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ABSTRACT 

This paper discusses an approach to automatically generate 

edges that represent transitions between fixed, user-created 

states in a hierarchical state diagram with emphasis on 

aesthetics and clarity. For this purpose, we applied the 

graph search algorithm A* to a generated grid that uses 

distance fields as well as different weights and prioritizations 

for crossing edges and states to calculate different path 

costs. The results are very promising, and there is a need for 

further research into post-processing and the avoidance of 

unwanted edge bending. 
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INTRODUCTION 

State diagrams are widely used. They are needed to show the 

behavior of classes in response to events. Depending on what 

state a system is, it can respond differently to the same event. 

For example, the numeric keypad on your keyboard can be 

in two states, depending on whether Num Lock is active or 

not. If Num Lock is active, the keys 2, 4, 6, and 8 are handled 

as numbers. If Num Lock is inactive, these keys are handled 

as arrow keys down, left, right, and up.  

Hierarchically state diagrams introduce hierarchically nested 

states, which means that there are super-states and sub-states. 

If a system is in a sub-state, it also implicitly is in the 

corresponding super-state. The system tries to handle all 

events in the context of the sub-state but if the sub-state is 

not able to react to a certain event, it passes the event to its 

super-state, where it is handled in the super-state’s context. 

[1] 

To keep an overview of a system with many different states, 

visualization is very important. It should be legible, and the 

individual transitions should be clearly identifiable. 

Nowadays, the drawing of hierarchical state diagrams is 

often done manually in order to obtain the most pleasant and, 

for humans, the most aesthetic and readable graphs. The 

illustrators decide where to draw the states, where to group 

them if they wish, and draw the transitions to get visually 

pleasing results. For this they use aesthetic criteria, which 

will be presented later in this paper. 

Furthermore, there are computer aided graph editors like yEd 

[2] or Lucidchart [3] that allow users to easily create and 

manually arrange nodes and edges. The drawback of these 

solutions is that there are often no fully automated tools that 

automatically arrange the edges in a pleasing way so that 

they do not cross or overlap, for example. Nevertheless, they 

sometimes offer automated assistance like rearranging or 

manipulating nodes and edges to facilitate this manually. 

But there are also graph visualization tools like the open 

source software Graphviz [4] or PlantUML [5], which take 

descriptions of graphs in text language together with options 

like concrete layouts, shapes, colors, styles, fonts, and many 

more to automatically create diagrams in formats, such as 

images and SVG. On the one hand, these tools can create 

visually appealing diagrams that can take up as much space 

as they need, or the user decided. They can avoid overlapping 
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and even crossing edges. But on the other hand, the 

disadvantage of this type of software is that users do not have 

the freedom to take some decisions that could be important 

to them. An example would be to move the nodes to where 

they want them to be. Even more significant is the possible 

transformation of the whole diagram when a new node is 

added. This can lead to a loss of orientation in the diagram if 

nodes are moved to other places where they have not been 

before.  

MOTIVATION 

All existing solutions found do not offer the capabilities of a 

state diagram editor, which allows the user to decide where 

the states are to be drawn and automatically creates smart, 

fitting edges that represent the transitions between these 

states with focus on aesthetics and clarity.  

Moreover, existing solutions are often designed for planar 

graphs, and the nodes must be movable by the algorithm. If 

the formatting of the states is only done by the users, the 

algorithm should not be able to move states to get promising 

results. Since finding the perfect location of states is a mental 

and conscious process of the users, such behavior would 

probably confuse and annoy them. Consequently, we can no 

longer guarantee planarity of the diagrams, and crossing or 

overlapping edges will be unavoidable. 

For this reason, we are looking for a new approach that 

allows users to automatically generate aesthetically pleasing 

edges for their defined hierarchical states and transitions. 

REQUIREMENTS 

In this chapter we define the necessary requirements that our 

approach should meet. They can basically be divided into 

three main categories: Hierarchical state diagram, grid, and 

aesthetic criteria.  

1. Hierarchical State Diagram  

The hierarchical state diagram in our approach consists of 

states and transitions.  

States are represented as rectangle nodes with variable height 

and width. Each state can become a super-state by adding 

another nested state to it, which consequently becomes a sub-

state. Furthermore, multi-level state nesting is possible. A 

state without any sub-state is also called atomic state. 

