
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Serious Game: Ancient Battles in VR

Steen Müller

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Serious Game: Ancient Battles in VR

Serious Game zu antiken Schlachten in VR

Author: Steen Müller
Supervisor: Prof. Gudrun Klinker, Ph. D.
Advisor: Dipl.-Inf. Univ. David A. Plecher, M.A.
Submission Date: 15.11.2017

I confirm that this master’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 15.11.2017 Steen Müller

Acknowledgments

I would like to thank my thesis advisor Dipl.-Inf. Univ. David Plecher. He allowed me
to choose my own topic to work on and provided me with helpful guidance whenever
I needed it.

I would also like to thank Eric Massenberg and Thi Van Khanh Tran for providing
assets for my thesis as well as continued support. Additionally, I would like to thank
the participants of my survey for their time.

Finally, I want to express my gratitude to my parents for supporting me through my
years of study.

Abstract

This work discusses the possiblities for a serious game about ancient battles. The game
should teach the player about the tactics which were used in the battle. Additionally, the
reasons for using a Virtual Reality headset are explained and the design consequences
are discussed. A prototype is implemented in Unity3D using a HTC Vive and its touch
controllers.

Diese Masterarbeit diskutiert die Möglichkeiten eines Serious Game über Antike
Schlachten. Das Spiel lehrt dem Spieler die Taktiken, die von den Kommandeuren
verwendet worden sind. Die Gründe für die Verwendung von Virtual Reality werden
erklärt und darausfolgende Designentscheidungen werden diskutiert. Abschließend
wird ein Prototype in Unity3D mit der HTC Vive erstellt.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Goal of the Thesis . 1
1.2. Outline . 1

2. Terms and Definitions 3
2.1. Serious Game . 3
2.2. Virtual Reality . 4
2.3. Serious Game in Virtual Reality . 5
2.4. Games versus Visualization . 6

3. Related Work 7
3.1. Related Existing Games . 7

3.1.1. Alexander . 7
3.1.2. Ultimate Epic Battle Simulator . 9
3.1.3. Total War . 10

3.2. Other related Applications . 11
3.2.1. Serious Game in Virtual Reality 11
3.2.2. Rome Reborn . 11

3.3. Summary . 12

4. Analysis and Definition of Requirements 13
4.1. Learning Content . 13
4.2. Historical Battle Of Cannae . 14

4.2.1. Units (Roman Side) . 14
4.2.2. Units (Carthaginian Side) . 16
4.2.3. Location . 17
4.2.4. Course of Events . 18

4.3. Visualization of Units . 18
4.3.1. Reduction to rectangles . 19

v

Contents

4.3.2. Graphical Representation as figures 20
4.4. Visualization of Terrain . 20
4.5. Combat Model . 21
4.6. Gameplay . 21
4.7. User Interface . 21
4.8. Artificial Intelligence . 22
4.9. Virtual Reality . 23
4.10. General Goals . 24

5. Approach 25
5.1. Graphic Assets . 25

5.1.1. Acknowledgements Graphic Assets 25
5.1.2. Models . 25
5.1.3. Roman Equipment . 26
5.1.4. Carthaginian Equipment . 28
5.1.5. Triplanar Shading . 29
5.1.6. Example of a finished Wooden Figure 32
5.1.7. Terrain Rendering . 33

5.2. Interaction . 36
5.2.1. Unit Control . 38
5.2.2. Perspective changes . 39

5.3. Replay . 40
5.4. User Interface . 41

5.4.1. Main Menu . 41
5.4.2. Generating meshes as an Information Overlay at runtime 41
5.4.3. Unit Information Paper . 44
5.4.4. Unit specific User Interface . 45
5.4.5. Outline . 46

5.5. Gameplay . 47
5.5.1. Movement Calculation . 47
5.5.2. Combat System . 50

5.6. Artificial Intelligence . 52
5.6.1. General Idea . 52
5.6.2. Multithreading the Artificial Intelligence 53

6. Evaluation 55
6.1. Performance . 55
6.2. Goals . 56
6.3. Results . 58

vi

Contents

7. Conclusion and Future Work 61

A. Results Study 62
A.1. Demographic questions . 62
A.2. Previous Knowledge . 62
A.3. After Gamplay Test Questions . 64

List of Figures 67

List of Tables 69

Bibliography 70

vii

1. Introduction

The consume of video games grew extremely in the last decade and shows the potential
of games to entertain people. People are having fun during the interaction with these
fictional creations. There is a lot of research about the methods which make games fun
but it is not completely discovered why some games are more fun than others. But
games could also be used for educational purposes. The combination of something
which people like to do and something which people have to do seems to be an
interesting approach. The best parts of a fun game and the information you want to
teach to somebody could result in new and interesting ways of teaching and learning.

1.1. Goal of the Thesis

The thesis tries to implement a Serious Game about the used tactics in ancient battles.
To build a solid foundation for the game, existing games are analyzed. After that,
requirements for the game are formulated. The used technologies and hardware choice
are explained. The resulting constraints from this technologies and the timeframe are
discussed. The implementation will afterwards be tested by a small-scale user study to
test the serious game.

1.2. Outline

Each chapter matches closely to one of the goals of the thesis. After an introduction in
the first chapter, the second chapter defines the terms Serious Game and Virtual Reality.
The growing interest in these topics in the last years is explained. The possibilities for a
combination of the two topics are explored. As a last point, a game itself is discussed
and how it differentiates from visualizations.

The third chapter discusses existing works. In the first part, existing games with the
same topic are analyzed based on their efficiency in teaching battle tactics. The second
part contains a discussion about other related work like visualizations or Serious Games
in Virtual Reality but not with the same topic.

The analysis and the definition of the resulting requirements are presented in the
fourth chapter. At first, the learning content including the actual historical battle are

1

1. Introduction

analyzed. The following sections debate the various possibilities for the visualization
of the content. Other areas of game development like gameplay, Artificial Intelligence
or User Interface are discussed.

The fifth chapter shows the actual implementation of all important areas of the game.
This ranges from the graphical representation, the interaction through the controllers,
the replay mode, the User Interface, the gameplay to the Artificial Intelligence in the
game.

During the sixth chapter, the Serious Game is evaluated by a user study. The goals of
the study are explained and the results are discussed.

The thesis ends with a conclusion and an outlook of the possible future work to
improve this game.

2

2. Terms and Definitions

In this chapter two important terms for this master thesis are defined. Additionally, the
relation to the topic of this thesis is explained.

2.1. Serious Game

The term Serious Game was first formally defined in 1970 by Abt [Abt87]. Due to the
lack of an existing video game industry the term was not connected to video games but
more to Pen-and-Paper games. In 2002 Sawyer provided an updated definition of the
term Serious Games which directly connected it to video games[SR08]. He connected
video games with a serious part like distributing knowledge or teaching about an
existing model.

This thesis will use the following definition of Serious Games from Djaouti [DAJ11]:
"Any piece of software that merges a non-entertaining purpose (serious) with a video
game structure (game)." The definition contains two parts, the first one is the non-
entertaining purpose. Most often this relates to the distribution of knowledge or the
management of specific processes. The second part consists of the video game structure.
This video game structure helps to catch the attention of the user. Additionally, the
reward structure of a video game is used, so that the user will continue to use the
Serious Game application and continue to learn more content and consolidate existing
learning content.

Serious Games represent a growing market which is estimated to reach a market
volume of 5450 millions by 2020 [mar]. Many companies like Audi [stra] or Allianz
[strb] already use Serious Games applications.

As seen above, the topic Serious Games represents an interesting area for research.
The combination of learning content with video games could lead to exciting new
games which could partially replace existing learn methods.

To show these exciting possibilities, this thesis will try to create a Serious Game
about ancient battles. The game should teach the user general knowledge about these
battles regarding the location or time frame, but more importantly about the used
tactics and provides various perspectives to watch the battle. The game should offer
the possibility to just watch the battle but also take part as one of the commanders.
This allows the player to explore the tactics firsthand. By changing the movement of

3

2. Terms and Definitions

the units, the player can try to change the course of the events of the battle and win as
the historically losing side. But he can also switch to the winning side and try to win
even more decisively. The new possibilities due to the game structure allow the player
to learn more about the battle and the used tactics. The balance between game content,
e.g. the possibility to play as the losing side and win the battle, and learning content,
e.g. the historical correctness, is one of challenges of this thesis.

2.2. Virtual Reality

Figure 2.1.: Vive and its controllers, in the back base stations

Source: [ETC]

Virtual Reality (VR) is defined as a computergenerated reality [Pro]. This reality
can be viewed on a head mounted display (HMD) or specific rooms which are called
Cave Automatic Virtual Environment (CAVE). The possible forms of interaction depend
on the used head mounted display. Some can detect the motion of the headset and
calculate the respective changes to the virtual reality. Others use additional hardware
like a 3D mouse. Some head mounted displays require a powerful external computer
to calculate the video and audio streams for them (e.g. HTC Vive [HTC]), while
mobile solutions often utilize the calculation power and the screen of a smartphone

4

2. Terms and Definitions

(e.g. Samsung Gear VR [Sam]).
Augmented Reality (AR), another topic which is often mentioned, differs from Virtual

Reality by the fact that it only produces a computer generated picture which modifies
the existing reality, so that additional information can be conveyed. Virtual Reality
produces a computer generated picture and only shows the picture and not the reality
in front of you. An example for an augmented Reality device would be the Microsoft
HoloLens [Mic].

The popularity of the HTC Vive and the Oculus Rift after the launch of the sale of the
consumer versions in 2016 shows the potential of the market. The market is estimated
to grow to $48,5 billion by 2025 [Gra]. The two biggest companies in this market area
are the HTC Corporation with the HTC Vive and the Oculus VR LLC with the Oculus
Rift.

This thesis will develop the game for the HTC Vive and its controllers. The headset
and the controllers are motion tracked by the base stations. Each controller features a
trackpad, a trigger in the back, haptic feedback and 24 sensors. The development of a
control scheme for this new interaction method will be one of the challenges for this
thesis.

The tracking of the headset and the controllers allows an experience which is way
more immersive than the standard experience in front of a monitor. The headset is
closed at the sides in order to prevent light from shining through which also helps to
focus on the screens. But this also poses problems like motion sickness. Some people
experience motion sickness due to the imperfect movement alignment of the head and
limbs with their real counterparts.

2.3. Serious Game in Virtual Reality

The combination of both components can result in great Serious Games. With the
advantages of Virtual Reality like new control methods and increased immersion, the
effect of Serious Games could be greatly amplified. If these new methods can be
researched and used to create better and more effective Serious Games, a lot of people
would benefit from that. Serious Games are a growing market as shown above and will
influence a lot of people in the coming years especially in corporate environments.

A problem with Serious Games in Virtual Reality is the cost of the Virtual Reality
headset. Most people will not buy a headset because they are rather expensive and
require a good Personal Computer to run on. But in a corporate environment, this
could change. If the employees of the company greatly benefit from the knowledge,
which is transfered through the Serious Game, the employer will set up a Virtual Reality
environment at the workspace for his employees.

5

2. Terms and Definitions

2.4. Games versus Visualization

Another point worth mentioning is the difference between games and visualizations.
A game in itself is a form of structured play. Play is a range of activities which are

voluntary and intrinsically motivated [Gar90]. The game itself should be rewarding
enough to be played by an user. In game design this can often be achieved by using
specific structures and reward mechanism. But in the context of Serious Game there is
a balance problem. Serious Games contain a serious purpose like teaching the tactics of
an Ancient Battle. The developer has to balance the amount of attention on the serious
purpose with the rewarding, intrinsically motivating parts. If he focuses too much on
the serious purpose, the game is not fun enough to play and people will not recognize
it as a game. If he focuses too much on the game part, people will not actually learn
the serious aspiration and the purpose of the Serious Game is lost.

Another important part of game is the interactivity in comparison to visualization. If
you want to teach people e.g. about the tactics Hannibal used in the Battle of Cannae,
you can show them a documentation. But the documentation lacks the interactivity. The
user does not actually give any commands or can try another strategy to see how that
one works. Games feature this decision making and it is a really important component
of them. It also allows the player to actually take part in the battle so that he feels more
immersed into it.

But this also poses a problem in the context of Serious Games. If you try to add as
many decisions as possible to the game to enable the player the possibility to make
as many decisions as possible, the historic authenticity will most likely suffer from
that. Also, if there are a lot of decisions, the player may not actually learn something
about the real historic course of events but just about his battle in Cannae. The decision
making has to be constrained to some degree in order to guarantee the accuracy of the
historic course of the events. Finding a balance in this respect poses one of the major
challenges in this thesis.

6

3. Related Work

This chapter discusses related work and tries to define the borders of the topic. Also,
differences to existing games are mentioned. After extensive research through various
online distribution methods, no exact match for this combination of ancient battles and
Virtual Reality could be found. There are some existing games which fit either Virtual
Reality or ancient battles but not both. The first section will discuss these games. The
games will be analyzed to see if they are suitable as a learning environment for tactics
in ancient battles. Additionally, some other related applications in the Virtual Reality
field are discussed in the second section of this chapter.

3.1. Related Existing Games

The following games are related to the theme ancient battles. This section will discuss
how close they match real existing battles and if they are able to show the used tactics
in these battles.

3.1.1. Alexander

Alexander is a Real Time Strategy game which was developed by GSC Game [GSC]
and published by Ubisoft. It was developed in 2004 as a tie-in to the film with the same
name. The film tries to show a mostly realistic representation of the life of Alexander,
but there are some differences to the real life of Alexander. The game was not well
received and scored a rating of 56 on Metacritic [Met].

During the campaign of the game, you follow Alexander on his campaign through
the Persian Empire until India. After finishing Alexander’s campaign, you can fight in
three additional campaigns as the Indian, Persian or Egyptian Empire.

