
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

Smartphone-Assisted Virtual Reality
Using Ubi-Interact

Michael Lohr



DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

Smartphone-Assisted Virtual Reality
Using Ubi-Interact

Smartphone-gestützte Virtuelle Realität
mit Ubi-Interact

Author: Michael Lohr
Supervisor: Prof. Gudrun Johanna Klinker, Ph.D.
Advisor: Sandro Weber, M.Sc.
Submission Date: September 15, 2019



I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, September 15, 2019 Michael Lohr



Abstract

Virtual Reality is an emerging medium that enables presence and interactivity in a
three-dimensional space. Conventional input devices like a mouse or a keyboard
are made for two-dimensional environments. They require complex movements to
complete tasks in a three-dimensional environment.

Most people own a smartphone which they use on a daily basis. Such phones have
a variety of different sensors already built-in, feature wireless capabilities and are
able to run custom software. This makes them affordable general-purpose devices. A
virtual representation of the phone can be displayed in a Virtual Environment using
the orientational sensors. Therefore they are suitable to use as interaction devices for
Virtual Reality.

In this thesis, three interaction examples are presented to verify that a smartphone can
be used as an input device for Virtual Reality. A model viewing application, a pointing
tool, and a virtual keyboard were implemented and evaluated.

The Ubi-Interact networking framework is used to make the proposed experiments
reusable and abstracted from device-specific environments. It connects the devices
together and provides an extensible protocol which was adjusted to the needs of the
experiments presented in this thesis.

iii



Contents

Abstract iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Deller et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Benzina et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Dias et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Katzakis et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Pietroszek et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Steed et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Markussen et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Implementation 12
3.1 Ubi-Interact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Technology Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Smart Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Topic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 UBII Device Definition . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Experiments 24
4.1 Model Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Laser Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Virtual Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Evaluation 32

iv



Contents

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Model Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.2 Laser Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.3 Virtual Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Future Work 44
6.1 UBI Interact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Positional Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Conclusion 47

Acknowledgments 48

List of Figures 49

List of Tables 50

Abbreviations 51

Appendices 52

A User Evaluation Devices 53
A.1 Testing Environment A: Home . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 Testing Environment B: University . . . . . . . . . . . . . . . . . . . . . . 54

B External Assets Used 55

C User Evaluation Form 56

Bibliography 61

v



1. Introduction

1.1. Motivation

Virtual Reality (VR) is an emerging technology, which provides new ways to present
and interact with digital information. Sherman and Craig define VR using the four key
elements virtual world, immersion, sensory feedback, and interactivity. They define the
virtual world as an imaginary space which may be manifested through a medium. It is
also a description of objects in a space together with rules and relationships. According
to the authors, immersion is the feeling of presence in a virtual world. An essential
ingredient of VR is the sensory feedback which describes the feedback the VR system
conveys to the users depending on the users’ state in the virtual world. VR should
respond to the users’ actions to make it interactive, in order for VR to seem authentic [1,
pp. 6-13]. These four elements form the definition as a medium composed of interactive
computer simulations that may sense the users’ behavior and replace or augment the
sensory feedback, with the goal of immersing the users in a virtual world [1, pp. 13-14].

In order to immerse users in a Virtual Environment (VE), a display device (Head-
Mounted Display (HMD)) is required. Most HMDs have to be connected to a Personal
Computer (PC). Some VR systems use a smartphone or similar technology as a display
device in the HMD. The PC is required for most consumer VR systems since it processes
the data from input devices like motion controllers or motion data from the HMD.
Often an external tracking system is also required. An application rendering three-
dimensional content to the HMD is necessary to present the VE to the users. This works
similar to a computer game rendering to a regular display but is more complicated.

While VR can be used to experience all kinds of exciting and useful virtual worlds,
it really shines when interactivity comes into play. Since consumer HMDs are now
available, the development of tracked hand controllers (also known as VR, three-
dimensional, hand or motion controllers) is becoming more important. Best practices
are not yet defined, which leaves much room for new methods and research. Figure 1.1.1
illustrates the variety of different consumer VR controllers available.

1



1. Introduction

Figure 1.1.1.: A collection of different VR controllers. From left to right, top to
bottom: HTC VIVE Controllers, Valve Index Controllers (“Knuckles”), VIVE
Tracker, Oculus Touch Controllers, Samsung Odyssey Controllers.
Source: [2]

One of the best-known motion controllers was released together with the gaming
console Wii1. It can track the position and orientation of the users’ hands, which made
it easier to immerse the user in the game world [3, p. 2].

Mapping the movement of the users’ real hands to the virtual world is also a common
strategy in current VR hardware. Not only does it enhance the virtual presence by
showing users a representation of body parts, but it also gives users a natural way of
controlling and interacting with the virtual world.

The Leap Motion2 sensor uses multiple infrared cameras to track hand poses, which is
only possible in front of the sensor. Newer generations of VR controllers try to achieve a
similar effect with different methods: The Oculus Touch3 controllers track the distance
of the fingers from the controller and the Valve Index4 controllers even have pressure

1 The Wii is a gaming console developed by Nintendo. Website: www.nintendo.co.uk/Wii
2 The Leap Motion controller is a hand tracking device, which is often used to display a hand avatar.

Website: www.leapmotion.com
3 The Oculus Touch controllers are hand tracking devices included with the Oculus Rift HMD. Website:

www.oculus.com/rift
4 The Valve Index is a HMD which includes its own set of controllers, called “Knuckles”. Website:

store.steampowered.com/valveindex

2

https://www.nintendo.co.uk/Wii/Wii-94559.html
https://www.leapmotion.com/
https://www.oculus.com/rift/
https://store.steampowered.com/valveindex


1. Introduction

sensors built-in.

However, for many interactions, hand inspired controllers are not ideal [4]. This applies
especially to productive VR applications, which require interactions like inputting
text for labeling or manipulating three-dimensional shapes. Most VR controllers also
require complex and costly tracking systems.

The Google Cardboard1 uses a smartphone as a display and as a tracking device. This
demonstrates the versatility of smartphones. Most people already have one since
smartphones are portable general-purpose devices which are not expensive anymore.
Using Wireless Local Area Networks (WLANs) and Bluetooth2 it is easy to connect the
smartphone to other devices.

Furthermore, smartphones have input devices like buttons, a touch screen, and an
Inertial Measurement Unit (IMU)3. Also, output devices like the display, vibration
motors, and speakers are built-in. This makes them comparable to VR controllers which
have similar components.

One significant difference between smartphones and common VR controllers is that
smartphones are not capable of accurate positional tracking. The position can be
estimated using the data of an IMU, but since the error accumulates over time [6, p. 44],
this method cannot be used. Additional tracking methods can be used to correct the
drift, such as the use of the WLAN signal strength [7]. However, those methods are
still not good enough, because VR requires very accurate tracking with short distances.
Apart from the missing positional tracking, the other advantages lead to the assumption
that the smartphone can be used as an alternative VR controller.

1.2. Problem Statement

This thesis aims to explore the possibilities of using the smartphone as an interaction
device in VR experiences. The fundamental question is, whether smartphones are
useable as VR input devices.

To answer this question, some promising typical VR interaction methods were im-
plemented using a smartphone. The goal of those experiments is not to create a
better system, but rather to show that the smartphone is equally capable of specific

1 The Google Cardboard is a HMD made out of cardboard, which uses a smartphone as a display and for
tracking. Website: vr.google.com/cardboard

2 Bluetooth is a wireless standard for exchanging data over short ranges between mobile devices.
3 An IMU is an electronic component which is part of most smartphones and allows to measure the

acceleration and the magnetic field. This allows tracking the rotation of a device in three dimensions [5,
p. 139].

3

https://vr.google.com/cardboard/


1. Introduction

interactions as common VR controllers.

A user study was performed to benchmark the performance where participants com-
plete tasks using the prosed input systems. The performance of the users in those tasks
was evaluated and if possible, compared with similar methods from other research.

Additionally, a System Usability Scale (SUS) user study was performed to get an
assessment of the users’ feel for the interface. The Ubi-Interact (UBII) system, a
networking solution for distributed systems, was used to implement an abstracted and
reusable system.

1.3. Outline

Different input methods using a smartphone or similar devices from previous research
are highlighted in Chapter 2. The UBII components and architecture, as well as the
web-based technology stack used in this project, is then introduced and broken down
in Chapter 3. Following this, Chapter 4 introduces different methods of using the
smartphone as an alternative input device for typical VR interactions. In Chapter 5,
tasks to benchmark the users’ performance are described. Subsequently, the user study
and its results are presented. Following the evaluation of the user study results, the
possibilities of future research are explored in Chapter 6. This thesis ends, with a
conclusion being drawn in Chapter 7.

4



2. Related Work

2.1. Deller et al.

Deller and Ebert propose a modular framework to enable multi-user interactions
between smartphones and large-screen applications. A typical client-server architecture
with an XML1-based protocol is used. They differentiate between application clients
(the large screen) and interaction clients (the smartphones) [8].

The client app is provided with different modules. Some modules offer similar func-
tionality to the experiments implemented in this thesis: Their text module enables
users to enter a text while their accelerometer and magnetometer module sends IMU
data like acceleration and magnetic field data in the background to the server. They
also described how they integrated their framework in an application where users can
navigate a map and toggle display settings [8].

The approach presented in this thesis uses a comparable client-server architecture.
Also, the modularized abstraction structure is similar to the “Interactions” of the UBII
framework used in the experiments of this thesis.

2.2. Benzina et al.

Benzina, Toennis, Klinker, et al. introduce a system for flying through VEs by using a
smartphone as an input device. They try to find convenient mappings between the
users’ actions with the mobile phone and the subsequent reactions in the VE. To solve
this, they investigate the Degrees of Freedom (DOF) required to implement a quickly
learnable and comfortable travel task.

Different methods using the accelerometer, magnetic field sensor, and touch screen for
controlling the flight movement are presented and evaluated. They concluded that the
most accurate method for controlling the flight uses an approach where an airplane
metaphor (four DOF) is simulated [9].

1 XML is a standardized data exchange format that uses human-readable text.

5



2. Related Work

Benzina, Toennis, Klinker, et al. use the orientational and the touch screen data, the
phone provides, to control a VE, as is done in this thesis.

2.3. Dias et al.

Dias, Afonso, Eliseu, et al. propose a solution where the smartphone has a visual repre-
sentation in VR. The visual representation displays information and a User Interface
(UI) on its virtual screen. The camera in the smartphone tracks a marker on the HMD
to track its own position relative to the headset. The setup is shown in Figure 2.3.1.

(a) The front camera of the smartphone tracks
the marker on the HMD.
Source: [10, Figure 3]

(b) The virtual smartphone representation and
hand avatar in the VE while interacting with
the UI.
Source: Adapted from [10, Figure 5]

Figure 2.3.1.: The tracking system by Dias, Afonso, Eliseu, et al. [10, pp. 4,5].

Because users interact with the UI using the touch screen of the smartphone as they
would do in real life, the fingers have to be tracked and visualized. Otherwise, users
would not know where their fingers are going to hit the touch screen because the sight
is occluded physically by the HMD. To solve this problem, they attach a Leap Motion
sensor to the HMD, which tracks the fingers to display a hand avatar [10].

