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Abstract

Gestures can be an interesting input method for various applications. There are several
approaches on how to detect them, as new sensors provide different kinds of data to
work with. One kind is muscle-specific data received via surface electromyography. It
can be used to classify hand-gestures recorded by wearable sensors. In this thesis, the
Myo armband and machine learning techniques are used to detect these gestures to play
a game of Rock-Paper-Scissors. An interface for collecting sEMG data was developed
in the Ubi-Interact framework. For gesture classification an existing Tensorflow model
was trained and integrated into the JavaScript environment using Tensorflow.js. In the
end, it was possible to build an application to play Rock-Paper-Scissors against a virtual
opponent using hang-gesture input.
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1 Introduction

1.1 Motivation and Background

1.1.1 Gesture Recognition

Gestures are a form of non-verbal communication that carries a certain message or
meaning and involve body movement of arms, legs or muscles of the face. With gesture
recognition techniques, we can access that meaning and use it to build human-computer
interaction [Kon18].

Our hands are the main mean to physically interact with our surroundings. Therefore
hand-gesture recognition is interesting for different applications like virtual reality. It
enhances the interaction experience and integrates the real world into the virtual one.
With it, we can create a more realistic and immersive interaction compared to traditional
input methods. [RA11]

Another point is the spatial consideration: gestures can eliminate the need for physical
touch as input. This enables interaction from a distance [RA11] which can be beneficial
in several kinds of applications:

In a surgery setting a touchless interface can reduce time and potential infection risks
[Nas+16]. But even in our day-to-day life can a gesture-based interface be beneficial.
For example, accepting a call in our car [Joh+17] or taking a picture with a simple
hand-gesture instead of setting a timer [Sam18].

Visual sensors can be used for hand-gesture detection like the commercially available
Leap Motion1 and the Microsoft Kinect2. But the position of those sensors has to be
considered. For example, the Leap Motion can be placed in front of the user or be
attached to a VR-headset. This placement influences the tracking quality of the sensor.
The gesture has to be performed towards it for best results.[ZM17] If the fingers are
covered by the back of the hand detection gets more difficult. Therefore for simple
pointing gestures, the Leap Motion performs better when placed in front of the user.
The disadvantage is that the user is bound to a specific area unlike the head-mounted
approach.

1https://www.leapmotion.com/
2https://developer.microsoft.com/en-us/windows/kinect
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1 Introduction

Another option are wearable technologies for gesture recognition. Those sensors are
placed directly on the body. Data gloves [BeB19] can determine the relative position of
the fingers but are more restricting.

What we will investigate in this thesis is the Thalmic Labs Myo armband [Lab18]. It
can read muscle contractions via surface electromyography (sEMG). As the Myo does
not provide us with the exact positions of the fingers we will use machine learning
techniques to classify the sEMG data. This way we can detect hand-gestures without
restricting the hand itself or depending on lighting conditions or a certain position of a
visual sensor.

1.1.2 Rock-Paper-Scissors

Rock-Paper-Scissors is a simple hand-gesture based game. It is known by many people
or is at least easy to learn as it only consists of the three name-giving gestures:
rock (fist), paper (flat hand) and scissors (two fingers stretched out). All of them are
easily distinguishable with the human eye. This leads to the question: how well can a
machine distinguish these three gestures? An implementation of the game would also
benefit from hand-gesture input as it is the natural way to play that game. So we will
use a Rock-Paper-Scissors game to investigate the possibilities of gesture classification
using sEMG data.

1.2 Related work

There have been several approaches to use the Myo armband as input for various
human-computer interaction tasks. From robotics [HAI19] and prosthetic hand control
[Chu+17] to musical expression [NHJ15] and map navigation [SM15].

1.2.1 Myo sEMG classification

We are interested in classifying Myo’s sEMG data with machine learning. This also has
been done before: Goll [Gol18] build a convolutional neural network to classify Myo
gestures. Another approach from Fromm [Fro18] is using a recurrent neural network.
Both networks have been implemented using Tensorflow [Aba+16] and trained to classify
the gestures needed to play Rock-Paper-Scissors. Another neural network for classifying
a total of five gestures was build by Mytrovtsiy [Myt18].