The game is developed with the same engine and gameplay principles as Cossacks.
Due to this, the population limits and the amount of units in this game are rather high
compared to other strategy games like Age of Empires. This can be seen on the website
where the developer promotes his game with battles with up to 64000 units. The player
can group units to brigades which allows to command these unit amounts more easily.
The use of these brigades is closer to the historical reality, where sometimes thousands

7

3. Related Work

Figure 3.1.: Screenshot from the game Alexander (2004)

Source: [GSC]

of soldiers fought against each other, than the battles in Age of Empire where only
dozens of units fight against each other.

Due to the lack of owning the game and the lack of existing video material, the
game’s controls can only be rated by existing reviews of Alexander. According to
reviews from IGN [But] or Gamespot [Bee], the controls often do not work. The battles
of Gaugamela or Issus, where Alexander won due to his strategies, do not show the
need for his used tactic in the game. The units often do not act according to their
commands and it is often just enough to send all units to the enemy and wait for the
victory. Tactical possibilities like flanking and formations are not even needed because
the player can win even without them.

To sum the game up, it uses some historical correct facts like the place of some battles
and the amount of units but is not able to teach the player about the used strategy of
Alexander.

8

3. Related Work

3.1.2. Ultimate Epic Battle Simulator

The Ultimate Epic Battle Simulator [Bria] was developed by Brilliant Game Studios
[Brib]. The game is a sand box for battle simulation. It allows the player to let
various humans like archers, roman soldiers or Chuck Norris fight against each other.
Other units like orcs, trolls or chickens are also available. The developer designed
the simulator to not limit the number of units but the performance will decrease at a
certain point.

Figure 3.2.: Screenshot from the game Ultimate Epic Battle Simulator

Source: [Edu17]

After starting the battle, it is not possible for the player to control the units anymore
except for fighting as one single soldier. The player is not able to arrange a strategy
for his units. This dramatically reduces the use cases of this simulator as a learning
environment. It is not possible to build custom maps to recreate ancient battles because
you are restricted to the set of maps which the developer provides. Due to these
constraints which are imposed by the game, it is not suitable as a learning environment
about ancient battles.

9

3. Related Work

3.1.3. Total War

The Total War Series [SEG] was developed by Creative Assembly [Cre17]. A total of 11
parts have been developed in the last 17 years. The series is about the combination of
round based management of territories and real-time battles between various factions.

Figure 3.3.: Screenshot from the game Total War: Rome 2

Source: [M13]

This thesis will concentrate on the game Total War: Rome 2. It is a remake of the
Game Rome : Total War which was developed in 2004. The game features a large
campaign which starts in 272 BC and lasts for 300 years. But also some historic scenarios
were added to the game like the Battle of the Teutoburg Forest. These scenarios only
feature a battle and no round based management.

The game contains around 500 different unit variants [Sch]. In the real-time battles,
each unit is represented by a number of soldiers and you can field up to 40 units. You
only control the unit as a whole. Each unit has various values like morale, fighting
strength or movement speed. Additionally, you can choose different formations for
your units to form your army exactly like you want. Units whose morale is too low
will flee from the battle. The goal of a battle is to kill the enemy or make them flee.

The battles are comparably good at representing ancient battles due to formations,
morale and the use of the real information about these units which are visible in

10

3. Related Work

Screenshot 3.3. But there are also some inconsistencies like the amount of soldiers
in most battles. The game reduces the amount of soldiers for performance reasons
to a few thousand in most battles but in ancient battles during the Roman Empire
often the number of participating soldiers was in the tens of thousands (e. g. Battle of
Cannae 120 000 Soldiers). Additionally, the game represents cavalry very strong. This
is partially correct as outflanking an enemy phalanx unit is rather strong and creates
high casualties, but in the game cavalry was able to win against almost any kind of
infantry. This is shown during multiplayer matches where most players relied mainly
on cavalry and some "support" infantry. Still, the battles in Total War: Rome 2 represent
the best approach from the analyzed games for showing the tactics in ancient battles.

The television show Time Commanders [BBC] was a game show which aired on BBC.
The participants in the show were briefly introduced to the units and the terrain of one
ancient battle and were then asked to develop a strategy. After developing a strategy, it
was tested in a match versus a bot commander. During the match, military specialists
explained the difference to the real historic battle. The show used the Total War Engine
with slight modifications to show the battles and have a real-time visualization of
strategy and the reaction of the AI. This shows that the historic background of the
game was rather good as it could be used in a television show.

3.2. Other related Applications

This section discusses other related applications and their usefulness to the project.

3.2.1. Serious Game in Virtual Reality

A Serious Game for travel training for persons with Autism Spectrum Disorder was
developed [Ber+15]. This game uses Virtual Reality to immerse the players into the
world. As seen in their paper, they use a virtual environment in a Virtual Reality
headset to display tasks to the player. These tasks should help players with ASD to
interact in the real world with more confidence.

The game is not directly related to the topic as it does not feature any ancient battles
or tactics. But they use a Virtual Reality headset to increase the immersion of their
serious game.

3.2.2. Rome Reborn

Rome Reborn is a visualization of the ancient Rome over a timespan of circa 1550
years from 1000 B.C. to 550 A.D.[Fri]. It shows the buildings in the city and provides
explanations for various things. It uses the Virtual Reality headset for immersion

11

3. Related Work

purposes and it can not be considered as a game because it lacks interactivity with the
content.

3.3. Summary

The goal of this chapter was to find an existing Serious Game which relates to the topic
of ancient battles and uses a Virtual Reality headset like the HTC Vive in its setup. The
existing games with a relation to ancient battles did not have a serious purpose and
were missing the Virtual Reality headset. Out of these games Total War: Rome 2 has
the best approaches for providing a correct, historic experience for ancient battles. The
author was not able to find an existing Serious Game about ancient battles. An existing
Serious Game which uses a Virtual Reality headset was shortly analyzed but found
unsuitable for the topic of this thesis.

12

4. Analysis and Definition of Requirements

In the following sections, an existing battle will be analyzed and the requirements
for the serious game will be discussed. The goal is to develop a Serious Game about
ancient battles. For this purpose a battle simulator part with an artificial intelligence
needs to exist so that the player can test the strategy. It would be also beneficial to build
a replay part where the player can watch the strategy which the commander used.

4.1. Learning Content

The serious purpose of the learning game is the distribution of knowledge. The
knowledge in this case is an understanding of the tactics which were used by ancient
commanders to win battles. Due to time constraints, it is advisable to focus on one
specific battle and its tactics. If it is possible to teach a player about one specific battle
and its tactics, this can be replicated for other battles as well.

Due to the mentioned reasons, this thesis will concentrate on one specific battle
by an ancient commander. One option would be Alexander the Great who had
several interesting battles like the one near Issus or Marathon. Another interesting
commander would be Hannibal who led the troops during the second Punic War.
Multiple interesting battles like the one at Lake Trasimene are available for an analysis.
Also the Battle at Cannae is interesting because it represents a prime example for a
pincer movement and is still considered as one of the best executions of this tactic.
It was decided that this thesis will focus on the Battle of Cannae due to its good
documentation by various sources and its importance for warfare. The battle will be
further analyzed in the next section.

The main focus of this thesis are on the one hand the used tactics in that battle and on
the other hand additional topics which are also considered to the list. One topic could
be the communication on the battlefield. It was often rather hard for a commander to
react to enemy movements and give commands after the battle had started. Due to the
enormous number of ca. 86 000 soldiers on the roman side, it was hard to give orders
to units. Additionally, it is rather hard to reach cavalry which are already using horses
to move over greater distances. One solution were instruments but it remains to be seen
if it is possible to include these in the game mechanics while still making it fun to play.

13

4. Analysis and Definition of Requirements

Another topic are basic information about the different units which took part in
the battle. This information could range from equipment and experience in battle to
general role in a battle. Also some additional information about the previous battles and
Hannibals march through Italy could be shown. An interesting part is the connection
between the real data and the values of the units in the game which are defined by
combat system.

4.2. Historical Battle Of Cannae

In this section the Battle of Cannae will be analyzed. For this purpose the units of both
sides, the location and the course of events will be discussed. The following sections
will use the information from the book [Dal03].

4.2.1. Units (Roman Side)

The size of the Roman Army was estimated to approximately 63000 infantry soldiers
and 6000 cavalry soldiers and additional soldiers as guards in the camp. The army
consisted of three big unit groups:

• Light Infantry: Velites

• Heavy Infantry: Hastati, Principes, Triarii

• Cavalry: Eques

Light Infantry

The light infantry in the Roman Army was called Velites. Those wore only light armor
because they moved around a lot and had to be mobile. As a helmet, they used a
wolf skin helmet. They carried around 7 javelins, which are light throwing spears, and
a parma shield, which is a small round shield, into the battle. They engaged in the
typical skirmisher tactics by just throwing spears at the enemy and evading the enemy
by running away if he charged at them. These spears from the skirmishers were the
main weapon of the Roman Army versus the elephants in Hannibals Army although
most of them already died during the march through the Alps.

Their role in combat was to hide the movement of the heavy infantry and cavalry
by building a small wall and attracting the attention of the enemy by throwing spears
at them. Later on in the battle, after they had thrown their spears, they supported the
main army by closing gaps and transporting equipment. There were circa 24 000 velites
in the Battle of Cannae [Dal03, P. 58].

14

4. Analysis and Definition of Requirements

Heavy Infantry

The heavy infantry represented the main part of the Roman Army. They consisted of
three groups.

The first group, the Hastati, included the inexperienced and young soldiers, which
were often not wealthy. Their equipment consisted of a chain mail body armor. The
senate gave them a gladius, a small stabbing sword, and the scuta, the distinctive roman
shield. Additionally to the gladius, they carried several pila into the battle. A pilum
is a throwing spear, which the hastati used in close range. They were thrown against
shields to make them unusable due to the added weight of the spear.

The role of the Hastati was not to win the fight for the army but to wear the enemy
down and exhaust them. Then the stronger and more experienced troops would win
the fight.

The second group, the Principes, were similar to the Hastati, but more experienced
and wealthier. This lead to better equipment. Also, they were older than the Hastati.

Their role was to win the fight versus the enemy after the hastati had worn them
down. If they were not successful, the third group of the heavy infantry came into play.

The Triarii were the most experienced soldiers in the army. They were often wealthy
which lead to the best possible equipment. They were equipped in similar matter as the
other two groups but they fought with spears as a main weapon instead of the gladius
like hastati and principes.

If the triarii actually fought in a battle, then the last reserves of the Roman Army
would had been mobilized. They only represented approximately 1/5 of the heavy
army and were placed in the back of the army as they were considered the elite units.

The typical composition of a roman legion for that battle consisted of 1440 hastati,
1440 principes and 600 triarii [Dal03, P.58].

Cavalry

The cavalry soldiers in the Roman Army were called Equites. They were equiped
with spears, swords, small round shields and some kind of body armor. It is not clear,
which one was used due to missing documentation and contradicting sources. The
participation in the cavalry instead of the infantry was considered more prestigious
and was paid better, but the soldier had to pay for his own horse and equipment which
was only possible for the wealthiest among the citizens.

Normally, the job of the cavalry was to protect the infantry from flanking attacks.
The heavy infantry was the main force of the Roman Army and often won the fight
for them. Due to this fact and the fact that the roman cavalry lost most of their battles
during the Second Punic War, some considered the roman cavalry rather weak. But the

15

4. Analysis and Definition of Requirements

losses during the Second Punic War can the attributed to the sheer number advantage
(during the Battle of Cannae, 6000 Equites fought against around 10 000 cavalry units
in Hannibals Army). During Scipio’s campaign in Iberia, the cavalry won against the
carthagian cavalry only if they had been deployed properly and led by a competent
leader.

Organization

The army was organized in the following way. One century consists of a group of 72
man with a depth of 10 layers. Each century had its own centurion and some additional
commanders. A maniple consisted of two century. Each of the 10 cohorts in a legion
cosisted of a maniple of Velites, Gastati, Principes and a century of Triari. Each legion
contained 10 cohorts and one ala. An ala is a unit of 300 Equites. This results in a size
of circa 5300 man.

4.2.2. Units (Carthaginian Side)

The soldiers on the carthaginian side are a mix of a great amount of different culture
groups. Due to this fact, it is rather hard to describe them in a short way. This also
poses a problem for the game because it is rather difficult to represent all culture groups
and their equipment adequate without using a great amount of time to model and
texture the respective items. For this purpose, the game will only display a selected
amount of groups in the game. The groups were chosen to be similar to the roman
ones.

The carthaginian strategy requires at least four different groups:

• Cavalry

• Line Infantry

• Lybians

• Skirmishers

The cavalry consisted of three different culture groups. The Numidians fought more
like mounted skirmishers and did not wear any armour. The other groups are the Celts
and the Iberians which both fought as melee cavalry. They carried a small round shield,
a spear and a sword.

The line infantry consisted mostly of Celts and Iberians. Most of them were not as
experienced as the lybian soldiers in the army but still carried similar equipment to the

16

4. Analysis and Definition of Requirements

roman troops. The main differences were the Falclata Espanada, a long slashing sword,
and the scutarii, an oblong shield. The Lybians will be represented similar in the game.

Multiple culture groups were part of the skirmishers. The Balearian slingers were
one group which used slings to throw stones at the enemy. The spearmen part of the
skirmishers were a mix of various racial groups like Moors or Spaniards. Additionally,
most skirmishers also carried a sword to defend themself after they had thrown their
spear. Due to the wide range of different equipment and differences in race the
equipment can not really be standardized.

4.2.3. Location

Figure 4.1.: Map of Kromayer’s Theory

Source: [Dal03, p.34]

The location of the battle is still argued about. One of the most common views is
the placement on the right bank of the Ofanto by Kromayer. The area is rather flat and
the height of the slope is just 66 centimeter per 100 meter. The placement works pretty
well according to the sources and does not provide one side with a major disadvantage
which shows that it is the most plausible theory. But it has not actually been proven
that it is the side of the battle.