To switch from one state to another, transitions are 

necessary. A transition consists of a start state, a target state, 

and a triggering event simply called trigger that activates the 

event and thus the transition from the start state to the target 

state. 

Transitions are represented as edges, which should be 

automatically generated by our algorithm. 

 

Figure 1. Hierarchical State Diagram with descriptions. 

2. Grid 

In our approach we use a grid structure, which is made up by 

straight vertical and horizontal lines. It is used to align the 

state nodes and transition edges of our hierarchical state 

diagram. Besides, graph search algorithms can use it for 

calculating paths from one state to another. 

In our example, the grid is visually displayed as dots 

representing the intersecting points of the grid lines. This 

grid is located on a canvas on which users can draw their 

state nodes. 

3. Aesthetic Criteria 

There are plenty of possibilities how to visualize a graph. 

Edges are often drawn as curves but can also be straight lines 

or arrows. Nodes can be either round, square, rectangular, or 

other shapes. Furthermore, color, thickness, and other 

graphical properties can be changed.   

But even if these characteristics are undeniably important for 

the legibility of state diagrams, algorithms usually just 

compute vertex positions of the nodes and curves 

representing the edges. It is the users’ decision how they 

want to visualize them. 

In our example, the state nodes are rectangular, and edges are 

visualized as several connected horizontal, vertical and 

diagonal lines.  

What is important for us is which specific criteria the 

algorithm should be able to consider in order to draw the 

edges. 

Battista et al. [6] wrote down some commonly accepted 

aesthetic criteria for graph drawing: 

• Small number of crossings, 

• Small drawing area, 
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• Small total edge length, 

• Uniform edge length, 

• Small number of edge bends, 

• Large angular resolution, 

• As symmetric as possible. 

One of the most important criteria is the small number of 

crossings. Our approach should cause as few crossings and 

overlaps as possible. They can confuse users and lead to loss 

of orientation. 

In our case, the drawing area is only restricted to the canvas 

size. Nevertheless, we want an edge to not move too far away 

from the state nodes, for example if they are grouped at one 

point of the canvas. 

The total edge length should be kept as small as possible. If 

the edge lengths become too long, the diagram could appear 

chaotic and untidy. The same happens if the edge lengths are 

too different and not uniformed. 

Another important criterion is the small number of edge 

bends. The algorithm should avoid bending the edges when 

this is not necessary. The edges should not move into dead 

ends and then move out again. 

Since we use horizontal, vertical, and diagonal edges, the 

angular resolution1 of the graph is not that important. If the 

edges do not overlap when entering or exiting a state, they 

can be differentiated well. 

The last criterion is to make the graph as symmetric as 

possible. Our approach should not be able to autonomously 

move state nodes, so this is not possible without the help of 

the users. But it could handle parallel edges as symmetric as 

possible. 

One criterion that is not mentioned in the list is that we do 

not want the edges to be too close to other state nodes to 

which they do not belong. On the one hand, it could block 

possible outgoing edges. On the other hand, it could become 

confusing if an edge wanders very close around other state 

nodes. Preferably, edges are supposed to go along the center 

between two states. 

Nonetheless, the computational complexity is mostly NP-

hard in general. So, we might never get a perfect result, 

especially if the computation should be done quickly. 

 

1 Defined as the sharpest angle between two edges coming 

from or going to a vertex. 

Beyond that, it is not possible to simultaneously optimize all 

aesthetic criteria at once. For example, you cannot always get 

the smallest total edge length if you want the number of 

crossings to be zero. 

In summary for our approach, we prioritize the following 

criteria: 

1. Edges should not come too close to state nodes to 

which they do not belong. 

2. The number of crossings and overlaps should be as 

small as possible. 

3. Edges should not use unnecessary paths (e.g. into 

and out of dead ends) and should not move too far 

from the direct path. 

4. Edge lengths should not become unnecessary long. 

APPROACH 

1. Graph Search Algorithm 

To find an optimal edge for a transition between two states, 

we use a graph search algorithm. The edge length and the 

number of crossings between edges and other edges but also 

between edges and states should be kept as small as possible 

to satisfy our aesthetic criteria. Furthermore, the algorithm 

should be rather performant. It should be able to calculate the 

edges in a few moments not hours. 

a) Breadth-first Search 

 

 

Figure 2. Breadth-first Search starting at node S and finishing 

early at node G. The depth-level (distance) is displayed in each 

node. 

 

The Breadth-first search algorithm explores equally in all 

directions. It starts at a given start point and explores all 
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neighbor points at the present depth level before moving to 

the next depth level. 

The time complexity is 𝑂(|𝑉| + |𝐸|), where |𝑉| is the 

number of vertices (grid nodes) and |𝐸| is the number of 

edges in the graph. In our approach, each grid node has at 

least three but a maximum of eight edges [7]. Since we know 

the number of grid nodes, we could introduce an additional 

data structure that knows which grid nodes have already been 

added and explored. This would reduce the space 

complexity. Furthermore, we can introduce an early exit 

approach. We do not need to know all the paths to our goal, 

so we can stop expanding as soon as we have reached the 

destination. This would result in a time and memory 

complexity of 𝑂(𝑏𝑑+1), where 𝑑 is the distance to the goal 

from the start and 𝑏 is the branching factor2 of the graph [8]. 

In our case, we cannot use this algorithm properly. Since 

breadth-first search treats each grid node in the same way, it 

will always return the same path to its goal, even if we 

introduce different costs for each grid node. Moreover, this 

algorithm does ignore the costs at all. Therefore, we cannot 

use it without further algorithms to prioritize other paths with 

fewer obstacles (e.g. other paths). 

b) Dijkstra’s Algorithm 

 

 

Figure 3. Dijkstra’s algorithm finding the shortest path 

(yellow nodes) on a grid with different movement costs 

(displayed as number on each node). Blue nodes were explored 

until the path was found. 

The Dijkstra’s algorithm, which is also often called Uniform 

Cost Search, has the benefit of assigning different costs to 

our grid nodes. Other than the Breadth-first algorithm, it 

favors lower cost paths and prioritizes grid nodes to explore 

instead of exploring all nodes equally. We can assign higher 

 

2 Defined as outdegree; the number of edges from each 

vertex. An average branching factor can also be calculated. 

costs to grid nodes which contain other paths or represent 

state nodes, for example. It returns the shortest path, if there 

are no negative costs. 

If there are no negative costs, the optimal runtime is 

𝑂(|𝑉| log(|𝑉|) + |𝐸|), where |𝑉| is the number of vertices 

(grid nodes) and |𝐸| is the number of edges in the graph [9]. 

In our case this algorithm would give satisfactory results. We 

can use different movement costs, and it guarantees the 

shortest and most cost-efficient paths. The disadvantage is 

that, like the Breadth-first search algorithm, it extends in all 

directions. 

c) Greedy Best-first Search 

Since we often have only one path to calculate to our goal, 

we can introduce a heuristic function that tells us how close 

we are to the goal. It estimates the costs from one specific 

node to the goal node (e.g. by using the Manhattan distance). 

Instead of ordering the priority queue with the actual distance 

from the start node, we order the queue by using the 

estimated distance to the goal. The closest node to the goal is 

then explored first. 

This results in a faster runtime, but the paths are no longer 

the shortest. Therefore, we cannot use this algorithm if we 

expect shortest paths and as few bends as possible. In 

addition, it again ignores the movement costs. 

 

 

Figure 4. Greedy Best-first Search does not find the shortest 

path, but it does not need to explore into every direction. 

d) A* Algorithm 

If we combine the Dijkstra’s algorithm and Greedy Best-first 

Search, we get the A* algorithm. Like Dijkstra’s algorithm 
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it is used to get the shortest path, but it also uses a heuristic 

to guide itself to the goal. 

 

For this, it uses the sum of the actual distance from the start 

and the estimated distance to the goal as priority: 

𝑓(𝑛)  =  𝑔 (𝑛) +  ℎ(𝑛)  

where n is the next node, 𝑓(𝑛) is the priority of node 𝑛, 

𝑔 (𝑛) is the actual distance (costs) from the start to node 𝑛, 

and ℎ(𝑛) is the heuristic function, thus, the estimated 

distance (costs) to the goal from node 𝑛. The priority is used 

to order the nodes so that it is more likely to find the goal 

node. [10] 

If the heuristic function does not overestimate the costs, the 

A* algorithm finds an optimal path. If ℎ(𝑛) = 0, the 

algorithm is equal to the Dijkstra’s algorithm. The larger 

ℎ(𝑛) becomes, the more this algorithm turns into Greedy 

Best-first Search. If ℎ(𝑛) is larger than the actual distance, 

the A* algorithm is not guaranteed to find the shortest path. 

