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Abstract—Hand gestures feel natural to perform, which makes
them well-suited to use as Human-Computer Interaction inter-
faces. But detecting them with high accuracy in real-time is
a challenging task. This paper presents an approach based on
the Long Short-Term Memory Neural Network architecture to
evaluate Surface Electromyography signals and determine the
gesture performed. This approach is not new and has limited
performance on people for whom it wasn’t trained. Therefore,
this research evaluates an approach where the Neural Network’s
existing knowledge is adjusted to a new person using just a
few samples from the new person and very little training. This
strategy allows getting accurate results with an approach that is
usable in a Human-Computer Interface.

Index Terms—Human-computer interaction, hand gesture
recognition, sEMG, machine learning, LSTM, transfer learning

I. INTRODUCTION

Hand gestures are a powerful tool that humans use to
communicate with each other. They are so deeply rooted in our
brain that we often use them without even consciously realizing
it. Since using them feels so natural to us, they make a great
Human-Computer Interaction (HCI) interface. But detecting
gestures to interact with an interface is a challenging task
because the data has to be captured, digitalized, and interpreted.

There are various approaches to recognize hand gestures.
The most common ones make use of computer vision or
Electromyography (EMG). While computer vision techniques
have to cope with occlusion and other problems of image
recognition, the EMG approach measures the signals directly
where they occur. EMG allows the detection of electrical
activity produced by skeletal muscles. There are two types
of EMGs: intramuscular and surface EMGs. When using
intramuscular EMG, a needle is inserted into the muscle [1].
Since this is not practicable for an HCI, this research focuses on
the less accurate but more convenient surface Electromyography
(sEMG) approach.

In this research, the Myo armband1 is used to obtain the data,
as it is a well-researched and ready-to-use solution. It provides
real-time data from eight sEMG sensors and orientational data
using a built-in Inertial Measurement Unit (IMU) via Bluetooth.
The armband comes with its own software package to detect

1Developed by North Inc. (formerly Thalmic Inc.) Website:
www.bynorth.com

five gestures, which can be used to control certain applications.
Furthermore, a Software Development Kit (SDK) is available,
which supports multiple programming languages.

Detecting gestures or, more precisely, the translation of
muscle activity data over time with multiple samples per second
to specific gestures, is not a trivial task. Since interpreting this
data by specifying time-based thresholds for specific sensors
is very time-consuming, Neural Networks (NN) are used to
learn from and adapt to this data. Their ability to optimize
to unknown functions represented by recorded data is well-
suited for such a problem. But the NN must be capable of
handling time-based data and making connections to previous
timestamps. The so-called Long Short-Term Memory (LSTM)
NN, which is a type of Recurrent Neural Network (RNN)
architecture, can learn long-term dependencies in sequence
prediction problems.

The NN has to be trained on labeled pre-recorded data in
order to learn to recognize specific gestures. Data will vary
significantly from person to person [2], [3]. To make the model
robust and able to interpret gestures from any person, it has to
learn which features make up the essence of the gesture and
ignore person-specific features. The network has to be trained
with data from multiple persons in order to generalize on the
task. “Generalization” describes how well a model is able to
classify data from unseen subjects, which was not used for
training.

“Specialization”, on the other hand, describes how well a
model performs on data more similar to the data it was trained
with. An NN trained with only gestures of a specific person
will achieve poor accuracy when being used on the data of
another person. This is due to the fact that different persons
performing the same gesture will result in different EMG data.
Not only the random noise, which is in the nature of EMG data,
is responsible for this. Also, factors that vary from session to
session, like different armband placement, or from person to
person, like differences in the human’s anatomy, will result in
diverse signals.

Models that are able to cope with factors that are different
from session to session, like armband placement or other
environmental factors, are called “session-independent”. Those
models are trained with the data from multiple sessions of the
same subjects. They will not be able to achieve high accuracy

mailto:michael.lohr@tum.de
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on data from new people but are expected to perform well on
data of known subjects from unseen sessions.

Personalized NNs have to be solely trained on data from the
person whose EMG measurements will later be used to make
predictions. Such networks will not be able to generalize to
unseen subjects but will be able to achieve higher accuracy
for the person it specialized in. It is also expected to need less
training since the data is more uniform. But person-independent
NNs were trained with data from different persons. Those
networks have developed a generalized model and are better
at making predictions from data of new persons whose data
was not used during training.

The problem with these approaches is that they require much
data and a lot of training time. And even then, the generalized
model might still have issues recognizing gestures from unseen
subjects. To work around this problem Transfer Learning (TL)
can be applied. Before using the trained model on a new user,
the subject is asked to perform the gestures a few times. This
labeled data is then used to adapt the generalized model of
the network to that user. This adaption process will only train
a small portion of the network, which is why this approach
takes little time and data. After learning how to cope with the
differences of this user’s data, the model is able to achieve
higher accuracy on those specific subjects. Since this approach
achieves good prediction results with little additional training
data and time, it is well suited for HCI.

This paper proposes and evaluates an LSTM architecture
for an sEMG recognition task and further impoves its accuray
using the TL approach.

II. RELATED WORK

There is a wide range of different approaches to tackle
this task: Linear regression, Neural Networks [4]–[6], support
vector machines [2], locally weighted projection regression [7],
and hidden markov models [3], and more.

A lot of the research on sEMG-based gesture recognition is
based on individualized models, trained on recorded data from
only one user [3]. Generalized classifiers are harder to train
because of different sensor placement, contact conditions, the
anatomy of the human’s arm, and inter-individual differences
in performing the gesture [2], [3]. Castellini, Fiorilla, and
Sandini [2] show that EMG signals vary significantly between
different persons, even when controlling precisely for probe
placement. Their trained model is able to classify gestures
on unseen subjects with little more accuracy than random
guesses [2].

Since the Myo armband also has an IMU built-in, it makes
sense to explore the possibilities with angular rates and
orientational data. Georgi, Amma, and Schultz [8] show that
using the IMU in addition to sEMG sensors greatly improves
the classification accuracy, especially on gestures involving a
lot of arm motion. It also performs well on new subjects,
supposably because the variance in motion data between
persons is not as high as in EMG data [8].

Chen, Li, Hu, et al. [9] apply TL to reduce the training time
and improve the accuracy of a Convolutional Neural Network
(CNN) architecture. With only two repetitions of each gesture to

Figure 1: A person wearing the Myo armband correctly. It
should be worn on the thickest part of the forearm [10].

fine-tune the model, they were able to reduce the training time
significantly and improve the recognition to finally achieve an
accuracy higher than 90% [9]. They also show that adjusting a
generalized network without TL would take at least six learning
repetitions of each gesture to get satisfactory accuracies [9].

Cedric Fromm [4] compares RNNs and CNNs on a rock
paper scissors gesture recognition task. He found that RNNs
can achieve higher accuracies for this task [4]. Specifically,
his experiments showed that a multilayered LSTM architecture
works very well [4]. With that architecture, which is also used
as a base for the NN proposed in this work, he was able to
achieve up to 94% accuracy [4].

III. DATASET RECORDING

The discontinued Myo armband is used to collect data. It is
a non-invasive armband, which provides live sEMG data from
eight sensors with a sample rate of 200Hz and orientational
data with a sample rate of 50Hz using a built-in IMU. The
data is transmitted to a Bluetooth dongle and can be accessed
using the Myo SDK. The armband wraps around the user’s
forearm, with each sensor having roughly the same distance
to each other, as seen in Figure 1. Therefore the sensors are
not assigned to a specific muscle or muscle group. The Myo
armband is often used as an interface in HCI applications, as
it is small, portable as well as comfortable and requires little
initial set-up effort.

Past research on the Myo armband often uses the five gestures
(spread fingers, wave right, wave left, make a fist, double-tap)
that the Myo classifies using its own recognition software. In
this research, the gestures from the Rock paper scissors hand
game are used, which are shown in Figure 2. The reasons for
this are twofold: The network architecture proposed by Cedric
Fromm [4] is used as a base and compared to the results of
this paper. To make this comparison more accurate, a similar
dataset should be used. Secondly, the three gestures, Rock,
Paper, Scissors, are more distinct than the five Myo gestures
but require less recording effort, which allows to aggregate
more data in the same amount of time.

In order to generate labeled training data, a Python applica-
tion interfacing with the Myo SDK was implemented. The data
is recorded while showing an icon and text label describing the
gesture. Each gesture is recorded for two seconds following a
0.5 second break where subjects are supposed to relax their
arm. The two-second time-span was chosen because several
tests showed that it is the amount of time required for most
persons to perform the transition from rest pose to the wanted
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(a) Rock (b) Paper (c) Scissors

Figure 2: The gestures from the Rock paper scissors game,
which subjects performed during the dataset recording [11].

gesture and back. In one recording iteration, each gesture is
recorded ten times, which makes a total of 30 gestures per
iteration. Therefore, one iteration takes 75 seconds. Those
values were chosen after initial testing, which showed that
subjects quickly get exhausted performing the gestures. After a
short break, without taking the armband off, a second iteration
was performed in the same session. This is then repeated once
more. Some participants were recorded a second time: After
a long break, the armband was put on differently, and the
process described above was repeated. In total, each participant
contributed three (one session) or six iterations (two sessions).
One additional participant recorded 30 datasets in 10 sessions
on different days to create a highly specialized dataset.

Thirteen healthy subjects aged between 18 and 58 years
participated in the data acquisition process. Four of them were
female, and nine candidates male. One participant was left-
handed. All subjects agreed to the data recording and analysis
by writing. Before starting the recording session, participants
filled out the consent form, which states what is being recorded
and how the data is used. The Myo armband was then put onto
the thickest part of the forearm, just below the elbow2 on the
dominant arm. Then the subject waited until the connection
icon on the armband stopped blinking, which indicated that the
armband warmed up. After performing the Myo sync gesture,
which is needed to detect the arm wearing the armband, the
Myo is ready to use. Subjects were told to start from a rest
pose, performing the gesture and reaching the highest intensity
when the progress bar indicates that half the time passed.

There are multiple reasons for always using the dominant
arm during the recording. First, a possible user interface using
one Myo armband would be controlled with the dominant arm
because it feels more natural to the user. But also not using
the dominant arm could introduce irregularities into the dataset
because users are not used to performing similar gestures with
their non-dominant arm. Also, differences in the data resulting
from recording the left and right arm are non-existent since
the current arm is detected, and the data mirrored accordingly.

All data provided by the Myo armband is stored in multiple
files labeled with a unique but randomized identifier. Each
EMG file contains roughly 400 ± 5 entries since the recording
took two seconds, and the data was sampled with 200Hz.
Each entry contains an index, a timestamp, and one value for
each of the eight sEMG sensors. IMU and other data along
with meta-information (label, recording time, left or right arm,
battery level, and connection quality) is stored in other files.

2As instructed on the Myo help article "How to wear the Myo armband."
Website: support.getmyo.com

(a) The readings of a single sensor of the raw sEMG
data.

(b) All sensor readings from the raw data.

(c) Normalized and padded sensor readings.

Figure 3: The recorded data of a paper gesture with the X-axis
showing the samples from left (second 0) to right (second ∼ 2)
and the Y-axis showing the sEMG value.

IV. DATA ANALYSIS

To validate and understand the data recorded as described
in the previous section, a manual data analysis was performed
first.

To begin with, the data was preprocessed: The raw sEMG
data as seen in Figure 3a and Figure 3b was normalized to the
range [−1, 1]. Since not every recorded gesture’s data capture
contains exactly 400 samples (2 seconds∗200Hz), the data was
padded with zeroes at the start of the recording. If a gesture
contained more than 400 samples, the data was cut off at the
end. The resulting preprocessed data is visualized in Figure 3c.

When looking for similarities in other plots of the same
gesture from the same session, patterns were not apparent in the
preprocessed data. To visualize the features more prominently,

https://support.getmyo.com/hc/en-us/articles/201169525-How-to-wear-the-Myo-armband
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(a) The rectified data processed with a moving average
of n = 25.

(b) A first-order digital Butterworth filter applied on the
rectified data.

Figure 4: The processed recorded data of a paper gesture
with the X-axis showing the samples and the Y-axis showing
the sEMG value. Each of the eight sensors is visualized by a
different color.

different strategies were used: Since the sEMG data contains
a lot of noise, it was rectified (the absolute values were taken)
and processed with a moving average over the n = 25 past
samples. This shows the overall trend of swings, as seen in
Figure 4a.

Afterward, another approach with more control was used:
A first-order digital Butterworth low-pass filter was applied to
the data. The Figure 4b displays the data with less noise.

Looking at the normalized and padded data of different
recordings of the same gesture from the same session, no
gesture specific pattern can be noticed. But as seen in Figure 5,
looking at the filtered results, a pattern emerges: The rock
gesture (the sensors visualized with orange and blue color)
shows large swings. For the paper gesture, the sensor colored
green and red seem to play an important role.

But when comparing the recordings of different persons,
those patterns are not that apparent anymore. This is because
of the problems mentioned in Section III. An example of such
a case is visualized in Figure 6.

V. NEURAL NETWORKS

Neural Networks are function approximation algorithms.
Using labeled training data, they can “learn” specific patterns
found in the data and approximate results for unseen data. A

(a) A rock gesture.

(b) A different rock gesture.

(c) A paper gesture.

(d) A different paper gesture.

Figure 5: Data plots from the recordings of the same session
filtered with the Butterworth filter as described in Section IV.
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(a) A rock gesture.

(b) A rock gesture from a different person.

(c) A paper gesture.

(d) A paper gesture from a different person.

Figure 6: Data plots from the recordings of different persons
filtered with the Butterworth filter as described in Section IV.

NN consists of multiple neurons (or “units”), which are small
processing units that are connected to each other and can have
numerous inputs as well as one output. During the learning
phase, the weights of those connections are adjusted. A so-
called “layer” contains multiple neurons that perform different
transformations to the input of that layer. A NN typically
consists of multiple layers, which are stacked on top of each
other.

Conventional feed-forward networks cannot handle se-
quenced data very well. They are not able to “remember”
the data they have seen previously, which is essential in
tasks like time series forecasting. Recurrent Neural Networks
are a category of NN architectures that try to solve this
problem by having an internal temporal memory. The same
transformation is performed on every input and depends on
the past computations [4].

The Long Short-Term Memory architecture is a type of RNN
architecture developed by Hochreiter and Schmidhuber [12].
They introduce a cell that consists of multiple connected
neurons [12]. Three gates control the internal memory state:
The input gate, which specifies what input is stored in the
cell state. The forget gate, which controls which cell state is
cleared from the cell [12]. And finally, the output gate, which
determines the output of the LSTM cell [12].

The NNs presented in this research were implemented using
Keras3, which can run on top of TensorFlow 2.04, in Python.

VI. BASE MODEL ACHITECTURE

The following NN architecture is used to build a model
which hereinafter will be referred to as the “base model”
since it will be used as the base for the TL process. The
architecture used in this research is based on the previous work
of Cedric Fromm. He compared different NN architectures
and performed a manual hyperparameter optimization. The
architecture visualized in Figure 7 was found the most effective
on the gesture recognition task [4].

Some adjustments had to be taken in order to use his network
on the data recorded for this research. First, the input data
sequence does not have a shape of 40× 8, but rather 200× 8
because each gesture consists of 200 instead of 40 samples.
Each sample contains eight sensor readings, as explained in
Section III. A masking layer is introduced to mask values that
were added in the preprocessing stage by padding the data.
Timesteps containing masked values will be ignored by all
downstream layers. Right after the LSTM cells, a dropout layer
is added, which, with a given rate (the “dropout rate”), randomly
drops unit input values during training. This prevents all
neurons from synchronously performing their weight updates,
which increases the robustness of the resulting model. Also,
some fully connected layers (also called “dense layers”) are
added to process the values from the LSTM. Finally, the output
layer or “activation function” only has three final neurons
instead of four. Cedric Fromm [4] introduced an additional

3Keras is a deep learning API that runs on top of TensorFlow. Website:
www.keras.io

4TensorFlow is a software library for machine learning tasks. Website:
www.tensorflow.org

https://keras.io/
https://www.tensorflow.org/
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LSTM Cell
Output: batch size x 40 x 256

Units: 256
Returns sequences

LSTM Cell
Output: batch size x 40 x 256

Units: 256

Dense Layer
Ouput: batch size x 4

Units: 4

Activation Function
Output: batch size x 4

Function: Tanh

Input data
 batch size x 40 (sample count ) x 8 (sensors)

Figure 7: The proposed LSTM architecture from Cedric
Fromm [4]. The network consists of one input layer, two
LSTM cells and finally the output layer.

Hyperparameter Type Values Chosen Value

Batch size Integer [10− 100] 55
LSTM units Integer [1− 600] 250
LSTM recurrent dropout Float [0− 0.5] 0.55
LSTM dropout Float [0− 0.5] 0.45
Additional LSTM layers Integer [0− 2] 1
Hidden units Integer [50− 300] 80
Hidden activation function Categorial Sigmoid, Relu,

Tanh
Sigmoid

Dropout Float [0− 0.5] 0.60
Optimizer Categorial Adam,

NAdam,
RMSprop,
SGD

NAdam

Table I: The hyperparameters that were tuned together with
their ranges and chosen values.

class to the rock, paper, and scissors classes, which should
trigger when no gesture is detected. It was found that this extra
neuron is not required since the confidence values can be used
to detect if no gesture is performed. The final architecture,
without concrete values for the neuron count, can be seen in
Figure 8.

VII. HYPERPARAMETER OPTIMIZATION

Hyperparameters are parameters that influence the learning
process itself or the NN structure. They are not learned during
the learning phase but are defined manually by the architect.
Cedric Fromm [4] tuned the NN presented in Section VI by
hand. His architecture is used as a basis for the hyperparameter
tuning in this research. Important parameters from the base
architecture that made sense to tune were converted to ranges
around the old value. The parameters, along with their ranges
and chosen values, are shown in Table I.

The parameters were tuned using a bayesian hyperparameter
tuning algorithm in Comet5. Comet uses an algorithm called
“Sequential Model-based Algorithm Configuration (SMAC)”

5Comet is a cloud-based meta machine learning platform. Website:
www.coment.ml

based on the work of Hutter, Hoos, and Leyton-Brown [13].
This algorithm uses Bayesian Optimization to compare two
configurations and decide which parameter performs better [13].

To tune the parameters, new values are set every run, and the
network trains the new architecture. The performance of the
resulting model is then evaluated, and the process is repeated.
Comet was configured to tune the parameters of Table I in
a way that maximizes the performance of the network on
an additional dataset of gestures (the “validation” set). After
around 300 runs with different parameters, the results were
evaluated: 12% of the runs achieved a validation set accuracy
higher than 80%. The final parameters where chosen from runs
that achieved more than 95% accuracy and with stability in
the learning process.

The resulting NN architecture of the base model is shown
in Figure 8. As described in Section V, the input data is first
passed into a masking layer. Afterward, the masked values are
fed into the first LSTM cell, which is set to return all internal
cell outputs as a sequence so that these values can be fed
into another cell. The second cell is set to return only the last
hidden state output. Both LSTM cells use the “Tanh” activation
function, contain 250 neurons, have a dropout probability
(fraction of the units to drop for the transformation of the
input) of 45% and a recurrent dropout (fraction of the units
to drop for the transformation of the recurrent state) of 55%.
Before values are passed to the fully connected layers, they are
dropped with a probability of 60% in the dropout layer. The
first dense layer contains 80 neurons and uses the “Sigmoid”
activation function. Finally the output layer consists of three
neurons, as mentioned in Section V, and passes its values
to the “Softmax” activation function. The network is trained
with the “Nadam” (short for “Nesterov-accelerated Adaptive
Moment Estimation”) optimizer, which incorporates Nesterov
Momentum as a better momentum component into the Adam
optimizer [14].

VIII. TRAINING

Three different datasets were used to train the three
base models with the previously mentioned NN architecture:

• 10sub: A generalized model, trained with three recording
iterations from ten subjects

• 5sub: A generalized model, trained with six recording
iterations from five subjects

• 1sub: A personalized model, trained with 30 recording
iterations from one subject

Each dataset contains exactly 30 iterations or 300 recorded
gestures per gesture type (see Section III). These sets are split
into the training set (66% of the dataset) and the test set (33%)
before training.

The base models were compared against each other in
Table II, in terms of the highest achieved Test Set Accuracy
(TSA), Session-Independent Accuracy (SIA), and Person-
Independent Accuracy (PIA). The Test Set Accuracy (TSA)
shows how the NN performs on data similar to the one it
was trained with. The Session-Independent Accuracy (SIA)
indicates how well the model generalizes to also detect gestures
in new sessions from subjects whose data it used to train with.
The Person-Independent Accuracy (PIA) shows how well the

https://www.comet.ml
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Masking Layer 
Output: 55 x 400 x 8

Masks out samples with value 999

LSTM Cell
Output: 55 x 400 x 250

Units: 250
Recurrent dropout: 55%

Dropout: 45%
Activation function: Tanh

Returns sequences

LSTM Cell
Output: 55 x 400 x 250

Units: 250
Recurrent dropout: 55%

Dropout: 45%
Activation function: Tanh

Dropout Layer
Output: 55 x 250

Dropout: 60%

Dense Layer
Output: 55 x 80

Units: 80
Activation function: Sigmoid

Dense Layer
Ouput: 55 x 3

Units: 3

Activation Function
Output: 55 x 3

Function: Softmax

Input data
 55 (batch size) x 400 (sample count) x 8 (sensors)

Figure 8: The proposed base model architecture, as it is
implemented in Keras. Below the type of the layer, the output
shape and other important settings are specified. Multiple
arrows indicate that sequenced data (three dimensions) is passed
to the next layer.

Dataset TSA SIA PIA

10sub 0.852 0.678 0.656
5sub 0.852 0.700 0.645
1sub 0.974 0.234 0.333

Table II: The models that were trained with different datasets
and their highest accuracies: Test Set Accuracy (TSA), Session-
Independent Accuracy (SIA), and Person-Independent Accuracy
(PIA).

network is able to recognize gestures from subjects it has never
seen before.

As seen in Table II, the 1sub model is able to achieve the
highest TSA with 97%. This can be explained by the fact that
the data is more uniform since it does not contain differences
in anatomy and ways to perform a gesture. But this NN is not
able to generalize very well. On the other hand, model 10sub,
and 5sub, which were trained on multiple persons, are able to
generalize to different sessions and even unseen subjects with
an accuracy in the range of 64% to 70%.

Since the intial NN structure, as well as the type of gestures,
is based on the work by Cedric Fromm [4], it makes sense to
compare the performance: The highest TSA he was able to

achieve using an LSTM architecture on the five best datasets
(containing the data of five subjects) is 93.71%. This accuracy
is more than eight percent better than the highest TSA of
the 5sub set, which is probably due to the fact that Cedric
Fromm [4] recorded more datasets and evaluated them, to only
use the datasets that performed best.

Cedric Fromm [4] also evaluated his network in terms of
generalization and specialization on different subjects: The
best PIA the network, trained on five subjects, achieved on
three persons outside the training set was 67.91% [4]. Also,
in terms of specialization, the results are similar to the ones
in this work: The TSA on a model trained on data only from
one person (like the 1sub dataset) is 97.64% [4].

IX. TRANSFER LEARNING

Transfer Learning describes a particular process of adapting
a trained NN to a different but related problem by leveraging
the existing knowledge. While a traditional NN is also able
to adapt to some extents, it requires a lot of training data and
time. TL is fast, since only some parts of the network need
to be trained, and requires little extra data as the existing NN
already knows how to handle a similar problem.

Typically, transfer learning is defined using:
• The training dataset that consists of samples {xi, yi}

where xi ∈ X with X being the feature space and yi ∈ Y
with Y being the label space

• The learning task T = {Y, f(·)}, with an objective
predictive function f(·) which is learned and can be used
to predict the corresponding label f(x), of a new instance
x.

• The domain D = {X , P (X)} of the task, with a marginal
probability distribution P (X)

And the following definition from Pan and Yang [15]: Given a
source domain DS and learning task TS , a target domain DT

and learning task TT , transfer learning aims to help improve
the learning of the target predictive function fT (·) in DT using
the knowledge in DS and TS , where DS 6= DT , or TS 6= TT .

To apply the TL approach to the existing network from
Section VII (the base model), an additional NN architecture
is put on top of the base model architecture: Fully connected
layers enable to learn the difference between the learned
knowledge and the new input data. To reshape the data into a
matrix that the base model expects (dimensions of 200× 8),
a final dense layer with eight neurons (one per sensor) is
required. These new layers (“transfer layers”) are then trained
with recorded gesture data from subjects that were not used to
train the base model. The layers of the base model will not
receive weight updates anymore. Since the added layers have
not many neurons, short training time is expected.

The number of layers and neuron count, as well as batch
size and optimizer, were determined using a hyperparameter
optimization approach, in a similar fashion to the one presented
in Section VII. The parameters that were tuned together with
the chosen value are displayed in Table III. Since the dataset
for the TL process is small, the tuning algorithm was able to
find multiple architectures resulting in a high test set accuracy.
To decide on the parameters, also the training time and loss
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Hyperparameter Type Values Chosen Value

Batch size Integer [5− 100] 55
Dense layer count Integer [1− 3] 3
Dense units Integer [10− 500] 350
Optimizer Categorial Adam, NAdam, RM-

Sprop, SGD
NAdam

Table III: The hyperparameters of the transfer layers together
with the chosen value.

Masking Layer 
Output: 55 x 400 x 8

Masks out samples with value 999

Dense Layer
Output: 55 x 400 x 354

Units: 354

Input data
 55 (batch size) x 400 (sample count) x 8 (sensors)

Dense Layer
Output: 55 x 400 x 354

Units: 354

Dense Layer
Output: 55 x 400 x 354

Units: 354

Base Model
Output: 55 x 400 x 8

Dense Layer
Output: 55 x 400 x 8

Units: 8

Figure 9: The proposed TL architecture, as it is implemented
in Keras. Below the type of the layer, the output shape and
other important settings are specified. Multiple arrows indicate
that sequenced data (three dimensions) is passed to the next
layer. The last layer is the base model, presented in Figure 8.

over time from different runs of the hyperparameter tuning
were considered. The resulting architecture can be seen in
Figure 9.

To evaluate the performance of this TL approach, the
following experiment was conducted: Each base model, as
presented in Section VIII, was modified as described above to
enable transfer learning. Then, the transfer layers were trained
with the data of one recording session (90 gestures) of one
person whose data was not used to train the base model. The
network was trained with a test set split of 33% (meaning
33% of the data was used as a test set) and 200 epochs. This
was repeated two more times with different persons. After the
transfer layers were trained, the accuracy on the test set (TSA),
the accuracy of the data of another session from the person
the transfer layers were trained with (SIA), and the accuracy
of the data from an unseen person, whose data was not used
to train the base model nor the transfer layers with (PIA) were
determined. This process was repeated with different persons.

In every run, the network was able to achieve 100% accuracy
on the training data as well as the test set (TSA). The highest
accuracies of this experiment are shown in Table IV. These
values indicate how good the TL approach can be. With some

Dataset TSA SIA PIA

10sub 1.000 0.983 0.500
5sub 1.000 0.950 0.656
1sub 1.000 0.967 0.400

Table IV: The transfer learned models that were trained
with different datasets and their highest accuracies: Test Set
Accuracy (TSA)), Session-Independent Accuracy (SIA)), and
Person-Independent Accuracy (PIA)).

subjects, the SIA and PIA accuracies were up to three percent
lower, but still higher then what the base model would score.
To get a good overview of what accuracies are reached on
average, this experiment has to be repeated with more subjects
and gesture data. The transfer learning approach with base
model 10sub resulted in the highest accuracy (98%). This was
expected since that model already learned to generalize and
to cope with differences. But even the 1sub model, whose
base model was only trained with the data of one subject,
performed well (97% accuracy). The PIA is not very high,
which was expected, too, since the transfer learned model is
now specialized to that one user and not expected to work on
other subjects as well.

X. USAGE AS HCI INTERFACE

The results of Section IX showed that it is possible to achieve
high accuracy using the TL approach presented in this research.
But to make it a feasible process for HCI, it is essential that
few training data and short training time is sufficient. Also,
predicting the data as it comes in from the Myo armband
(“inference”) has to be done in real-time.

In the presented experiments, the data of three recording
iterations of one session are used to train the transfer layers. It
would not be possible to train the base model with that small
amount of data. However, it is enough for the small transfer
layers. With the dataset recorder from Section III, recording
those three iterations would take around four minutes (225
seconds), given no break is made in between iterations.

The TL network always reached a test set accuracy of
100% after 30 to 90 epochs of training. Training an epoch
takes around five seconds on an NVIDIA GeForce GTX 1080
Graphics Processing Unit (GPU), which is consumer-grade
hardware. Therefore a training time of three to eight minutes
is expected.

When feeding live sEMG data from the Myo armband into
the NN, an approach similar to the sliding window algorithm
can be used. Every second, the last 400 timestamps are fed
into the network to make predictions on the fly. This only
works because the inference time is about 0.2 seconds on the
aforementioned GPU. Gestures are then detected when the
prediction confidence (the result of the activation function for
the corresponding neuron) for one gesture is higher than 90%.
The name of the gesture with the highest confidence is then
displayed to the user. In real HCIs, the corresponding action
would be executed instead.

Assuming that high accuracies, as presented in Section IX,
can be achieved consistently, this approach can be a viable
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process for improving gesture detection results. But due to
the recording and training time of about 10 to 15 minutes, it
will not be suitable for applications that are only used for a
short time. The time needed to train and record the data will
probably be higher when detecting more complex gestures,
too.

More research has to be performed on this topic, to figure
out how to decrease those times further. Depending on the
complexity of the gestures, there is certainly a limit on how
few recorded gestures are required to still perform well. Also,
the training time can probably be reduced even further by
fine-tuning the network.

HCIs that are made for long-term usages, like new input
devices for personal computers, are excellent use cases for the
TL approach. A pre-trained generalized model should come
with the device. To increase detection accuracy, the user can
then perform the TL process and profit from the high SIA. If
even better accuracy is required, the user could perform the
TL training before each session because of the high TSA. To
enable a multi-user scenario, different adapted models have to
be stored as user profiles.

A small application was implemented to test the capability
of the model to detect gestures in real-time. The EMG data is
put into a queue, and every two seconds, a prediction is made
using the last 400 timestamps. A gesture is displayed when
the value of the corresponding output neuron (the confidence
value) of one gesture is higher than 80%. The gesture with
the highest confidence is then displayed. This proof-of-concept
achieved good accuracy with the base model already. After
applying TL, the accuracy for the rock and scissors gesture
improved, but every other gesture that was not trained (rest
pose and random other poses), were detected as the paper
gesture. Training a rest gesture like Cedric Fromm [4] might
fix this problem. To test whether this approach can cope with
different armband placement, the armband was rotated, and
then TL applied again. The model was then able to detect rock
and scissors gestures correctly.

XI. FUTURE WORK

The TL experiment, as presented in Section IX was only
tested on three subjects due to limited training data. To better
compare this method to others, more data is required to run
the experiment multiple times, which will allow calculating
averaged accuracies. The base model’s accuracy can be further
improved with more training data. By testing and ranking
datasets beforehand like Cedric Fromm [4] suggests, high
accuracies as 93.71% for a generalized model can be achieved.
To improve the results even further, hyperparameter tuning
can be performed on each base model with a different dataset
individually.

For reasons described in Section III, only three different
gestures were used. But this approach should scale well
with a lot more gestures, which would require more training
data. A similar approach to this research showed that the
TL method works well with as much as 30 gestures when
using a CNN network architecture and more sensors [9].
Additionally, other research showed that in terms of accuracy,

an LSTM architecture would achieve even better results in
gesture dectection [4].

While working with the data recorded as described in
Section III, it became apparent that users are performing the
gesture very differently in terms of timing. Signaling the user
when to start the gesture, when to perform it with it’s highest
intensity, and when to let go, to get a more consistent dataset
could improve gesture recognition accuracy.

To really show that this approach can be used in practice,
an HCI application could be implemented. A useability study
would then show how users think of the interface and its
performance. To improve the user experience, it should be
explored whether the training time and required data for the
TL process can be further reduced.

The limiting factor might be the Myo armband at some
point. To improve accuracy and be able to detect more complex
gestures, previous research had success incorporating two Myo
armbands [16]. Other methods of applying sEMG could also
be explored.

Since the Myo has an IMU built-in, this data could be feed
into the NN along with the EMG data. Though problems might
arise because the IMU is sampled with a different rate than
the sEMG data. Georgi, Amma, and Schultz [8] discusses the
benefits that arise when combining the sEMG and IMU data.

XII. CONCLUSION

Surface Electromyography is a convenient way to gather
EMG data for HCI interfaces. But because of the nonuniform
and noisy nature of sEMG data, it is still a challenging task.
To detect hand gestures from it, NNs can be used. Since the
gesture data will vary from session to session as well as from
person to person, the model has to generalize very well or be
able to specialize in a short period of time. Huge datasets and
long training time is required to train a conventional NN on
this kind of data.

Hyperparameter tuning is used to refine the model by
automatically optimizing specific parameters that define the
architecture. The final base model architecture uses two LSTM
cells and a fully connected layer.

Datasets with different amounts of subjects were used to
determine the learned model’s generalization and specialization
accuracy. NNs trained on data of many subjects were able to
generalize better.

TL can be used to translate a pre-trained model to a different
session or a new person with very little additional data and
training time. It is implemented by adding a few fully connected
layers on top of the base architecture. The resulting network is
then re-trained with little data of the new subject while locking
the weights of the already trained layers of the base network.
These layers learn how to translate the new data to the data
expected by the generalized model.

To use this approach in a real-time HCI scenario, short
training and inference periods are expected. Since the TL setup
requires acquiring data and training the transfer layers, which
takes about 15 minutes, this approach is meant for long-term
usage of such an application. Inference takes about 0.2 seconds,
which is little enough to perform the prediction in real-time.
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The resulting NN was able to detect gestures with high
accuracy. These results show that this approach is a promising
one for use in HCI.
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