It is rather difficult to exactly determine the position because the landscape changed

17

4. Analysis and Definition of Requirements

a lot in the last 2000 years. Today, the area consists of mostly fields and does not
provide any hints about the battle.

4.2.4. Course of Events

The description is taken from the book[Dal03, p.40-41].
The fight started with the usual deployment of the skirmishers. These stayed in

front of the main battle line and allowed the heavy infantry in the back to position
themselves without really being paid attention to. The battle of the skirmishers did
not really grant one side a significant advantage over the other side. Shortly after, the
skirmishers withdrew from the frontline and fell back.

The celtic and iberian heavy cavalry on the left wing started to fight versus the roman
citizen cavalry, while the Numidians had been engaging with the roman ally cavalry.
The heavy cavalry was able to to defeat the citizen cavalry and heavily exposed the
flank of the Roman Army. The Numidians were only able to pin down the roman ally
cavalry.

In the meantime, the roman heavy infantry marched forward into the carthaginian
forces. The Celts and Iberians were placed in a rather thin cresent shape which slowly
fell back to lure the Roman Army in. Hannibal placed the Lybians which were some of
his strongest and most experienced soldiers at each side of his army as a column.

When the Roman Army marched forward, the Lybians faced inwards and attacked
each side of the Roman Army. Additionally, the heavy cavalry attacked the rear end of
the Roman Army, after helping the Numidians beating the roman ally cavalry.

4.3. Visualization of Units

The Battle of Cannae featured approximately 120 000 man. It is not possible to show a
detailed version of every soldier in the game due to performance reasons. It is generally
possible to show thousands of soldiers on screen and calculate them individually as it
is shown in Total War: Rome 2, but Virtual Reality requires a higher amount of frames
per second and thus performance than games on a monitor. The higher performance
leads to reduced motion sickness.

Additionally, the actual state of the battle and the performance of single units is not
really clear if you show too many units. It is often advisable to reduce the number
of units to introduce clarity with regard to performance. Also, it is rather hard to
command circa 70 000 units if each units needs to receive its own command.

18

4. Analysis and Definition of Requirements

Figure 4.2.: Screenshot from a Documentation about Hannibal

Source: [Bed05]

Figure 4.3.: Deployment of troops at the Start of the Battle of Cannae

Source: [The]

4.3.1. Reduction to rectangles

Due to the mentioned reasons above, a reduction from a realistic amount of soldiers
was needed. One solution to this problem which is often used in documentaries is to
only show the units as rectangle in their respective colors as visible in figure 4.2 and
figure 4.3. These representations work quite well in documentaries because they allow
the director to simply show the general strategy to the viewer but they are mostly not
historically correct. The movement is simplified and the exact number of soldiers can
only be guessed by the size of the respective rectangle.

For my purposes this representation is not suitable because it represents a two
dimensional field. Due to the motion tracking of the Virtual Headset, the player is able
to just move around and watch the battle from different angles. If the battle is just

19

4. Analysis and Definition of Requirements

represented in two dimensions, this is not really possible.
Additionally, this representation does not really show the historical division into

multiple legions. This missing division makes it hard to actually control the units in
an interesting way. The Roman Army is represented with basically five unit blocks in
figure 4.3. If you want to show the tactic which Hannibal used, you need a greater
amount of units than that.

Due to these reasons, the author decided to use another representation which is
discussed in the next section.

4.3.2. Graphical Representation as figures

Another possible representation is the reduction to a set of figures like in chess. During
this reduction the army is represented by a number of figures which can can be moved
on their own and embodies a set amount of soldiers. This allows to split the army
into smaller groups like the legions in the Roman Army which increases the historic
authenticity. Also the tactic can better be shown with a greater amount of units.

A graphic style which is similar to carved wooden figures would be helpful as it
reduces the amount 3D modeling as well as removing the need for animations. In the
time frame of this thesis it is not really possible to generate enough models and their
animations.

Each unit should contain some unit specific items to show their role. Iconic items
like the gladius sword and the scutum shield should be placed at the units to achieve
two goals. One is to generate knowledge about the equipment of the units in that time
period but also to make it possible to differentiate between the various unit types in
the army. Additionally, a banner or flag would be helpful to show their association
to a respective side. Also it could be used to convey game related information like
experience.

4.4. Visualization of Terrain

The exact location of the battle can not be determined. Also, the landscape changed
during the last 2000 years so todays landscape information can not be used as an exact
replication of the location of the battle. The description of the location by the historic
sources is rather broad and does not really mention specifics. The general difference in
height on the battlefield was around 66 centimeter per 100 meter [Dal03, P.34]. This
low difference makes the height an unimportant factor in the visualization of the map.
A flat map representation of the map would be the best possible solution. It can also
generate a "general"-like feeling for the player since he commands his unit around the
battlefield.

20

4. Analysis and Definition of Requirements

4.5. Combat Model

The game needs to feature a combat model for the battle simulation part. The player
should be able to fight his own battle versus the artificial intelligence. For the fights
between units in these battles the damage on the units has to be determined. The
combat system should calculate the battles in a somewhat historically correct matter.
The replay part can feature this combat system as well but this is considered a "nice-
to-have" feature because the replay part will mostly be scripted. The focus lies on the
battle simulation part for this combat model.

The combat model should include values and calculations for various values like
existing soldiers in a unit group, morale, ranged fights and melee fights. Also, the
possibility for flanking should be given. Various stances like a defensive greek-style
phalanx would be nice but are not required for the gameplay.

4.6. Gameplay

The gameplay should feel similar to a turn based strategy game like chess. The game
uses turns and not real time for its movement advancements and fights. During the
replay part, the player should be able to step forward and backward in the simulation
of the battle.

In the battle simulation part the player should be able to give movement commands
and attack nearby enemies. Additional features like stances for units, faster movement
for a morale cost or partial retreats would be nice to have, but are not required.

4.7. User Interface

The user interface should contain information about the current player aswell as the
state of the battle. Each unit should contain information about its respective values like
morale, health or attack damage which are used by the backing combat model. The
movement paths and targets for attacks should be shown in the interface.

Due to the use of a Virtual Reality headset the use of typical two dimensional user
interface is not advisable as it is not easily controllable by the player who uses the
controllers of the HTC Vive. The typical two dimensional user interface is attached
to the screen, so a selection of elements is rather hard with controllers as they are
represented as tracked objects in the playing space.

In Virtual Reality games it is often more helpful to use diegetic user interfaces instead
[Ant]. These are user interface elements which are directly connected to the world and
the user can interact with them. An example for this is the health bar element in Dead

21

4. Analysis and Definition of Requirements

Figure 4.4.: Screenshot of the game Dead Space

Source: [Liu06]

Space in figure 4.4 which is shown at the back of the suit of the main character. The
typical separation of the bar into four segments and as shrinking when low on health
is still present, but its inclusion in the world creates a better immersion. Interactive
elements can often be represented by real world interactions e.g. if you want to leave the
current level, you open the door and try to go through it. The interaction is well-known
to the player from his real world experiences and often does not need to be taught. The
inclusion of these kind of interface elements would be advisable.

4.8. Artificial Intelligence

The battle simulation requires an artificial intelligence component. A basic requirement
for a game is the interactivity with the medium, so that the player can actually choose
an action. If the battle simulation part only has a step by step replay of the real steps of
Hannibal, then the player can easily find a tactic which cancels out the replay steps.
But if there is an artificial intelligence, which tries to react to the players actions, the
player has to actually think about the used strategy. Therefore, an artificial intelligence
is needed.

The units can move according to a set of movement rules, so the artificial intelligence

22

4. Analysis and Definition of Requirements

has to find a way to find possible movement spots. In this case, this pathfinding is easier
than normal because the player units rely on the same movement rules. Additionally,
the respective stance or other actions has to be determined.

The goal of the Serious Game is to teach the player about the used tactics in the
battle. Due to that, the artificial intelligence has to act like the ancient commanders and
use their tactics. This is a rather hard requirement because it is difficult to teach an
artificial intelligence a high level thought like "Use the cavalry on right flank to distract
the enemy cavalry there" in a real time environment like a game.

The difficulty should not be set too high. It should still be fun for the player to
play against it and the artificial intelligence should not react perfectly to the player
movements. Finding the right solution for this problem is rather interesting and should
be balanced around the players previous experience in strategy games.

A last requirement is the calculation time. Finding a perfect turn in a chess game is
possible but too expensive to actually calculate it. The solution has to be found in a
timely manner so that the player does not have to wait too long until his next turn. A
good enough solution that fits the requirements is mostly sufficient.

4.9. Virtual Reality

Augmented Reality, e.g. a setup with a HoloLens which projects 3D models of units on
various markers, was looked at but the missing haptic feedback of the three dimensional
models of the units was considered too big of a problem. Augmented Reality could
create some interesting new mechanics and experiences for games but the author
considered Virtual Reality to be superior for this Serious Game due to its value in
increasing immersion and allowing easier switches between different perspectives.

The game will use the Virtual Reality headset HTC Vive. This leads to some con-
straints for the design of the game. One constraint is the general performance and
movement of the player. If one of them feels off, most players will experience motion
sickness from the game. Another constraint is in the control of the game. The use
of the controllers as visible in 2.1 is desirable as it allows to use the whole playing
area instead of just a seated experience while using a keyboard or a gamepad. If you
want to use these controllers, you have to find new ways for user interface elements
as discussed in 4.7 and discover possibilities to convey the usual mouse and keyboard
movements into the Virtual Reality setting since this translation had been proven to be
difficult. Furthermore it should be tested how to make use of the different features the
controllers offer, e. g. the touch pad.

23

4. Analysis and Definition of Requirements

4.10. General Goals

There are some general goals which should be reached. One goal is to reach a perfor-
mance of 90 frames per second which corresponds to circa 11 milliseconds render time
per frame. This leads to the most comfortable and fewest motion sickness inducing
experience [BG].

Another goal of the game is the avoidance of any crashes. If the user tries to perform
any action, the game should not crash.

24

5. Approach

This chapter will discuss the actual implementation and design choices during the
development of the Serious Game.

5.1. Graphic Assets

Every game needs a graphical representation of most of its components. For this
purpose, various objects were modeled or modified and textured. The author decided
to go for a rather low polygon style which helps reducing the amount of time to model
the actual object as well as the reduced render load on the engine. In the end, the
amount of visible soldiers is around 350 at the maximum, so a reduction in detail is
important to just provide a clearer overview over the battle. Additionally, a rather low
polygon style fits with the intended carved wooden figures look.

5.1.1. Acknowledgements Graphic Assets

The time frame of approximately 4,5 months for developing the Serious Game reduced
the possible count of graphic assets which the author could produce due to the
accounted time which the other areas of development needed. Additionally, the skill
set of the author led to increased times for the production of said assets. Therefore, the
author decided to use some existing graphic assets. The acknowledgements for graphic
assets can be seen in table 5.1.

5.1.2. Models

The figures need a representation of the human soldier as well as horses for the cavalry.
Human bodies have been modeled many times before, so the use of an existing model
seems to be a good approach. The used model [Yia17] provides a rather good base
object, but the author decided to reduce the polygon count even further by decimating
the object in blender. This option tries to reduce the amount of faces by dissolving
triangles.

The resulting model can be seen in figure 5.1. After this step, the author decided
that a rig for body is needed. This helps to move the bones of units to a pose for their

25

5. Approach

Asset Author Reference License (if applicable)
Male Human Model Panayiotis Yianni [Yia17] CC-BY-SA 3.0
Horse Tom Higgins [Hig17]
Tileable Grass Textures Van Khanh Tran [Tra]
Tileable Water Textures Van Khanh Tran [Tra]
Wood Texture Eric Massenberg [Mas]
Banner Textures Eric Massenberg [Mas]
Parma Shield Texture Eric Massenberg [Mas]
Scutum Shield Texture Eric Massenberg [Mas]
Falcata Sword Texture Eric Massenberg [Mas]
Gladius Sword Texture Eric Massenberg [Mas]
Hasta Spear Texture Eric Massenberg [Mas]
Pilum Spear Texture Eric Massenberg [Mas]
Swordbelt Texture Eric Massenberg [Mas]
Scutarii Texture Eric Massenberg [Mas]
Verutum Spear Texture Eric Massenberg [Mas]

Table 5.1.: Acknowedgements Graphic Assets

purpose as a soldier, otherwise each pose has to be modeled in blender which increases
workload compared to a rig. Rigging is a rather time consuming work, so the author
decided to use an auto rigging service provided by Mixamo[Mix23]. The website takes
a 3D model in T-Pose and after setting some reference points for the elbows, chin,
knees, groin and wrists the rig will be calculated. This does not provide a perfect rig,
but is close enough to use in the game for the purposes of this thesis. Animations were
considered, but for the purpose of this thesis not found important enough to actually
implement them. Body armor, especially in the chest area, was another component
which was considered, but, due to the possible need to provide a different body armor
for each pose in the game, not found important enough.

The horse was taken from the Unity Asset Store [Hig17]. This horse was provided
with a rig which was helpful, because the auto rigging service only works on human
models. But the face count of the horse was too high, so the author decided to decimate
the model as well. The resulting model can be seen in figure 5.2.

5.1.3. Roman Equipment

The sources for the roman equipment provide a far better overview over the used
weapons and armor than the Carthaginian Army. This is due to the low amount of
variety in the soldier types in the Roman Army in comparison to the Carthaginian

26

5. Approach

Figure 5.1.: Screenshot of the Human Body Model

Army where every culture group has a different set of weapons and armor. Although
the game in this thesis wants to provide historic authenticity, the game will only use a
reduced set of armor and weapons. This is due to the increased amount of 3D modeling
and texturing needed for this while not providing a real benefit for showing the typical
weapons and armor. Additionally, some weapons do not vary a lot according to the
descriptions in the sources or are not clearly defined, like the shields of the Equites, so
the author decided to reuse some weapons like spears for multiple units.