[11] 

The time complexity depends on the heuristic function and 

the implementation of the open and closed lists. The better 

the expected costs, the less nodes will be explored [13]. Very 

expensive are operations that include, remove, and change 

elements in lists. If you use data structures, which can run 

these operations efficiently the runtime will be shorter. The 

optimal worst-case time complexity is 𝑂(|𝑉| ∙ log(|V|)), 

where |𝑉| is the number of vertices (grid nodes). 

The limiting factor is often memory, since the open and 

closed list contain every grid node [13]. There are different 

optimizations and related algorithms that try to solve this 

problem.  

 

For our approach, we use the A* algorithm as graph search 

algorithm. 

2. Voronoi Tessellation and Distance Fields 

According to one of the aesthetic criteria we want the edges 

to be further away from state nodes they do not belong. It 

would be desirable for the edges to run centrally between the 

nodes.  

For this purpose, we could think of Voronoi tessellation to 

calculate the central paths between all state nodes. The 

vertices of these paths could be then used as anchor points to 

connect our edges to the center paths of the graph. 

 

Figure 6. Example Voronoi diagram for rectangles. [14] 

To efficiently calculate a Voronoi diagram for rectangular 

vertices with variable sizes instead of equal sized vertices, 

Figure 5. The A* algorithm finds the optimal path like Dijkstra’s algorithm, but explores less nodes like Greedy Best-first 

Search. [12] 
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Papadopoulou and Lee wrote an algorithm that calculates 

critical areas for shorts using Voronoi diagrams [14]. 

Another related approach is using distance fields around our 

state nodes. If they are big enough, they automatically create 

a Voronoi field because the movement costs between two 

nodes is lower the more centered you are. 

 

Figure 7. Rectangular vertices with colored distance fields. 

The brighter the grid points become, the lower the movement 

costs. 

For our approach, we decided to use the distance field 

because there might be several edges using the same central 

paths. Thus, you can easily adjust the sizes of the distance 

fields to get different and hopefully better results. 

3. Movement Costs 

To meet our aesthetic criteria, we need different movement 

costs for the A* algorithm to know which grid nodes the 

algorithm should rather pass. 

First, we have different costs for diagonal movement than for 

horizontal and vertical movement. It should not be as cheap 

as taking one step horizontally or vertically. Otherwise, the 

algorithm would prefer diagonal movement. If it is too 

expensive, the algorithm would rather proceed horizontally 

or vertically. 

A good approach is using the Pythagorean theorem 

𝑎2 + 𝑏2 = 𝑐2 

𝑐 =  √𝑎2 + 𝑏2 

where 𝑐 is the cost of diagonal movement, 𝑎 is the cost of 

horizontal movement and 𝑏 is the cost of vertical movement. 

If 𝑎, 𝑏 = 1, 𝑐 =  √12 + 12 ≈ 1.414. 

There should be also costs for intersecting and overlapping 

foreign edges, costs for running through foreign states, and 

staggered costs for moving through foreign distance fields. 

4. Prioritization  

To avoid intersections and unnecessary long edge lengths, 

we need a prioritization that decides which edges should be 

calculated first. 

For this, we could either use our heuristic function to 

calculate the approximate distance or we calculate the real 

distance by using the A* algorithm without having other 

edges. While the latter will have much better results for being 

more precise, it is much more costly. The faster heuristic 

function, however, is going to ignore other states blocking 

the direct way, so the actual path could be much longer. 

The following applies to all methods: The shorter the edge 

length, the higher the priority should be. 

 

Figure 8. State nodes with shorter edge lengths to each other 

are prioritized and calculated first. This is the reason why 

there are no intersections above the large centered state node. 

5. Summary 

In summary, we have agreed on the following points for our 

approach:  

1. We use the A* algorithm to calculate the optimal paths 

for our transitions. 

2. We use distance fields to move the edges away from 

other state nodes. 

3. We use different movement costs for the diagonal 

movement than for the vertical or horizontal 

movement. There are also other costs for intersecting 

edges, crossing foreign state nodes and distance fields. 

4. We prioritize the calculation of edges with shorter 

length. 
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IMPLEMENTATION 

In this chapter we take a closer look at the implementation of 

our approach. It was done in JavaScript. 

1. Requirements 

We have a simple graph editor using a canvas where we can 

draw rectangular nodes representing our states. Every state 

has an identifier, a x- and y-position, a width, and a height. 

They are all stored in a data structure (e.g. Array). It is 

possible to draw states into other states to represent the 

hierarchical structure. Furthermore, we are able to define 

transitions from one state to another. Each transition holds an 

identifier, a start state, a target state, and the calculated path 

for the edge. They are also stored in a data structure (e.g. 

Array). 

The canvas is structured as a grid, which is made up by 

invisible straight vertical and horizontal lines. The 

intersection points of these lines are called grid points and 

displayed to the user as dots on the canvas. They are stored 

as data holders in a two-dimensional data structure (e.g. 2D-

Array) and can be referenced by their x- and y-positions. 

Each grid point knows its x- and y-position, grid point 

neighbors and the state nodes, distance fields and transition 

edges lying on it. 

The states and later also the edges are aligned to the grid. 

 

Figure 9. Image of the editor used for this implementation. 

The states are displayed as yellow rectangles with blue 

borders. The grid points are shown as grey circular dots. 

2. A* Algorithm 

There are several ways to implement the A* algorithm. It 

depends heavily on the available data structures and the 

information to be stored. The A* algorithm can be very 

memory intensive, but it can also run slowly if wrong data 

structures such as simple arrays are used. 

The A* algorithm was implemented in the following way: 

 

1. function A_Star(start, goal, heuristic)   

2.   openSet := min-heap containing start   

3.   cameFrom := an empty map   

4.    

5.   costSoFar := map (default value of Infinity) 

6.   costsSoFar[start] := 0   

7.    

8.   priority := map (default value of Infinity) 

9.   priority[start] := heuristic(start)   

10.    

11.   while openSet is not empty   

12.     // This operation needs O(1) time   

13.     current := lowest priority node in openSet 

14.     if current = goal   

15.       return constructPath(cameFrom, current) 

16.    

17.     openSet.Remove(current)   

18.     for each neighbor of current   

19.       newCosts := costsSoFar[current] +  

getCosts(current, neighbor) 

20.  

21.       if newCosts < costsSoFar[neighbor]   

22.         cameFrom[neighbor] := current   

23.         costsSoFar[neighbor] := newCosts   

24.         priority[neighbor] :=  

priority[neighbor] + heuristic(neighbor)   

25.         if neighbor not in openSet   

26.           openSet.add(neighbor)   

27.         else   

28.           openSet.update(neighbor)   

29.    

30.   return failure   

Figure 9. Pseudocode of the implemented A* algorithm. [15] 

The method A_Star expects two grid nodes (start and goal) 

and one heuristic function (heuristic). heuristic(n) estimates 

the costs from node n to goal. A_Star introduces the 

following data structures [15]: 

• openSet: A min-heap containing all discovered nodes 

that may need to be expanded. At the beginning, it only 

contains start. 

• cameFrom: A map with nodes. cameFrom[n] contains 

the preceding node on the cheapest path from start to n 

currently known. 

• costsSoFar: A map with all nodes set to Infinity except 

for start, which is set to 0. For node n, costsSoFar[n] is 

the cost of the cheapest path from start to n currently 

known. 

• priority: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) = 𝑐𝑜𝑠𝑡𝑠𝑆𝑜𝐹𝑎𝑟[𝑛] +

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑛).  priority[n] contains our current best 

guess as to how short a path from start to goal can be if 

n is part of the graph. 

While the openSet is not empty, the algorithm removes the 

node with the lowest priority and stores it as current.  
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If current is a grid point of our target state, the algorithm has 

successfully calculated a path from start to goal.  

If not, it calculates the costs (stored in newCosts) for every 

neighbor of current. The costs are calculated by adding the 

costs of going from grid point current to grid point neighbor 

and the costsSoFar[current].  

If the newCosts is lower than costsSoFar[neighbor], the path 

to the neighbor is better than the previous ones. We store 

everything and see, whether the neighbor has been in the 

openSet before. If not, we add the neighbor to the openSet. 

Otherwise, we update the neighbor’s priorty. 

If the openSet becomes empty, no path from start to goal 

could be found. 

3. Heuristic Function 

To calculate the heuristic, we basically multiply the distance 

in steps by the minimum cost for a step. 

In our approach, we cannot use the Manhattan distance [16] 

defined as 𝑓(𝑛𝑖, 𝑛𝑗) = 𝐷 ∙ (|𝑥𝑛𝑖
− 𝑥𝑛𝑗

| + |𝑦𝑛𝑖
− 𝑦𝑛𝑗

|), 

where 𝑥𝑛𝑖
is the x-position and 𝑦𝑛𝑖

is the y-position of node 𝑛𝑖 

and 𝐷 is the minimum cost for moving from node 𝑛𝑖 to an 

adjacent node 𝑛𝑗, because it is only used for square grids that 

allow four directions of movement (up, right, down, and 

left). 

Since our square grid allows eight directions of movement 

(up, up-right, right, down-right, down, down-left, left, and 

up-left), we use the Diagonal distance as heuristics function. 

To calculate the diagonal distance, we need the following 

method: 

1. function diagonalDistance(node) =   

2.     dx = abs(node.x - goal.x)   

3.     dy = abs(node.y - goal.y)   

4.     return D * (dx + dy) + (D2 - 2 * D) * min(

dx, dy) 

Figure 10. Pseudocode for calculating the diagonal distance 

from node to goal. 

It returns the number of steps we take, if diagonal movement 

is not allowed, and subtracts the steps we save by using 

diagonal movement. D is the minimum cost for vertical and 

horizontal movement. D2 is the minimum cost for diagonal 

movement. [17] 

4. Distance Fields 

The distance field with variable size s is calculated by 

moving s times around the entire state node and moving one 

step up as soon as it reaches the start grid point of the last 

round again. The start grid point of the first round is the upper 

left grid point of the upper left corner of the state node.  

Each reached distance field grid point stores |r – s| as 

individual cost, where s is the distance field size and r the 

current round starting at 0. It is used to calculate the correct 

costs for movement on the distance fields. 

5. Costs 

We implemented modifiable costs for different scenarios that 

can occur when calculating the edges. 

First, we have the cost for vertical/horizontal and the cost 

for diagonal movement. 

Second, we have the cost for crossing and overlapping 

other edges. This cost gets multiplied by the number of 

different edges a grid point shares. 

Third, we implemented the cost for movement on states to 

which the edge does not belong. 

Fourth, we have the additional cost for movement on 

distance fields, which gets added to the individual distance 

field grid point cost mentioned in the Distance Field section 

of this chapter before. The distance field of the start state is 

ignored. 

The final cost for moving from one grid node to another is 

calculated by multiplying the cost for diagonal or 

vertical/horizontal movement by the sum of the various costs 

mentioned above and 1. 

The modifiable costs can be adjusted during runtime below 

the graph editor. 

 

Figure 11. Modifiable costs below the graph editor. 

6. Prioritization 

Prioritization is done by running the A* algorithm for each 

transition to sort the transitions by actual cost. Edges of other 

transitions are ignored and intersecting costs nothing. 

After sorting the transitions from low to high cost, the edge 

drawing process is started in this order and the A* algorithm 

is run through again for each transition. 
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RESULTS AND OUTLOOK 

The results are very promising. Our approach is not only able 

to connect all states in hierarchical state diagrams, but also 

follows our four defined aesthetic criteria with the 

implementation. 

Because of our distance field, edges do not come too close 

to state nodes to which they do not belong. This can be 

altered by changing the distance field’s size or by modifying 

the additional distance field cost. 

 

Figure 12. Edges keep distance to nodes. 

The number of crossing and overlaps is kept as small as 

possible, as this involves high costs. Of course, this cannot 

be completely prevented, as this would require dislocation of 

nodes, but the cost can be adjusted as desired to prevent all 

unnecessary intersections, whether it is states or edges.  

 

Figure 13. Since there is no way above the centered blocking 

state, node a must cross the path from b to c to come to d. 

Crossing states has high cost. 

By using the A* algorithm, we can guarantee that it will find 

a shortest path if the heuristic function outputs equal or lower 

numbers than the actual cost of moving from one grid point 

to another.  

Hence, edges do not use unnecessary paths (e.g. into and 

out of dead ends) and do not move too far from the direct 

path. 

 

Figure 14. