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Bachelor’s Thesis in Informatics: Games Engineering

Optimizing Pens for Use as 3D Raycasting
Interactables with Monocular 6-DoF Object

Tracking

Min-Shan Luong



DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN
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Abstract

In this thesis, we propose an approach to track the pose (6-DoF) of a pen by attaching
an object marker specifically designed for this purpose. Our work includes designing
an optimal object marker, as well as a 6-DoF tracking system for this object with one
stationary webcam. For the design of the object marker, we focused on textured planar
models. After calibrating the camera, the object to be tracked is registered in order
to use these model information as input for the tracking algorithm. Furthermore, 3D
scans of the objects are created to retrieve a digital 3D representation which is used
for object registration. Tracking quality is then evaluated by testing the accuracy and
speed.

The aforementioned work is part of a more extensive project, with the goal to interact
with objects in the augmented environment intuitively by adding extra functionality
to an ordinary pen. This pen can then be used similarly to a laser pointer. For high
mobility, instead of a stationary camera, this camera is attached to the user while
capturing visual input for the tracking.

In dieser Arbeit wird ein Ansatz für das Tracking der Pose (mit 6 Freiheitsgraden)
eines Stiftes vorgestellt. Ein speziell für diesen Zweck entworfener Marker wird
dazu an einem Stift befestigt. Das Entwerfen eines solchen optimalen Objekt-Markers
sowie die Entwicklung eines Algorithmus für das Tracking des Markers mit einer
stationären Webcam ist Teil dieser Arbeit. Beim Objekt-Marker-Design lag der Fokus auf
texturierte, planare Modelle. Nach dem Kalibrieren der Kamera wird das Objekt, das
getrackt werden soll, registriert, da die Objekt-Modell-Informationen für den Tracking-
Algorithmus benötigt werden. Desweiteren werden 3D-Scans des texturierten Objekt-
Markers erstellt um eine digitale Repräsentation zu erhalten, die während der Objekt-
Registrierung genutzt wird. Die Tracking-Qualität wird anschließend hinsichtlich ihrer
Genauigkeit und Geschwindigkeit bewertet.

Diese Arbeit legt die Grundbausteine für ein weiterführendes Projekt mit dem Ziel In-
teraktionen in der Erweiterten Realität durch einen gewöhnlichen Stift zu ermöglichen.
Dieser Stift soll ähnlich einem Laser-Pointer bedient werden. Für größere Bewegungs-
freiheit sollte die Kamera dann am Nutzer befestigt und nicht stationär sein.

iv



Contents

Acknowledgments iii

Abstract iv

List of Notations vii

Abbreviations viii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3

3 Reference Project 4

4 Image Features 8
4.1 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 BRIEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 ORB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Camera Calibration 15

6 Object Registration 20
6.1 Model Reconstruction via 3D Scan . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Synthetic Data Creation in Unity . . . . . . . . . . . . . . . . . . . . . . . 22

6.2.1 Physical Camera Setup . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2.2 Image Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.3 Image Coordinates of Mesh Vertices . . . . . . . . . . . . . . . . . 23

6.3 ORB Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.1 Click Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.2 Registration with Known Image Coordinates . . . . . . . . . . . . 25

v



Contents

7 6-DoF Object Tracking 26
7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Algorithm Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Frame-to-Frame tracking using Optical Flow . . . . . . . . . . . . . . . . 30

8 Design of Object Marker 33

9 Evaluation 36
9.1 Detection Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 Optical Flow Tracking Quality . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.4 Limitations and Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10 Conclusion 44
10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

List of Figures 46

Bibliography 47

Appendix 52

vi



List of Notations

Notation Description

FPS The camera’s frame rate.
K The camera’s intrinsic matrix.
R The camera’s rotation matrix.
t The camera’s translation vector.
(R|t) The camera’s extrinsic matrix.
distcoe f f s The camera’s distortion parameters.

θ Distance between rotations measured by an angle
tr(M) Trace of matrix M
MT Transpose of matrix M

vii



Abbreviations

Term Definition

FPS Frames Per Second
DoF Degrees of Freedom
PnP Perspective-n-Point
RANSAC Random Sample Consensus
F2F Frame to Frame
OF Optical Flow
RE Mean Reprojection Error
GT Ground Truth

viii



1 Introduction

1.1 Motivation

The use of augmented reality systems in the industry is on the rise. The benefits are
certainly given: It can raise efficiency and productivity, as well as facilitate the workflow
of employees by augmenting their environment with additional information. Common
application areas include assembly, training, and others [1]. For example, the time
it takes to look up information about components in manuals can be shortened by
displaying the corresponding information directly into the environment whenever the
user points at a component. This can be done by using an interaction device. However,
workers in the industry usually carry along a large set of tools that they need during
work, which means that an additional tool would be likely burdening.

In order to keep the number of additional tools low, we suggest an approach that
reuses or extends the functionality of an already existing tool, as for example, a pen. The
idea is to interact with objects in the augmented environment intuitively by converting
an ordinary pen into an interaction device in order to use it similar to a laser pointer.
This can be done by attaching an object marker to the end of a pen. While taking notes
on a clipboard, workers or employees can then easily use the end of the pen to point
at things in their environment. Multiple stationary cameras installed on the ceiling
would probably have a good view on the object marker. However, neither multiple nor
stationary cameras are desired in the industry due to lack of space and possible issues
with employee monitoring. Hence, as a solution, a single camera for visual input could
be either attached to the clipboard or to the users clothes, so that the tracking system
offers high mobility with a minimum of camera devices. For easy collaboration, we
suggest to use a projector in this setting, so that co-workers can share what they see.
This may be helpful to convey and discuss thoughts so that everybody can quickly get
the idea.

1.2 Contributions

The scope of this thesis includes creating the first building blocks of the above explained
idea, which is to develop a cheap, lightweight interaction device. Therefore, this
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1 Introduction

thesis proposes a 6-DoF object tracking algorithm for well textured objects. Our main
contributions are:

• The use of synthetic data to facilitate object registration

• An image feature based object tracking algorithm using a single stationary camera

• A frame-to-frame tracking algorithm using optical flow

• The design of object marker prototypes that are adjusted to our tracking algorithm,
and which can be plugged on a pencil

1.3 Thesis Structure

First, we present related work in chapter 2. Afterwards, we describe our reference
project more detailed in chapter 3, which inspired a large part of this thesis. Since
our goal is inter alia to design a good object marker, we want to understand the
functionality and construction of image features. Therefore, in chapter 4, we analyze a
subset of feature descriptors and and detectors, and then point out their advantages
and drawbacks. The camera calibration process and its importance is explained in
chapter 5. Chapter 6 presents the approach to register the to be tracked object necessary
for the object tracking algorithm. This 6-DoF object tracking algorithm and our problem
formulation are described in chapter 7. Furthermore, we demonstrate our approach for
designing the object marker prototypes in chapter 8. Then, in chapter 9, we evaluate the
performance of our tracking and detection algorithm in combination with our designed
object marker. Finally, the last chapter 10 summarizes the main points of this thesis
and suggests ideas for future work.

2



2 Related Work

In the project Augmented Chemical Reactions [2], an application to display chemical
reactions on molecular level was designed. A molecule can react to other molecules
depending on the distance and orientation to each other. In order to make interactions
in an augmented reality environment intuitive, [2] uses a physical cube marker with a
handle. This cube has black and white square markers on every side, except for the
one with the handle attached, to enable tracking of its pose. Using UbiTrack’s tracking
system for markers, the orientation and position of the cube is tracked relative to the
camera, making it possible to display a virtual chemical molecule on top of a marker
on the camera image. [2]

Most of the existing augmented reality system solutions visualize virtual information
on a dedicated screen or projection area which may restrict the user’s mobility and,
additionally, is less intuitive than having the information directly projected into the real
world. Therefore, WUW - Wear Ur World [3] proposes the idea of a wearable mobile
information interface that augments the user’s environment. The user wears a hat
with a camera and a projector clipped to it, so that the camera input is similar to what
the user sees. The projector then projects virtual information into the real world with
which the user can interact via hand gestures. [3]

Vuforia [4] and ARKit [5] are proprietary frameworks that allow to recognize and
track 3D objects after scanning them with their respective 3D scanning application. The
environment can then be augmented by e.g. overlaying manuals, adding virtual 3D
content, interactive guidances, and more [6]. Additionally, if available, Vuforia is also
able to deal with CAD models as digital representation instead of a 3D scan [1]. While
ARKit is limited to mobile iOS devices, Vuforia offers a cross-platform solution for
smartphones, PCs and head-mounted displays like Microsoft HoloLens [7].

WUW - Wear Ur World describes our future system setting well. It should be mobile
and support intuitive user input. However, in this thesis, we want to use an interaction
device instead of hand gestures to interact with the augmented environment. Similar
to Maier’s interaction device to augment molecules, the interaction device proposed in
this paper consists of a 3D marker attached to a stick, here a pen. Moreover, instead of
a cube marker we use a self-designed object marker that does not require the camera to
see the whole marker in order to detect it. In the end, we want to detect and track a 3D
object as is the case for Vuforia and ARKit.

3



3 Reference Project

Most of this project’s tracking algorithm is inspired by [1]. It proposes a way to track the
pose (6DoF) of an arbitrary object with texture under challenging conditions including
fast motion, occlusions and illumination changes. The tracking is based on 3D high
quality scans of that object. Furthermore, [1] has implemented remote live support
realized with Mobile Edge Computing (MEC) in order to provide high computational
power to less powerful devices like smartphones or tablets. Since this thesis is highly
inspired by the tracking procedure of [1], the following part presents an overview about
the methods used for object registration, detection and also tracking.

Object Registration To register the object to be tracked, [1] scanned the object by
means of phase shifted structured light. One projector and two cameras were used,
requiring multiple scans from different perspectives to capture every side of the object.
The single scans are then matched and merged afterwards by using the Iterative Closest
Point method (ICP). ICP iteratively aligns one point cloud (source) to another fixed one
(reference) by finding the closest point from the source to the reference point cloud for
each point in the source point cloud and by minimizing the root mean square error.
Thus, we receive one single point cloud representing our scanned object. [1]

The second step is to define anchor points. These are points that are statistically highly
probable to be found, using a point detector (Good Features To Track [8] in [1]) to find
the most salient points in the image. Moreover, a discrete 3D accumulator is used to
determine the likelihood of points to be detected after reconstructing the 3D position
of the found 2D points with help of depth information received from the scanning. The
size of the bins are in respect to the size of the object. Afterwards, a Non-Maximum
Suppression is run over the collected points in order to limit the amount of points
within a specific area (suppression of non-maximum) by choosing the one with the
highest probability (maximum). [1]

In addition to that, a certain number of rendered images are saved that act as
reference images later for the detection. The ORB features as well as their respective
3D coordinates are saved for the same purpose.

Object Detection This section is divided into two parts called ORB Initializer and
Reinitializer in [1]. Before tracking can commence, an initial pose has to be determined as
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3 Reference Project

the tracking requires information about the pose in the previous frame. For this reason,
ORB Initialization was implemented, where the ORB features of the rendered images
saved during object registration are matched with the current frame. Additionally,
potential outliers in the set of matches are filtered out by performing a ratio test like
it is done for SIFT [9] (see 4). Then, the image with the highest number of remaining
matches is taken as reference image to obtain information about the 3D positions to the
corresponding 2D keypoints so that the camera pose, and therefore the object pose, can
be estimated by solving the Perspective-n-Point (PnP) pose problem combined with
RANSAC. To speed up the matching between ORB features, the process is divided
among multiple threads run in parallel. In case the ORB Initialization fails, the current
frame is skipped and ORB Reinitialization is started for the consecutive frame. [1]

The same problem occurs when the tracking fails to propose a valid pose. This may
happen due to insufficient number of matchings e.g. due to motion blur. Hence, in
order to provide a previous pose to the tracker, ORB Reinitialization is carried out. The
idea of ORB Reinitialization is to retrieve a correct pose within a short time with help
of stored keyframes, which means that if there is no keyframe, ORB Initialization has to
be executed instead. Those keyframes are obtained in a thread updated less frequently
than the main threads. However, certain conditions apply for selecting keyframes. Only
those frames are chosen whose ratio of outliers to inliers from the RANSAC algorithm
as well as the reprojection error of the tracked features are below particular thresholds.
Together with the frame, the corresponding pose, its ORB descriptors including 2D
coordinates and their calculated 3D positions are stored. Finally, the matching of the
current frame with the latest keyframe is performed to estimate the pose, which is
usually comparatively fast due to the high similarity between the two frames resulting
in a high number of matches. If the attempt of ORB Reinitialization is not successful,
ORB Initialization is started. [1]

Object Tracking Tracking-by-detection and frame-to-frame tracking are both popular
approaches for tracking objects in a series of images. On the one hand, tracking-by-
detection needs no prior information about the object pose in the last frame since
detection is done every frame. On the other hand, the detection process is relatively
time consuming. If a faster solution is desired, frame-to-frame tracking offers a good
alternative as long as an initial pose is given. Frame-to-frame tracking tracks the
movement of objects in consecutive frames while making use of relevant information
from previous frames. The implementation in [1] works with frame-to-frame-tracking. If
during the object detection process (ORB Initialization and Reinitialization) the previous
pose is successfully determined, frame-to-frame-tracking is possible. Otherwise, ORB
Reinitialization is attempted. [1]
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3 Reference Project

In case that the pose of the last frame was valid, this frame is rendered off screen
and the areas around the registered anchor points are matched with the ones of the
current frame via optical flow, namely the Kanade-Lucas-Tomasi (KLT) tracker [10] (Render
to Frame or R2F). Likewise, the real image is matched with the current frame (Frame
to Frame or F2F). With the help of the R2F matching, the pose resulting from the F2F
matching is corrected in order to avoid drift that unavoidably occurs after some steps
with the optical flow method. [1]

If anchor points are lost during the tracking (e.g. due to occlusion), or if they are
considered to be an outlier, they are marked as not valid. In this case, their 2D position
will be computed through their 3D position and the estimated object pose, that is
computed with the remaining anchor points, until the lost points become visible again
in case of temporary occlusion. [1]

Since optical flow with Good Features To Track is used, applying an edge enhancing
image filter supports the tracking of the feature points. Therefore, [1] proposes a pencil
filter which is described further in the next paragraph.

Pencil Filter In [1], a pencil filter is applied on the images to enhance the KLT feature
matching. This filter entails the properties of enhancing edges in the image as well as
normalizing the image to become more illumination invariant. The two steps of this
filter are dilation of the image converted to grayscale, and thresholding the pixels to
normalize the pixel values. In a later paper [11], the pseudo code for the filter was
published (see algorithm 1).

Algorithm 1 Pencil Filter

1: function Pencil Filter(I) . Image I
2: G = Convert to grayscale(I)
3: P = Dilate(G, ELLIPSE) . Dilation with ellipse
4: for y=0 to y=G.rows - 1 do
5: for x=0 to x=G.columns - 1 do
6: if (P(y,x) == 0) then
7: P(y,x) = 255
8: else
9: P(y,x) = int(G(y,x) ∗ 255)/P(y,x) . Measuring Pixel Difference

10: end if
11: end for
12: end for
13: return Pencil Image P
14: end function

6



3 Reference Project

Dilation is the operation of convolving an image with a kernel that has a particular
shape and size. OpenCV [12] provides a function for dilation with a rectangle, cross,
or ellipse given a predefined size plus an anchor point for the kernel. While running
the kernel over the image, the pixel located at the anchor point position (here the
center of the kernel) is replaced by the maximum value of the pixels within the kernel.
Thus, bright regions in the image become brighter, and the image generally becomes
blurrier. However, it should be mentioned that the blurriness is to be distinguished
from Gaussian blur, where the edges become soft, whereas with dilation sharp edges
may remain. All in all, dilation makes the image appear brighter, but details in the
dark would be still lost. In order to preserve those details, the difference between the
pixel values of the grayscale image and the dilated one needs to be calculated. The
same is achieved by dividing the values of the grayscale image by the ones the dilated
image [11]. The application of the pencil filter can be seen in figure 7.2.
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4 Image Features

Image features are typically located at distinctive image areas like edges, corners, peaks,
or generally in areas with high intensity changes and unique texture. These features
are selected by a feature detector that scans through an image and picks points or
patches that satisfy the respective requirements to be considered a feature. Accordingly,
there are various algorithms for feature extraction, each focusing on different kinds
of features. Often, the feature’s appearance is saved additionally to its location. This
appearance is described by a feature descriptor, which can be stored in different ways.
Some descriptors are more complex and manage to recognize the same patch in another
image well during the matching phase, while others may return less accurate results
but score higher in regards of computational cost.

In the following, the functionality of a subset of image detectors and descriptors is
explained. This includes SIFT (section 4.1), since it is used frequently to define features
in images, FAST(section 4.2) as well as BRIEF (section 4.3), and the combination of
FAST and BRIEF named ORB (section 4.4), which we are using for this project.

4.1 SIFT

SIFT was introduced in 1999 and stands for Scale-Invariant Feature Transform [9]. SIFT
features are invariant in location, scale, rotation, small viewpoint changes and illumina-
tion changes [13], and therefore, highly accurate. However, this high accuracy comes
along with large computational complexity. In the following, the SIFT detector, as well
as the creation of a SIFT descriptor is explained.

In the first step, the location of potential keypoint candidates are detected by finding
scale-space extrema of the Difference-of-Gaussian convolved with the image. The scale-
space is defined by a continuous function that applies convolutions with a Gaussian
kernel on an image at different scales. Furthermore, it consists of a certain number of
octaves with different image resolutions that are reduced by half after each octave. To
find extrema in scale-space, [13] has proposed to compute the Difference-of-Gaussian
(DoG) as an approximation to the scale-normalized Laplacian-of-Gaussian (LoG) due
to its efficiency. A visualization of the DoG is shown in figure 4.1. After applying DoG,
the pixel of one image is then compared to its 26 neighboring pixels in the next upper
(9 pixels), next lower (9 pixels) and the same scale level (8 pixels) to finally identify a

8



4 Image Features

Figure 4.1: The computation of the DoG with images convolved with a Gaussian kernel.

local extremum. With this result, the found keypoint candidates are still prone to some
noise. In order to keep them more stable to noise, keypoints with low contrast and
poorly determined location along an edge are filtered out. [13]

Now that the keypoints are scale-invariant, the next step is to make them rotation-
invariant. Before this, each keypoint is assigned a specific orientation using the
following steps. For each sample point within a certain range around the keypoint
center, a gradient vector is calculated together with its length and orientation. The
computations are done on a Gaussian smoothed image, while the scale of the keypoint
determines from which scale this image is taken. Then, those gradients are assigned to
one of 36 bins where each bin represents 10 degrees from a total of 360 degrees. The
value added to a bin is determined by the magnitude of the gradient vector which is
additionally weighted by a Gaussian-weighted circular window (see figure 4.2). In the
end, the most dominant direction has the highest peak in the histogram. Therefore, this
direction becomes the orientation of the keypoint. In addition to that, other local peaks
above 80% of the highest peak also create a separate keypoint with this orientation at
the same location and with the same scale. This significantly improves the stability of
the matchings. [13]

9



4 Image Features

Figure 4.2: Building a descriptor from image gradients, here with a 8x8 window instead
of a 16x16 window. The Gaussian-weighted circular window is shown
on the left (blue). A gradient area of 4x4 create one oriented histogram,
resulting in 4 oriented histograms in total. These 4 oriented histograms
together build up one descriptor.

At this point, the keypoints have an assigned orientation but the descriptor to
each keypoint is lacking. In the following step, to include orientation-invariance, the
gradients within a 16x16 window around the keypoint are computed with respect to
the keypoint orientation. We use 4x4 sample regions to build one orientation histogram
(see figure 4.2). These window sizes have turned out to be the best choices. In contrast
to the previous procedure, the number of bins here is only 8, dividing 360 degrees in
these 8 bins. Altogether, this results in the final descriptor consisting of a 4x4x8 vector.
After normalization of this vector, the keypoint becomes invariant to affine illumination
changes, but not to non-linear illumination changes. [13]

Features are matched by identifying the best match for a keypoint first, while bad
matches are filtered out through a ratio test afterwards. The best match is defined by
the nearest neighbor of a keypoint. By searching for the shortest Euclidean distance
between the respective descriptor and all other descriptors, the nearest neighbor is
determined. [13]

SIFT’s high accuracy and relatively high robustness against several visual changes
makes it popular for the usage in computer vision. Nevertheless, due to its high
computational complexity, it is suitable to only a limited extent for real time applications.
SIFT is patented and therefore not free to use for commercial purposes.

10



4 Image Features

Figure 4.3: Scheme of the basic FAST algorithm. Pixels 1 to 16 build the test circle
around p. The dashed arc shows a detected corner.

4.2 FAST

The FAST feature detector [14] is a high-speed corner detector which is suitable for real-
time applications. After an improved version of the initial approach was proposed by
[14] using machine learning, FAST outperforms several other existing corner detectors.

FAST stands for Features from Accelerated Segment Test. The segment test criterion is
applied to each of the 16 pixels p→ x with x ∈ {1, . . . , 16} lying on a circle around the
corner candidate p. It checks sequentially whether the intensity of the pixels is either
higher or lower than the intensity Ip of p. The check includes a certain threshold t, so
that Ip→x is considered to have a higher intensity if Ip→x > (Ip + t) or to have a lower
intensity if Ip→x < (Ip − t). As soon as a number of n contiguous pixels with either
higher or lower intensity are found, p can be considered a corner and all remaining
pixels can be neglected. To accelerate the algorithm, a high-speed test is run to quickly
filter out non-corners. This can be done by checking only pixels of the four compass
directions (pixels 1, 5, 9 and 13 where the algorithm starts at 1 located at the top of the
circle). The ps with less than two of the four pixels having intensities either higher than
Ip + t or lower than Ip − t can be considered non-corners, and all other pixels on the
circle can skip the test. The whole procedure is called the accelerated segment test that
is able to detect corners. The scheme of this basic FAST is shown in figure 4.3. [14]

Nevertheless, the initial algorithm, that is run over the complete image, has several
weaknesses: non-optimal efficiency, non-optimal speed and detecting multiple adjacent
corners. Hence, an extended version of that algorithm was published in [14], which
involves machine learning and non-maximal-suppression.

11



4 Image Features

The outcome of the machine learning extension is a trained decision tree which, for a
given n, is able to correctly redetect corners in images that are different from the set of
training images. First, all training images are scanned for corners using the segment
test criterion explained above. Additionally, the 16 pixels p → x can be assigned to
three states: darker pixels with Ip→x ≤ Ip − t, similar pixels with Ip − t < Ip→x < Ip + t,
and brighter pixels with Ip + t ≤ Ip→x. For each fixed x, and for all p ∈ P, P being all
pixels in the set of training images, p is assigned to one of the above states. This creates
subsets Pd, Ps, Pb with respectively darker, similar and brighter pixels. Consequently,
there are separate Pd, Ps, Pb for each x. Kp is a variable of type boolean that is true
if p is a corner and f alse if it is not. With the help of the entropy of K for set P and
subsets Pd, Ps, Pb, the x with the highest information gain about whether p is a corner
can be determined. Then, recursively for each of the subsets Pd, Ps, Pb of the previously
selected x with highest information gain, the new x with highest information gain is
determined similarly. The recursion stops when the entropy K of a subset is zero. This
process creates a decision tree that can then serve as a corner detector. [14]

Now being able to detect corners, these corners still should be filtered to receive
one distinct corner instead of multiple adjacent ones. By means of a score function
V, non-maximal-suppression is applied, where the corners with a lower V value are
removed and only the one with the maximum V value remains [14]. In [14], V is
defined as follows:

V = max

 ∑
x∈Sbright

|Ip→x − Ip| − t, ∑
x∈Sdark

|Ip − Ip→x| − t

 (4.1)

where

Sbright = {x|Ip→x ≥ Ip + t} (4.2)

Sdark = {x|Ip→x ≤ Ip − t} (4.3)

Compared to SIFT, FAST is less accurate but it uses less than 7% of the available
processing time whereas SIFT took 300% of it for feature detection [14]. Moreover,
it is challenging for FAST to deal with high levels of noise. Another drawback is
that FAST does not consider rotation and is thus rotation-variant [15]. Additionally,
scale-invariance is given only to a limited extent, thus it has lower scale-invariance than
other detectors [16].
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4 Image Features

Figure 4.4: Different approaches of the test locations evaluated in [17]. One straight
black line shows one pixel pair.

4.3 BRIEF

In contrast to most feature descriptors, Binary Robust Independent Elementary Features
(BRIEF) uses binary strings for the representation of features [17]. A string size of
around 128 to 256 bits is often sufficient for very good matching results according to
[17]. Feature matching is done by computing and comparing the Hamming distance
between descriptors [17]. The Hamming distance is determined by summing up the
number of 1’s in the bit string after applying an XOR operation on the bit strings to be
compared. In this section, an insight of the construction of these bit strings is given.

Each descriptor contains data about an image patch of size S × S. This patch is
smoothed in order to be more robust to noise, since it compares single pixel values
within the patch in a test. After comparing the intensity of a pixel pair (p(x), p(y)),
either a 1 (when (p(x) < p(y))) or a 0 (otherwise) is added to the bit string. In the
original paper [17], a patch size of 9× 9 pixels was chosen as well as the level of
Gaussian smoothing for the patch which is 2. [17]

With the general idea of BRIEF presented above, it is still necessary to choose
p(x), p(y) for each pixel pair. After testing different approaches for the test locations,
the structure G II shown in figure 4.4 yielded the best results. The pixel pairs are
distributed with an isotropic Gaussian distribution around the keypoint center. [17]

All in all, BRIEF uses a very compact and lightweight descriptor structure that
realizes fast matchings. Nonetheless, neither orientation nor scale are directly respected
in the descriptor calculation [16, 15]. Therefore, BRIEF’s rotation- and scale-invariance
is very limited.
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4 Image Features

4.4 ORB

As the name depicts, Oriented FAST and Rotated BRIEF (ORB) [18] is based on FAST
and BRIEF (see 4.2, 4.3). It uses oriented FAST (oFAST) as feature detector and rotated
BRIEF (rBRIEF) as feature descriptor. Both are extensions of their respective original
version which were modified such that ORB becomes rotation-invariant as well as to a
certain degree scale-invariant.

In the original paper, FAST-9 is used with radius 9 for the circle around the potential
corner. To achieve a certain degree of scale-invariance, a scale pyramid for an image
is created and the FAST detector is applied to each scale of the pyramid. As soon
as the FAST algorithm has detected sufficient corners, edge-like corners that are low
ranked according the Harris corner measure are filtered out. The Harris corner measure
provides information about the cornerness of a keypoint. Thus, only a subset of
keypoints with the highest cornerness remain. Moreover, the intensity centroid [19]
is computed with with moments in order to improve the corner’s rotation-invariance.
Here, the direction of the vector from the corner center to the centroid location indicates
the orientation of the keypoint. [18]

In the next step, to each detected keypoint, a BRIEF descriptor is constructed. By
means of the previously calculated keypoint orientation, the image patch defined by
its BRIEF descriptor is reoriented (steered) so that it matches the keypoint orientation.
Furthermore, a look-up table is created which contains different rotated versions of each
descriptor discretisized to 2π/30 (12 degrees) increments. Moreover, an additional step
is necessary since steered BRIEF leads to a loss of variance compared to the original
BRIEF, but a high variance makes the feature more discriminative. Therefore, steered
BRIEF is extended by a greedy algorithm to increase the features’ variance and to
diminish correlation among binary tests. [18]

For feature matching, ORB also computes and compares the Hamming distance of
the descriptors. However, since rBRIEF uses binary strings as descriptor representation,
multi-probe Locality Sensitive Hashing [20] is used to speed up the nearest neighbor
search. [18]

ORB offers a good trade-off between performance (with regard to matching accuracy
and various invariance) and computational costs. Its performance is comparable to
SIFT, except for scale changes [15]. Image pyramids are not sufficient to offer proper
scale-invariance [18]. However, since ORB is significantly faster than SIFT, we use ORB
for our real-time application.
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5 Camera Calibration

If the position and orientation of the camera is known in 3D world space, it is possible to
do a perspective projection of the 3D space captured by the camera. For that projection,
the pinhole camera model is used to describe the relation between objects in 3D space
and 2D scene, which is inter alia dependent on the camera properties. For further
information about the pinhole camera model, see chapter 7. Since camera properties
differ from camera to camera, it is necessary to identify the individual properties for
the used camera first before continuing to work with the captured images. This is
done once for a camera by performing camera calibration. The properties relevant for
the tracking algorithm as well as the camera calibration progress of our webcam are
explained in the following.

Intrinsic Parameters Intrinsic parameters define the geometric properties of the cam-
era. Those parameters can be presented in matrix form as following intrinsic matrix K,
which is parameterized by [21] (taken from [22]):

K =

 fx s x0

0 fy y0

0 0 1

 (5.1)

=

 1 0 x0

0 1 y0

0 0 1


︸ ︷︷ ︸

2D Translation

×

 fx 0 0
0 fy 0
0 0 1


︸ ︷︷ ︸

2D Scaling

×

 1 s/ fx 0
0 1 0
0 0 1


︸ ︷︷ ︸

2D Shear

(5.2)

In terms of the pinhole camera model, the camera intrinsic matrix transforms 3D
camera coordinates to 2D homogeneous image coordinates. The intrinsic matrix consists
of five parameters, namely focal length fy and fy considering the pixel size in x and
y direction, axis skew s, and coordinate (x0, y0) of the principal point given in image
coordinates which are determined during the camera calibration process. The focal
length F, usually given in millimeters, indicates the distance from the image plane to
the optical center of the camera (center of projection). Depending on the image sensor
characteristics, image pixels may be not square other than assumed [23]. In case the
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5 Camera Calibration

pixels’ height and width are not equal in length, the focal length F needs to be divided
by the pixel width px and height py as shown in following formulas:

fx = F/px (5.3)

fy = F/py (5.4)

If the pixel are not rectangular, the skew parameter s indicates how much the pixels
are skewed in x direction. Last but not least, the principal point (x0, y0) is located at the
intersection of the ray from the optical center to the image plane while perpendicular
to this plane.

Distortion Parameters Lens distortion is not included in the ideal pinhole camera
model since it does not have a lens unlike real cameras. Therefore, distortion parameters
should be identified during the calibration to represent the camera more accurately.
Generally, there are two kinds of image distortions to distinguish. One is the tangential
distortion that occurs when the camera lens is not perfectly parallel to the camera
sensor. This kind of distortion usually has a relatively low impact on the image so
that it is often neglected [24]. In contrast, radial distortion occurs due to the natural
property of a spherical lens and should not be neglected due to its high impact. The
lens causes straight lines in the images to be bend in opposition to how it looks in
reality [24]. Using the distortion parameters

distcoe f f s =
(

k1 k2 p1 p2 k3
)

(5.5)

where k1, k2, k3 express the radial distortion and p1, p2 the tangential distortion, it is
possible to undistort images by recalculating the new image coordinate of each pixel.
Together with the images, the intrinsic matrix needs to be adjusted to the undistorted
images. Changes in the image resolution do not affect the distortion parameters[12].

Reprojection Error The reprojection error measures the distance between detected
keypoints in an image and the corresponding points in 3D projected onto the image
plane with the estimated projection matrix. The error is measured in pixels and
should be ideally as low as possible (e.g. a value below 1 is considered good) since it
indicates the accuracy of the estimated projection matrix. During camera calibration,
it is important to keep the value low since we are going to work with this camera
matrix in the further steps of camera pose estimation. Nevertheless, keeping the mean
reprojection error (RE) low is not the main goal during calibration, but rather receiving
an intrinsic matrix and distortion parameters that reproduce an image as close as
possible to the real appearance of our world. For example, taking only photos of the
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calibration board lying in the center of the image may yield lower RE but less accurate
distortion parameters since the edges are not covered leading to less well undistorted
images.

Calibration Procedure Initially, we used the Logitech QuickCam S5500 webcam to
obtain visual input. However, we decided to change the camera to the Logitech HD Pro
C920 later on due to lack of information about the built-in sensor, which was needed to
render images in the game engine Unity [25] with realistic camera properties.

Throughout the whole calibration procedure as well as the use for tracking, auto-focus
needs to be deactivated which means that the focus should be fix since it influences
the focal length. During calibration process, a pre-defined calibration pattern with
known sizes is tried to be found in a series of captured images. Therefore, we use a
solid calibration board to keep the errors due to uneven surfaces low. OpenCV [12]
offers an implementation of a camera calibration algorithm based on [26] and [27].
Using the camera calibration code (see appendix C) provided by OpenCV for C++
[12] it is possible to choose between chessboard pattern, asymmetric circles grid or
symmetric circles grid. We have tried the asymmetric circles grid first since it may yield
better results than the other calibration patterns. However, in the end we switched
to using OpenCV for Python [12] and calibrated with the chessboard pattern because
in our case the total RE was considerably lower (∼8.5 with asymmetric circles vs.
∼0.2188381264343743 with chessboard for Logitech QuickCam S5500 calibration). We
have taken photos that show the pattern from different tilts and positions covering the
whole image area while rotating the board as much as possible to the extent that it
was still detected. A small subset of our calibration images including their undistorted
version for comparison is shown in figure 5.1.

By providing perspective foreshortening the focal length can be identified more
accurately. Moreover, we considered the lighting condition and provided images with
even illumination on the board. Following the advices from [28] and [29], we have
received following data:
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Sample images used in our camera calibration process. Distorted images
(a)-(c) and undistorted images (d)-(f). The found pattern grid is overlayed
on the images (multicolored). Note that the undistorted images are slightly
squeezed which is particularly visible along the image edges.

Logitech QuickCam S5500:

Intrinsic Matrix: 556.18715438 0 299.44241873
0 515.35959909 208.76060998
0 0 1

 (5.6)

Distortion Coefficients:(
−0.03845472 0.14343245 −0.00129602 0.00158407 −0.20751661

)
(5.7)

RE: 0.2188381264343743
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Logitech HD Pro C920:

Intrinsic Matrix:  1407.89952 0 939.552924
0 1405.37747 555.658058
0 0 1

 (5.8)

Distortion Coefficients:(
0.01898021 −0.12506012 0.00024567 0.00166058 0.07576625

)
(5.9)

RE: 0.5750416686950641
Focal Length (mm): 3.71685472195223
The focal length is calculated using (manually set) Sensor Size (mm):(

5.0688, 3.3792
)

(5.10)
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6 Object Registration

Our main objective is to track a predefined object marker. However, before an object can
be tracked, it is necessary to define the appearance of that object so that the tracking
algorithm knows what it should look for. Hence, we use ORB features to obtain
knowledge about the object’s appearance. While doing so, the data used to extract
features can be either real or synthetic. Our algorithms use synthetic data in order to
facilitate the registration procedure.

Based on our objective, this chapter describes the method of reconstructing an
arbitrary object digitally in 3D (section 6.1), using a physical camera in Unity [25]
to render the object marker with real camera properties (section 6.2), and saving 2D
and 3D positions of selected objects to the respective rendered images (section 6.3.2).
Moreover, this chapter includes the approach of building an ORB feature model that
contains the 2D keypoint location of an ORB feature, along with its descriptor and
its corresponding 3D coordinate in world space (6.3). The ORB model needs to be
created before the actual tracking procedure (chapter 7) since it stores the 2D-3D
correspondences necessary for solving the Perspective-n-Point (PnP) problem (see 7.1).

6.1 Model Reconstruction via 3D Scan

To receive a digital representation of the object to be tracked, we tried two different
approaches. For scanning the first prototype of the object marker we used Structure
Sensor (ST01) (see appendix A) by Occipital. It is a device with built-in depth sensor
that uses knowledge about depth to recover 3D positions of the corresponding 2D
points in images. For all subsequent prototypes, we changed to the photogrammetry
software ReCap Photo offered by Autodesk Inc., which comes along with the download
of ReCap Pro [30], to produce 3D models. The only input required by ReCap Photo is
a set of photos of the object marker from different perspectives. Here, undistorting
these photos is not necessary since ReCap Photo automatically calculates lens distortion
and other camera properties. Then, these photos are uploaded to the cloud where the
model is computed. After the computation is completed, the generated model can
be downloaded and edited directly in the ReCap Photo program. The outcome is a
textured and triangulated model with a large number of vertices that can be decimated
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(a) top view (b) side view (c) bottom view

Figure 6.1: 3D scanned object marker shown from different views.

to a lower number if needed. The result of one of our scans (see appendix E) is shown
in figure 6.1.

An example of how the images used for 3D model reconstruction can look like
is shown in 6.2. Although using a professional camera is recommended, we used a
smartphone camera to take photos of the object marker since the result was sufficient
for our purposes. Since photogrammetry works by tracking the pixels’ movement from
one image to another and by matching features, it is important to ensure that enough
visual features and details can be found on the image [31]. This can be achieved via a
texture-rich object or via additional texture given to the background. If a high-quality
3D model is desired, it is recommended to follow the provided guideline [31].

Figure 6.2: One of the photos that were used for the 3D model reconstruction in ReCap
Photo.
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6.2 Synthetic Data Creation in Unity

We worked with Unity version 2019.2.17f1 [25] to create synthetic data for the object
registration. In the following sections, the steps from camera setup to the rendered
images, along with a list of image coordinates of the plain object’s mesh for each image,
are described. The Unity project can be found in the appendix D.

6.2.1 Physical Camera Setup

Unity offers the possibility to render images with given real camera properties. It
assumes no distortion which means that the output images resulting from the rendering
do not need to be undistorted afterwards. The values we used for the camera component
are shown in figure 6.3.

Figure 6.3: The camera component in the Unity inspector showing all values needed
to emulate a real camera (without distortion). The lens shift is calculated
using the principal point coordinates from the intrinsic matrix determined
in chapter 5 and the code from [32]. The sensor size and focal length have
the same values as in chapter 5.
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6.2.2 Image Rendering

As soon as the physical camera set-up is complete, it is prepared to take images around
the 3D scanned object. For this purpose, we have implemented a program that moves
the camera along a hemisphere and adjusts its rotation to always look at the object
while saving renderings regularly. The track of the camera movement can be seen in
figure 6.4. Furthermore, we tested another approach where the camera’s renderings are
generated from two different distances between the camera and the object, as shown in
figure 6.4, so that we have more diverse data for the ORB model (e.g. 24146 keypoints
instead of 19191 keypoints). This approach is tested with the intention to support
ORB’s scale invariance since this property is only partially given by implementing
image pyramids. We used the code from [33] to generate and save the images.

(a) Renderings from one fixed distance (b) Renderings from two different distances

Figure 6.4: Track of the camera movement visualized by means of lines (yellow) and
spheres (red) for (a) one hemisphere and (b) two hemispheres of scale 1 and
0.5 around the object marker located in the center.

6.2.3 Image Coordinates of Mesh Vertices

Together with the images rendered from different camera positions, the image coordi-
nates of the (plain object’s) mesh vertices are stored. This is done by several calculations
in Unity. In order to get from 3D local space to 2D clip space, we apply several transfor-
mation matrices, namely the model matrix (local to world space), view matrix (world to
view space) and projection matrix (view to clip space) (see equation 6.1). This is followed
by a normalization of the clip space coordinates to range [−1, 1] (viewport transform) to
get to screen space coordinates. Finally, these coordinates in screen space are converted
and saved as OpenCV’s image coordinates.
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xclip︸︷︷︸
Clip Coordinates

= Mprojection︸ ︷︷ ︸
Projection Matrix

× Mview︸ ︷︷ ︸
View Matrix

× Mmodel︸ ︷︷ ︸
Model Matrix

× Xlocal︸ ︷︷ ︸
Local Coordinates

(6.1)

Although we are rendering the scanned 3D object, for the coordinate conversion, we
take the 3D mesh vertices of the plain object model aligned with the scanned model.
This is because we are interested in where those 3D coordinates are located in the
images for the registration with known image coordinates (see subsection 6.3.2).

6.3 ORB Feature Model

Different methods exist to build a feature model. In this section, two approaches are
presented to obtain the desired ORB model. Both require a series of registration images
that show the object in different poses, as well as the mesh of the plain object without
texture (see figure 8.1) as PLY file that contains the coordinates of the object’s vertices
and its triangles. Those registration images can be either captured with the webcam
itself (real data) or rendered using camera properties that are as similar as possible to
the ones of the real camera (synthetic data).

6.3.1 Click Registration

OpenCV offers a complete sample code that allows to register a planar object by clicking
on the vertices of the object mesh shown in an registration image in sequence of how
they are listed in the PLY file [12]. The idea is that each click would give the program a
2D image coordinate corresponding to the respective vertex. Consequently, the PnP
problem can be solved iteratively to estimate the camera pose for the current image
if enough 2D-3D correspondences are available. The minimum is 3 correspondences,
which can yield up to 4 solutions, but at least 4 are necessary to diminish pose ambiguity
(see section 7.1).

In the next step, by running an ORB feature detector, feature locations and descriptors
are extracted from the image. However, the locations in 3D space are yet unknown.
Given the pose of the object from previous 2D-3D point registration, these can be
identified using the object mesh and the ray-triangle intersection algorithm from [34].

The whole procedure is done for all images in the set of registration images, which
results in the final ORB model after merging the outputs together. This registration
method does not require a textured 3D model and is suitable for simple meshes with
few vertices. However, it can become inconvenient especially if used for more complex
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Figure 6.5: Registration image with overlaid mesh (blue), keypoint inliers (green) and
keypoint outliers (red)

meshes. It should be noted that this registration method works only for textured planar
objects.

6.3.2 Registration with Known Image Coordinates

Our object registration with known image coordinates builds on the above described
click registration (see subsection 6.3.1). However, instead of manually registering an
object by clicking its vertices, the process can be automated by rendering a scanned
object (see subsection 6.2.2) and using the image coordinates of the object’s vertices
(see subsection 6.2.3). Specifically, we export the corresponding 2D image coordinates
of the mesh’s vertices from Unity using a simple CSV file. This can then be imported
to OpenCV in order to specify the 2D-3D correspondences for pose estimation of the
camera. After finding ORB features via ray-triangle intersection, the object mesh is
rendered onto the image together with the found keypoints (see figure 6.5). Since this
registration method is more user-friendly, it should be preferred when dealing with
more complex meshes. In the end, this is also the registration method we opted for.

The registration with known image coordinates is implemented as workaround for
the initial idea of taking known camera poses from Unity. This approach allows to skip
all steps up to the camera pose estimation in the approach presented in subsection
6.3.1, so that only feature extraction and ray-triangle intersection are left to be done.
However, due to issues with coordinate system conversions, we decided to use the
aforementioned workaround with known image coordinates.
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7 6-DoF Object Tracking

Our goal is to track the six degrees of freedom (6-DoF) of an object marker, whose
appearance is described by the information stored in the ORB model (see 6). This means
that we want to determine the pose of this object appearing in different image frames.
This chapter presents our proposed 6-DoF object tracking pipeline. We first clarify the
problem statement and afterwards describe the tracking and detection procedure in
detail. Throughout the whole tracking and detection project, we used OpenCV library
version 4.1.1 [12]. The code can be found in the appendix C.

7.1 Problem Formulation

The camera pinhole model we use for the projection of 3D points to an image plane
can be described by the following equation [35]:

 u
v
w


︸ ︷︷ ︸

ximg

=

 fx s x0

0 fx y0

0 0 1


︸ ︷︷ ︸

K

×


r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

0 0 0 1


︸ ︷︷ ︸

[R|t]

×


X
Y
Z
1


︸ ︷︷ ︸

Xworld

(7.1)

The homogeneous point in 3D (ximg) as well as in 2D (Xworld) are assumed to be
known (e.g. through feature matching). Same applies for the intrinsic matrix K which
can be determined through camera calibration (chapter 5). Consequently, the problem
we want to address is about identifying the extrinsic matrix (R|t) that satisfies the above
equation 7.1 best. (R|t) is composed of the rotation matrix R and the translation vector
t. It is the matrix that transforms a point Xworld in world space to camera coordinates.
Then, using the intrinsic matrix, this point is back-projected onto the image plane where
we receive ximg.