The models were made by the author but do not claim to be completely historically
accurate due to the restrictions of a modern modeling environment as well as some
stylistic decisions. Another restriction is the amount of polygons which can be used
for each item. If the polygon count gets too high in the game, the performance will
suffer from the increased render load. With this restrictions in mind the author tried to
recreate the items as historically as possible with the least amount of polygons while
staying at the same stylistic approach.

After some considerations, the following list of items were modeled by the author
during the development and textured by Eric Massenberg:

27

5. Approach

Figure 5.2.: Screenshot of the Horse Model

• Pilum: A throwing spear used by the Hastati and Principes

• Hasta: A rather long stabbing spear which was used by the Triarii and the Equites

• Gladius: A rather small sword which everyone in the game carries except the
Velites

• Belt: A belt with a scabbard to carry the Gladius

• Scutum: The typical roman, rectangular, semi-cylindrical shield

• Parma: A small round shield carried by the Velites and Equites

• Montfort Helmet: A typical helmet for a soldier in the Roman Army

5.1.4. Carthaginian Equipment

The Carthagian Army used a lot of different weapons and armor types in their army.
Most culture groups had very different sets of weapons even if they served in the same
role e.g. the Balears with sling shots and the Moors with javelins. Additionally, the
clothing differed from being naked like some of the celtic warriors to various kinds
of armor. Some troops in Hannibals army also took the equipment of dead roman
soldiers and wore it. Due to this enormous variety in equipment, the author decided to

28

5. Approach

reduce this to a small subset due to the increased workload for modeling every kind of
weapon.

This also helps the player to better understand the different roles in a battle like
skirmisher or cavalry by providing a clearer identification with the respective role if
there is only one type of equipment for each role. For this purpose, the author tried to
mirror the roles and equipment to their roman counterpart.

The list of weapons and shields on the Carthagian side is as follows:

• Scutarii: An oval shield

• Espada Falcata: A slashing sword similar to Gladius

• Verutum: A short throwing spear

• Caetra: A small round shield for mobile troops

5.1.5. Triplanar Shading

The figures should be made out of wood to represent a carved wooden figure like in a
wooden chess game. For this purpose, various ways for applying a wood texture on
the figure have been analyzed.

One way to implement the wood texture would be a three dimensional texture [SM00].
Textures can be interpreted as a function which maps a two dimensional position from
the respective uv map to the position on the texture map. Instead of a mapping from
two dimensions to two dimension you can also use a mapping from three dimensions
to a three dimensional texture. This kind of texture is defined as a three dimensional
block. The three dimensional position of a point is taken and mapped to the three
dimensional texture, so that the function results in a single color value. This technique
removes the need for an UV map but also requires potentially a lot of disc space as
the space requirement is increased by the factor eight if you double the resolution.
The general idea is pretty applicable for wooden figures as they are carved out of a
wooden block. The problem was the generation of a good looking three dimensional
wood texture. Some papers [Liu+16] already discussed the implementation of such a
texture but the missing source code and the wrong graphical style led to the discard of
said paper. Experiments with the creation of a three dimensional wood texture led to
non-desirable results. Therefore, the author decided to look for another approach to
this topic.

Another approach to this problem would be the typical two dimensional texture
approach. For each unit, the wood has to be UV mapped to a wood texture. This
requires quite a lot of work although the same tileable wood texture can be used for

29

5. Approach

Figure 5.3.: Explanation Triplanar Shading

Source: [Owe]

every model. Still the uv mapping work was considered rather large and another
approach was tested.

Triplanar shading is another possible solution to this problem which removes the
need for uv mapping. Triplanar shading takes three different input diffuse maps for the
top, the side and the front. The shader then takes the world position from a fragment
to determine the uv coordinates on the respective texture and sample it. Then the
resulting color is blended based on the world normal of the object.

Listing 5.1: Triplanar Surface Shading

half2 yUV = IN.worldPos.zx / _TextureScale;
half2 xUV = IN.worldPos.zy / _TextureScale;
half2 zUV = IN.worldPos.yx / _TextureScale;

half3 yDiff = tex2D (_DiffuseMapTop, yUV);
half3 xDiff = tex2D (_DiffuseMapSide, xUV);

30

5. Approach

a) Wood Texture with Scale 1 b) Wood Texture with Scale 2

Figure 5.4.: Wood Texture with different scales

half3 zDiff = tex2D (_DiffuseMap, zUV);

half3 blendWeights = pow (abs(IN.worldNormal), _TriplanarBlendSharpness);

blendWeights = blendWeights / (blendWeights.x + blendWeights.y +
blendWeights.z);

o.Albedo = (xDiff * blendWeights.x + yDiff * blendWeights.y +
zDiff * blendWeights.z) * _Color ;

The implementation was taken from [Pal] and visible in 5.1. The surface shader in
Unity which implements the triplanar shading takes the following steps. At first, it
finds the uv coordinates for each axis. They are divided by the texture scale so that
the user can take the size of the objects into consideration. The difference in size can
be seen in 5.4. After that, the textures are sampled from the previously acquired uv
coordinates for each diffuse map.

The blend sharpness tries to increase the influence of the axis with the highest value.
This increases the sharpness. The absolute value of the world normal is taken because
it does not actually matter if you look at the positive or negative axis. They are both
sampled from the same texture e.g. the side texture is used in the x axis . Finally, the
texture is blended together based on the previously gained blend weights for each axis
and their respective color from the sampling as well as tinting color.

With the help of this shading method, the need for uv mapping is gone. This
comes at the cost of additional texture lookups in the shader which results in a small

31

5. Approach

performance penalty. Overall the saved working time on uv maps was the deciding
factor for the author to use this shading technique.

5.1.6. Example of a finished Wooden Figure

Figure 5.5.: Example of a finished wooden figure

Source: Selfmade

A example of a finished figure of a unit group can be seen in figure 5.5. After some
experiments with just a single unit on a base, the author decided to use multiple units
on the same base to represent the group structure better. It would be the best to just
add the real amount of soldiers there, but then the user could not really recognize a
single unit. Also, the equipment is way too small to be recognized as well. The number
of 4 (2 if it is a cavalry unit) was chosen to allow the player to inspect the units and
their equipment.

Each unit also has a banner at the back to show the side which it belongs to. It also
works as a health bar to show the amount of still available man in this unit. The roman
units often carried a standard during that time. It helped the unit to orientate towards

32

5. Approach

the main part of their unit group. But this standards did not require a banner like in
the game. The carthaginian soldiers did not carry standards or similar items into the
battle but the author decided to add them to the carthaginian soldiers as well so that
they can be used as an identifying feature.

Each unit carries some equipment. The visible hastati unit in figure 5.5 uses a
montfort helmet, a sword belt with a gladius sword, a scutum and multiple pila. The
user will connect these weapons with the respective soldier and learn more about their
equipment this way.

5.1.7. Terrain Rendering

The terrain is, as discussed in the section in the previous analysis chapter, not exactly
clear. The exact position can not be determined and the landscape has changed a lot in
a timespan of approximately 2000 years. Daly states that one can safely assume that
the height difference was only a mere 66 centimeter per 100 meter [Dal03, P.35] which
means that the battle took place in flat terrain. This is helpful in multiple ways. It allows
the author to use a flat map for the game which increases with the "general"-feeling
and provides the user with an outlook over his battlefield. Additionally, this allows
easier movement calculations, as the author can assume, due to the flat map, that only
the y axis matters in the rotation.

A nearby river, called the Aufidus during that time frame, is mentioned in the sources.
The water stream reduces the possible movement area and has to be visible on the map
in the game. The rest of the terrain is not further discussed but it can be assumed that
it was mostly grassland in order to provide no side with an advantage. In todays time
the place which Kromayer mentions mostly consists of fields.

One way to approach the rendering of terrain is the replicative rendering of a seamless
texture next to each other. A seamless texture is a texture which can be put together
to a grid structure without adding visible borders between the single instances of the
texture. This technique is often used in games and will be used in this thesis aswell.

But there is still the need to show other textures except grass like water for the river to
generate a interesting terrain. This blending can be done in a two dimensional picture
manipulation program like GIMP upfront, but the author decided that he wanted to
use the terrain information, e.g. here is water and here is grass, to actually influence the
movement of the units. This especially makes sense if you include more than just grass
and water, because the movement is different on sand than on grass. The general idea
is to use one map which carries the terrain information and various seamless textures
to actually create the visuals of the map.

For this first test, it was decided to use the terrain types grass, sand, water and rocks.
The blend map had to carry the information how strong the respective type at that

33

5. Approach

Figure 5.6.: Explanation Terrain Blending

Source: Selfmade

point was. The design dictates that the value of all terrain types added together should
be not bigger than one. The blending itself is just a simple linear blending, e.g. if the a
certain terrain point has a grass strength of 0.25 and a sand strength of 0.75, then the
final color is determined by adding the color from the grass texture multiplied by 0.25
and the color from the sand texture multiplied by 0.75.

Listing 5.2: Triplanar Surface Shading

void surf (Input IN, inout SurfaceOutputStandard o) {
fixed3 c = tex2D(_Blend, IN.uv_Blend);
fixed3 b2 = tex2D(_Blend2, IN.uv_Blend2);
fixed rest = 1.0;
fixed3 result = c.r * tex2D(_Water, IN.uv_Water);
rest = rest - c.r;
fixed f = clamp(min(rest, b2.r), 0.0, 1.0f);
result += f * tex2D(_Stone, IN.uv_Stone);
rest = rest - b2.r;
f = clamp(min(rest, c.b), 0.0, 1.0f);
result += f * tex2D(_Sand, IN.uv_Sand);
rest = rest - c.b;
f = clamp(min(rest, c.g), 0.0, 1.0f);

34

5. Approach

result += f * tex2D(_Grass, IN.uv_Grass);
o.Albedo = result;

}

The actual implementation is visible above in the listing 5.2. An additive shading
approach was used for the various layers. This requires an order of the various layers,
so the author ordered them by importance. This order is a result of their influence on
the unit movement. The order is as followed:

1. Water

2. Stone

3. Sand

4. Grass

Each layer is saved in one of the red, green or blue channels of the blendmap. The
alpha channel of the blend map is not easily editable, so the author decided to introduce
a second blend map. The rest is clamped to enforce the maximum of 1 of all added up
values. Any values which add up to more than 1 are ignored by just using the values
from the first layers. This results in maybe missing some information from the later
layers but somewhere information have to be lost to correct the error. Another approach
would be to normalize the blend values of all layers to one by dividing each value
through the added result of all values, but you are losing information here as well, so
the result is the same. Maybe the other approach would be better on the performance
for graphical processing unit due to its lack of using clamp which must implement a
conditional, but that has to be profiled to be determined.

This approach could be easily extended to feature more than the 4 existing layers.
During later stages of the development, the sand layer was discarded because there are
no sources which confirm the existence of sand on the battlefield. So, to not endanger
the historic authenticity, the layer was removed from the shader. For the rocks, another
approach was chosen as an implementation.

The rocks are now represented as three dimensional models on the actual map. This
helps the player with the visualization of the of the rock and the removed movement
of the units there. In blender, the author created some low polygon meshes for rocks.
These were then imported into Unity. Some experiments like creating a high polygon
variant of the same rock and then baking the normal map out of it on the low polygon
rock were tested but not found suitable because they do not match the stylistic approach
for the other models which all lack a normal map.

35

5. Approach

Figure 5.7.: Rock 3D Model

Source: Selfmade

5.2. Interaction

The use of the Vive Controllers requires that the developer changes the typical inter-
action methods and mechanics to new ones, because the old ones do not work in a
Virtual Reality environment.

For this purpose, the author developed a control schema which is visible in figure
5.8. The diagram has five different types of components.

• Purple Rhombus: Shows a decision the user has to take

• Blue Rhombus: Decision due to the state of the game

• Blue Rectangle: A process in the game

• Yellow Parallelogram: One of multiple possible options for the user

• Purple Rectangle with rounded corners: Starting point

The components are connected with edges. Each edge can have a button like the
trigger connected to it or be part of a yes/no decision or just a connector. The diagram

36

5. Approach

Figure 5.8.: Diagramm of the possible interactions in the game

Source: Selfmade

shows all possible interactions in the battle simulation part. Most of them are also
available in replay mode but the unit control is not.

37

5. Approach

The controllers are used as pointers in the virtual environment. For this purpose,
rays were attached to the front of them. With the help of these rays, the player is able
to aim at objects and interact with them. These rays are interactive, they stop at objects
which are interactable.

The general idea during the development was to introduce a two button system.
You press the trigger to go forward in the process and one of the grip buttons on the
side to go backward. The author tried to keep this principle in all interactions. Some
interactions use special buttons like the touchpad.

Another goal in the development was to reduce the typical two dimensional user
interface elements as much as possible and integrate these elements directly into the
world. Also, elements which correspond to a real world action, will be preferred. An
example for this would be the interaction to get to the main menu. The player has
to aim at the door and press the trigger button. It is a well known idea to leave the
room through a door to get to another room. The author decided to use this idea for
the game as well as it fits into the environment. The interaction is not included in the
diagram because it is already quite filled and just represents the commands for the
game loop.

5.2.1. Unit Control

One of the most interesting parts of the control schema is the control of units. The
control schema of a unit consists of the following four different phases.

• Select Unit

• Find Target Space

• Find Target Rotation

• Select Enemey

During the selection of an unit, the player has to mark the unit which he wants to
control. There are two possible approaches for this. One approach would be proximity
to the unit. When the controller is close to the unit the player presses the trigger and
the unit is selected. But this approach does not work well in this game context because
the controller is rather big compared to the units. The game can not determine which
unit should be chosen if multiple units are close to the controller. Another approach is
a selection with a ray. This method is similiar to a mouse selection which is known to
most users. The user targets the unit with the ray which is attached to the controller
and presses the trigger to confirm the selection. This works better because the user

38

5. Approach

knows the procedure from the mouse selection and the outline from the user interface
allows an easy selection.