Almost the same research team (Afonso, Dias, Ferreira, et al.) evaluated a selection task
using a tablet as an input device in VR using the same VR setup. They compare the
selection time of users selecting a button on the tablet using a realistic hand avatar,
a translucent hand avatar, and without any avatar of the hand. Surprisingly, the
evaluation shows that users performed the best without any virtual avatar. The authors
explain that this is due to the tracking inaccuracies of the tablet and the hand. However,
users made fewer selection errors when an avatar was displayed [11, pp. 247-248].

6



2. Related Work

Those papers are especially useful for the research of this thesis because they introduce
a visual representation of the smartphone in VR, which is used in this thesis too.

2.4. Katzakis et al.

An application to view three-dimensional models controlled with a smartphone was
implemented by Katzakis and Hori. Their approach uses a smartphone to rotate a
model which is displayed on a conventional display [5, p. 139].

The phone is wirelessly connected to a computer where the model is rendered. The
orientation data is provided by the IMU of the smartphone and, once calibrated to the
screen position, is directly mapped to the model, as seen in Figure 2.4.1 [5, p. 139].

Figure 2.4.1.: The model viewer implementation by Katzakis and Hori. The
smartphone can be rotated to change the orientation of the three-dimensional
model on the display.
Source: [5, Figure 1]

In the evaluation of their system, a mouse, a touch pen, and the smartphone were
compared. The latter wins in terms of the time it takes to rotate the model to a certain
pose [5, p. 140].

A similar system, but in use with VR, is used in the model viewer experiment presented
in this thesis.

7



2. Related Work

2.5. Pietroszek et al.

Pietroszek, Kuzminykh, Wallace, et al. developed a system called “Smartcasting”, which
allows multiple users to interact with 3D content on a large display using their personal
smartphone. They try to explore whether a smartphone can be used as an effective
three-dimensional input device for large displays [12, p. 119].

The approach uses the orientation from the smartphone to cast a ray into the direction
the phone is pointing. A fixed position is used as the origin of the ray, as shown in
Figure 2.5.1 since no positional tracking is available. Objects colliding with the ray can
be selected. The depth can be adjusted using the touch screen of the smartphone, to
select objects in the three-dimensional world at different depths. The ray and a depth
marker are visualized on the display [12, p. 121].

Figure 2.5.1.: The laser pointer interaction with a large display by Pietroszek,
Kuzminykh, Wallace, et al. Since the location of the smartphone is not known,
the ray origin is set to a fixed position.
Source: [12, Figure 3]

To demonstrate the capabilities of the system, three-dimensional objects in the scene
can be positioned and orientated using the laser pointer. Finally, they conducted a
study where they compare their system against a Wii controller. The results show no
significant difference between those two input methods [12, p. 125].

The ray casting system with the fixed-origin ray is also implemented in the laser pointer
experiment presented later in this thesis.

8



2. Related Work

2.6. Steed et al.

The approach by Steed and Julier used a smartphone and a VR headset as well as a
visual representation of the phone. However, they do not have positional tracking for
the smartphone and therefore the position is fixed relative to the position of the HMD.
There are two different possible positions, one in front of the user’s head (shown in
Figure 2.6.1a) and the other one in front of the user’s belly (shown in Figure 2.6.1b). The
position switches if a hand raise gesture with the phone in hand is detected. Gestures
and orientation of the smartphone are detected using the data of the IMU.

(a) The virtual device in selection mode. (b) The virtual UI with the cursor.

Figure 2.6.1.: The virtual smartphone representation by Steed and Julier.
Source: Adapted from [6, Figure 1]

On the virtual phone screen, a UI is displayed as seen in Figure 2.6.1b. This UI has
control elements like buttons, which amongst others, can be used to toggle a selection
mode. In the selection mode, the phone casts a ray out of the top (similar to a laser
pointer) as seen in Figure 2.6.1a. The ray direction can be changed by rotating the
smartphone. As soon as a UI-button is pressed, the objects intersecting with the ray are
selected [6].

A similar selection approach is implemented in the laser pointer experiment of this
thesis. The selection cursor and the fixed phone position also inspired the experiments
presented in this thesis.

2.7. Markussen et al.

In “Selection-Based Mid-Air Text Entry on Large Displays” Markussen, Jakobsen, and
Hornbæk explore three different mid-air text input methods for large displays. Mid-air

9



2. Related Work

approaches track the users’ hands and display a cursor on an external display. This
method requires little to no visual attention of the users on their hands because all
the visual feedback is displayed on the large display. With common touch surfaces or
displays, visual attention is required because the user has to aim for a virtual button or
UI element displayed on the touch device. This approach also allows typing without
restricting the users’ movement around the display since the user does not have to
touch any physical device [13, p. 401].

The first approach, the “H4 Mid-Air” text entry method, allows to type using four
buttons on a physical game controller. To type a character, a specific sequence of the
four buttons has to be pressed in the correct order [13, p. 406].

They also propose a reduced keyboard with nine buttons, where three to four characters
are combined on one key (called the “MultiTap” approach). The user moves the cursor
by moving his hand, which is tracked by a tracking system. When the cursor hovers
over a key, the key is highlighted in orange – the background of the key changes to red,
when a key is activated. To type a character, the user taps a key multiple times in a
certain time frame. The number of taps corresponds to the character’s index on the
key [13, p. 407].

Their final method “Projected QWERTY” shown in Figure 2.7.1 uses a QWERTY1

keyboard. It uses a similar cursor and highlighting as in the “MultiTap” approach,
but only one tap is required to type a character. To determine the position of the
cursor, the hand’s position is projected onto the display plane. This makes the cursor
movement, relative to hand movement, independent of the distance from the hand to
the display [13, p. 408].

1 The name QWERTY describes the US layout for computer keyboards.

10



2. Related Work

Figure 2.7.1.: The virtual keyboard of the user interface from the approach of
Markussen, Jakobsen, and Hornbæk.
Source: [13, Figure 5]

A similar visibility-independent text entry method is used in this thesis to demonstrate
a text input task for VR.

11



3. Implementation

3.1. Ubi-Interact

UBII is a networking framework for distributed applications, which is currently devel-
oped at the research group Forschungsgruppe Augmented Reality (FAR) at the Chair
for Computer Aided Medical Procedures & Augmented Reality. The framework’s main
purpose is to enable communication between the different devices, like a smartphone
and a PC. They connect to a centralized server, which manages the system in a local
network. Every client can read and post data into channels (“Topics”) and execute code
(“Interactions”) on the server. The protocol is extensible and platform-independent
because Google Protocol Buffers (Protobuf)1 are used to define it. The base components
that build up the system are abstracted into Devices, Topics, and Interactions, which
allows decoupling the implementation of software from device-specific environments.

3.1.1. Architecture

The components of the UBII framework, as visualized in Figure 3.1.1, are explained
below.

1 Protobuf is a method to serialize data. The data is defined in a platform-neutral language, which compiles
as to all commonly used programming languages [14]. Website: www.developers.google.com/protocol-
buffers/

12

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/


3. Implementation

Device

Client Identifier
Unique Identifier
Name
Components

Component

Topic Name
Message Format
Type (Input/Output)

Client

Unique Identifier
Name
Devices

(a) This Figure shows that multiple Compo-
nents are assigned to one Device. Also, several
Devices are assigned to a Client.

Session

Unique Identifier
Name
Interactions
Input Output Mapping

Input Output Mapping

Interaction Identifier
Topic Name
Input Output Format

Interaction

Unique Identifier
Name
Code Snippet
Input Formats
Output Formats

Input Output Format

Name
Message Format

(b) The session components. A Session has
multiple Interactions and Input Output Map-
pings. An Interaction has multiple Input Out-
put Formats. The Input Output Mapping has
one Input Output Format.

Figure 3.1.1.: The relationships of the core components in entity-relationship
diagrams. Entities which just contain a string are not shown for the sake of
clarity.

Server or backend describes the centralized application which manages the connections.
The Server is written in Node.js1.

Clients are basic network participants. They have to be registered on the Server before
the communication with other clients or the Server is possible. Clients are an
abstraction of a physical network device and are defined by a Unique Identifier
(UID).

Devices can be registered by Clients. A Device groups different input and output
devices together. It is defined by a UID and a list of Components. A data source
for such an input device could be any sensor, for example, a camera or even a
simple button. Output devices that can be controlled using data are, for example,
lamps and displays.

Components specify the Topic name, Message Formats for input/output devices and
whether it publishes input data or receives output data.

1 Node.js is a JavaScript runtime. JavaScript is a programming language often used in web applications.
Website: www.nodejs.org

13

https://nodejs.org/


3. Implementation

Message Formats define the format of data published to a Topic. Even though it is
possible to implement custom formats with Protobuf, most common data types
are already available. For example, Vector4×4 (a four by four matrix), Vector2
(a two-dimensional vector) or boolean (a truth value) are built-in.

Topics are data channels which are addressed by a name. Clients can publish messages
to Topics, which are registered by a Device. They can receive messages after
subscribing to a Topic. Such messages (also called “Topic Data”) are formatted as
JSON1-string, whose structure is defined by the Message Formats.

Sessions operate on the Server but are specified by the Client. They are defined by a
UID as well as a list of Interactions and mappings. The mappings (“Input/Output
Mappings”) are defined by a Message Format and Topic name.

Interactions are reactive components. They operate on Topics and are defined by a
source code snippet2 and are executed in a fixed interval on the Server. Using
an Input/Output Mapping description, they can subscribe to Topics and use
the received Topic Data as input. The output of the Interaction is published
into another Topic. It is also possible to store data, which can be used in future
executions (persistent state).

Services are communication channels, used to send special commands or requests to
the Server. For example, they are used to subscribe to a Topic or list all available
Topics.

3.1.2. Interactions

A powerful feature of UBII are Interactions. As explained in Subsection 3.1.1, they
are reactive components, which operate on Topics and regularly execute given code
snippets on the Server. Interactions are isolated components, which depend on Topic
Data. This abstraction introduces the possibility to reuse logic in other applications
in a similar context. The data flow from a Device to the Interaction is visualized in
Figure 3.1.2.

1 JSON is a standardized data exchange format, that uses human-readable text. It is often used for web-based
data communication [15, p. iii].

2 Currently, only JavaScript is supported as a programming language for Interactions, but Python is planned.
Python is a programming language frequently used in scientific contexts. Website: www.python.org

14

https://www.python.org/


3. Implementation

Client

Devices

Components

Session

Interactions

Input Mappings Output Mappings

Input Function Output

State

Topic Data

Topic Format Format Topic

Topic

Format

Type

publish

subscribed topics

Figure 3.1.2.: The interaction processing overview. This graphic gives a rough
overview of the dataflow when using an Interaction. The diagram was created
with the help of Sandro Weber. Rectangles represent entities, rounded rectan-
gles represent data, and arrows represent the data flow. The flow is described
in detail in Subsection 3.1.1. Client components are on the left portion of the
figure, while components running on the server are located on the right side.

Interactions should be designed in an atomic and generic way so that they are easy
to reuse. They can be used to discretize data, convert data to other formats, or to
outsource logic from the application. Concrete examples include the detection of button
presses, the transformation of coordinates, and the evaluation of data. An example of
an Interaction which detects position changes can be seen in Figure 3.1.3.

15



3. Implementation

1 // detect intentional movement by comparing the current position with a previous one
2 function(inputs, outputs, state) {
3 const threshold = 0.05;
4
5 if (state.lastPosition) {
6 const vector = {
7 x: inputs.position.x - state.lastPosition.x,
8 y: inputs.position.y - state.lastPosition.y,
9 };

10
11 const squaredDistance = Math.pow(vector.x, 2) + Math.pow(vector.y, 2);
12
13 outputs.moved = squaredDistance < threshold;
14 } else {
15 outputs.moved = true;
16 }
17
18 state.lastPosition = inputs.position;
19 }

Figure 3.1.3.: This is an example of an Interaction written in JavaScript. This
Interaction calculates the squared distance of two points. One of the points is
provided through the input, while the other one is stored in the state variable.
The result of the comparison is then written into the output as a boolean data
type. This is used to detect intended changes in the input position.

Another field of application would be to exchange data between two Topics, for example,
to convert data from one format or unit to another one. An example of such a scenario
could be an application, which consumes a rotation given in Euler angles. However,
some input devices publish Euler angles in degrees. An Interaction which takes Euler
angles in degrees from one Topic and publishes Euler angles in radians to another one
could be implemented.

A code snippet, required to define an Interaction, has to define a function, which
accepts three parameters: inputs is a collection of values, which were published into a
Topic. The Topic is defined by the Input Mappings of the Session. outputs is an empty
collection, where values can be added. Those values are then published into a Topic,
defined by the output mappings of the Session. state stores a persistent collection of
values, which can be used in later executions of the same Interaction.

16



3. Implementation

3.2. Technology Stack

Since most of the existing software for UBII was written in JavaScript (JS)1 using a
web-based architecture, the proposed system for running the experiments was also
implemented this way. This has the notable advantage of platform independence. Most
modern devices can run web-based software, which means they are also able to run
this application. Also, the software is served by a web server, which means users do
not have to install any software onto their device.

A web interface (the UBII front end) with some examples, demos, and debugging tools
was already implemented2. Figure 3.2.1 shows a demo application, which renders a
three-dimensional cube. The proposed experiments are also included in this front end.

UBII Front End

http://localhost:8080/#/applications/examples/threejs

Figure 3.2.1.: A screenshot of a demo application in the UBII front end render-
ing a three-dimensional cube. The bar at the top of the website is displaying the
connection data of the currently connected UBII server. Below that, the main
navigation bar is displayed. It allows the user to navigate to the applications
and tools embedded into the UBII front end.

1 JS is a just-in-time compiled programming language, widely used in web technology. It is a dynamic
prototype-based language, which supports object-orientated programming [16, pp. 43, 47].

2 The front end was initially developed by Sandro Weber and Daniel Dyrda. It also contains some
improvements as well as the VR examples by the author of this thesis.

17



3. Implementation

The technology stack of the front end was built with the following technologies:

Web APIs are Application Programming Interfaces (APIs) available in modern web
browsers1. They provide access to functionality or data outside the web page.
The WebAPI provides an additional layer of abstraction of functions which enable
to interact with features outside the web browser. This has the advantage that the
API is the same on every device and does not depend on the current Operating
System (OS). But in terms of sensors, this prevents the access to the raw sensor
data. In this thesis, the WebVR API and the device orientation API were used.
The former enables to render to external VR headsets. The latter gives access to
the data of the IMU.

Vue.js is a modern open-source JS web framework23 [17]. Having been released in
2014 and developed by Evan You, it is a relatively young framework [18, p. 17].
However, it quickly gained traction and is quite popular now [18, pp. 12 sq.].
Packages like Vue.js itself, Vue.js plugins and other JS libraries are managed using
the package manager npm4.

Three.js is a lightweight open-source library which utilizes WebGL to render three-
dimensional computer graphics5 [19]. It can be used to render scenes to the
display as well as to a HMD using WebVR. This high-level library comes with a
lot of features, similar to a game engine, such as scenes, effects, lights, animation,
geometry, and more.

UBII Client is an JavaScript client for the UBII system. It abstracts the protocol and
provides high-level functions, for example, to register Devices or to send and
receive Topic Data.

3.3. Smart Device

The “Smart Device” is part of the UBII front end. It is a general-purpose client, which
shares sensor data to different Topics. Because it is web-based, only hardware data
which is available through the Web API can be obtained. Since it was not designed for
a specific use case, it is thought as a general-purpose or testing device. Only touch

1 The specification is available on www.w3c.github.io/deviceorientation
2 A web framework is a software framework which provides a standard way to build web applications. It

comes with tools and libraries to automate and make the development of web applications easier.
3 Vue.js: Website: www.vuejs.org; Source code: www.github.com/vuejs/vue
4 “NPM” stands for “Node Package Manager” and is also used in the UBII server itself. Website:

www.npmjs.com
5 Three.js: Website: www.threejs.org, Source code: www.github.com/mrdoob/three.js

18

https://w3c.github.io/deviceorientation/
https://vuejs.org/
https://github.com/vuejs/vue
https://www.npmjs.com/
https://threejs.org/
https://github.com/mrdoob/three.js/


3. Implementation

positions, touch events, orientation, and acceleration are sent to different Topics using
the UBII Client. For more specific scenarios, the smart device cannot be used, and a
custom interface has to be implemented.

After implementing some improvements, the smart device client was sufficient for the
experiments in this thesis. One improvement which was implemented is a full-screen
mode to prevent unintentional interactions with control elements of the web browser
or the OS. Also, a calibration system was implemented since the orientation, obtained
using the WebAPI, cannot be recalibrated later on [20].

3.3.1. Topic Data

The orientation is provided by the Web API through the DeviceOrientation event. It
is defined by three Euler angles named alpha, beta, and gamma, as seen in Figure 3.3.1.
While alpha returns values in the range [0, 360), beta only returns the range [−180, 180)
and gamma [−90, 90) [20, Chapter 4.1]. This limitation entails that no full orientation
tracking is possible with this event.

alpha

-x

z

-y
gamma

beta

Figure 3.3.1.: The specification of the orientation values visualized. The x and
y axes are inverted for the sake of clarity in this graphic. The arrows indicated
the direction where Euler angles increases. alpha, beta and gamma describe
the three rotation angles.

The Web API also provides the MotionEvent which returns multiple vectors, one being
the acceleration including the gravity (accelerationIncludingGravity). Since the
gravity vector always points to the center of the earth, this vector can be used as a
reference vector. Together with the values from the DeviceOrientation event, the full
orientation can be derived. The resulting orientation then has to be further processed

19



3. Implementation

because the acceleration vector uses the raw IMU acceleration output, which might be
very noisy.

The data from the DeviceOrientation event already provides all three Euler angles as
smoothed integer values. Implementing an algorithm to derive the correct orientation
and further process it as the MotionEvent does, would be outside the scope of this
thesis. Because of this consideration, the DeviceOrientation event data is used in the
following experiments.

The touch position of the first finger on the smartphone display is published multiple
times per second. Before sending, it is normalized to floating-point values ranging
from zero to one. This keeps the data independent of the display resolution and size.
Events for starting and stopping touching the screen are sent to different Topics. The
acceleration of the smartphone is also sent to a Topic but is not used in any of the
experiments of this thesis.

3.3.2. UBII Device Definition

The smart device is registered as a Device in the UBII network. The Device definition
in JS can be seen in Figure 3.3.2. The general structure of a Device was described in
Subsection 3.1.1.

20



3. Implementation

1 const ubiiDevice = {
2 name: ’web-interface-smart-device’,
3 components: [{
4 topic: clientId + ’/web-interface-smart-device/touch_position’,
5 messageFormat: ’ubii.dataStructure.Vector2’,
6 ioType: ProtobufLibrary.ubii.devices.Component.IOType.INPUT
7 },
8 {
9 topic: clientId + ’/web-interface-smart-device/orientation’,

10 messageFormat: ’ubii.dataStructure.Vector3’,
11 ioType: ProtobufLibrary.ubii.devices.Component.IOType.INPUT
12 },
13 {
14 topic: clientId + ’/web-interface-smart-device/linear_acceleration’,
15 messageFormat: ’ubii.dataStructure.Vector3’,
16 ioType: ProtobufLibrary.ubii.devices.Component.IOType.INPUT
17 },
18 {
19 topic: clientId + ’/web-interface-smart-device/touch_events’,
20 messageFormat: ’ubii.dataStructure.TouchEvent’,
21 ioType: ProtobufLibrary.ubii.devices.Component.IOType.INPUT
22 }
23 ]
24 };

Figure 3.3.2.: The smart device’s UBII Device definition in JavaScript. It is
defined by a name and a list of UBII Components. The structure of a Device is
further described in Subsection 3.1.1.

A Device and all Topics must be registered with a UID for each Client because it should
be possible to read the data from different devices. This allows for using multiple
devices at the same time so that they can be differentiated in Interactions. If the Topic
names did not include the clientId, each connected device would publish to the same
Topic, which would make the data unusable.

The new type TouchEvent was implemented. The Protobuf definition can be seen
in Figure 3.3.3. It contains the two-dimensional position and the enumeration type
ButtonEventType. This type is an enumeration type which defines whether the touch
interface was just touched or released.

21



3. Implementation

1 syntax = "proto3";
2 package ubii.dataStructure;
3
4 import "proto/topicData/topicDataRecord/dataStructure/vector2.proto";
5
6 enum ButtonEventType {
7 UP = 0;
8 DOWN = 1;
9 }

10
11 message TouchEvent {
12 ButtonEventType type = 1;
13 ubii.dataStructure.Vector2 position = 2;
14 }

Figure 3.3.3.: This code shows the Protobuf definition of the touch
event (TouchEvent), sent by the smart device client when users touch
(ButtonEventType.DOWN) or release (ButtonEventType.UP) the touch screen.
It is defined by a position (ubii.dataStructure.Vector2 position) and
whether the touch pad was touched or released (ButtonEventType type).

3.4. Architecture

The experiments presented in the next section are implemented as part of the UBII front
end1. The same applies to the smart device client, as illustrated in Figure 3.4.1. Both
applications run in a web browser and communicate with the UBII server2. The smart
device client runs on a smartphone. In most scenarios, the smartphone is connected to
the server using WLAN.

1 Applications are often separated into a front end and a back end. The front end displays information to
the users, while the back end processes the logic.

2 Figure 3.4.1 illustrates no direct connection between the smartphone or PC and the UBII server for the
sake of simplicity. However, when running the software, a connection is established, since the UBII front
end runs on the client device.

22



3. Implementation

Smartphone

UBII Server

Personal ComputerUBII Front End

HMD

Figure 3.4.1.: This diagram shows the simplified architecture of the complete
system. An arrow means that the connected applications exchange data.
Multiple instances of the smartphone or front end are combined into one
diagram entity. The web server, serving the front end, is hidden for the sake of
simplicity.

A PC running the HMD driver software and a web browser with the experiments
running in Three.js is used as a bridge between the HMD and the UBII front end. This
setup may vary depending on the VR headset. The Google Cardboard, for example,
does not require any PC in between.

23



4. Experiments

Three experiments were implemented to demonstrate how the smartphone can help
with common interactions when using VR software:

Model Viewer: An application to view and rotate three-dimensional models.

Laser Pointer: A method to select objects or UI elements.

Virtual Keyboard: An application to write text on a virtual keyboard.

To achieve consistency amongst all experiments in terms of optics and basic functionality,
a parent class was implemented. The parent class implements utilities, which are
required and inherited by each experiment. It also sets up a basic scene, which contains
a background, a floor, and lights. Additionally, it handles the connection to the UBII
Server.

Some three-dimensional models, used in the following experiments, were downloaded
from the internet. Those resources, including their licenses, are listed in Appendix B.

4.1. Model Viewer

VR provides a new way of experiencing three-dimensional content. It is convenient
to be able to view a virtual model from different angles, like in real life. Also, the
object feels real and present to the user, which can be helpful to demonstrate the
size. Applications where the users can load custom three-dimensional models into the
scene and use the app to explore the models are commonly called “model viewers”.
One instance of such a model viewer is part of the online model viewing platform
Sketchfab1, which uses WebVR since 2016 [21].

In particular, model viewing applications can be controlled by a smartphone. Without
the need for changing the position of the HMD or using an expensive hand motion
tracking system, the orientation of the models can be manipulated. Katzakis and Hori

1 Sketchfab is an online platform where one can publish and view three-dimensional content. Website:
www.sketchfab.com

24

https://sketchfab.com


4. Experiments

implemented such a system without using VR (presented in Section 2.4). Since this
approach turned out to be very successful, it was used in this experiment as well.

To feature how easy it is to view a more complex model using VR and the smartphone
as a manipulator, a human skeleton model is used. This experiment is the only
one supporting more than one smartphone client at the same time, which opens the
possibility to implement multi-user scenarios. For every client that connects, a new
skeleton model is created. The position is fixed and arranged around the position of
the VR headset. A scene with multiple connected clients is shown in Figure 4.1.1.

Figure 4.1.1.: The screenshot is showing three models, whose rotation is being
controlled by three smartphones.

The implementation of the experiment always listens for new clients. As soon as
one connects, a new Interaction is published, and the resulting Topic subscribed.
Since the smart device (see Section 3.3) publishes the orientation data in a different
format than ThreeJS needs for rendering, a reusable Interaction was created. This
Interaction converts the angles from radian to degrees, changes the coordinate system,
and publishes them to the [client id]/SAVRLaserPointer/orientation topic. The
code for the Interaction is shown in Figure 4.1.2.

25



4. Experiments

1 function (input, output, state) {
2 if (!input) {
3 return;
4 }
5
6 const deg2Rad = function(v) {
7 return v * Math.PI / 180;
8 };
9

10 output.orientation = {
11 x: deg2Rad(input.orientation.y),
12 y: deg2Rad(input.orientation.x),
13 z: deg2Rad(-input.orientation.z)
14 };
15 }

Figure 4.1.2.: This UBII Interaction is used to convert the orientation data sent
by the smart device to the format ThreeJS needs for rendering.

As described in Subsection 3.3.1, the current implementation does not provide the full
angular data needed. This means that the model cannot be rotated upside down, which
is very impractical for a model viewing application. However, this can be fixed and is
not critical for a proof-of-concept.

4.2. Laser Pointer

Selecting elements in a virtual world is an essential interaction most VR applications
implement. The selection of elements in a two-dimensional environment with standard
input devices like a mouse or touch screen is rather trivial. However, the selection of
elements in a three-dimensional environment is problematic because the element might
be too far away from the users or the cursor.

Ray casting1 is used to solve this problem: A single ray with the virtual device’s position
as origin, pointing in the same direction as the device, is created. Then, the element
first hit by the ray is selected. Implementations without a tracked device often use the
position and orientation of the HMD. The ray is fixed to the users’ head and cast along
their viewing direction [3, p. 23]. This forces the users to keep their head in the current
position and look at a particular object to select it until a button is pressed or a specific
time has passed.

1 Ray casting is a technique which is used to determine the objects which intersect with a ray, cast from a
given point (the origin) into a specific direction.

26



4. Experiments

A better solution is the use of handheld controllers where the position of the controller
is used as origin for the ray. This approach is more suitable for the laser pointer
application because it feels more comfortable to use the humans natural pointing
devices, the hands, for aiming. The positional tracking enables the representation of
the users’ hands as well as the laser pointer in VR at the real-world location. Since a
smartphone does not have positional tracking, only the rotation can be synchronized
with the one from the real world. However, the virtual laser pointer still needs an
origin.

The users’ head position could be used as origin, while the smartphone provides the
orientation data. Without any smartphone representation in the VE, users would have
no visual clue, other than the virtual laser beam, of the rotation of the phone. This
becomes a problem when the users’ head rotation is unequal to the laser direction
because users might not see the virtual laser beam. To give users a better feel for the
direction in which they are pointing, a visual representation of the smartphone, located
inside the users’ view frustum, is needed.

As a workaround to the missing positional data of the device, the approach by Piet-
roszek, Kuzminykh, Wallace, et al. (presented in Section 2.5) is used: The ray origin
and the position of the virtual smartphone is set to a fixed location relative to the users’
head [12, Figure 3].

Similar to the approach by Dias, Afonso, Eliseu, et al. (presented in Section 2.3) who
implemented user interfaces using a real smartphone and a virtual representation in the
VE [10, p. 5], the ray origin is represented by a three-dimensional phone model, whose
orientation is synchronized with the orientation of the smartphone in the real world.
The data from the most recent smart device client (see Section 3.3) which connected to
the server is used.

To keep the virtual phone inside the users’ field of view, it rotates relative to the users
on the up-axis and moves only parallel to the floor plane. Similar to the approach from
Steed and Julier (presented in Section 2.6), a line is attached to the front of the phone
(the “laser beam”) to indicate the direction of the ray [6, p. 46] as can be seen in the
screenshot of this setup in Figure 4.2.1.

27



4. Experiments

Figure 4.2.1.: A screenshot showing the virtual phone, the virtual laser pointer
and selectable cubes.

In addition to the orientation Topic, this implementation subscribes to the TouchEvent
Topic presented in Subsection 3.3.2. This event is needed to trigger the actual selection
when users touch the smartphone’s display.

To illustrate a selection task with this system, selectable cubes float in front of the users.
When a randomly colored cube is selected, it will change its color again. This works
not only with cubes but with any mesh. Also, the system can trigger any kind of event
or action.

4.3. Virtual Keyboard

Text input is not an easy task to perform in VR. This is why many applications try
to avoid it. However, it is often required for labeling, annotating, entering filenames
for saving operations, setting parameters in visualizations, and other use cases in
productive VR software [22, p. 2154].

Tilt Brush1 avoids this by identifying scenes in the UI with a screenshot of the scene
rather than a filename. To save a scene, users get a virtual camera attached to their

1 Tilt Brush by Google is a tool for three-dimensional painting in VR. Website: www.tiltbrush.com

28

https://www.tiltbrush.com/


4. Experiments

hands, which they then use to create a thumbnail of the current scene [23].

Some applications use a laser pointer either attached to the virtual representation
of the motion controller or the HMD, to select virtual keys on a two-dimensional
image of a keyboard [24]. A more recent approach is the frequently called “drum
keyboard”, which attaches drum sticks to the hand controllers, which are then used to
hit three-dimensional keys [25].

Other approaches use hand gloves [22], [26], a real keyboard [27], [28] or other periph-
erals [29, pp. 111 sq.]. Also, methods like speech recognition [22, pp. 2154 sqq.] and
handwritten character recognition [29, p. 113] are possible.

Inspired by the approach from Markussen, Jakobsen, and Hornbæk (presented in
Section 2.7) where users type using hand movement and a visual representation on an
external display [13, p. 408], this experiment uses a virtual QWERTY keyboard as seen
in Figure 4.3.1. Instead of displaying the virtual keyboard on a fixed large display [13,
p. 408] the keyboard is visualized at a fixed position in the VE. However, the virtual
keyboard could also be fixed to a position relative to the user or to the smartphone’s
orientation.

Figure 4.3.1.: This screenshot is showing the virtual keyboard with the blue
cursor. The previously typed text is displayed above.

Like in “Selection-Based Mid-Air Text Entry on Large Displays” the surface of the
virtual keyboard is mapped to the touchscreen of the smart device (see Section 3.3)

29



4. Experiments

and a cursor, represented by a blue circle, visualizes the position of the finger on the
touchscreen [13, p. 408].

Users would not know which key they are going to hit with their finger, when executing
the keypress on the first touch and without a cursor (like on a regular smartphone
keyboard), because the HMD physically obscures their sight. Dias, Afonso, Eliseu, et al.
(presented in Section 2.3) work around this problem by using a Leap Motion sensor,
which tracks the whole hand (see Section 1.1), to visualize the finger positions [10, p. 4].

In this implementation, the cursor is only visible when users are touching the screen.
To select a key, users have to move the cursor on top of a key and then keep the finger
there for roughly a second. As long as users are holding the key to select it, the blue
circle increases in size to display the selection progress.

Three components were implemented as JavaScript classes for this experiment. The
SmartphoneCursor component uses the touch events and position data to display a
blue circle (the cursor) on a given area in the scene. If the touch screen is touched,
the position of the circle is synchronized with the position of the finger on the touch
screen. To detect intentional movements, the current position is subtracted by the
position of the previous frame. If the length of the resulting vector is smaller than a
specific threshold value, it is assumed that the movement was not intentional. As long
as intentional movements are not detected, a timer counts up to a specific value (with
the default settings, roughly one second). To visualize the selection progress, the cursor
is filled with blue color. After reaching the value, a select event containing the cursor
position is sent to the main program, and the blue color is removed.

The second component, which is implemented in the VirtualKeyboard class, renders
a virtual QWERTY keyboard to the scene. The keyboard layout, whose definition is
shown in Figure 4.3.2, can be easily adjusted. Every key has a character or an action
as well as properties assigned, which influence the look. Special keys like the caps,
caps lock, enter and delete key are fully functional as known from a real keyboard.
When caps lock is activated, the key is drawn in blue, and all characters are displayed
in upper case.

30



4. Experiments

1 // rows
2 [
3 // columns
4 ...
5 [
6 // keys
7 ...
8 {
9 // the returned character if no action is present; otherwise just a label

10 key: ’=’,
11 // the returned character if the Shift-key is pressed
12 keyCaps: ’+’
13 },
14 {
15 key: ’←’,
16 // a special key action; in this case, it deletes the last character
17 action: KEY_ACTIONS.DELETE_ONE,
18 // the key size factor; 1 is the size of a normal key
19 width: 2,
20 // the alignment of the text on the key
21 align: KEY_ALIGNMENT.RIGHT
22 }
23 ...
24 ],
25 ...
26 ],

Figure 4.3.2.: This shortened code is port of the definition of the virtual key-
board layout, written in JS. It is defined as an array of key rows, which contains
an array of keys column-wise, which finally contains an array of the key def-
initions. There are multiple ways to define a key: If a custom key action is
present, the key value will be used as the label text on the key. If not, it is also
the character which is typed.

The VirtualKeyboard class is responsible for drawing the keyboard with the given
keyboard layout, height, and width as input. If the onPress(coordinates) function
is called, for example, by the cursor component, the pressed key is calculated and
returned using the provided position. The main program then applies the function of a
key to a string and sends the result to the third component.

The TextDisplay component renders a given text inside a given area to a texture. When
the text is changed, the component automatically updates and redraws the texture.

31



5. Evaluation

5.1. Overview

In order to test the usability of the smartphone as an assistant device for VR, a user
study was conducted. In the study, participants had to complete three tasks to measure
usability. Also, a SUS user study was performed to get feedback from the users.

The procedure of the user study was as follows:

1. Introduce the topic to the user

2. Have the user fill out the consent form

3. Have the user fill out the preliminary questions

4. Hand the user the HMD and the calibrated smartphone

5. For each experiment (random order):

a) Brief the user on the experiment

b) Let the user play around in the experiment for a minute to get a feel for the
interaction

c) Save the anonymized task results

d) Conduct the SUS usability study

The evaluation was conducted in two different locations at different times of the day.
Before starting the study, the WLAN connection and network performance were tested
and evaluated as appropriate. The specifications of the PCs, HMDs and smartphones
of the different evaluation setups is listed in Appendix A. The PC was able to run the
application with an average of 60 frames per second, which is sufficient to run a smooth
VR experience. The WLAN connection and devices were capable of 20 Mbps1, which is
enough for synchronizing data without a noticeable lag.

Before starting the experiments, demographic questions had to be answered by the par-
ticipants. The preliminary questions also asked to rate the use of specific technologies

1 Mbps stands for megabits per second. This unit is often used in reference to internet speeds.

32



5. Evaluation

and statements on a Likert scale1.

After each experiment, a SUS survey was conducted. The SUS study uses a set of 10
questions, which are rated from strongly disagree (1) to strongly agree (5), to assess
the usability of a system [30, p. 3]. Finstad’s suggestion to change the eighth question
to make it more easily understandable for non-native speakers was implemented [31,
p. 188], because the study was performed in Germany. The evaluation form, which
includes the preliminary questions and SUS study, can be found in Appendix C.

A final score, ranging from 0 to 100, was then calculated from the individual an-
swers [30]. Bangor, Kortum, and Miller proposes a grading system for SUS scores,
which maps a value to a letter of the typical American school grading scale [32]. This
system is used to asses the meaning of the score.

Useful metrics were collected while the users performed the tasks. The anonymized
metric data contained timing and interaction specific statistics. The following statistics
were collected:

1. Model viewer experiment:

a) The amount of matched poses

b) The date and time

2. Laser pointer experiment:

a) The amount of clicks (touched touch screen)

b) The amount of hits (hit a cube)

c) The date and time

3. Virtual keyboard experiment:

a) The amount of backspace presses (undo operations)

b) The time it took to write the given sentence

c) The date and time

The data was saved in the JSON format and downloaded automatically after completing
a task.

1 A Likert scale is a type of rating scale which ranges from “Strongly disagree” to “Strongly agree”.

33



5. Evaluation

5.2. Results

23 people participated in the evaluation. 21 identified as male, the others identified
as female. The average age is 23 years. This could influence the results since younger
people may have more exposure to new technologies and therefore, could pick up new
technologies faster.

The main disciplines and degrees of the participants are shown in Table 5.2.1. As seen
in Table 5.2.1a, the highest degree of half of the participants is a high school degree or
equivalent. Table 5.2.1b exhibits that the disciplines are spread amongst different fields.

Degree Count Percentage

High school degree 13 56.52%
Bachelor’s degree 6 26.09%
Master’s degree 2 8.70%
Diploma’s degree 1 4.35%
Approbation 1 4.35%

(a) A table of the answers to Question A3:
“What is the highest degree or level of school
you have completed?” Most participants’
(56.52%) highest degree is the high school de-
gree. Others (43.48%) have at least one aca-
demic degree.

Discipline Count Percentage

Computer Science 7 30.43%
Physics 2 8.70%
Automation and Robotics 1 4.35%
Book Science 1 4.35%
Chemistry 1 4.35%
Computational Biology 1 4.35%
Economics 1 4.35%
Electrical Engineering 1 4.35%
Law 1 4.35%
Medicine 1 4.35%
Musicology 1 4.35%
Pharmacy 1 4.35%
Public Service 1 4.35%
Statistics 1 4.35%
Technical Engineering 1 4.35%
Technology Management 1 4.35%

(b) A table of the answers to Question A4:
“What is your main discipline?” Roughly one
third (30.43%) are computer science students.
23 participants stated 16 different disciplines.

Table 5.2.1.: This table shows the participants’ highest degree (Question A3)
and main disciplines (Question A4).

All participants used their smartphone multiple times a day during the last six months.
Most participants (78.26%) used their computer to work or to study more than once
per day during the last six months. 17.39% state that they used it daily and only one
participant used his or her computer one to three times a week for work or studies
during the last six months.

As seen in Figure 5.2.1a, most participants (60.87%) played computer games more

34



5. Evaluation

than three times a month during the last six months. Figure 5.2.1b shows that most
participants (91.30%) used VR less than once per month during the last six months. A
huge portion (39.13%) did not use VR at all in the last six months.

Not o
nce

Less 
than one to

 th
ree

tim
es a

 m
onth

One to
 th

ree

tim
es a

 m
onth

One to
 th

ree

tim
es a

 week

More th
an th

ree

tim
es a

 week Daily

More th
an once

per d
ay

Answer

0

2

4

6

C
ou

nt

Question A5: Computer Games Usage

(a) The answers to the Question A5: “Please
rate how much you used computer games in
the last six months.”

Not o
nce

Less 
than one to

 th
ree

tim
es a

 m
onth

One to
 th

ree

tim
es a

 m
onth

One to
 th

ree

tim
es a

 week

More th
an th

ree

tim
es a

 week Daily

More th
an once

per d
ay

Answer

0.0

2.5

5.0

7.5

10.0

12.5

C
ou

nt

Question A5: Virtual Reality Usage

(b) The answers to the Question A5: “Please
rate how much you used virtual reality head-
sets in the last six months.”

Figure 5.2.1.: The answers to the Question A5 about computer games and
virtual reality usage. While VR is used rarely, most survey participants (60.87%)
played computer games more than three times a month during the last six
months. None of the participants is using VR on a daily basis.

The participants were asked three questions regarding their experience with VR, which
could be answered with values ranging from one (“none”) to five (“a lot”). The first
questions asked about the knowledge of the users about VR. As can be seen in the box
plots1 in Figure 5.2.2, the general knowledge of VR seems to be rather low (Mean: 2.83;
Standard Deviation (SD): 1.03).

1 The boxes indicate the range from the 25th to the 75th percentile. The bars outside the box (“whiskers”)
indicate the 90th and 10th percentile. The median (50th percentile) is marked by the line in the center.
Outliers are marked with diamond shapes.

35



5. Evaluation

How m
uch do

you kn
ow about

Virtu
al R

eality
?

How large is

your in
terest

in Virtu
al R

eality
?

How m
uch

experie
nce do

you have with

motion co
ntro

llers?

Question

1

2

3

4

5

An
sw

er

Question A6

Figure 5.2.2.: The answers to the Question A6 about the experience of the
participants with VR. The questions are rated with values ranging from one
(“none”) to five (“a lot”). While the knowledge about VR is rather low (Mean:
2.83; SD: 1.03), the interest in the topic VR is quite high (Mean: 3.48; SD: 0.99).
on average participants answered with 3.30 (SD: 1.22) as an estimate for their
experience with motion controllers.

The second question asked about the interest in VR to which no participant answered
with “none” (Mean: 3.48; SD: 0.99). The last question asked about the experience with
motion controllers. It was explicitly mentioned that the Wii remote counts as a motion
controller, which might be the reason for the high average being above the one asking
about the knowledge of VR (Mean: 3.30; SD: 1.22).

5.2.1. Model Viewer

The model viewer experiment (described in Section 4.1) allows users to view a three-
dimensional model from different angles. To benchmark extensive usage, the users had
to match the orientation of the model with the orientation of a second model instance in
a golden color (the target). After starting the task, the target is spawned with a random
orientation. Since in the current implementation, the model cannot be rotated upside
down (as mentioned in Section 3.3.1), only reachable target positions are generated.

As soon as the task is started, users have 30 seconds to match as many orientations as

36



5. Evaluation

possible. Similar to the implementation by Katzakis and Hori (presented in Section 2.4),
the target is rotated to a new random orientation after one orientation was matched [5,
p. 140]. Because it is hard to match the rotation exactly on all three axes, it is sufficient
to pose the model in a similar orientation to the target. A similar pose is reached when
the smallest angle between the two rotations is less than 20 degrees.

Katzakis and Hori tracked the time it takes to match a pre-defined pose with a smart-
phone, a mouse, and a touch panel. The lowest time on average to match one pose, 6.5
seconds, was achieved using the smartphone as an input device [5, p. 140]. As seen
in Figure 5.2.3, the average time it took to match a correct pose in the model viewer
experiment presented in this thesis is roughly 2.83 seconds, which is lower than the
average time of Katzakis and Hori. This can be due to the fact that users never had
to turn the smartphone entirely upside down, because of the previously mentioned
limitation.

1

2

3

4

5

6

7

T
im

e
(S

ec
on

ds
)

to
M

at
ch

a
P

os
e

Model Viewer Matched Poses

Figure 5.2.3.: The time in seconds it took to match a correct pose in the model
viewer experiment.

Another reason for the lower average time is that the target and the controlled model
are not displayed in two separate locations like in “Mobile devices as multi-DOF
controllers” by Katzakis and Hori, but instead with the same origin in the same
coordinate space, which makes it easier to see the difference between both rotations [5,
p. 140]. Also, the fact that a skeleton model, instead of a multi-colored cube was used,
could play a role.

37



5. Evaluation

Not only the measured statistics from the experiment but also the SUS study results
indicate a useable implementation, as seen in Figure 5.2.4. A score of 83.04 is consid-
ered “Good” and mapped to grade B, according to Bangor, Kortum, and Miller [32,
pp. 120 sq.].

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10
Question

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

An
sw

er

Model Viewer Experiment: SUS Results

(a) The results of questions one to ten.

40

50

60

70

80

90

100

Sc
or

e

Model Viewer Experiment: SUS Score

(b) The overall SUS score.

Figure 5.2.4.: The results of the SUS user study for the model viewer.

Participants provided additional feedback after the SUS user study. They raised the
concern that the phone is too large and has a weird shape for controlling a three-
dimensional model on the display. Since every device with basic web capabilities and
sensors similar to a smartphone could be used, it would be no problem to use another
more comfortable device.

5.2.2. Laser Pointer

Section 4.2 introduces the laser pointer experiment. To test the performance of partici-
pants using this interaction, the participants had to select as many targets as possible
in 30 seconds. The users were told to be as fast and in particular as accurate as possible
since the miss-hits are counted. To trigger a selection, the users have to touch the
smartphone display, which counts as one click. If no target was selected, a miss is
counted. The total selection (click) count is the sum of hits and miss-clicks.

Three cubes (the targets) are spawned at random locations in front of the users. The
cubes are always spawned in the view of the users so that the users do not have to look
for the targets actively. If one cube was hit, another one is spawned, so that three cubes
are always visible. This is important because the users can plan to hit the next target

38



5. Evaluation

while aiming for the current one. Otherwise, the task would test the users’ reaction
time, which is not desired. It was found that three cubes are a good amount because
too many targets would clutter not only the view but also shorten the aiming periods.

Figure 5.2.5a visualizes the total click count (Mean: 31.83; SD: 6.89), the actual hit count
(Mean: 26.13; SD: 5.52) and the count of miss-hits (Mean: 5.70; SD: 4.37) per 30 seconds.
Participants were able to successfully point to and select objects with a speed of nearly
one click per second. As seen in Figure 5.2.5b, the hit to miss ratio is very high for
slightly lower speeds but decreases quickly with higher click speeds.

Clicks Hits Misses

0

10

20

30

40

A
ct

io
ns

p
er

30
S

ec
on

ds

Laser Pointer Stats

(a) The count of clicks, hits and misses per
30 seconds. Clicks are the sum of hits and
misses.

0.8 1.0 1.2 1.4

Clicks per Second

0

5

10

15

20

25

H
it

/M
is

s
R

at
io

Laser Pointer Hit/Miss Ratio per Click Speed

(b) The hit to miss ratio per click speed.

Figure 5.2.5.: These figures represent the measured statistics of the laser pointer
experiment. Participants hit targets more often (Mean: 26.13; SD: 5.52) than
they missed targets (Mean: 5.70; SD: 4.37) on average per 30 seconds. The hit
to miss ratio decreases with increasing click speeds.

The performance of this experiment is hard to compare with other implementations
without a standardized experiment setup. For example, the size, shape, position, and
distance of the targets as well as the spawn area and whether distracting elements
are present, varies between different task evaluations of other research. However, a
comparison should still give a rough estimate of the performance. Often the hit count
is measured in different time intervals. To compare the results, the average hit count
per second is calculated.

Kamm tested his implementation in a similar VR scenario with a wrist band as an input
device. To compare his implementation, he also tested a laser pointer approach using a
VR motion controller [3, p. 39]. A significant difference in his experiment setup is that

39



5. Evaluation

only one target is displayed at a time. Another difference is that users have to rotate
their head more in order to see the targets as they are placed in a 90-degree radius.
An arrow, which always points to the next target, is displayed to prevent wasting time
while searching for the next target. Also, the distance from the users to the targets is
randomized [3, p. 45].

Ji-Young Oh compared a real-world laser pointer for large screen interactions to a
computer mouse. The application is displayed through a projector, and the laser is
detected by a camera. The pointer-device also has a button, which is pressed down to
select an object, similar to the laser pointer implementation presented in Section 5.2.2.
All targets are always visible and have to be selected in a pre-determined order. Also,
the fact that all objects are on the same plane makes the task similar to the one presented
in this thesis [33, pp. 3 sq.].

As seen in Table 5.2.2, the technique presented in Section 5.2.2 is the one with the best
results. However, due to the different conditions and task setups, it is not possible to
draw a strong conclusion. Still, the result is similar to a real-world pointing technique,
which suggests good usability.

Source Average Hits per Second Standard Deviation

Kamm [3] 0.6 0.11
Ji-Young Oh [33] 0.85 −
Section 5.2.2 0.87 0.18

Table 5.2.2.: This table compares the average hits per second from similar laser
pointer evaluations of other research. The implementation from Section 5.2.2
achieved the highest average hits per second.

Not only the measured interaction times but also the SUS study results indicate
a useable implementation, as seen in Figure 5.2.6. A score of 91.41 is considered
“Excellent” and mapped to grade A, according to Bangor, Kortum, and Miller [32,
pp. 120 sq.].

40



5. Evaluation

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10
Question

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

An
sw

er

Laser Pointer Experiment: SUS Results

(a) The results of questions one to ten.

75

80

85

90

95

100

Sc
or

e

Laser Pointer Experiment: SUS Score

(b) The overall SUS score.

Figure 5.2.6.: The results of the SUS user study for the laser pointer. Ignoring
a few outliers, participants clearly agree on most SUS questions, as seen in
Figure 5.2.6a.

Some participants mentioned that it is hard to notice whether the laser pointer is hitting
an object or not. They suggested better indicators, like a bigger laser beam or an
indicator at the position where the laser hits an object.

5.2.3. Virtual Keyboard

The task for the virtual keyboard experiment (presented in Section 4.3) is to enter a
text as fast as possible without mistakes. The text chosen for this task is “A quick
brown fox jumps over the lazy dog”, which is commonly used when testing keyboards,
typewriters or fonts because it contains every character of the alphabet.

To test special characters, an exclamation mark is also added to the end of the task’s text.
This given text is displayed above the text, which is being typed using the keyboard. If
a mistake was made, it has to be corrected in order to complete the task. After starting
the task, a timer counts the time until the “enter”-button is pressed.

The number of corrections the participants made while entering the given text has
an average of 2.7 corrections (mean: 2.74; SD: 2.38). A correction is counted when
users used the “backspace”-key to remove one character. If the participants did not
recognize their error soon enough, it is possible that in order to correct one letter,
they had to remove multiple characters, because it is not possible to move the caret.
Since participants had to type a total of 42 characters, the average correction count to
character count ratio is at 6.52%. Participants took 31.7 seconds on average (SD: 5.1)

41



5. Evaluation

to complete the task. Figure 5.2.7 shows that the more mistakes were made, the more
time users needed to complete the task.

0 2 4 6 8

Correction Count

25

30

35

40

45

T
as

k
C

om
pl

et
io

n
T

im
e

(S
ec

on
ds

)
Virtual Keyboard Task Completion Time per Correction

Figure 5.2.7.: A scatter plot of the time it took to complete the virtual keyboard
task per correction count. The line visualizes the linear regression with a 95%
confidence interval. The more corrections were made, the longer participants
took to complete the task.

The SUS score for this experiment, shown in Figure 5.2.4, is 71.63. According to
Bangor, Kortum, and Miller, this score is considered “Ok” and mapped to grade C [32,
pp. 120 sq.]. Since this score is still in the “acceptable” range [32, pp. 120 sq.], it can be
considered “usable”.

42



5. Evaluation

Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10
Question

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

An
sw

er

Virtual Keyboard Experiment: SUS Results

(a) The results of questions one to ten.

40

50

60

70

80

90

Sc
or

e

Virtual Keyboard Experiment: SUS Score

(b) The overall SUS score.

Figure 5.2.8.: The results of the SUS user study for the virtual keyboard
experiment.

Further, many users made comments on the experiment:

• The sensitivity of the movement detection should be decreased.

• A faster selection speed would improve comfort and typing speed.

• Visual, audible or haptic feedback after typing a character would be great.

• The one to one mapping of the display to the virtual keyboard is not very intuitive.

• In the input text, a caret should be displayed to visualize spaces. Also, arrow
keys to navigate through the text would be handy.

• To improve usability, select a key instantly when the finger releases the touch
screen instead of when the finger does not move for some time.

• It should be possible to use multiple fingers at the same time.

• An implementation like the Swift-keyboard for Android might be a better one,
since holding the finger down was cumbersome.

• Another approach would be to paint characters on the screen using the touch
screen or the laser pointer.

43



6. Future Work

In this thesis, three experiments were implemented to show that the smartphone can
indeed be used as an input device for VR. However, despite the positive results, many
areas for improvement were discovered.

6.1. UBI Interact

At the time of writing, a multiplexing feature of UBII called “Muxer” was still in
development. This feature enables designing Interactions that operate on multiple
Topics. Data of different Topics can be combined, evaluated, changed, and then
published to other Topics. It could be used to handle multiple smartphone connections
on the server-side to further abstract the system.

To make use of multitouch displays, which are displays that detect multiple fingers at
the same time, the smart device client has to be adjusted. It has to be decided if a new
format, which supports multiple touch events stored in an array, multiple topics, or
multiple posts to the same topic, make the most sense.

Also, the virtual keyboard experiment could be further abstracted into UBII Interactions.
Theoretically, the client could send the touch position to an Interaction. The Interaction
then returns instructions on how to display the virtual keyboard alongside the pressed
character or action.

6.2. Experiments

The tracking problem when holding the smartphone upside down is yet unsolved.
Implementing a native client to overcome the limitations of the WebAPIs solves this
problem. This also gives access to system buttons and other OS-layer features. In the
current implementation, the fullscreen would sometimes exit because the border of the
screen was touched or a notification appeared. A native application could also block
these.

44



6. Future Work

The model viewer experiment can be further extended to incorporate the touch-screen
by allowing moving or changing the size of the model.

Further pointing techniques like those from Argelaguet and Andujar can be explored
and compared to further improve the usability of the laser pointer [34, p. 123].

The evaluation of the virtual keyboard experiment brought many issues to light. Values
like the sensitivity of the movement detection and selection speed have to be adjusted.
Also, as the participants suggested, additional feedback when a key was pressed should
be implemented. A caret could also be added to the text input field. Adding support
for using multiple fingers at once requires the changes mentioned in Section 6.1, but
would increase typing speed as well as usability.

Further, it makes sense to compare other text input methods. Users suggested an
implementation like the “SwiftKey”1-keyboard. Also, the implementation from Shi-
bata, Afergan, Kong, et al. called “DriftBoard” can be assessed [35]. These keyboard
implementations enable to type without lifting a finger.

Force Touch2, which measures touch pressure intensities, introduces another possibility
to implement a keyboard for VR. The cursor is shown when slightly touching the
touch-screen. Instead of holding the current position, users would touch the screen
with more intensity to select a key.

Afonso, Dias, Ferreira, et al. evaluated the use of a Leap Motion sensor mounted to
HMD to track the finger movements on a smartphone display. Participants of their
user study made fewer errors when using the implementation with a virtual avatar of
the hand [11, pp. 247 sq.]. This is especially useful for the virtual keyboard. A regular
smartphone keyboard can be used since the preview of the touch location do not have
to be tracked by the touch display.

Only three VR interactions were implemented in this thesis, but there many more
and more complex interactions. For example, the manipulation or placement of three-
dimensional objects in a VE. Also, drawings or voice input-based interactions could be
implemented using a smartphone.

All three experiments use the smartphone to send information to the application
running on the PC. However, also sending data from the PC to the smartphone can
improve VR experiences. Providing feedback using the vibration motors or speakers of
the smartphone is conceivable.

1 SwiftKey by Microsoft is an application for smartphones which introduces swiping based typing. Website:
www.microsoft.com/swiftkey

2 Force Touch (also known as “3D Touch”) is a touch display technology by Apple. Website:
developer.apple.com/ios/3d-touch/

45

https://www.microsoft.com/swiftkey
https://developer.apple.com/ios/3d-touch/


6. Future Work

6.3. Positional Tracking

All experiments presented in this thesis either do not have a virtual representation
of the smartphone or a representation where just the rotation is synchronized. The
smartphone’s position cannot be accurately tracked out of the box, as discussed in
Chapter 1.

When using the Valve Index Base Stations or similar1, the Vive Tracker2 could be used
to track the smartphone. However, the system should be generic and not bound to
one particular tracking system. Also, the tracker would have to be attached to the
smartphone, which makes it even more clumsy.

Since most HMDs have a camera built-in, a marker could be displayed on the smart-
phone’s screen. This marker could then be tracked by the camera of the HMD. However,
since the positions and view frustums of the cameras vary, this system has to be
adjusted to every headset.

The research of Dias, Afonso, Eliseu, et al. presented in Section 2.3 proposes a system
where the front camera of the smartphone is used to track a marker which is stuck
to the HMD [10, p. 4]. Additionally, the system from Afonso, Dias, Ferreira, et al. is
used to track the hand and fingers with a Leap Motion sensor [11, p. 247]. The virtual
keyboard experiment, presented in this thesis, could make use of this technology as
well.

1 The HTC Vive Base Stations or the HTC Vive Pro Base Stations would work as well.
2 The Vive Tracker is a generic tracker, which is based on the same technology as the Vive motion controllers.

Website: www.vive.com/eu/vive-tracker/

46

https://www.vive.com/eu/vive-tracker/


7. Conclusion

To show that the smartphone is a valuable device for interacting with Virtual Reality,
typical input methods used in Virtual Reality were explored and evaluated. A System
Usability Scale study showed that all three experiments, the model viewer, the laser
pointer, and the virtual keyboard experiment, were quite useable.

Three-dimensional models can be viewed with the model viewer experiment. In the
evaluation, most participants agreed that this input method is intuitive and effective to
operate.

The laser pointer is used to select elements in a User Interface or for similar pointing
tasks. This experiment scored the highest amongst the ones presented in this thesis.

The virtual keyboard experiment solves the problem of typing text while being im-
mersed in a Virtual Environment. While the model viewer and the laser pointer scenario
reached a very high score, the virtual keyboard scored slightly lower.

A lot of feedback was collected during the survey, which can be used to improve these
implementations further. Since all implementations are considered “acceptable”, it can
be assumed that the smartphone is indeed a helpful input device for Virtual Reality.

The implementations used the Ubi-Interact system to abstract parts of the application,
which makes the system modular and extensible. This was achieved by implementing
logic into “Interactions”, which are processed on the server.

47



Acknowledgments

Foremost, I would like to thank my supervisor, Prof. Gudrun Klinker, for giving me
the opportunity to write my bachelor’s thesis at her research group Forschungsgruppe
Augmented Reality (FAR) at the Chair for Computer Aided Medical Procedures &
Augmented Reality.

I would also like to express my sincere gratitude to my advisor, Sandro Weber, for his
close supervision and helpful advice.

A special thank goes to all my friends who took the time to participate in the user
study.

Last but not least, I would like to thank my family for their continuous support during
my studies and the writing of this thesis.



List of Figures

1.1.1 Collection of VR controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3.1 Tracking setup by Dias et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.1 Model viewer implementation by Katzakis et al. . . . . . . . . . . . . . . . 7
2.5.1 Laser pointer implementation by Pietroszek et al. . . . . . . . . . . . . . . 8
2.6.1 Virtual smartphone representation by Steed et al. . . . . . . . . . . . . . . 9
2.7.1 Virtual keyboard implementation by Markussen et al. . . . . . . . . . . . . 11

3.1.1 UBII components diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 UBII communication diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 UBII Interaction in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Screenshot of the front end . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Smart device coordinate system and orientation values . . . . . . . . . . . 19
3.3.2 Protobuf definition of the smart device . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Protobuf definition of the touch event . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Screenshot of the model viewer . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 A UBII Interaction of model viewer . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Screenshot of the laser pointer . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Screenshot of the virtual keyboard . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Virtual keyboard layout definition . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Computer games and VR usage . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 VR experience of the participants . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.3 Model viewer task results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.4 Model viewer SUS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.5 Laser pointer task results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.6 Laser pointer SUS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.7 Virtual keyboard task results . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.8 Virtual keyboard SUS results . . . . . . . . . . . . . . . . . . . . . . . . . . 43

49



List of Tables

5.2.1 Degree and discipline of participants . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Comparison of laser pointer task results . . . . . . . . . . . . . . . . . . . . 40

50



Abbreviations

API Application Programming Interface

DOF Degree Of Freedom

HMD Head-Mounted Display

IMU Inertial Measurement Unit

JS JavaScript

OS Operating System

PC Personal Computer

Protobuf Google Protocol Buffers

SD Standard Deviation

SUS System Usability Scale

UBII Ubi-Interact

UI User Interface

UID Unique Identifier

VE Virtual Environment

VR Virtual Reality

WLAN Wireless Local Area Network

51



Appendices

52



A. User Evaluation Devices

A.1. Testing Environment A: Home

• Smartphone

– Type: ONEPLUS A6013

– OS: Android 9

– RAM: 8 GB

– CPU: Snapdragon 845

– Web browser: Firefox Android, Version 68.0

• PC

– OS: Windows 10

– RAM: 32 GB

– CPU: Intel Core i7-6700K

– GPU: NVIDIA GeForce GTX 1080

– Storage: Intel SSD 535 Series, 480GB

– Web browser: Firefox Standard Release, Version 68.0.1

• HMD

– Oculus Rift, Consumer Version 1

53



A. User Evaluation Devices

A.2. Testing Environment B: University

• Smartphone

– Type: ONEPLUS A6013

– OS: Android 9

– RAM: 8 GB

– CPU: Snapdragon 845

– Web browser: Firefox Android, Version 68.0

• PC

– OS: Windows 10 Enterprise

– RAM: 32 GB

– CPU: Intel Core i5-8600K

– GPU: NVIDIA GeForce GTX 1080 Ti

– Storage: Samsung SSD 860 EVO, 500GB

– Web browser: Firefox Standard Release, Version 68.0.1

• HMD

– HTC Vive Pro with SteamVR 2.0 Lighthouse

54



B. External Assets Used

For demonstration purposes, assets from external sources where used. The licenses
were reviewed to determine whether the use and modification in the context of this
research is legally possible. All resources were modified by the author of this thesis.

Icons used in the diagrams:

• Icons from draw.io by JGraph Ltd.
Terms: desk.draw.io/support/solutions/articles/16000039574-draw-io-eula-terms-
of-service

Three-dimensional models used in the experiments:

• Simple Rigged Skeleton by Gord Goodwin (CC0).
Source: www.gord-goodwin.blogspot.com/2010/03/manny-mannequin.html

• Smartphone by Brian MacIntosh (CC0).
Source: www.opengameart.org/content/smartphone-1

55

https://www.draw.io/
https://desk.draw.io/support/solutions/articles/16000039574-draw-io-eula-terms-of-service
https://desk.draw.io/support/solutions/articles/16000039574-draw-io-eula-terms-of-service
http://gord-goodwin.blogspot.com/2010/03/manny-mannequin.html
https://opengameart.org/content/smartphone-1


This evaluation is part of the Bachelor's thesis

„Smartphone-Assisted Virtual Reality Using Ubi-Interact“

of Michael Lohr.

If you have any questions, feel free to ask.

Section A: Preliminary Questions

A1. What is your age?

A2. To which gender identity do you most identify?

 
Female

Male

Other

Other
 

C. User Evaluation Form

56



A3. What is the highest degree or level of school you have completed?
If you are currently enrolled in school, please select the highest degree you have received.

 
High school degree or equivalent

Bachelor's degree (BA)

Diploma's degree (Dipl.)

Master's degree (MA)

Doctorate (PhD)

Other

Other
 

A4. What is your main discipline?
If you are a student, please select your current field of study. If you are employed, please select your area of work.

 
Informatics

Mathematics

Law

Medicine

Other

Other
 

A5. Please rate how much you used the following technologies in the last
six months.

Not once

Less than one
to three times

a month

One to
three times

a month

One to
three times

a week

More than
three times

a week Daily

More than
once per

day

Smartphone

Computer for Work/Studies

Computer Games

Virtual Reality Headset

C. User Evaluation Form

57



A6. Please rate the following statements in a range none (1) to a lot (5).
1 = Nothing/none, 5 = A lot

1 2 3 4 5

How much do you know about Virtual Reality?

How large is your interest in Virtual Reality?

How much experience do you have with motion controllers (WII
Remote, Oculus Touch)?

Section B: Experiment: Model Viewer

System Usability Scale study regarding the model viewer experiment.

Tips: Record your immediate response to each item. Do not think too long. Select one answer to each statement. If you cannot
respond to a particular item, mark the center one.

B1. Please rate the following statements in a range from strongly disagree
(1) to strongly agree (5).

1 = Strongly disagree, 5 = Strongly agree

1 2 3 4 5

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be
able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system
very quickly.

I found the system very cumbersome/awkward to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this
system.

C. User Evaluation Form

58



Section C: Experiment: Laser Pointer

System Usability Scale study regarding the laser pointer experiment.

Tips: Record your immediate response to each item. Do not think too long. Select one answer to each statement. If you cannot
respond to a particular item, mark the center one.

C1. Please rate the following statements in a range from strongly disagree
(1) to strongly agree (5).

1 = Strongly disagree, 5 = Strongly agree

1 2 3 4 5

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be
able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system
very quickly.

I found the system very cumbersome/awkward to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this
system.

Section D: Experiment: Virtual Keyboard

System Usability Scale study regarding the virtual keyboard experiment.

Tips: Record your immediate response to each item. Do not think too long. Select one answer to each statement. If you cannot
respond to a particular item, mark the center one.

D1. Please rate the following statements in a range from strongly disagree
(1) to strongly agree (5).

1 = Strongly disagree, 5 = Strongly agree

1 2 3 4 5

I think that I would like to use this system frequently.

I found the system unnecessarily complex.

C. User Evaluation Form

59



1 2 3 4 5

I thought the system was easy to use.

I think that I would need the support of a technical person to be
able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system
very quickly.

I found the system very cumbersome/awkward to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this
system.

Section E: Final Questions

E1. If you have further critical or positive feedback or just a comment,
please fill it in here:
 

Thank you for participating in this study!

Powered by TCPDF (www.tcpdf.org)

C. User Evaluation Form

60



Bibliography

[1] W. R. Sherman and A. B. Craig, Understanding virtual reality: Interface, application,
and design, ser. Morgan Kaufmann series in computer graphics and geometric
modeling. San Francisco, CA: Morgan Kaufmann, 2003, isbn: 9781558603530.

[2] L. Yang. (2018). Guide: Rebinding games for new controllers, [Online]. Available:
https://steamcommunity.com/games/250820/announcements/detail/1697188
096865619876 (visited on 08/05/2019).

[3] C. Kamm, “Precision of pointing with myo: A comparison of controller- and
gesture-based selection in virtual reality,” Master’s Thesis, Technische Universität
München, Munich, 2018.

[4] D. A. Bowman, R. P. McMahan, and E. D. Ragan, “Questioning naturalism in
3d user interfaces,” Communications of the ACM, vol. 55, no. 9, p. 78, 2012, issn:
00010782. doi: 10.1145/2330667.2330687.

[5] N. Katzakis and M. Hori, “Mobile devices as multi-dof controllers,” in IEEE
Symposium on 3D User Interfaces (3DUI), 2010 ; Waltham, Massachusetts, USA, 20
- 21 March 2010, M. Hachet, Ed., Piscataway, NJ: IEEE, 2010, pp. 139–140, isbn:
978-1-4244-6846-1. doi: 10.1109/3DUI.2010.5444700.

[6] A. Steed and S. Julier, “Design and implementation of an immersive virtual
reality system based on a smartphone platform,” in 2013 IEEE Symposium on 3D
User Interfaces (3DUI), A. Lécuyer, Ed., Piscataway, NJ: IEEE, 2013, pp. 43–46, isbn:
978-1-4673-6098-2. doi: 10.1109/3DUI.2013.6550195.

[7] K. Zhang, H. Hu, W. Dai, Y. Shen, and M. Z. Win, “Indoor localization algorithm
for smartphones,” CoRR, vol. abs/1503.07628, 2015.

[8] M. Deller and A. Ebert, “Modcontrol – mobile phones as a versatile interaction
device for large screen applications,” in Human-computer interaction - INTERACT
2011, ser. Lecture Notes in Computer Science, P. Campos, N. Graham, J. Jorge,
N. Nunes, P. Palanque, and M. Winckler, Eds., vol. 6947, Berlin: Springer, 2011,
pp. 289–296, isbn: 978-3-642-23770-6. doi: 10.1007/978-3-642-23771-3_22.

61

https://steamcommunity.com/games/250820/announcements/detail/1697188096865619876
https://steamcommunity.com/games/250820/announcements/detail/1697188096865619876
https://doi.org/10.1145/2330667.2330687
https://doi.org/10.1109/3DUI.2010.5444700
https://doi.org/10.1109/3DUI.2013.6550195
https://doi.org/10.1007/978-3-642-23771-3_22


BIBLIOGRAPHY

[9] A. Benzina, M. Toennis, G. Klinker, and M. Ashry, “Phone-based motion control
in vr,” in CHI ’11 Extended Abstracts on Human Factors in Computing Systems, D.
Tan, Ed., ser. ACM Digital Library, New York, NY: ACM, 2011, p. 1519, isbn:
9781450302685. doi: 10.1145/1979742.1979801.

[10] P. Dias, L. Afonso, S. Eliseu, and B. S. Santos, “Mobile devices for interaction in
immersive virtual environments,” in AVI ’18: Proceedings of the 2018 International
Conference on Advanced Visual Interfaces, T. Catarci, F. Leotta, A. Marrella, and
M. Mecella, Eds., New York, NY, USA: ACM, 2018, isbn: 978-1-4503-5616-9. doi:
10.1145/3206505.3206526.

[11] L. Afonso, P. Dias, C. Ferreira, and B. S. Santos, “Effect of hand-avatar in a
selection task using a tablet as input device in an immersive virtual environment,”
in 2017 IEEE Symposium on 3D User Interfaces (3DUI), Piscataway, NJ: IEEE, 2017,
pp. 247–248, isbn: 978-1-5090-6716-9. doi: 10.1109/3DUI.2017.7893364.

[12] K. Pietroszek, A. Kuzminykh, J. R. Wallace, and E. Lank, “Smartcasting: A
discount 3d interaction technique for public displays,” in Proceedings of the 26th
Australian Computer-Human Interaction Conference on Designing Futures - the Future
of Design, OZCHI ’14, Sydney, New South Wales, Australia, December 2-5, 2014,
Tuck Wah Leong, Ed., ACM, 2014, pp. 119–128, isbn: 978-1-4503-0653-9. doi:
10.1145/2686612.2686629.

[13] A. Markussen, M. R. Jakobsen, and K. Hornbæk, “Selection-based mid-air text en-
try on large displays,” in Human-Computer Interaction – INTERACT 2013, ser. Lec-
ture Notes in Computer Science / Information Systems and Applications, Incl.
Internet/Web, and HCI, P. Kotze, G. Marsden, G. Lindgaard, and M. Winckler,
Eds., vol. 8117, Berlin/Heidelberg: Springer Berlin Heidelberg, 2013, pp. 401–418,
isbn: 978-3-642-40482-5. doi: 10.1007/978-3-642-40483-2_28.

[14] Google LLC. (2019). Protocol buffers, [Online]. Available: https://developers.
google.com/protocol-buffers/ (visited on 06/19/2019).

[15] ECMA International, Standard ECMA-404: The JSON Data Interchange Syntax,
2nd ed. 2017.

[16] ——, Standard ECMA-262: ECMAScript 2018 Language Specification, 9th ed. 2018.

[17] E. You. (2019). Vue.js, [Online]. Available: https://vuejs.org/ (visited on
06/17/2019).

[18] J. Koetsier, “Evaluation of javascript frame-works for the development of a web-
based user interface for vampires,” PhD thesis, 2016.

[19] R. Cabello. (2019). Three.js: Javascript 3d library, [Online]. Available: https:
//github.com/mrdoob/three.js/ (visited on 06/17/2019).

62

https://doi.org/10.1145/1979742.1979801
https://doi.org/10.1145/3206505.3206526
https://doi.org/10.1109/3DUI.2017.7893364
https://doi.org/10.1145/2686612.2686629
https://doi.org/10.1007/978-3-642-40483-2_28
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://vuejs.org/
https://github.com/mrdoob/three.js/
https://github.com/mrdoob/three.js/


BIBLIOGRAPHY

[20] Devices and Sensors Working Group. (2019). Deviceorientation event specification:
W3c working draft, 16 april 2019. Devices and Sensors Working Group, Ed.,
(visited on 06/17/2019).

[21] A. Denoyel. (2016). Virtual reality evolved: Sketchfab vr apps and webvr support,
[Online]. Available: https://sketchfab.com/blogs/community/announcing-
sketchfab-vr-apps-webvr-support/ (visited on 06/23/2019).

[22] C. J. Rhoton, D. A. Bowman, and M. S. Pinho, “Text input techniques for im-
mersive virtual environments: An empirical comparison,” in Proceedings of the
Human Factors and Ergonomics Society: 46th Annual Meeting, Baltimore, Maryland,
September 30 - October 4, 2002 : Bridging Fundamentals & New Opportunities, Human
Factors and Ergonomics Society. Annual meeting, Eds., Santa Monica, Calif.:
SAGE Publications, 2002, pp. 2154–2158.

[23] Google LLC. (2019). Tilt brush help: Saving and sharing your tilt brush sketches,
[Online]. Available: https://support.google.com/tiltbrush/answer/6389651
(visited on 06/26/2019).

[24] M. Speicher, A. M. Feit, P. Ziegler, and A. Krüger, “Selection-based text entry
in virtual reality,” in Engage with CHI, R. Mandryk and M. Hancock, Eds., New
York, New York: The Association for Computing Machinery, 2018, pp. 1–13, isbn:
9781450356206. doi: 10.1145/3173574.3174221.

[25] M. Weisel. (2017). An open-source keyboard to make your own, [Online]. Avail-
able: http://www.normalvr.com/blog/an-open-source-keyboard-to-make-
your-own (visited on 06/26/2019).

[26] F. Evans, S. Skiena, and A. Varshney, VType: Entering Text in a Virtual World. 1999.

[27] M. McGill, D. Boland, R. Murray-Smith, and S. Brewster, “A dose of reality: Over-
coming usability challenges in vr head-mounted displays,” in CHI 2015 crossings,
J. Kim, Ed., New York, NY: ACM, 2015, pp. 2143–2152, isbn: 9781450331456. doi:
10.1145/2702123.2702382.

[28] J. Walker, B. Li, K. Vertanen, and S. Kuhl, “Efficient typing on a visually occluded
physical keyboard,” in Explore, innovate, inspire, G. Mark, S. Fussell, C. Lampe,
m. schraefel m.c, J. P. Hourcade, C. Appert, and D. Wigdor, Eds., New York, NY:
Association for Computing Machinery Inc. (ACM), 2017, pp. 5457–5461, isbn:
9781450346559. doi: 10.1145/3025453.3025783.

[29] G. González, J. P. Molina, A. S. García, D. Martínez, and P. González, “Evaluation
of text input techniques in immersive virtual environments,” in New Trends on
Human-Computer Interaction, P. M. Latorre, A. Granollers Saltiveri, and J. A. Macías,

63

https://sketchfab.com/blogs/community/announcing-sketchfab-vr-apps-webvr-support/
https://sketchfab.com/blogs/community/announcing-sketchfab-vr-apps-webvr-support/
https://support.google.com/tiltbrush/answer/6389651
https://doi.org/10.1145/3173574.3174221
http://www.normalvr.com/blog/an-open-source-keyboard-to-make-your-own
http://www.normalvr.com/blog/an-open-source-keyboard-to-make-your-own
https://doi.org/10.1145/2702123.2702382
https://doi.org/10.1145/3025453.3025783


BIBLIOGRAPHY

Eds., London: Springer-Verlag London, 2009, pp. 109–118, isbn: 978-1-84882-351-8.
doi: 10.1007/978-1-84882-352-5_11.

[30] J. Brooke, “Sus - a quick and dirty usability scale,” Usability Evaluation in Industry,
1996.

[31] K. Finstad, “The system usability scale and non-native english speakers,” J.
Usability Studies, vol. 1, no. 4, pp. 185–188, 2006, issn: 1931-3357.

[32] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus scores
mean: Adding an adjective rating scale,” J. Usability Studies, vol. 4, no. 3, pp. 114–
123, 2009, issn: 1931-3357.

[33] W. S. Ji-Young Oh, “Laser pointers as collaborative pointing devices,” Proc.
GI2002-Graphics Interface, Calgary, Canada, May, 2002.

[34] F. Argelaguet and C. Andujar, “A survey of 3d object selection techniques for
virtual environments,” Computers & Graphics, vol. 37, no. 3, pp. 121–136, 2013,
issn: 00978493. doi: 10.1016/j.cag.2012.12.003.

[35] T. Shibata, D. Afergan, D. Kong, B. F. Yuksel, I. S. MacKenzie, and R. J. Jacob,
“Driftboard: A panning-based text entry technique for ultra-small touchscreens,”
in Proceedings of the 29th Annual Symposium on User Interface Software and Technology,
J. Rekimoto and T. Igarashi, Eds., ser. UIST ’16, New York, NY, USA: ACM, 2016,
pp. 575–582, isbn: 978-1-4503-4189-9. doi: 10.1145/2984511.2984591.

64

https://doi.org/10.1007/978-1-84882-352-5_11
https://doi.org/10.1016/j.cag.2012.12.003
https://doi.org/10.1145/2984511.2984591

	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Outline

	Related Work
	Deller et al.
	Benzina et al.
	Dias et al.
	Katzakis et al.
	Pietroszek et al.
	Steed et al.
	Markussen et al.

	Implementation
	Ubi-Interact
	Architecture
	Interactions

	Technology Stack
	Smart Device
	Topic Data
	UBII Device Definition

	Architecture

	Experiments
	Model Viewer
	Laser Pointer
	Virtual Keyboard

	Evaluation
	Overview
	Results
	Model Viewer
	Laser Pointer
	Virtual Keyboard


	Future Work
	UBI Interact
	Experiments
	Positional Tracking

	Conclusion
	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	Appendices
	User Evaluation Devices
	Testing Environment A: Home
	Testing Environment B: University

	External Assets Used
	User Evaluation Form
	Bibliography