Instead of building an own model from scratch, we are going to load one of the
existing models and investigate how well it can be integrated into another application
to perform gesture recognitions tasks.

2



1.3 Goal

1.3 Goal

The goal of this thesis is to build an application where we can play Rock-Paper-Scissors
using hand-gesture input. To achieve it, we collect sEMG data with the Myo armband
and classify this data using a pre-trained neural network. For accessibility and reusability
reasons we are going to use a web-based approach: We will implement a Myo interface
and the final game in the Ubi-Interact framework.

3





2 Theory

2.1 Electromyography

Electromyography is recording the electrical activity of a muscle. It can be used for
clinical examination like detecting abnormalities, muscle wasting, and weakness [Mil05].
But it can also be used for human-machine interaction in the form of gesture recognition
[Zha+11] and virtual reality applications [PK].

We distinguish between two categories of EMG: Intramuscular and surface electromyo-
graphy (iEMG and sEMG). In iEMG a concentric needle electrode is inserted into the
muscle for recording [Mil05]. The non-invasive method is sEMG. Here the electrode is
placed on the skin above the area of interest. Both methods, but especially sEMG are
prone to noise as the signal travels through different tissues and EMG detectors may
collect signals from different motor units [RHM06].

In conclusion, it is a complex signal, controlled by the nervous system and dependent
on physical properties of the muscle [RHM06]. Difficulties arise because of the stochastic
nature and noise of the signal. Hence a machine learning approach is useful for
interpreting it [Mit16].

2.2 Machine learning

“Machine learning is based on algorithms that can learn from data without relying on
rules-based programming” [PJ15]. Since its beginnings in the 1990s, it advanced to an
important technical field due to digitalization and cheap computing power [PJ15]. It is
gaining interest as machine learning systems are highly adaptable and improve through
experience [JM15]. As of today, machine learning is used in a variety of applications
and areas. For example, in the banking sector [Son19], for face recognition [Hig15], or
playing complex games like chess or go [Sil+17b].

2.2.1 Pattern recognition problems

Solving a pattern recognition problem means detecting a recurring pattern in the given
data to classify it. Data in the same class have similar properties [Fu12]. This method
can be used for tasks like speech recognition, image detection, and gesture classification.
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2 Theory

2.2.2 Artificial Neural Networks

Artificial neural networks can solve pattern recognition tasks. They are inspired by
human brain cells and consist of several layers of neurons, where each layer is connected
to the next one [Sil+17a]. The basic architecture of an artificial neural network includes
an input layer, an output layer and a variable amount of hidden layers. The input layer’s
dimension corresponds to the input data. The same applies to the output layer and the
output data [Sil+17a].

Figure 2.1: An example of a artificial neural network with multiple layers [Sil+17a]

Each neuron takes input from the previous layer, performs a calculation on it and
outputs a new value [Nie15]. The calculation can be described as follows:

a(
n

∑
i=0

(xi ∗ wi) + b)

Each input value xi is multiplied with a weight wi according to its importance and
summed up adding a bias b for scaling. a is the activation function of the neuron used
to normalize the output [Nie15]. The values of the weights and biases are determined
during the training process.

6



3 Fundamentals

3.1 Hardware

3.1.1 Myo armband

The Myo armband is a commercially available sensor distributed by Thalmic Labs
between 2013 and 2018 [Lab18]. It has eight stainless steel sEMG sensors on the inside
of the armband. Moreover, it has a nine-axis inertial measurement unit (IMU) with a
three-axis gyroscope, accelerometer, magnetometer and an ARM Cortex M4 processor.
It can be connected via Bluetooth to Windows, Mac, iOS and Android devices. The
Myo can detect 5 pre-defined gestures: fist, double-tap, fingers-spread, swipe-in, and
swipe-out. It also gives us access to the raw sEMG data for our own gesture classification
approaches. The armband is placed on widest part of the forearm for best detection.