After selecting a unit, the place where the unit should be placed has to be found. A
possible approach for this problem is to take the position of the controller in the three
dimensional space as the target position. This requires the user to be able to reach
the position in the real world where he wants to place the units. This could end in
immersion breaking movement like going into the table in the virtual environment
which is not here in the real world. That kind of behaviour should be reduced as much
as possible to increase immersion. The other approach for this problem is similiar to
mouse selection by selecting a target position through ray selection from the controller.
This allows the user to just point at the desired target position and press the trigger. If
the user chooses an invalid position a short rumble feedback is triggered to show that
the selection is invalid.

The target rotation is the second-to-last step for the unit control. Again, two ap-
proaches were explored. The first one was to use the pose of the controller. During
testing, the use of this was not intuitive and it produced in some instances undesired
behaviour when the user has to turn his hand around for 180◦. The other approach is
the selection of the rotation through the touchpad. For this purpose, the author used
the input from the touchpad as a position on the unit circle. If the user did not touch
the outer ring of the unit circle the position is projected onto the ring. The position on
the unit circle is used to determine the desired angle. Over a small time frame, the unit
then rotates to the desired rotation.

The last step is the selection of the enemy. This was handled similiar to the unit
selection in the first step. The same arguments apply which led to the ray selection.

5.2.2. Perspective changes

The use of Virtual Reality allows the use of intuitive look around mechanics from
different perspectives. It was considered interesting by the author to add the possibility
to view the battle field from the perspective of a single soldier. For this purpose, you
can follow a single unit during his movement. This is implemented by using a kind
of real world interactive user interface element. A camera is placed next to the map.
The outline highlight shows the interactivity of the camera. When the user selects
the camera, a model is attached to the controller. After that, the player can attach the
small model to a unit. The unit gets a small camera model attached to it to show the
successful selection. When the player ends his turn, the rendering camera switches to a
perspective which is positioned and scaled to match the head of the selected unit. This
allows the player to experience the battle from the persepctive of a soldier instead of
his general view.

39

5. Approach

Additionally, the player is able to select any point on the map and switch to an
observer position at that place during his turn. During the movement selection and the
observing of the environment, the positional tracking of the Vive is disabled so that the
player stays at the same position but the rotational tracking is still here to enable the
intuitive look around mechanic.

5.3. Replay

The Serious Game should contain not only a battle simulation part but also a replay
part for the ancient battle. For this purpose a replay part was added which is reachable
through the main menu.

This replay part should teach the player about the tactics which were used by the
respective commanders. In this battle, especially the strategy of Hannibal is interesting
as it shows the pincer movement by his army. The strategy can be best shown by just
showing the unit movement. The resulting fights are not that important so the author
decided to just show the movement of the units without the combat simulation of the
battle simulation part.

Figure 5.9.: Picture of the replay device

Source: Selfmade

The actual implementation is done by saving a set of seven steps for each unit. Each
step contains a position, rotation and an action. The action can be movement to a

40

5. Approach

specific position or death for dead units. This is used especially for the cavalry on the
roman side which flees from the battle. The first six steps are taken from the book
[Dal03, P.40-41]. The seventh step was added by the author to the show the end result
of the tactic and generate a better ending point for the replay of the battle.

The replay mode is controlled by pressing the respective buttons for forward and
backward on the replay device in the scene. Each step has three sub steps which are
always the same. In the first sub step the unit stand still at their respective position
and rotation for that step. After that, a path to the new position and rotation in the
next step is shown in the next sub step. In the last sub step, the unit moves to the new
position. The player can freely go forward and backward in the steps and sub steps
and watch everything as often as he wants.

5.4. User Interface

This section discusses the user interface in the game. The author the thesis use the
term user interface to describe additional elements which were added to the game
to visualize essential information to the user. The respective control components are
discussed in the section 5.2.

5.4.1. Main Menu

The main menu contains a selection of various battles. The path of Hannibal through
Italy is shown as well as two other important victories of him. If the player selects the
Battle of Cannae, he can choose between the carthaginian side, which is represented
by the white banner, the roman side, which is represented by the red banner, and the
replay mode, where he can watch the battle. The representation of one side by using
the respective banner is first shown here and shortly explained by the small text above
it.

The main menu already represents the first possibility to teach some information.
The previous battles can be all selected and contain a small summary. The inclusion
of details like this in the game world make it easier for the player to just explore the
environment and learn something in the process instead of just reading and repeating
a text. The visualization of the path helps to introduce the current state of Hannibal’s
army.

5.4.2. Generating meshes as an Information Overlay at runtime

If an unit is selected in the game, the possible movement area should be shown. The
game does not use a grid as a base because the whole map is clickable and selectable

41

5. Approach

Figure 5.10.: Screenshot from the Main Menu

Source: Selfmade

as a target for movement. This makes it rather hard to show the area in general. Due to
this restriction, the following algorithm was first tried:

1. Create a set of points in a grid like structure around the unit

2. Check for each point if he is reachable by the unit

3. Create the concave hull around the set of reachable points

4. Triangulate the concave hull

This approach has two major problems. The first one is related to performance. To
test the the algorithm, the author used a concave hull generator taken from Github
[Ali17]. This resulted in calculation time of multiple seconds even for small sets of
points and even without the triangulation of the resulting hull. The resulting wait time
was considered to big for the player.

The other problem is related to the hull being concave. The movement system was
defined in a way that made it possible that the unit movement results in a concave form.
Additionally, obstacles can lay in the way which can produce holes. A concave hull
is not clearly defined which is visible in figure 5.11. The set of points on the left and
on the right both create a concave hull based on the base set of points, but they differ
in the number of points and in the precision. Only the convex hull clearly defined
and could be used, but the geographic form of the unit movement does not have to be
convex as shown above.

42

5. Approach

a) Valid concave hull of a set of points
b) Another valid concave hull of a set

of points

Figure 5.11.: Two concave hulls of the same set of points

Due to these problems, the author decided to switch to another approach for this
problem. Now the rendering is done by the marching cubes algorithm[LC87] so the
steps now look as follows:

1. Create a set of points in a grid like structure around the unit

2. Check for each point if he is reachable by the unit

3. Create a mesh for Unity using the Marching Cubes algorithm

The Marching Cubes algorithm takes an up to three dimensional grid of density
values. The algorithm now checks the density values for each voxel created by the grid
and finds a fitting triangle for the voxel where all corners which are above a certain
threshold are inside the resulting mesh. The implementation was still too slow for real
time. So the multi threading approach which was used in the artificial intelligence was
used here aswell. Only the steps 1 and 2 in the algorithm were added as workload
for the second thread which was spawned for the unit selection because the third step
requires the editing of the mesh component in unity which is not possible from another

43

5. Approach

thread. With this solution, the player still has to wait for around 0.5 seconds, but this
was considered good enough.

The same approach is also used to show the attack range of a unit. The attack
range could be handled by scaling a circle according to the attack range but this
approach is already implemented and works, so the author decided to pay the additional
performance cost and use this.

5.4.3. Unit Information Paper

Each unit contains a variety of other values which need to be shown to the player,
so that he can make an informed choice on his movement and attack. The typical
implementation in a standard monitor environment would be attachment of two
dimensional user interface elements to the screen. This does not work well in Virtual
Reality because it is hard for our eyes to focus on something that close on the screen
[Uni17].

Figure 5.12.: Example for the unit information paper on the second controller

Source: Selfmade

Another problem is the varying eyesight of the playing user. If a great variety of
people play the game, most of them differ in eyesight. Some people can’t use their

44

5. Approach

glasses in Virtual Reality headsets due to their design. A user friendly approach would
be to vary the size of text elements to allow the user to choose a size which he is
comfortable in. But varying text size result in different sized user interface elements
which poses a problem for consistency.

The author chose to implement the following approach. Only one unit is selected at
any time. The needed information for gameplay like attack damage or health as well
as a short historic description of the unit are written on a paper which lies next to the
playing area. The paper is updated every time a new unit is selected.

In practice this posed some problems. One problem was the missing option to change
size of the paper. It would be possible to add some kind of option menu, but then the
whole sheet has to be rescaled. Another problem was that it was hard to notice that the
values actually changed. There were no visual or audio cues which allow the player to
notice the changes. Due to these problems the approach was changed slightly.

The author noticed that the second controller is mostly not used because the player
uses one controller to actually give orders. But the controllers is most of the time still
in the viewing area of the player. Due to this fact, the paper was attached to the second
controller. This allows to change the closeness to the eyes to allow for varying eyesights.
The paper is only visible for the player if the other controller has selected one unit. The
appearance and disappearance due to selection is a hint to the player to check for the
paper to see the changes on it.

5.4.4. Unit specific User Interface

Each unit also has some additional user interface elements which are attached directly
to the wooden figure on the playing field. One example for this this kind of user
element was the health bar in the banner for each unit. If the unit loses health, the
length of the banner is reduced.

This is implemented in the game by using the transparency layer of the texture.
After the author received the texture, he added a transparency gradient from full
transparency to no transparency on top of the color values of the texture. The texture
did not us the alpha channel, so no information was lost there. In the game, the material
is set to alpha cutoff. This means that the color information of a point on the texture is
discarded if the alpha value of the point is below a certain threshold which is defined
in the material. This threshold is updated at runtime if the health of the unit changes.
The code just uses the percentage of health remaining as the threshold for the alpha
cutoff.

Another example for an user interface element which is directly attached to the figure
is the chosen path. The path shows the route of the unit from his starting point to the
selected endpoint. During the rotational part of the movement target selection the path

45

5. Approach

a) Unit with full health b) Unit with half health

Figure 5.13.: Shows the difference between 100% health and 50% health

as well as the unit show the validity of the path by being tinted red or green. This is
a typical approach to show the validity and should universally be understood. After
selecting a target rotation the path stays in place until the actual movement happens.

The path has additional functionality. During the movement calculation the move-
ment cost from the terrain is determined at a maximum of eight points on the route.
This restriction of eight points is due to Unity not allowing more keys on a gradient.
Then the path is tinted according to the movement cost, so areas like water, where
movement is slower, are colored red while grass is colored green. This gradient is
automatically created at runtime for every path. The tinting of the path in various color
helps to transfer the knowledge about the terrain to the player.

5.4.5. Outline

Some elements in the world are interactable but it is not always clear which elements are.
To make it easier for the player to distinguish between interactable and non-interactable
objects, an outline for objects was introduced.

The author used an implementation from github [Sto]. Another implementation
from the Unity Asset Store was not compatible with the lab renderer from Valve. The
implementation uses a standard solution for this problem. The model is cloned into
another game object. Then the shader moves the vertices along a perpendicular axis
to an edge and shades these vertices behind the actual game object. An example for
this shader is visible in figure 5.15. The author chose this blue color as a signal for
interactable objects.

46

5. Approach

Figure 5.14.: Colorcoded path depending on the movement cost

Source: Selfmade

5.5. Gameplay

The gameplay is an interesting part in a Serious Game because the developer has to
balance the gameplay components with the information density and authenticity. Thus,
achieving a good balance in this respect can be rather hard.

5.5.1. Movement Calculation

Movement is a rather interesting part in the game environment. It should contain
enough depth to make meaningful choices, but also be simple enough to be understood
by every player. This game focuses on Ancient Battles, so the author decided to focus
on a rather complicated movement system which better represents the movement in
ancient battles.

The movement in said battles is rather hard to reproduce due to some missing
information. But also finding a computational representation presented itself as a rather
hard topic. The soldiers in a legion had to march lock-step which posed some problems
for the unexperienced troops. Due to their movement as a group it is rather hard to
turn towards one side. They need quite a lot of space for this purpose.

Straight movement from point a to point b with the inclusion of a rotation does not
produce good looking results and does not represent a marching legion. Additionally,
customizable restrictions are rather hard to implement. The restrictions need to be
customizable to fit for different unit types, e. g. Velites are more mobile than Triarii.

47

5. Approach

Figure 5.15.: Example for an unit with an outline

Source: Selfmade

B(t) = (1 − t)3 ∗ P0 + 3 ∗ (1 − t)2 ∗ t ∗ P1 + 3 ∗ (1 − t) ∗ t2 ∗ P2 + t3 ∗ P3 (5.1)

Bezier curves are parametric curves which produce better looking results. For the
purpose of this thesis, the author will use quadratic Bezier curves. They are defined
by the equation 5.1. Cubic Bezier curve represent a form of interpolation with four
different points. An example for a cubic Bezier curve can be seen in figure 5.16.

The starting point P0, the intermediate points P1 and P2 and the end point P3 are
defined in the beginning. As it is a form of interpolation, a interpolation variable
also exists and is set to 0.5 in the figure. To actually calculate the value at the point
t = 0.5, a linear interpolation for all three connecting lines between P0 - P3 is done and
called P01, P12 and P23. These new points are now connected. On these newly created
lines, another round of linear interpolation is done to create the points PA and PB. By
performing a last linear interpolation on the line between PA and PB, the actual value
of the cubic Bezier curve can be calculated.

If you use this approach on enough values for t, you can get a discrete representation
of the curve in the game. With the knowledge about Bezier curves, we can use them to
fit our needs. The starting point for each movement and the ending point are defined
by the starting position and the chosen point by the player. The point P1 is defined by
using the local forward vector of the initial rotation and scaling with the result of the

48

5. Approach

Figure 5.16.: Cubic Bezier Curve

Source: [Gro11]

division of the actual length of the path and the movement speed of the specific unit.
This division represents basically the percentage of the possibly used movementspeed
of the unit for this round and creates nicer looking curves. If the point is not scaled,
the units always take longer routes even if the only move for a really small distance.

The bezier curve is evaluated at a number of points based on a step size. This step
size is again determined by the percentage of the used movespeed in this turn. This
stepsize is then clamped into an area between 0.143 and 0.33. The lower bound is due
to the unity restrictions on they amount of keys on color gradients. The color gradient
is used in the tinting of the visual path of the unit. The upper bound is set to require a
minimum of three evaluation steps which are used for the movement calculation.

After evaluating the curve at the respective number of points based on the step size
with the previously calculated points P1 and P2, the rotation quaternions for each point
can be calculated. The start and the end rotation are determined by the starting position
and the chosen rotation of the player. The steps in between are calculated by looking
from each point to the next calculated point in the set.

Cost = ((angle/TurnRateUnit)− 0.5) ∗ 2.0 f) ∗ Distance(previousPoint, currentPoint)
(5.2)

With the points and the rotation, the actual movement restriction calculations can
take place. For this purpose, a cost variable is introduced. The algorithm now checks
every pair of consecutive points. If one of the points is not on the map or if one of
20 interpolated points between them is not on the map, the movement is not possible.
Additionally, if one of the points is too close to another unit so that they intersect, the
movement is not possible. If both checks are successful, the movement cost of the

49

5. Approach

second points scaled with the distance between the points is added as a cost. After
checking the points, the rotations are checked aswell. Each unit has a turn rate as a
unit specific value. If the rotations differ by more than the specified turn angle and
the route is longer than ten percent of the possible movespeed, the movement is not
possible. If the ratio of the angle between the two rotations and the allowed turn rate is
bigger than 0.5, a cost factor is added according to equation 5.2. At the end, the method
checks if the cost factor is smaller than the movespeed of the unit. If this is the case,
the movement is allowed, otherwise it is denied.

Earlier in the description, a collision check with other units was mentioned. For
this purpose, the author implemented a rotated rectangle collision check. The unity
built-in function could not be used because Unity restricts the use of their functions
to the main thread but the check was needed on the walkable area thread and the
artificial intelligence thread. The collision check for rotated rectangle consists of 4
steps and works due to the separating axis theorem. In the first step four axis are
determined where each is perpendicular on an edge of the rectangles. Only four are
needed because two edges always share the same axis. After that, each point of the two
rectangles is projected onto one axis. As a third step, a scalar value for each point is
calculated. In the last step, the minimum and the maximum values of both rectangles
are checked against each other to see if there is an overlap. An overlap means a collision
on this axis. If every of the four axis has no overlap, the rectangles do not collide. For
performance reasons, a simple sphere collision check was introduced as a first step
before the rectangle collision check.

5.5.2. Combat System

Creating an interesting and historical correct combat simulation is rather difficult.
Just using one attack value in every situation and one defense value is not enough.
Imagine a group of cavalry charging into a phalanx from the front. This results in
heavy casualties for the cavalry. But if the attack is instead from the back, the casualties
are heavier on the phalanx side. Due to this reason, a simple value comparison is not
enough.

The author choose to implement various factors which can modify the health damage
of the attack. The first two factors relate to differences in angle. They are visible in
figure 5.17 as the angles α and β. The angle α is calculated as the difference in the
forward vector of the attacker (green arrow of the yellow capsule) and the defender
(green arrow of the red capsule). The other angle is defined as the difference between
the forward vector of the attacker and the forward vector of the defender if he is looking
at the attacker (blue arrow of the red defender). They both use the fact that it is easy
to attack someone from behind. This will cause heavy panic and casualties on the

50

5. Approach

Figure 5.17.: Angle difference between normals

Source: Selfmade

defender side. They are split up to two factors to allow easier balancing. The values
are normalized to the range 0.0 to 1.0 by dividing them by 180 which is the greatest
possible angle and then clamped to 0.1 to 1.0 and scaled for balance purposes.

The distance is important for combats. For ranged weapons the distance is important
because people can only throw for a certain distance and it is harder to hit an enemy
which is further away from you. For melee range combat the distance is also important.
Not only do weapon lengths differ greatly, e.g. spear versus sword combat, but it is
also possible for more people to fight, if you are closer together in this game. This is a
reduction from reality where you are limited by the length of your legion but in the
game a fight takes place for a longer amount of time. If the troops are closer together,
the fight starts earlier and more people will hit an enemy before the fight is over. After
this considerations, a distance modifier curve was chosen which reduces the modifier if
you reach 75% of the combat distance from 1 to about 0.5 ab 100% distance. The curve
is visible in figure 5.18.

The health modifier is used to scale the damage accordingly to your health. Troops
which have suffered casualties lack the soldiers to fight and their morales is not as good
as the one of fresh troops. A direct linear curve was chosen for these.

The armor value of the defender reduces the damage which he takes. The armor
value is between 0.0 - 1.0 and represents a reduction by the specified value, e.g. an
armor value of 0.1 reduces the incoming damage for the defender by 10%.

The combat system is extremely punishing for the defender. The person who is

51

5. Approach

Figure 5.18.: Distance modifier compared to percentage distance to the enemy

Source: Selfmade

allowed to take the first turn is favored by the fact that he can attack first and the
defender has to suffer the casualties from these attacks before attack back. To counteract
this problem, the combat system actually fights two rounds each time. The first round
is the specified unit versus the defender and the second round the roles are switched.
This allows to better balance the game aspect and represents the reality better because
the defender was also inflicting casualties on the attacker.

5.6. Artificial Intelligence

For the battle simulation part, an artificial intelligence is needed to move the units
around. It should react to the player movement and use the same strategy as Hannibal
in the battle.

5.6.1. General Idea

The author chose an simple and straightforward implementation. The idea of an utility
based artificial intelligence is the rating of a finite set of existing possibilities based on

52

5. Approach

their usefulness[Vid]. This approach can be easily used in the game. A set of points
is chosen around the unit, comparable to the set which is used for the walkable area.
For each point in this set, the unit first tries to calculate if it can go there and saves
all possible rotations. After that, a huge list with possible positions and rotations
is available. Each pair is rated based on some factors and in the end the artificial
intelligence chooses the best option or one of the better options based on their utility.

There are three factors which the artificial intelligence takes into consideration. The
first one is the distance to all enemies. The utility functions uses the inverse, so it tries
to minimize the distance. This is useful, because the artificial intelligence stays in range
of the player, so that he is engaged with the game and his turns do not feel meaningless.
Also, it allows to attack other units more easily.

The second factor is the possibility for a fight. The artificial intelligence simulates
each possible fight and rates them based on the inflicted health damage to the defender.
This results in an artificial intelligence which actively tries to look for fights and uses
the best possible position for a fight.

The last factor is a result of the requirement that the artificial intelligence should
react like the respective commander. For the replay part of the game, a set of 7 steps
for each unit was introduced. The artificial intelligence will try to match the steps
because it gets an increased utility for closeness to these steps. The state of the artificial
intelligence carries a counter with the current goal step which is increased if the error
which is represented by the difference of each unit to the respective goal step is below a
certain threshold. This goal step allows the artificial intelligence to take more than one
turn for each step if it can not reach the required goals. The distance penalty for the
utility for each step is rather high, so the artificial intelligence should favor the historic
positions in the battle.

During the playtime, the game required a visual cue to show that the Artificial
Intelligence is still calculating. For this purpose two rotating gears were introduced at
the other side of the table at the position of the alleged other player.

5.6.2. Multithreading the Artificial Intelligence

The movement calculations are rather time consuming, so multithreading was needed
to allow the game to go on during the calculations. Unity allows the use of coroutines
but these do not actually run on other threads they just don’t block. Additionally, Unity
does not allow any Application Programming Interface calls from a function which does
run on a non-mainthread. Due to this, most components which were needed for the
calculations in the multhreading were reimplemented like the MultithreadedTransform
class. The structure due to these limitations often required to just feed the input data
into the other thread and wait for the result.

53

5. Approach

In a first approach the author used was the Task.Factory class from the C# library.
This is the recommended way according to the Microsoft Documentation [rpe17]. After
implementing this approach, a major problem occurred. In the game environment,
especially in Virtual Reality, it is essential to maintain a consistent frame rate to not
create any problems for the user. The Task approach creates tasks and distributes them
on existing threads in the thread pool. This resulted in a rather large spike in the
beginning. Additionally, the rendertime was increased because the threadpool took a
lot of the available resources. After some testing, it was decided that this was not a
possible solution to the multithreading problem.

The other way for task based parallelism in the C# library is the use of the Thread
class. This approach worked really well, but is considerably slow because only one
thread can be used to not disturb the calculations of the Unity threads. The required
time for the artificial intelligence can be controlled by reducing or increasing the
amount of checked points. The author decided that the maximum amount of time
for the artificial intelligence calculations should be 30 seconds and tried to balance
the settings around that. A higher amount of points is useful because the Artificial
Intelligence has a bigger pool of possible targets for their movement.

54

6. Evaluation

After the actual implementation, the resulting game has to be tested to evaluate it. At
first, the technical requirement of 90 frames per second will be tested and the results
will be discussed. After that, a user study is performed. At first, the goals of the
study are defined as three areas which need to be evaluated. After that, the results are
discussed.

6.1. Performance

Unity allows three different kinds of performance measurements. The first one is
through the stats window in the editor. This is not useful because the test should be
performed on a built version of the game and not in the editor. The second variant is by
attaching the unity profiler to the project. This is rather difficult because the game was
built on another PC than the PC that the build is run on. So it is not possible to attach
the profiler to the built version. The last way is to measure the time between two frames
via script and save that time. This method was used to evaluate the performance of the
game. During early tests, the author noticed partly extreme variance in the recorded
frames per second between the different methods.

The following diagrams 6.1, 6.2 and 6.3 use render time instead of frames per second.
The frames per second can be easily calculated by dividing 1 through the render time.
This results e.g. in a render time of 0,0166 milliseconds for a frame of 60 per second.
The axis are scaled differently on each diagram to make the difference more visible.
The goal was to reach 90 frames per second at all times which corresponds to a render
time of 0,011 seconds. The render time are always added up over a timespan of five
seconds (called a timestep) where the game saves the lowest and the highest render
time and also calculates the average render time.

The main menu figure 6.1 shows that the average render time is around 0,011 seconds.
But there are still some frames which take way longer to reach the actual goal, especially
visible in the timestep 2. But this render time is already not good, considering that the
main menu only consists of a few objects and only some scripts.

The replay mode which is visible in figure 6.2 shows extreme spikes where the worst
render time range up to 0.25 seconds. This corresponds to four frames per seconds
and is really low so that even some users noticed the low frames per second. These

55

6. Evaluation

Figure 6.1.: Rendertime in the Main Menu

Source: Selfmade

spikes result from the spawning of the ghost prefabs. Instantiating is comparably slow
in Unity, so an object pool would be a better solution. Another solution would be the
reuse of the first spawned object. The other problem which results in low frames per
seconds is the use of the transparency shader on the ghost prefabs. Transparency is due
to its nature complicated because it requires blending with the existing background
and against other transparent objects, so the use of approximately 100 transparent
figures with multiple transparent objects results in high render time. One of the easier
solutions would be to reduce the amount of units on the field.

In the ingame figure 6.3 the average render time is around 0,022 seconds which
corresponds to around 45 frames per second. The goal was not reached and the game is
not optimized enough. A solution would be to further optimize the existing scripts and
reduce the amount of geometry like units in the scene. The spikes in the later stages
are most likely from the artificial intelligence calculations in the background, but they
do not really influence the average render time so they were considered acceptable.

6.2. Goals

Three areas are particularly interesting for an user study on the game.
The first and most important question is the usefulness as a Serious Game. Each

Serious Game has a serious purpose which was in this case to teach the player about

56

6. Evaluation

Figure 6.2.: Rendertime in the replay mode

Source: Selfmade

the tactics in Ancient Battles. The survey has to capture the knowledge about the tactic
which was used by Hannibal after playing the game. But it also has to consider that
the player possibly already knew the tactic beforehand. The knowledge about previous
battles and unit types in the army which was put also into the game could be tested
aswell.

Another interesting area is the implementation of the user interface in the game. Due
to the shift to Virtual Reality, the user interface has to be adapted to the new needs.
User interfaces are still an area of research so the take on this topic in this Serious Game
should be evaluated. As stated in the related work session, the number of Serious
Game in Virtual Reality is rather low so there is not a lot of existing work to compare
the user interface to.

The last topic are the controls of the game with the HTC Vive controllers. These
controllers are motion tracked by the base stations and offer new possibilities for the
controls. But these new possibilities also pose some challenges which have to be solved.
The control schema of this game should be evaluated to check if it fits the game and
uses the newly offered possibilities.

57

6. Evaluation

Figure 6.3.: Rendertime ingame

Source: Selfmade

6.3. Results

The survey itself was done as a two part survey before and after the gameplay test on a
google formular. The results were added in Appendix A. The number of participants
was eight.

The first two questions try to determine the demographic background of the users.
One can clearly see that the users were mostly male and in the age range of 19-34. This
leads to an increased acceptance of new technology and knowledge about existing
technology and should be noted beforehand.

The next section’s questions asks about existing knowledge. The user rate their
existing knowledge about the Ancient Battles and especially about the Punic Wars
as low, but were able to name some important Ancient Battles like the Battle of the
Teutoburg Forest or the Battle of Gaugamela. The question was not directly related to
the Punic Wars so that the user do not look actively for exactly this information later in
the game. The design was chosen in this way to avoid that the user look for specific
facts after believing to know what will be asked later on. The last question asks about
the frequency of use of virtual reality headsets. The results are quite mixed but low
on the high end and on the low end which should provide interesting results for the
Virtual Reality related questions later on.

In the first question of the set of questions, which were posed after the gameplay

58

6. Evaluation

test, the user is tasked to rate how fun the game is. The results were rather good with
an average of 3.5 points on a 5 point scale. Due to the added serious purpose of this
game, this result can be seen rather good, but there are still possibilities to further the
improve the fun.

Almost all users said that they did not experience motion sickness except one. The
one person gave a free text answer which shows that the motion sickness from the
question was not clearly defined and the user had to define it for himself. Here the
design of the study was flawed and a definition should have been provided to the user.

The questions 3.4.1 and 3.4.2 are about the user interface in the game. The interface
has been rated fairly high where 87,5% of the user have rated it with 4 points on 5 point
scale. This interface is fairly suitable for the purpose of the game, but there are some
additional remarks which should be implemented as stated by some of the users. The
battle phase should be redesigned, so that each battle is more visible and the user can
recognize which unit took how much damage. At the moment the user waits for the
health damage modifiers to disappear and then evaluates the situation after that. But it
is not easy to redesign it without increasing the battle phase time too much, because
there are often a lot of fights during the battle phase. Another solution has to be found
for this problem. The ranged units were missing a counter for their ammunition. Also,
units which were not used yet, are not marked, so the user sometimes has to guess if
the unit was already moved or is waiting for a command. Due to the amount of units
and the restricted place, each unit is rather small, which is another remark which can
not easily be fixed without reducing the number of units.

The controls are the topic of the next two questions. The rating of the controls is
ok with an average of 3.125 points but especially the two ratings with the value two
show that there is a lot of room for improvement. The additional remarks show a lot
of the problems the user had for this questions. The rotation feels imprecise for the
user because it is not continuous. The user should not be required to actually click on
the touch pad, the unit should rotate all the time if the user touches the touchpad. The
game is missing an in place movement which is required for some turns. The user can
not command his unit to stay in place and attack from there. This should be fixed by
allowing the selection of an in place attack. Also the movement is restricted because
the user can not select places where another unit is standing during his round. This
restrictions should be removed to allow the user to use the complete tactical possibilities
of the unit movement. Another problem is the missing possibility for multiselection of
units. Due to the high number of units, it is rather exhausting for the user to give each
unit its own command. If the user was able to give the same command to multiple
units, he could move multiple units at once which helps with the exhausting round
time. Additionally, an user suggested direct button control for the replay mode instead
of the replay device.

59

6. Evaluation

Most users did prefer the Virtual Reality experience compared to the monitor expe-
rience. But this could also be explained by the excitement about the new technology
which most people did not try very often.

Most user did not watch the battle in the replay mode. During the observation, the
author noticed that the users wanted to actually give commands and be active instead
of watching the replay which is more a film-like experience. This is not surprising and
should be noted. The implementation for the complete replay was not suitable due to
this fact. An one step or two step replay in the game if the user changed something
compared to Hannibal would be better, but that option has to be explored in future
work.

The last two questions tried to show if the user learned something about the battle.
It is not known if the user knew the strategy beforehand, but due to them not being
able to name the battle in question 2.3, one can assume that they did not actually knew
the strategy beforehand. A high amount of users learned the strategy in their greatest
abstraction (surrounding the enemy). No user did provide a more in-depth explanation
why he was able to surround them. But another user provided an interesting answer
where he explained that he did not know the strategy because he lost. This shows
another flaw in the concept as the user was not guided to the replay if he lost and did
not learn the actual serious purpose of this game. Only one person was able to name
one unit with the correct historic name which was also available as a unit in the game.
Some people noted that they played as Carthago. The unit selection and the available
unit was also visible if you selected an enemy unit so this is not a valid reason to not
know these names. But the absence of these names shows that the users did not use
the unit information which was attached to the second controller. This could be related
to the fact that it was not directly required to look at these information because the
playing area provided most of the information like health bars and unit position.

During the play tests, the author noticed that the average play time was too long.
Most player do not have the endurance to play for 45 minutes in a single battle. The
author suggests a reduction in play time to around 20 minutes which seems to be a
time frame the user wants to spend on a game. This can be achieved by removing
some units, remove restrictions in the movement and allow multiselection, reducing
the artificial intelligence calculation time and reducing the amount of units.

60

7. Conclusion and Future Work

This thesis shows the analysis of existing games and the requirements for a new
Serious Game. The use of Virtual Reality is discussed and the design decisions,
especially on the user interface and the controls, are highlighted. The implementation
in Unity is explained. The evaluation showed that some goals were not reached,
especially in the serious purpose of the game and the controls of the game. The
controls needed more testing during the development, especially with other users
which did not have experience with the control scheme. Possible improvements for this
implementation were discussed in the evaluation chapter. The serious purpose, the
transfer of knowledge about the tactic in the battle was reached, but the addition of
other information was not successful. This could be related to the fact that the users
were not forced to use the information for the game and were not paying attention
to them for this reason. The author suggests that future attempts try to integrate this
information even more into the game and require the use of them. This thesis showed
that the implementation of a serious game is possible and that people can have fun
while learning about a topic. This is interesting for future projects because it shows the
potential of games for the purpose of education.

61

A. Results Study

Eight results were recorded.

A.1. Demographic questions

Question 1.1: Please state your gender:

• Male (6 = 75%)

• Female (2 = 25%)

• Other

Question 1.2: How old are you ?

• Under 12

• 13 - 18

• 19 - 24 (4 = 50 %)

• 25 - 34 (3 = 37,5%)

• 35 - 44

• 45 - 54 (1 = 12,5 %)

• 55 - 64

• Above 65

A.2. Previous Knowledge

Question 2.1: How much do you know about Ancient Battles ?

• 1 - Nothing (2 = 25 %)

62

A. Results Study

• 2 (6 = 75 %)

• 3

• 4

• 5 - Almost everything

Question 2.2: How much do you know about the Punic Wars ?

• 1 - Nothing (4 = 50 %)

• 2 (3 = 37,5 %)

• 3 (1 = 12,5 %)

• 4

• 5 - Almost everything

Question 2.3: Name some important Ancient Battles (Freetext - Question)

• Schlacht im Teutoburger Wald, Termopylen

• Schlacht von Kartago

• Battle of Gaugamela (Alexander)

• Teuteburger Wald

• Schlacht im Teuteburger Wald, Belagerung von Troya

Question 2.4: Did you ever use a Virtual Reality Headset before ?

• No, I haven’t used one before (1 = 12,5%)

• Yes, only once or twice (3 = 37,5%)

• Yes, from time to time (3 = 37,5%)

• Yes, all the time (1 = 12,5%)

63

A. Results Study

A.3. After Gamplay Test Questions

Question 3.1: How fun was the game ?

• 1 - Not very fun

• 2 (1 = 12,5 %)

• 3 (3 = 37,5 %)

• 4 (3 = 37,5 %)

• 5 - A lot of fun (1 = 12,5 %)

Question 3.2: Did you experience motion sickness during the play time ?

• Yes

• No (7 = 87,5 %)

• Bin mir nicht sicher, komisch war das schon (Freetext answer) (1 = 12,5 %)

Question 3.3.1: Rate the User Interface (elements, which show additional Information
to the player but are not real components of the 3D world. An example would be the
path which shows the route of the units)!

• 1 - Badly designed

• 2

• 3 (1 = 12,5 %)

• 4 (7 = 87,5 %)

• 5 - Well designed

Question 3.3.2: Additional remarks for the user interface (Freetext question)

• Damage indicators after each other

• Please display the spear count for ranged units. Mark unused units.

• health damage not clear which unit

• alles ein bisschen klein

64

A. Results Study

Question 3.4.1: Rate the controls of the Game!

• 1 - Does not work well

• 2 (2 = 25 %)

• 3 (3 = 37,5 %)

• 4 (3 = 37,5 %)

• 5 - Works very well

Question 3.4.2: Additional remarks for the controls (Freetext question)

• Movement feels a bit imprecise

• Add button control for replay mode, continous rotation while touch the pad

• no in place movement

• no multiselection

Question 3.5: Do you prefer a Virtual Reality experience compared to the typical
monitor experience in this game context ?

• Yes (6 = 75%)

• No (2 = 25%)

Question 3.6: Did you watch the battle in the replay mode ?

• Yes (2 = 25%)

• No (6 = 75%)

Question 3.7: Please shortly describe the strategy which Hannibal used to beat the
Roman Army (Freetext question)

• He surronded them

• attack from behind with the ponys?

• Encircle them.

• he surrounded them with his cavalry

65

A. Results Study

• he encircled them with his units

• don’t know, I lost

• sorrounding, flanking with horses

• sie kamen von allen seiten

Question 3.8: Name some units in the Roman Army (Freetext question)

• I did not play the romans

• Legionär?

• Didn’t play the romans

• Hastati

• did play as carthago

• infantry, cavalry

• Kavallerie? Pilumwerfer?

• Reiter, Speerträger

66

List of Figures

2.1. Vive and its controllers, in the back base stations 4

3.1. Screenshot from the game Alexander (2004) 8
3.2. Screenshot from the game Ultimate Epic Battle Simulator 9
3.3. Screenshot from the game Total War: Rome 2 10

4.1. Map of Kromayer’s Theory . 17
4.2. Screenshot from a Documentation about Hannibal 19
4.3. Deployment of troops at the Start of the Battle of Cannae 19
4.4. Screenshot of the game Dead Space . 22

5.1. Screenshot of the Human Body Model . 27
5.2. Screenshot of the Horse Model . 28
5.3. Explanation Triplanar Shading . 30
5.4. Wood Texture with different scales . 31

a. Wood Texture with Scale 1 . 31
b. Wood Texture with Scale 2 . 31

5.5. Example of a finished wooden figure . 32
5.6. Explanation Terrain Blending . 34
5.7. Rock 3D Model . 36
5.8. Diagramm of the possible interactions in the game 37
5.9. Picture of the replay device . 40
5.10. Screenshot from the Main Menu . 42
5.11. Two concave hulls of the same set of points 43

a. Valid concave hull of a set of points 43
b. Another valid concave hull of a set of points 43

5.12. Example for the unit information paper on the second controller 44
5.13. Shows the difference between 100% health and 50% health 46

a. Unit with full health . 46
b. Unit with half health . 46

5.14. Colorcoded path depending on the movement cost 47
5.15. Example for an unit with an outline . 48
5.16. Cubic Bezier Curve . 49

67

List of Figures

5.17. Angle difference between normals . 51
5.18. Distance modifier compared to percentage distance to the enemy 52

6.1. Rendertime in the Main Menu . 56
6.2. Rendertime in the replay mode . 57
6.3. Rendertime ingame . 58

68

List of Tables

5.1. Acknowedgements Graphic Assets . 26

69

Bibliography

[Abt87] C. C. Abt. Serious games. Reprinted. Lanham [etc]: University Press of Amer-
ica, 1987. isbn: 0819161489.

[Ali17] A. Aliaga. Concave Hull Generator. 2017-10-17. url: https://github.com/
Liagson/ConcaveHullGenerator.

[Ant] Anthony Stonehouse. User interface design in video games. url: https://
www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_
interface_design_in_video_games.php (visited on 10/12/2017).

[BBC] BBC. Episode 1, Time Commanders - BBC Four. url: http://www.bbc.co.uk/
programmes/b084xym1 (visited on 10/12/2017).

[Bed05] R. Bedser. Hannibal v Rome. 2005.

[Bee] C. Beers. Alexander Review. url: https://www.gamespot.com/reviews/
alexander-review/1900-6114517/ (visited on 10/04/2017).

[Ber+15] M. Bernardes, F. Barros, M. Simoes, and M. Castelo-Branco. “A serious game
with virtual reality for travel training with Autism Spectrum Disorder.” In:
2015 International Conference on Virtual Rehabilitation (ICVR). Ed. by IEEE.
IEEE, 2015, pp. 127–128. isbn: 978-1-4799-8984-3. doi: 10.1109/ICVR.2015.
7358609.

[BG] D. Beeler and A. Gosalia. Asynchronous Timewarp on Oculus Rift. url: https:
//developer.oculus.com/blog/asynchronous- timewarp- on- oculus-
rift/ (visited on 10/12/2017).

[Bria] Brilliant Game Studios. Brilliant Game Studios - Facebook. url: https://de-
de.facebook.com/BrilliantGameStudios/ (visited on 10/04/2017).

[Brib] Brilliant Game Studios. Ultimate Epic Battle Simulator bei Steam. url: http://
store.steampowered.com/app/616560/Ultimate_Epic_Battle_Simulator/
(visited on 10/04/2017).

[But] S. Butts. Alexander - IGN. url: http://www.ign.com/articles/2004/12/02/
alexander (visited on 10/04/2017).

[Cre17] Creative Assembly. Creative Assembly I Welcome to Creative Assembly. 9.10.2017.
url: https://www.creative-assembly.com/ (visited on 10/12/2017).

70

https://github.com/Liagson/ConcaveHullGenerator
https://github.com/Liagson/ConcaveHullGenerator
https://www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_interface_design_in_video_games.php
https://www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_interface_design_in_video_games.php
https://www.gamasutra.com/blogs/AnthonyStonehouse/20140227/211823/User_interface_design_in_video_games.php
http://www.bbc.co.uk/programmes/b084xym1
http://www.bbc.co.uk/programmes/b084xym1
https://www.gamespot.com/reviews/alexander-review/1900-6114517/
https://www.gamespot.com/reviews/alexander-review/1900-6114517/
http://dx.doi.org/10.1109/ICVR.2015.7358609
http://dx.doi.org/10.1109/ICVR.2015.7358609
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/
https://developer.oculus.com/blog/asynchronous-timewarp-on-oculus-rift/
https://de-de.facebook.com/BrilliantGameStudios/
https://de-de.facebook.com/BrilliantGameStudios/
http://store.steampowered.com/app/616560/Ultimate_Epic_Battle_Simulator/
http://store.steampowered.com/app/616560/Ultimate_Epic_Battle_Simulator/
http://www.ign.com/articles/2004/12/02/alexander
http://www.ign.com/articles/2004/12/02/alexander
https://www.creative-assembly.com/

Bibliography

[DAJ11] D. Djaouti, J. Alvarez, and J.-P. Jessel. Classifying Serious Games: the G/P/S
model. 2011. url: http : / / www . ludoscience . com / EN / diffusion / 537 -
Classifying-Serious-Games-The-GPS-Model.html (visited on 09/26/2017).

[Dal03] G. Daly. Cannae: The experience of battle in the Second Punic War. Repr. London:
Routledge, 2003. isbn: 9780415261470.

[Edu17] EducatedGrizzlyBear. Loading Screen Ultimate Epic Battle Simulator. 6.06.2017.
url: https://i.imgur.com/hpBtAyG.jpg (visited on 10/04/2017).

[ETC] ETC-USC. CES2016_HTCVive_Pre_Winters. url: https://www.flickr.com/
photos/92587836@N04/24177102722/ (visited on 10/04/2017).

[Fri] B. Frischer. Rome Reborn. url: http://www.romereborn.org/ (visited on
10/04/2017).

[Gar90] C. Garvey. Play. Enl. ed. The Developing child. Cambridge, Mass: Harvard
University Press, 1990. isbn: 9780674673656.

[Gra] Grand View Research. Virtual Reality Market Size Worth $48.5 Billion By
2025 | CAGR: 46.7%. url: http://www.grandviewresearch.com/press-
release/global-virtual-reality-vr-market (visited on 10/04/2017).

[Gro11] T. Groleau. Approximating Cubic Bezier Curves in Flash MX. 21.06.2011. url:
http://www.timotheegroleau.com/Flash/articles/cubic_bezier_in_
flash.htm (visited on 10/19/2017).

[GSC] GSC Game World. GSC Game World. url: http://www.gsc- game.com/
(visited on 10/04/2017).

[Hig17] T. Higgins. Human Horse Model. 2017-10-17. url: https://www.assetstore.
unity3d.com/en/#!/content/16687.

[HTC] HTC. Vive | Discover Virtual Reality Beyond Imagination. url: https://www.
vive.com/de/ (visited on 10/04/2017).

[LC87] W. E. Lorensen and H. E. Cline. “Marching cubes: A high resolution 3D
surface construction algorithm.” In: ACM SIGGRAPH Computer Graphics 21.4
(1987), pp. 163–169. issn: 00978930. doi: 10.1145/37402.37422.

[Liu+16] A. J. Liu, Z. Dong, M. Hašan, and S. Marschner. “Simulating the Structure
and Texture of Solid Wood.” In: ACM Trans. Graph. 35.6 (2016), 170:1–170:11.
issn: 0730-0301. doi: 10.1145/2980179.2980255. url: http://doi.acm.org/
10.1145/2980179.2980255,%20[Titel%20anhand%20dieser%20DOI%20in%
20Citavi-Projekt%20%C3%BCbernehmen].

[Liu06] D. Liu. Dead Space. 2012-10-06. url: https://asura1234.files.wordpress.
com/2012/10/fff48669_vbattach858671.jpg (visited on 10/23/2017).

71

http://www.ludoscience.com/EN/diffusion/537-Classifying-Serious-Games-The-GPS-Model.html
http://www.ludoscience.com/EN/diffusion/537-Classifying-Serious-Games-The-GPS-Model.html
https://i.imgur.com/hpBtAyG.jpg
https://www.flickr.com/photos/92587836@N04/24177102722/
https://www.flickr.com/photos/92587836@N04/24177102722/
http://www.romereborn.org/
http://www.grandviewresearch.com/press-release/global-virtual-reality-vr-market
http://www.grandviewresearch.com/press-release/global-virtual-reality-vr-market
http://www.timotheegroleau.com/Flash/articles/cubic_bezier_in_flash.htm
http://www.timotheegroleau.com/Flash/articles/cubic_bezier_in_flash.htm
http://www.gsc-game.com/
https://www.assetstore.unity3d.com/en/#!/content/16687
https://www.assetstore.unity3d.com/en/#!/content/16687
https://www.vive.com/de/
https://www.vive.com/de/
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/2980179.2980255
http://doi.acm.org/10.1145/2980179.2980255,%20[Titel%20anhand%20dieser%20DOI%20in%20Citavi-Projekt%20%C3%BCbernehmen]
http://doi.acm.org/10.1145/2980179.2980255,%20[Titel%20anhand%20dieser%20DOI%20in%20Citavi-Projekt%20%C3%BCbernehmen]
http://doi.acm.org/10.1145/2980179.2980255,%20[Titel%20anhand%20dieser%20DOI%20in%20Citavi-Projekt%20%C3%BCbernehmen]
https://asura1234.files.wordpress.com/2012/10/fff48669_vbattach858671.jpg
https://asura1234.files.wordpress.com/2012/10/fff48669_vbattach858671.jpg

Bibliography

[M13] D. M. Test: Total War – Rome 2. 30.07.2013. url: http : / / www . ingame .
de/files/2013/08/Vorschau- Total- War- Rome- 2- 2.jpg (visited on
10/12/2017).

[mar] marketsandmarkets.com. Serious Game Market by Vertical (Education, Cor-
porate, Healthcare, Retail, Media and Advertising), Application (Training, Sales,
Human Resource, Marketing), Platform, End-User (Enterprise, Consumer), and
Region - Forecast to 2020. url: http://www.marketsandmarkets.com/Market-
Reports/serious-game-market-67640395.html (visited on 10/04/2017).

[Mas] E. Massenberg. Verschiedene Texturen für 3D Modelle.

[Met] Metacritic. Alexander. url: http://www.metacritic.com/game/pc/alexander
(visited on 10/04/2017).

[Mic] Microsoft. Microsoft Hololens. url: https://www.microsoft.com/de-de/
hololens (visited on 10/04/2017).

[Mix23] Mixamo. Auto-Rigger for 3D Models. 2017-06-23. url: https://www.mixamo.
com/auto-rigger.

[Owe] B. Owens. Use Tri-Planar Texture Mapping for Better Terrain. url: https :
//gamedevelopment.tutsplus.com/articles/use-tri-planar-texture-
mapping-for-better-terrain--gamedev-13821 (visited on 10/13/2017).

[Pal] M. Palko. Triplanar Mapping. url: http://www.martinpalko.com/triplanar-
mapping/ (visited on 10/13/2017).

[Pro] O. Prof. Dr. Bendel. Virtuelle Realität. Ed. by Springer Gabler Verlag. url:
http://wirtschaftslexikon.gabler.de/Archiv/-2045879784/virtuelle-
realitaet-v1.html (visited on 10/04/2017).

[rpe17] rpetrusha. Task-based Asynchronous Programming. 18.10.2017. url: https:
//docs.microsoft.com/en-us/dotnet/standard/parallel-programming/
task-based-asynchronous-programming (visited on 10/19/2017).

[Sam] Samsung. Samsung GALAXY Note Gear VR - Funktionen. url: http://www.
samsung.com/de/promotions/galaxynote4/feature/gearvr/ (visited on
10/04/2017).

[Sch] C. F. Schneider. Total War: Rome 2 - 117 Fraktionen, 500 Einheiten, 183 Karten-
Regionen - GameStar. url: http://www.gamestar.de/artikel/total-war-
rome-2-117-fraktionen-500-einheiten-183-karten-regionen,3010829.
html (visited on 10/04/2017).

[SEG] SEGA. This is Total War. url: https://www.totalwar.com/ (visited on
10/04/2017).

72

http://www.ingame.de/files/2013/08/Vorschau-Total-War-Rome-2-2.jpg
http://www.ingame.de/files/2013/08/Vorschau-Total-War-Rome-2-2.jpg
http://www.marketsandmarkets.com/Market-Reports/serious-game-market-67640395.html
http://www.marketsandmarkets.com/Market-Reports/serious-game-market-67640395.html
http://www.metacritic.com/game/pc/alexander
https://www.microsoft.com/de-de/hololens
https://www.microsoft.com/de-de/hololens
https://www.mixamo.com/auto-rigger
https://www.mixamo.com/auto-rigger
https://gamedevelopment.tutsplus.com/articles/use-tri-planar-texture-mapping-for-better-terrain--gamedev-13821
https://gamedevelopment.tutsplus.com/articles/use-tri-planar-texture-mapping-for-better-terrain--gamedev-13821
https://gamedevelopment.tutsplus.com/articles/use-tri-planar-texture-mapping-for-better-terrain--gamedev-13821
http://www.martinpalko.com/triplanar-mapping/
http://www.martinpalko.com/triplanar-mapping/
http://wirtschaftslexikon.gabler.de/Archiv/-2045879784/virtuelle-realitaet-v1.html
http://wirtschaftslexikon.gabler.de/Archiv/-2045879784/virtuelle-realitaet-v1.html
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-based-asynchronous-programming
http://www.samsung.com/de/promotions/galaxynote4/feature/gearvr/
http://www.samsung.com/de/promotions/galaxynote4/feature/gearvr/
http://www.gamestar.de/artikel/total-war-rome-2-117-fraktionen-500-einheiten-183-karten-regionen,3010829.html
http://www.gamestar.de/artikel/total-war-rome-2-117-fraktionen-500-einheiten-183-karten-regionen,3010829.html
http://www.gamestar.de/artikel/total-war-rome-2-117-fraktionen-500-einheiten-183-karten-regionen,3010829.html
https://www.totalwar.com/

Bibliography

[SM00] H. Schumann and W. Müller. Visualisierung. Berlin and Heidelberg: Springer,
2000. isbn: 3-540-64944-1. doi: 10.1007/978-3-642-57193-0. url: http:
//dx.doi.org/10.1007/978-3-642-57193-0.

[SR08] B. Sawyer and D. Rejeski. Executive Summary of Serious Games: Improving Pub-
lic Policy Through Game-based Learning and Simulation. 2017-11-08. url: https:
//www.wilsoncenter.org/publication/executive- summary- serious-
games-improving-public-policy-through-game-based-learning-and.

[Sto] StoneFox. thestonefox/VRTK. url: https://github.com/thestonefox/VRTK
(visited on 10/17/2017).

[stra] str8labs. Allianz Global Learning. url: https://straightlabs.com/allianz-
global-learning-2/ (visited on 10/04/2017).

[strb] str8labs. Audi Virtual Training. url: https://straightlabs.com/audi-
virtual-training/ (visited on 10/04/2017).

[The] The Department of History, United States Military Academy. Battle of Cannae,
215 BC - Initial Roman attack. url: https://commons.wikimedia.org/wiki/
File:Battle_of_Cannae,_215_BC_-_Initial_Roman_attack.png (visited
on 10/23/2017).

[Tra] V. K. Tran. Tileable Grass und Water Texture.

[Uni17] Unity. Unity - User Interfaces for VR. 2017-10-17. url: https://unity3d.
com/de/learn/tutorials/topics/virtual-reality/user-interfaces-vr
(visited on 10/17/2017).

[Vid] J. M. Vidal. “Fundamentals of Multiagent Systems.” In: (). (Visited on
10/19/2017).

[Yia17] P. Yianni. Male Human Model. 2017-10-17. url: https://opengameart.org/
content/male-human-low-poly-base-under-1000-polys.

73

http://dx.doi.org/10.1007/978-3-642-57193-0
http://dx.doi.org/10.1007/978-3-642-57193-0
http://dx.doi.org/10.1007/978-3-642-57193-0
https://www.wilsoncenter.org/publication/executive-summary-serious-games-improving-public-policy-through-game-based-learning-and
https://www.wilsoncenter.org/publication/executive-summary-serious-games-improving-public-policy-through-game-based-learning-and
https://www.wilsoncenter.org/publication/executive-summary-serious-games-improving-public-policy-through-game-based-learning-and
https://github.com/thestonefox/VRTK
https://straightlabs.com/allianz-global-learning-2/
https://straightlabs.com/allianz-global-learning-2/
https://straightlabs.com/audi-virtual-training/
https://straightlabs.com/audi-virtual-training/
https://commons.wikimedia.org/wiki/File:Battle_of_Cannae,_215_BC_-_Initial_Roman_attack.png
https://commons.wikimedia.org/wiki/File:Battle_of_Cannae,_215_BC_-_Initial_Roman_attack.png
https://unity3d.com/de/learn/tutorials/topics/virtual-reality/user-interfaces-vr
https://unity3d.com/de/learn/tutorials/topics/virtual-reality/user-interfaces-vr
https://opengameart.org/content/male-human-low-poly-base-under-1000-polys
https://opengameart.org/content/male-human-low-poly-base-under-1000-polys

	Acknowledgments
	Abstract
	Contents
	Introduction
	Goal of the Thesis
	Outline

	Terms and Definitions
	Serious Game
	Virtual Reality
	Serious Game in Virtual Reality
	Games versus Visualization

	Related Work
	Related Existing Games
	Alexander
	Ultimate Epic Battle Simulator
	Total War

	Other related Applications
	Serious Game in Virtual Reality
	Rome Reborn

	Summary

	Analysis and Definition of Requirements
	Learning Content
	Historical Battle Of Cannae
	Units (Roman Side)
	Units (Carthaginian Side)
	Location
	Course of Events

	Visualization of Units
	Reduction to rectangles
	Graphical Representation as figures

	Visualization of Terrain
	Combat Model
	Gameplay
	User Interface
	Artificial Intelligence
	Virtual Reality
	General Goals

	Approach
	Graphic Assets
	Acknowledgements Graphic Assets
	Models
	Roman Equipment
	Carthaginian Equipment
	Triplanar Shading
	Example of a finished Wooden Figure
	Terrain Rendering

	Interaction
	Unit Control
	Perspective changes

	Replay
	User Interface
	Main Menu
	Generating meshes as an Information Overlay at runtime
	Unit Information Paper
	Unit specific User Interface
	Outline

	Gameplay
	Movement Calculation
	Combat System

	Artificial Intelligence
	General Idea
	Multithreading the Artificial Intelligence

	Evaluation
	Performance
	Goals
	Results

	Conclusion and Future Work
	Results Study
	Demographic questions
	Previous Knowledge
	After Gamplay Test Questions

	List of Figures
	List of Tables
	Bibliography