Perspective-n-Point Pose Problem Solving the Perspective-n-point (PnP) pose prob-
lem is one approach to estimating (R|t), which represents the camera pose. For the
PnP approach, 2D-3D correspondences are needed to be able to solve the following
equation [35]:
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0 = h2
i + h2

j − 2hihj cos θij − d2
ij (7.2)

where:

i 6= j

hi, hj are the distances from camera center C to each Xi and Xj respectively

dij is the distance between two points Xi and Xj in world space

θ is the angle between Xi and Xj at camera center C

In general, each point correspondence adds one constraint to the yet unknown camera-
point distances hi, hj. Therefore, the minimal number of 2D-3D point correspondences
required to receive a finite number of solutions is 3 [36]. However, in some cases it
would yield up to 4 possible solutions. In order to remove this ambiguity, a fourth
point correspondence is required [37]. Nonetheless, low resolution images and image
noise can still lead to ambiguous poses [38]. Particularly coplanarity of the points is
often problematic for finding a unique pose.

In our case, we use an iterative approach of solving the PnP problem from the
OpenCV library [12]. The implementation in OpenCV determines a pose that minimizes
the reprojection error by applying the Levenberg–Marquardt algorithm [39, 40].

Random Sample Consensus Random Sample Consensus (RANSAC) [41] is an itera-
tive method that can make the PnP approach more robust to outliers. Outliers lead to
wrong poses whereas inliers lead to correct ones. Hence, instead of trying to fit a model
to a complete dataset, RANSAC fits a model to a random subset of points. This subset
is chosen such that the number of inliers is the largest and thus the number of outliers
the lowest. The size of a subset s as well as a threshold transac that limits the maximum
reprojection error has to be predefined. For a certain sample size s, the probability e
that a point is an outlier, and a desired probability p of having at least one random
sample that is free of outliers, it is possible to calculate the number of iterations N that
is needed to achieve this p. This is done via the following formula [41]:

N =
log(1− p)

log(1− (1− e)s)
(7.3)
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7.2 Algorithm Outline

In the beginning, the intrinsic matrix of our webcam (see chapter 5) and other parame-
ters are set and used until the program terminates. After the set-up is complete, the
camera begins to capture frames that are passed to the tracking and detection algorithm
described below in section 7.3 and 7.4. Since our optical flow (OF) tracking algorithm
requires a set of keypoints to be tracked as well as knowledge about the pose in the
preceding frame, the detection process is always triggered for the very first input frame.
For detection, the object mesh along with its ORB model, which is created during
the registration (chapter 6), are loaded. If the detection is successful, the OF tracking
algorithm handles subsequent frames. Nonetheless, the set of keypoints passed from
the detection algorithm may either get lost during the OF tracking and thus the number
of tracked points decreases, or the points’ drift becomes too large over time which leads
to an inaccurate pose. In these cases, the detection is run again to retrieve an updated
estimation of the pose. If the detection fails, it is triggered again for the next frame.
Our general tracking and detection algorithm is shown in figure 7.1.

Apart from the general tracking and detection algorithm, a camera input handler
captures frames asynchronously on another thread, while a certain number of frames
(in our case 30) is cached. In case of a successful detection, which takes a considerably
long time, these cached frames can be processed by an OF tracking method. Without
caching, the OF tracking method could fail immediately due to very large movements
between consecutive frames. This being said, our OF tracking processes all cached
frames sequentially. Depending on its performance, the OF tracking, which is usually
multiple times faster than the detection, eventually catches up with the latest frame so
that the OF tracking may work in real-time. The code of the camera input handler is
taken from [42]. It should be noted, that the frame rate is limited by the choice of the
camera. In our case, the frame rate is 30 frames per second (FPS).

7.3 Detection

The aim of object detection is to find a specific known object in images that possibly
contain that object. Information about the appearance of that object is provided by
object registration (see chapter 6). In our algorithm, we do not only try to implicitly
determine the position, but also the rotation of our object marker by estimating the
camera pose with 6-DoF (translation and rotation in 3D space). This gives us the
initial pose necessary for the OF tracking later. Moreover, another task of the detection
algorithm is to select and pass sufficient keypoints to the OF tracking algorithm. In the
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Figure 7.1: Flowchart diagram of the 6-DoF tracking algorithm
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following, the detection algorithm is explained, which is a slightly modified version of
OpenCV’s sample code [12].

Algorithm First, from the input image we extract image features, more precisely their
descriptors and keypoint locations in 2D. Their descriptors are then matched with the
ones of the stored ORB model, so that we can identify the 3D correspondences of the
found 2D keypoints. Thus, we can use those 2D-3D correspondences to estimate the
camera pose by solving the PnP problem iteratively so that it minimizes the reprojection
error [12]. This is complemented by the RANSAC algorithm to discard potential wrong
matches. However, if less than 4 matches are found, detection has to be run again since
the PnP problem cannot be solved uniquely. Same happens if the number of inliers
pointsin after applying PnP and RANSAC falls below the threshold pointsmin, with
pointsmin ≥ 4. We chose pointsmin to be 8 to ensure better results since the detected
pose is assumed to be correct for the further steps in our OF tracking algorithm (see
section 7.4). The detection is considered successful if pointsin is higher than pointsmin.
In that case, OF tracking is started for the following frame.

7.4 Frame-to-Frame tracking using Optical Flow

Given that our detection provides sufficient 2D-3D correspondences after feature
matching, it is possible to solve the PnP problem in order to estimate the camera pose
thus the object pose. The idea is, now that we have point correspondences, to only track
the movement of those 2D points in 2D space while their corresponding 3D points
are retained. Since the matching process is a highly costly step during detection, the
frame-to-frame tracking becomes several times faster by skipping that step. Therefore,
we use optical flow (OF) to track the displacement of given points in the images.

We used the OpenCV library implementation of the iterative Lucas-Kanade method
with pyramids [43]. Operating on grayscale images, it calculates a sparse optical flow of
the ORB features passed from the detection stage by computing displacement vectors
of given keypoints from one to another image. The original Lucas-Kanade method
is designed for only small motions meaning that it fails for large ones. Hence, [43]
proposes an extension of that method by introducing image pyramids that is able to
handle large motions. Moreover, there are two assumptions about the tracked pixels:

• the pixel intensities of the observed area do not or only slightly change between
consecutive frames, and

• neighbouring pixels have similar motion. [12]
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Consequently, abrupt illumination changes would influence the OF tracking and
eventually lead to failure. In order to make the OF tracking illumination invariant, the
pencil filter presented in chapter 3 from [11] is implemented. The effect of the pencil
filter can be seen in figure 7.2.

(a) original image (b) image with applied pencil filter

Figure 7.2: Effect of the pencil filter in comparison with the original image. Edges are
still visible in shadowed areas after applying the pencil filter.

Moreover, after each estimation, we check whether the estimated pose is likely to
be valid. In case of invalid poses, detection is performed on the next frame instead of
continuing OF tracking. A further description of that pose validity check can be found
further on.

Algorithm Our OF tracking algorithm starts with tracking keypoints of the previous
frame via optical flow. If not less than 5 keypoints remain after applying optical
flow, the camera pose is estimated by solving the PnP problem iteratively followed by
RANSAC. Here. RANSAC rejects outlier points that were possibly tracked incorrectly
to maintain a likely correct pose. Then we check, whether too many points were lost
after the outlier elimination. We set the threshold to 5, so that at least 5 points are
needed in order to run the OF tracking again for the subsequent frame. Otherwise, we
need our detection to provide sufficient keypoints again. Furthermore, we perform
a pose validity check described in the following paragraph. This starts the detection
algorithm as soon as the pose is considered not valid.

Pose Validity Check To determine invalid poses, we implemented two tests based
on the assumption that neither sudden large changes in translation nor rotation are
usually intended during the OF tracking. Invalid poses may appear, for example, when
there is pose ambiguity such that the minimization of the reprojection error yields
multiple possible poses with very similar reprojection errors. Thus, one test checks
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7 6-DoF Object Tracking

the translation of the object by comparing its mean translated distance from the last n
frames to the latest translation distance, while the distance is defined by the Euclidean
distance. If the difference between those two values is larger than a certain threshold,
the pose is discarded and detection is started.

Same applies to large rotational changes. The other test calculates the distance
between rotations of the rotation matrices Rcurrent and Rlast of the current and last frame
measured by an angle θ. This is done by using the following formula taken from [44]:

θ = arccos
(

tr(Rdi f f )− 1
2

)
(7.4)

with trace of Rdi f f

tr(Rdi f f ) (7.5)

and difference rotation matrix

Rdi f f = RcurrentRT
last (7.6)

and transpose matrix of Rlast

RT
last (7.7)

Again, if the rotational change is higher than a predefined threshold, the pose is
considered invalid thus discarded.
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8 Design of Object Marker

The future application should consist of a camera attached to the user and an object
marker that is attached to the end of a pen, so that it can function as an augmented
reality raycasting interactable in a similar way to a laser pointer. Generally speaking,
it is possible to detect and track any arbitrary object. However, for previously stated
purposes, some objects with certain shape and texture may work better than others.
Therefore, we tested different designs for our object marker which are presented in this
chapter.

General Approach To create a model of the object marker, we used Blender version
2.81 [45]. The resulting models (see appendix E) of the object part relevant to the
tracking is shown in figure 8.1. For each prototype, while it is in use, we modeled the
object so that there would be a relatively large area of the object marker visible to the
camera that is attached to the user. Furthermore, we added an elongated slot to this
object in such a way that it can be plugged onto a pencil. The object model is then
printed by a 3D printer, which is in our case Ultimaker 3 (see appendix B). We prepared
the object model for 3D printing using the program Ultimaker Cura version 4.4.1 [46].
Before printing, the 3D models should be checked for non-manifold geometry which is
a common cause for issues during 3D printing. Finally, we pasted the object marker up
with printed texture that is supposed to be good to track (see figure 8.2).

Shape The first prototype is an upside down square pyramid. The detection functions
well and the tracking is stable as long as at least two sides of the pyramid are clearly
visible to the camera. Here, clearly visible means having good lighting without strong
reflections and only low levels of blurriness. Otherwise, all points matched during
the detection stage lie in the same plane. As it is mentioned in section 7.1, our PnP
approach cannot deal with coplanarity well, partially leading to multiple possible
solutions for the pose. Hence, our second design is a pyramid with octagonal base
that has more faces to decrease the cases of having coplanar points. Additionally, for
enhanced usability, the base is formed to be more pointy. This part is not tracked and
serves mainly as enhanced visual feedback to the user. We call it diamond marker to
distinguish it from the first prototype, the pyramid marker. The idea is that, since the
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8 Design of Object Marker

(a) Pyramid Model (b) Octagonal Pyramid Model

Figure 8.1: Plain models of the object marker without texture. Their mesh is used
during object registration (chapter 6), as well as in the tracking and detection
procedure (chapter 7).

diamond marker has more faces that can be seen by the camera, it may decrease the
cases of having coplanar points in one image. Both shapes are shown in figure 8.2.

Texture [47] The texture of our object marker is downloaded from a website, that
offers an augmented reality marker generator [47]. To determine which texture size is
suitable for our camera, we used both coarse and fine textures for comparison. However,
the fine texture’s details are not sufficiently captured by our camera, resulting in a low
number of matches during the detection. On the other hand, the ORB feature detector
struggles to find good features on very coarse textures. This is because ORB uses a
corner detector, and coarse textures may contain large areas without corners. Therefore,
a good trade-off between the texture sizes is necessary with respect to the expected
distance between marker and camera. In the end, we opted for the texture shown in
figure 8.2. Note that choice of paper and printer may also affect how well the texture
can be seen under some lighting conditions: laser printers produce fairly reflective
texture surfaces that can be problematic when a light source is specularly reflected to
the camera. We would advise to rather use ink-jet printers.
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8 Design of Object Marker

(a) Diamond with fine
texture; too small
for good feature
matching

(b) Pyramid with fine
texture; too small
for good feature
matching

(c) Diamond with
good texture size;

(d) Pyramid with
coarse texture; the
green quadran-
gles are too large
and do not offer
good contrast for
corner detection

Figure 8.2: Object marker prototypes.
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9 Evaluation

This chapter presents the results from our evaluation. We evaluate the detection quality
as well as the optical flow (OF) tracking quality by means of FPS measurements and
accuracy testing. Furthermore, the limitations and problems of our approach are
pointed out.

9.1 Detection Quality

The result of the detection affects the OF tracking and thus should be as accurate as
possible. Providing even illumination of the object marker enhances the detection
performance. Therefore, during the accuracy tests, we ensured good lighting conditions
for our object marker.

Dataset We used a tape measure to test the detection of our object marker at different
distances ranging from 20 cm to 50 cm (horizontal distance from camera to object
marker). To obtain the ground truth, we measured the vertical distance dy = tc

y − to
y

of the camera to the origin of the object marker, where tc
y and to

y are the respective
vertical distance between the camera and the ground plane, and the distance between
the object marker origin and the ground plane. The ground plane is the surface on
which the marker is standing. Then, since the horizontal distance dz from the camera
to the object marker is known through the tape measure, we calculate the ground
truth of the direct distances from the object marker to the camera as d =

√
d2

y + d2
z by

using the Pythagorean theorem. This ground truth distance is compared to the object
marker-to-camera distance d̂ according to the detection result. Finally, the detection
error Edetection is the deviation between these two distances:

Edetection(d, d̂) = ‖d− d̂‖1 (9.1)

The resulting mean absolute errors

MAEdetection =
1
n

n

∑
i=1
‖di − d̂i‖1 (9.2)
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from n = 10 samples are visualized in figure 9.2 and figure 9.1. Additionally, we count
the number of needed attempts for a successful detection. Here, we consider a detection
to be successful if the OF tracking does not fall back to the detection stage within one
second.

Results The best results with lowest mean error are achieved at 20 cm to 40 cm
horizontal distance according to figure 9.1. This could be because on the one hand
the texture is captured with more details when the object lies closer to the camera.
On the other hand, the focus is set to infinity, which means that objects at medium
to long distances should be displayed the sharpest. However, if the object is too far
away that the image quality is not sufficient to portray details, the error increases
and so does the amount of necessary detection attempts. The reason for the larger
number of needed attempts at closer distance could be, that the object is out of focus,
or because the object registration images are taken from a farther distance (60 cm).
This impacts the feature matching insofar as the features with similar scales are more
likely to be correctly matched. As mentioned in section 4.4, ORB is only partially
scale-invariant, so it is supposed to perform best at similar scales. Therefore, the lower
amount of detection attempts needed at a medium distance could be a result of a
similar registration distance, at which the registration images were taken.

As shown in figure 9.2, our data has some outliers with far above average error and
number of detection attempts. Nevertheless, the general trend in figure 9.1 seems to
persist despite excluding the outliers.

9.2 Optical Flow Tracking Quality

In contrast to the detection, our OF tracking is mostly illumination invariant thanks to
the pencil filter (see algorithm 1). The OF tracking can cope with uneven and changing
illumination well, particularly with regard to shadows (see figure 7.2). During the OF
tracking evaluation we assume to have obtained correct information from the detection.

Dataset To measure the quality of the OF tracking, we evaluated the translation
separately from the rotation values. The setup is shown in figure 9.3.

Concerning the translation, we placed the object marker on a start position and
moved it gradually towards the camera, away from the camera and, at a certain distance,
sidewards. The back-to-front movement began from 50cm, where the detection is still
able to achieve enough matches, and stops at 20cm distance (here, horizontal distance
from the camera to the object). On the other hand, moving from the front to the back
was done between 20cm and 80cm distance. For the sidewards movement, we chose a
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9 Evaluation

Figure 9.1: Mean translation errors between the ground truth of the object marker-
camera distance d and object marker-camera distance d̂ (see equation 9.2)
according to the detection’s pose estimation (blue). The diagram also
displays the mean number of detection attempts needed for a successful
detection (orange).

distance of 40cm. The translation data was collected in 10cm steps. Based on the start
position ps, the travelled distance of our estimation ∆d̂i = ‖ps − pi‖, where pi is the i-th
position measured, is compared with the expected travelled distance di to determine
the object marker’s translation error, which we define as:

Etracking = ‖∆di − ∆d̂i‖1 (9.3)

The graph in Figure 9.4 shows the mean translation errors. Note that only data of
successful tracking runs were considered here, although the tracking sometimes failed
prematurely.

For evaluating the rotation, we placed the marker on a turntable and rotated it in
steps of 10 degrees, comparing the actual rotation with the estimated rotation by using
the formula 7.4 from the pose validation check. The object marker was placed 40cm
away (horizontal distance) from the camera. Similarly to the translation, the rotation
difference is measured relatively to the start orientation. The data of one evaluation
run (or one sample) is collected until the tracking fails and detection is started. The
collected data is shown in figure 9.5.
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(a) Deviation between measured and estimated
distances in cm

(b) Number of detection attempts needed for a
successful detection

Figure 9.2: Boxplots of the detection data showing their distribution. Outliers exist in
our data but they do not influence the general trend in figure 9.1.

Results Figure 9.4 shows that with increasing translation or rotation of the object
marker, a larger error can be observed. However, there are some deviations between
the different moving directions. While the error during the front-to-back movement
increases faster, the error of the back-to-front movement rises more slowly, and the
error of the sidewards movement grows linearly. Therefore, moving the object marker
from the back to the front seems to be least challenging. Moving the object to the front
reveals more texture details, so that the OF tracking can act more reliably. The reverse
applies for moving towards the opposite direction. Finally, staying at approximately
the same distance, yields a similarly even rise of error. Nevertheless, the number of
samples contributing to the statistics is rather low. More samples should be taken if an
in-depth comparison between the translation-directions is of interest.

As for the rotation (see figure 9.5), the error stays around 1 to 3 degrees during the
first 80 degrees of rotation, but increases drastically after that. At the same time, less
samples remain the higher the rotation, meaning that the tracking was aborted from
that point on during most of our tracking attempts. We observed that the remaining
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(a) towards and away from the camera (b) sidewards

(c) rotation

Figure 9.3: Setup for the evaluation of the optical flow tracking. To measure the
translated distance, we used a tape measure lying along the translation axis.
For measuring the rotation, we used a self-made turntable

keypoints after a 90 degrees rotation were located at the transition edge between object
marker and background. Concluding thereof, it might be the case that not the keypoints
on the texture are tracked anymore but instead the transition edge to the background.

9.3 Speed

The speed is measured by Frames Per Second (FPS). With a plain background and only
the marker in the image, the detection runs at around 5 FPS, while the OF tracking is
limited by the camera’s frame rate of 30 FPS.

On the other hand, a highly cluttered background cuts the detection speed down
to approximately 1.9 FPS. Our OF tracking is mostly unaffected, except for the first
processed frames since the OF tracking works off all cached frames before running at
real-time. The longer it takes for a successful detection, the more frames are stored in
the cache, leading to a higher time delay at the start of our OF tracking. In our case, the
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Figure 9.4: Diagram showing the mean translation errors between expected traveled
distance (ground truth GT) and the traveled distance according to the
OF tracking. The different translation directions are marked with blue (5
samples), orange (5 samples) and gray (3 samples).

OF tracking starts off with approximately 50 FPS and therefore catches up to real-time
in about one second. The cache size should be chosen so that no frames are lost during
a slow detection. We cache up to one second of old frames, which should be enough
since the detection runs at approximately 1.9 FPS.

Rendering from two different distances for the object registration (see 6.2.2) leads
to a higher number of matchings in the detection stage. However, due to the larger
number of feature points (e.g. 5000 additional keypoints) that have to be checked
during matching, the FPS during detection drops approximately by half.

9.4 Limitations and Problems

Texture Our texture used for the object marker is still not optimal. The feature points
identified by the ORB detector are located very closely to each other. However, having
evenly distributed keypoints would likely enhance the pose estimation (e.g. lower
pose ambiguity) and raise the probability of obtaining keypoint matches from different
angles. Moreover, at a large distance, some faces of the diamond marker seem to
perform suboptimally at the detection. In this case, a low number of matches is found,
such that a successful pose estimation is barely possible.

41



9 Evaluation

Figure 9.5: Diagram showing the mean rotation errors between expected rotated degrees
(ground truth GT) and rotated degrees according to the OF tracking (blue),
and the number of remaining sample data starting at 12 (orange). The
position of the object marker was fixed during the data collection.

Usability The object size is relatively large compared to a common pen, which limits
the usability. Moreover, the usage is limited to pens with designated diameter (in our
case approximately 0.7 to 0.85 cm in diameter), but it can be customized before 3D
printing. Flexibility can be enhanced by further engineering, for example by adding a
clamping mechanism to support a wider variety of pens.

Detection There is room for improvement in our detection algorithm. It lacks effi-
ciency to run at a reasonable speed. In its current state, it is suitable to only a limited
extent in real-time applications. The duration of the detection until a valid pose is
found can become very long, depending on the available compute power, number of
feature points contained in the ORB model and in the image background, and other
factors that might influence the matching performance. Furthermore, a successful
detection at a distance larger than 55cm is difficult to achieve. In general, the detection
has issues dealing with uneven lighting conditions, as well as overly bright illumination,
and specular reflections. Hence, the brightness or exposure time of the camera should
be adjusted to appropriate values. Like most visual marker based tracking systems,
high levels of motion blur (e.g. due to fast movements) become problematic for our
detection algorithm. The detection sometimes yield ambiguous poses that are not
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detected immediately. However, obtaining correct results from the detection is a crucial
precondition for proper subsequent tracking with optical flow.

Optical Flow Tracking Similar to the detection, our optical flow tracking also has
troubles dealing with motion blur, especially in dark environments which lead to
longer exposure times of the camera and to increased noise in the image. A certain
illumination-invariance is given for the optical flow tracking by the use of a pencil
filter presented in our reference paper [1]. Although the pencil filter helps to handle
uneven illumination, strong specular reflections are still problematic since the texture
disappears on the image. Moreover, our OF tracking fails if initially tracked keypoints
become covered by any other object. Keypoints can then be carried along by the
obstructing object. The same happens sometimes with keypoints located at the border
of the object marker to the background. If there are strong edges in the background,
they could also become part of the tracked window. This can lead to invalid poses as
well, which are identified by our pose validity test. Occlusion during the OF tracking
triggers a redetection, which is not quick enough to offer a smooth user experience.
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10 Conclusion

10.1 Summary

In this paper, we presented an approach to track a textured object marker with 6-DoF
using a single RGB camera. We designed two object markers (4-sided and 8-sided
pyramid) and tested different textures in order to get better detection and tracking
results. Pose estimation issues due to coplanarity can be reduced by adding more
faces to the object marker. The object marker is shaped in such a way that mainly
one side is visible to the camera since the overall idea is aimed to transform a pen
into an interaction device with a camera attached to the user. Moreover, its texture is
designed to offer sufficient distinctive feature points necessary for feature matching.
These feature points are supposed to be clearly recognizable within a preferably wide
spacial range during application up to one arm length away from the camera.

To register our object marker, we use synthetic data obtained through its 3D scan.
The synthetic data is created by rendering the 3D scan in Unity from various poses. This
facilitates the object registration procedure as the pose of the rendered 3D scan is known
in Unity. While one fixed camera provides input images, our object tracking algorithm
estimates the camera pose during the detection stage, and subsequently tracks the
textured object in 2D using optical flow. In case of successful pose estimation, the
object mesh is rendered onto the screen during tracking to visualize the estimated pose.
To obtain keypoints necessary for pose estimation, our detection algorithm performs
feature matching between features detected in a live camera feed and features from the
registered object model. Furthermore, we implemented tests to identify likely wrong
poses during the OF tracking. Implausible pose changes (e.g. flipped axes) between
two consecutive frames are detected by our filter so that appropriate measures can be
taken. Moreover, our OF tracking runs at up to 50 FPS on a modern laptop CPU (Intel
i5 9300H) which enables smooth usage in real-time.

10.2 Future Work

Object Registration The images rendered for object registration could be taken from
more evenly distributed positions. Moreover the pose from Unity should be converted
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10 Conclusion

to OpenCV coordinate space instead of using screen positions (see 6.3.2) to directly use
the 3D pose of the rendering camera.

Design of Object Marker Future research is needed to test more complexly shaped
object markers. This may help preventing pose ambiguity.

Use of Threading to Improve Tracking Threading offers the possibility to process
information simultaneously in order to speed computations up. We suggest to integrate
threading for the feature matching task during detection. Moreover, future work could
include stabilizing our tracking with optical flow. We propose to run a detection on
a separate thread, which matches features only within in a small window around
the tracked object while optical flow tracking is running simultaneously. This may
compensate the loss of keypoints during the optical flow tracking. For this to be a
reasonable option, the detection speed may have to be increased. However, running
detection only within a small area where keypoints were lost may be already sufficient to
achieve an appropriate speed. As our reference paper [1] demonstrates, the additional
information derived from the synthetic data creation can be used to enhance the
robustness of the tracking with regard to partial occlusions and drift of keypoints
during optical flow tracking. This could be also realized in future work.

Primary Project Objective Finally, in order to complete our primary project objective,
future work could contain optimizing the integration of a mobile camera attached to
the user, as well as visualizing the pointing direction of the pen (or object marker).
SLAM could be used on the camera feed to position itself and the object marker relative
to world space.
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Appendix

The following contents are available on the GitLab repository https://gitlab.lrz.

de/IN-FAR/Thesis-Projects/ba-minshan_loung-trackable_pen:

A Structure Sensor Product Specification Sheet

The product specification sheet of Structure Sensor (ST01).

B Ultimaker 3 Product Specification Sheet

The product specification sheet of Ultimaker 3.

C Source Code Visual Studio Solution

The Visual Studio 2015 Solution with source code in C++.

D Source Code Unity Project

The Unity project including source code in C#.

E 3D Models

The 3D scanned models of the object markers as well as the Blender models.

F LaTeX

The LaTeX source code and PDF file.
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