Figure 3.1: Thalmic Labs Myo armband

7



3 Fundamentals

3.2 Software

3.2.1 Ubi-interact

"Ubi-Interact is a framework for building reactive and distributed applications" [19]
It brings different devices together, which are connected to a server as clients. These
clients can send their data via network and publish it to topics. The server redistributes
this data to all devices who subscribed to that topic. It can also process the data in
interactions. For example, an interaction can perform gesture recognition tasks and
return the performed gesture. Ubi-Interact is dependent on the data formats and not
the actual devices, which makes "devices exchangeable" and "interactions reusable" [19].

Figure 3.2: Overview Ubi-Interact [19]

The backend is built with the JavaScript runtime Node.js1 and the frontend is realized
in Vue.js2. The sent data is defined using Google Protocol Buffers3.

3.2.2 Myo.js

Myo.js4 is a JavaScript framework for accessing Myo data in the browser or Node.js.

3.2.3 Tensorflow

Tensorflow is an open-source library for developing and training machine learning
models [Aba+16]. Its core is written in C++ with frontend-bindings in C++ and Python.

1https://nodejs.org
2https://vuejs.org
3https://developers.google.com/protocol-buffers
4https://github.com/thalmiclabs/myo.js
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3.2 Software

[Sch16]. Since Tensorflow went open-source in November 2015 [Aba+16] it became the
most popular deep learning framework [Hal18].

Tensorflow.js

Tensorflow.js is a library for developing machine learning models in JavaScript. It can
run on client and server-side and is compatible with the Tensorflow API, so models
can be ported between Python and JavaScript [Smi+19]. This is especially interesting
since, according to the Stack Overflow Developer Survey 2019, JavaScript is the most
commonly used programming language [Ove19]. Machine learning libraries on the
other side are often written for Python or C++ developers [Tec18]. This is rooted in
speed reasons and accessibility to the GPU [Smi+19]. Tensorflow.js repurposes the web
platform’s graphics API for high-performance computation and is the first machine
learning platform to enable integrated training and inference on the GPU from the
browser. Besides that, it offers full Node.js integration. This makes it compatible with
numerous devices [Smi+19].
Furthermore offers Tensorflow.js already pre-trained models5 for tasks like image classi-
fication6.

Tenserflow.js converter

Tensorflow.js offers a model converter for Tensorflow GraphDef based models. It outputs
the model structure as a model.json file and its weights as binary files [Tenb]. We can
access the converter by installing the Tensorflow.js pip package. The original model
has to be saved independently of the code that generated it. Convertible formats are
the SavedModel, FrozenModel, SessionBundle and Tensorflow Hub module [Tena].
We are using a Saved Model for conversion [Tenc]. Here the model is saved as a
saved_model.pbtx protocol buffer file. It contains the graph structure, with an additional
variables folder for the learned weights.

3.2.4 EMG classifier model

The model for the gesture recognition task is a neural network able to classify Myo sEMG
data written in Tensorflow by Mytrovtsiy [Myt18]. The network takes 8 consecutive
sEMG samples as input. Each sample has 8 values, one for each sEMG sensor of the
Myo armband. So, in total, the input consists of 64 numeric values. The network has
an input layer, an output layer, and two hidden layers and uses an rectified linear unit
activation function.

5https://github.com/tensorflow/tfjs-models
6https://github.com/tensorflow/tfjs-models/tree/master/mobilenet
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4 Concept and Design

4.1 Idea

Our goal is to play a game of Rock-Paper-Scissors using the Myo armband. At first, we
need to figure out our subtasks and decide on a design for the whole application.
We can break down our task into three logical steps:

1. getting the Myo data

2. classifying the data to receive the performed gesture

3. playing Rock-Paper-Scissors with said gesture as input

We have to handle data acquisition, data interpretation, and the actual gameplay. With
our subtasks defined we can start making design decisions.

4.2 Design

The design has to fit our working-environment, which is Ubi-Interact. For example, we
want the components to be reusable. Therefore, data acquisition and data usage have
to be separated. A Myo interface should handle the input and a Rock-Paper-Scissors
application handles the gameplay. So the Myo data could be used for other purposes.

The interface collects data and publishes it to the Myo data topic. The game applica-
tion creates a session which takes that topic as input. It collects the data until it has 8
sEMG-samples and classifies it on server-side with a Tensorflow.js model. The output of
this interaction is a classified gesture, represented as a number, which will be used as
input for the Rock-Paper-Scissors game.

Figure 4.1 shows the design for our system and illustrates the connection between the
Myo interface, the game, and the backend.

As we need communication between our different system parts, we have to consider
message formats for our topic data: We need representation for the Myo data and an
integer number. Ubi-Interact has already fitting message formats for standard data
like numbers and strings. But to represent all the relevant information from the Myo
armband, we will need to define a new message format.

11



4 Concept and Design

Figure 4.1: System overview

Further, we need to classify the sEMG data by loading a pre-trained Tensorflow.js
model in the Ubi-Interact backend. This requires handling conversion and training of a
Tensorflow model, which will happen outside of the Ubi-Interact environment.

4.3 Process

After figuring out the basic design for our task, we will formulate the outline for
implementation.

1. create Myo Protocol Buffer message format

2. implement Myo interface

3. convert Tensorflow model to Tensorflow.js and load it in Ubi-Interact

• train model with own data

• save Tensorflow model code independently

• convert saved model to Tensorflow.js model

• make a npm package and include it in the Ubi-Interact backend

4. implement core Rock-Paper-Scissors game

5. connect game application to model and Myo interface

The numbered points were part of the original plan, the sub-points are additions that
had to be made during development. All these steps will be further discussed in the
following Implementation chapter.

12



5 Implementation

5.1 Protocol Buffer messages

At first, we define a new message format for the Myo data. We need the sEMG data for
gesture classification, which consists of 8 values from 8 sensors. But the Myo has more
interesting data: IMU (magnetometer, gyroscope, accelerometer) and gesture. Since the
goal is to make the interface reusable, we created a data format containing everything
mentioned above.

syntax = "proto3";

package ubii.dataStructure;

import "proto/topicData/topicDataRecord/dataStructure/vector8.proto";

import "proto/topicData/topicDataRecord/dataStructure/vector3.proto";

import "proto/topicData/topicDataRecord/dataStructure/quaternion.proto";

import "proto/topicData/topicDataRecord/dataStructure/handGestureType.proto";

message MyoEvent {

ubii.dataStructure.Vector8 emg = 1;

ubii.dataStructure.Quaternion orientation = 2;

ubii.dataStructure.Vector3 gyroscope = 3;

ubii.dataStructure.Vector3 accelerometer = 4;

ubii.dataStructure.HandgestureType gesture = 5;

}

Code Listing 5.1: Myo message format

The first four fields are vectors of length three to eight and the HandGestureType is an
enum containing all possible gestures and a rest gesture when no specific gesture is
detected.

5.2 Myo interface

After we defined the message format, we can fill our Myo topic with data. Therefore, we
need to set up the interface, collect data and then publish it. At first, we integrate our
interface into Ubi-Interact by registering it as a new device. We specify it with a name,
type, and its components, stating all input and output formats. The device only has an

13



5 Implementation

syntax = "proto3";

package ubii.dataStructure;

enum HandGestureType {

REST = 0;

FINGERS_SPREAD = 1;

WAVE_IN = 2;

WAVE_OUT = 3;

FIST = 4;

DOUBLE_TAP = 5;

}

Code Listing 5.2: Hand-gesture enum

Figure 5.1: Myo interface UI

input, as it only publishes data to the backend. Next, we need to get Myo data with
Myo.js by setting up listeners for IMU, sEMG and gesture data. For sEMG data we have
to enable the sEMG stream. Unfortunately, this makes Myo’s own gesture detection
worse. This could be enabled/disabled in the future if a specific application needs
the predefined gesture set and wants a more precise detection. For now, we prioritize
getting the sEMG stream. Finally the collected data is displayed in the interface and
published to the Myo topic in a 10 milliseconds interval.

5.3 Tensorflow model conversion and training

As explained in the Concept and Design chapter before, for converting a Tensorflow
model into a Tensorflow.js model it needs to be saved in a code independent format.
Unfortunately, this was not the case for any of the Tensorflow models handling Myo
gesture classification available to us. Only the weights were saved and not the whole
graph structure. This means retraining and correctly exporting the model first.

14



5.3 Tensorflow model conversion and training

Figure 5.2: Myo interface overview

5.3.1 Myo poller

Before we can start training the model we need data as input for it. Therefore, we need
an sEMG data poller that exports our recorded training data as a CSV-file. As we are
already working with Myo.js we use it to write a Myo poller script. It records data on
button press and labels it according to the selected gesture. For our model, we need a
format of 8x8 sEMG samples and an integer value as gesture id.

5.3.2 Exporting the Model

SaveModel: method 1

The Tensorflow model needs to be saved code-independently in a SavedModel format
for further use. For that, we define a SavedModelBuilder that will build a SavedModel
protocol buffer1. The SavedModelBuilder requires some information about the model.
For saving we define a SegnatureDef protocol buffer. We need to get the first and last
tensor of the model and pass them to the SignatureDef builder by creating a TensorInfo
protocol buffer objects that encapsulate the input and output tensors. We pass these to
the SaveModel builder module. After that we add the meta graph and variables to the
SavedModelBuilder, including a reference to the current session, because we need the
weights and our defined prediction signature for building the graph. We can use this
method on an already trained network by loading the trained weights. In our case we
export the SavedModel when we finish training it.

1https://www.tensorflow.org/api_docs/python/tf/saved_model/Builder
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5 Implementation

""" imports and model definition """

#define SavedModelBuilder including path for saving the model

builder =tf.saved_model.builder.SavedModelBuilder(SAVE_PATH)

#create TensorInfo protocol buffer of input and output tensors

tensor_info_input =tf.saved_model.utils.build_tensor_info(input_tensor)

tensor_info_output =tf.saved_model.utils.build_tensor_info(output_tensor)

#define signature

prediction_signature =(

tf.saved_model.signature_def_utils.build_signature_def(

inputs={'8xEMG data':tensor_info_input},

outputs={'gesture':tensor_info_output},

method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME

)

)

#add current meta graph

builder.add_meta_graph_and_variables(

sess,

[tf.saved_model.tag_constants.SERVING],

signature_def_map={

'predict_gesture':

prediction_signature,

}

)

def train(num_iterations):

for i in range(num_iterations):

""" training """

#export SavedModel

builder.save(as_text=True)

Code Listing 5.3: Export Tensorflow SavedModel by building it manually

SaveModel: method 2

After the classification abilities of the first training set were not satisfying (see Chapter
Training), we retrained the model and investigated the code once again. With a better
understanding of Tensorflow, we could refactor the SaveModel export. Instead of
manually building a SavedModel, we used the simple save method. For this, we only
need to pass it the session, the input tensor, and the output tensor. The rest is being
defined automatically. This is shown in Code Listing 5.4

16



5.3 Tensorflow model conversion and training

""" imports and model definition """

def train(num_iterations):

for i in range(num_iterations):

""" training """

#export SavedModel

tf.saved_model.simple_save(

sess,

SAVE_PATH,

inputs={'8xEMG data':input_tensor},

outputs={'gesture':output_tensor})

Code Listing 5.4: Export Tensorflow SavedModel with simple save

5.3.3 Model conversion

After training and exporting our model as a SavedModel, we can convert it now with
the Tensorflow.js converter by passing it the model with the following command:

tensorflowjs_converter

--input_format=tf_saved_model

--output_format=tfjs_graph_model

--signature_name=predict_gesture

--saved_model_tags=serve

/path/to/saved_model

/export/path

Code Listing 5.5: Converting the SavedModel into a Tensorflow.js model

When using the simple save method from SaveModel: method 2 the signature_name

has to be changed to the default signature name serving_default. Otherwise, we
choose the name we defined ourself.

Training

Unfortunately, the neural network wasn’t well documented. The data format for the
training data turned out not to be not a CSV-file but a NpzFile. Therefore an data
converter script had to be included.

After the data acquisition process, which will be discussed in the Training chapter,
the network was trained for 50,000 iterations.
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5 Implementation

5.3.4 Npm package

The next step is integrating the converted model in Ubi-Interact. For reusability reasons
we made a npm package that will load our model, similar to official Tensorflow.js
models2. This way, we can update it outside of Ubi-Interact. The model itself is hosted
on a university server and is loaded via URL.

5.4 Rock-Paper-Scissors application

Figure 5.3: Rock paper scissors game UI

5.4.1 Gameplay

Finally it is time to handle the Rock-Paper-Scissors game. We want the player to be able
to select the gesture via button or perform it directly using the Myo armband and the
Myo interface. The input method can be selected via check-box, with gesture input as
default. One game has the following sequence:

• player presses the ready button

• countdown

• user input is registered during a two-second interval

• visual feedback for the player

2https://github.com/tensorflow/tfjs-models
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5.4 Rock-Paper-Scissors application

During the input interval, an array is filled with classified gestures. The percentages
of the currently detected gestures are displayed as a graph under the input buttons
for feedback. The most frequent gesture is taken as the player input. After that, a
random gesture for the opponent is selected and the game evaluated. The two gestures
and a fitting win, lose or draw message is displayed. The evaluation is based on the
following rules: rock beats scissors, paper beats rock, scissors beats paper and two
identical gestures are a draw. This feedback screen can be found in figure 5.3.

5.4.2 Gesture classification

Similar to the Myo interface, we start by defining a new device and connecting the
application to the Ubi-Interact backend. The whole data handling and classification
process should happen in an interaction on the server-side. Therefore, we want to define
a session and its interaction. The session gets the data from the Myo interface as input
and returns a classified gesture as a new topic. The device subscribes to that topic and
uses this data for the game.

Figure 5.4: Gesture classification in interaction

In contrary to the Myo interface, we only have an output component for the device.
We handle the classification in the interaction, which gets its input from the Myo topic.
To access the topic we need its full name, including device and client id. It can be found
by iterating through the list of all topics and searching for one that contains myo_data.
The classification is handled by the interaction in an on-create and a callback function.
The on-create should set up everything for the classification process. Each interaction
has a state that we use for caching data. First, we load the sEMG classifier model into
the state. We already imported the emgClassifier package in the backend, so we can
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5 Implementation

access it via state.module and asynchronously load the model into the interaction state.
Furthermore, we define an sEMG-buffer for later use. In the callback-function, we need
to handle two things. We are collecting 8 sEMG samples in the sEMG-buffer array
and classify them with our model when we have enough samples. These samples are
saved in the interaction-state. The model returns the classified gesture and updates the
gestureID topic. The Rock-Paper-Scissors application itself subscribes to that topic and
receives new data on every classification.
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6 Training

6.1 Gesture set

We define the exact sensor position for training: The Myo armband is placed on the
widest part of the forearm, the logo should be under the elbow pit, facing away from
the body. For the hand-gestures, we define the following:

• default: muscles are relaxed, finger facing down

• rock: closed fist, thumb visible

• paper: hand stretched out, palm faces down

• scissors: index and middle finger stretched out in a "v" position, other finger
closed

Figure 6.1: Trainings gestures and sensor position. (top-left: default, top-right: rock,
bottom-left: paper, bottom-right: scissors)

We recorded different training sets from one user. The first ones had around 5,000
samples and were used to train the neural network for 10,000 iterations. Unfortunately,
the model did not reach a classification accuracy over 60% with this trainings data. In
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6 Training

the final game, every gesture except rock did not feel well recognized. We decided to
investigate how we can improve our training data and with it the model for overall
better classification.

6.2 Polling intervals

The Myo-poller can gather data as fast as the Myo armband sends it. When working in
Ubi-Interact, we want to define an interval for publishing the received Myo data. Our
model needs 8 consecutive sEMG-data samples. The question arises whether there is
a difference in classification, if we use different polling intervals for the training and
test data. With shorter time steps between samples we can get more data in the same
amount of time. This would save us recording time and help create bigger training sets.

We polled data from the same recording session in 3 different time intervals. One set
with a sample every 100 milliseconds, one every 25 milliseconds and one as fast as we
receive it from the Myo armband. We will call them train-100, train-25 and train-free.
The recording happened simultaneously, so the set with the highest sampling rate is the
smallest. Each set consists of the four training gestures described in the gesture set on
page 21.

Polling interval Samples Trainings steps Accurcy
100 ms 370 10,000 100%
25 ms 1480 10,000 99.39%
free 6810 20,000 98.49%

Table 6.1: Data from one trainings session was polled using different time intervals

A test with three sets of data with according polling intervals was performed. The
results are displayed in table 6.2.

The highest accuracy can be found on the diagonal, where time-intervals of the
training and test data match. The percentage varies around 4-7% between the test sets.
This is not as much of a difference as we expected. Especially if we look at the difference
of the sample size.

Training Data Test Data
test-100 test-25 test-free

train-100 56.0% 52.0% 49.5%
train-25 59.0% 63.0% 61.2%
train-free 66.0% 62.5% 67.6%

Table 6.2: Same gesture data was polled in different time intervals trained afterwards
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6.3 How to perform gestures

We can collect over 4 times more data using the free polling interval compared to the
25ms one in the same amount of time. This is a significant difference, especially for
bigger sample sizes. Therefore, we will try to match the publishing interval we used in
the Myo interface, but prioritize sample size first.

The following training sets are recorded with the free polling interval. In the final set,
polling and publishing intervals will match.

6.3 How to perform gestures

The gestures vary in detection quality. While rock and the default gesture are classified
well, scissors and paper have a low detection probability. We investigate whether this is
based on how we perform the gestures. For example, does clenching the fist harder or
stretching the fingers while doing the paper gesture influence the classification accuracy?
We recorded two test sets. In the first set, the gestures were performed tense and in the
other set more relaxed. Both sets have 10,000 samples and are trained for 30,000 steps.
After that, a mixed set is created that consists of 5,000 gestures of each of the previous
sets.

The trained models are tested with 2,000 relaxed and tense gestures.

Trainings-set test-relaxed test-tense test-combined
train-relaxed 69.8% 74.6% 72.2%
train-tense 72.5% 76.9% 74.7%
train-mixed 78.1% 77.6% 77.9%

Table 6.3: Classification accuracy with differently performed gestures

The goal is to find a strategy to improve the classification of the paper and scissors
gestures. Therefore, the accuracy of the individual gestures has to be considered. Over-
all, the mixed set has the best performance. It is also the only set that reaches over 70%
correct recognition for every single gesture, if they are performed tensely. Surprisingly,
the relaxed set also reaches over 70% accuracy for all relaxed gestures except the default
one. Since the game has a time frame for input, instead of differentiating whether or not
a gesture is performed, the low accuracy of the default gesture is irrelevant. So the best
options are the relaxed and mixed training sets.

The mixed set has a higher accuracy on average, but for relaxed gestures, the mixed-set
lacks in recognizing scissors, compared to the relaxed set. Since it feels more natural to
do relaxed gestures and it is less tiring to record them for a big data set, we recorded a
mixed set with mainly relaxed gestures for the final set.
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Trainings-set Gesture test-relaxed test-tense test-combined
train-relaxed default 44.5% 74.1% 59.3%

scissors 72.7% 69.5% 71.1%
rock 95.3% 89.7% 92.5%
paper 71.8% 68.1% 69.9%

train-tense default 91.8% 76.1% 84.0%
scissors 57.9% 79.0% 68.4%
rock 81.6% 93.6% 87.6%
paper 61.4% 63.4% 62.4%

train-mixed default 86.8% 79.8% 83.3%
scissors 65.9% 76.8% 71.4%
rock 86.4% 82.1% 84.2%
paper 76.2% 72.2% 74.2%

Table 6.4: Classification in detail

6.4 Final data set

We recorded a set of 20,000 8x8 sEMG-samples from one person in a 10 milliseconds
polling interval. 3

4 of them were performed relaxed, 1
4 tense. The model was trained

with this data for 50,000 iterations. The following two figures show the accuracy during
training and how each gesture from a test set was classified with this model.

Figure 6.2: Trainings accuracy
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6.5 Generalization
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Figure 6.3: Accuracy per gesture

The rock gesture has the best classification rate with an accuracy of 93%. Paper and
scissors are both correctly classified at least 70% of the time, but still have a 23% chance
of being misclassified as the other gesture.

6.5 Generalization

We tested the gesture classification for people different from the person who recorded
the training data. We collected sEMG data sets from two users and ran tests on the final
model and some of the previous ones. Unfortunately, the highest accuracy we could
reach was 49.5%. The model has overall weak generalization abilities. We also noticed
that the classification accuracy is lower when we reposition the armband between
recording the training and test set.

6.6 Gesture recognition in application

After training and importing the network in our application, we tested how well the
gesture recognition works while playing the game. Each of the Rock-Paper-Scissor
gestures was performed 50 times and noted how it was classified.

As we can see in figure 6.4, rock and paper are classified more than 50% of the
time correctly. The classification accuracy for rock is 60% and other gestures are rarely
misclassified (less than 5%) as it. Surprisingly, each gesture has a high chance to be
classified as paper. It has the highest classification accuracy, while scissors has the lowest.
Furthermore, scissors has almost the same chance of being misclassified as paper as it
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6 Training

has to be correctly classified. In total, we achieve a classification accuracy of 60% in the
game. This is lower than the results of the Final data set section.
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Figure 6.4: 50 gestures were classifed in application

To improve classification on the application side we tried, instead of resetting the
sEMG-buffer after classification, to use a circular buffer approach for caching the data.
We further tried to filter out input arrays where most of the gestures were classified as
default and display a ’no gesture detected’ message in that case. Unfortunately, none of
these approaches had a significant influence on the classification. In all our tests rock
was classified 55-60%, paper 60-70%, and paper 40-45% of the time correctly.
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7 Conclusion

We achieved our goal of making an application to play Rock-Paper-Scissors using hand
gesture input. We build an interface collecting sEMG data from the Myo armband. Fur-
thermore, we converted, trained and loaded a Tensorflow model for sEMG classification
and build the final game in Ubi-Interact. Unfortunately, only two of the gestures can
be classified well in the application. The scissors gesture cannot reach a classification
accuracy over 50% in the game.

Another issue is the practical use of the application, as the Myo armband is discontin-
ued by now and the sEMG classifier model lacks generalization abilities. For a playable
game, the model has to be trained with sEMG data from the individual player, which is
impractical.

Other than that, the application works and can be used as a base for further work,
which will be discussed next.
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8 Future work

8.1 sEMG classification

8.1.1 Model

The gesture classification could be improved by using a different model. Unfortunately,
the model conversion took more time then estimated in the beginning. So the model
decision fell on the one that could be converted in a reasonable amount of time. There-
fore, converting and comparing the models from Goll [Gol18] and Fromm [Fro18] could
improve the classification.

8.1.2 Generalization

Another topic is the generalization issue. How can we make the model fit the current
user the best? We could look at this problem from the Tensorflow side by training the
model with a better dataset or try combining sets from different users. Furthermore, as
we can train models in Tensorflow.js, we could do pre-training to fine-tune the model
for each individual user. In general, doing some kind of pre-calibration could improve
gesture classification.

8.2 Myo interface

We already have a Myo interface, so we could use it for other purposes. From using
the IMU data for navigating the mouse cursor and using gestures for button clicks, to
entirely different applications. The interface could be also integrated into Ubi-Interact’s
Virtual Reality modules.

8.2.1 Myo-Poller

The Myo-poller could be integrated into Ubi-Interact, so that all the Myo-related tasks
could happen in one place. That data could be again exported as a CSV-file or being
used in pre-training the model, for example.
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8 Future work

8.3 Rock-Paper-Scissors Game

8.3.1 Using different input

We could operate the Rock-Paper-Scissors application with other input. For example,
using the camera interface and image recognition techniques, similar to how it is done
with the sEMG data now. Alternatively, a new interface could be implemented for other
devices like the Leap Motion sensor.

8.3.2 Two Player

Another option would be to add a second player to make the game more interesting.
Two Myo armbands or other input methods could be used to compete against each
other.
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