
	Networking and Ubi-Interact
	Physical Embodiment Implementation in C# / Unity
	Resulting Protocol
	Open Questions from Unity


	Related Work
	Robotics
	Multi-User Scenarios

	Goal of this thesis
	Problem Statement
	Implementation Requirements
	Evaluation Requirements

	Structure
	Stage Modules
	Main Application
	Evaluation Module


	Implementation Process
	General Process
	Usage of TypeScript
	Usage of Ubi Interact
	Browser Limitations Regarding Graceful Exits
	Devices versus Processing Modules

	Implementation of Inverse Kinematics
	Excursion: The FABRIK Algorithm
	Problem: Insufficient Joint Constraints
	Problem: Missing Bone Rotation Output

	Physics Engine
	WebXR Support
	User Interfaces
	Stage Module GUI
	Evaluation Module GUI
	Main Project Debugging GUI


	Evaluation
	Considerations
	Measurement Techniques
	Sense of Embodiment

	Desirable Outputs
	Delay of Visual Feedback
	Displacement

	Evaluation Process
	Results and Interpretation
	Manual Observations
	Observations using the Evaluation Module


	Outlook
	Potential future work on implementation
	Potential research beyond the physical embodiment process

	Conclusion
	General Addenda
	List of bone names used across implementations
	Computer specifications
	Desktop computer, used for evaluations
	Laptop, for further observations


	Figures
	List of Figures
	List of Tables
	Bibliography

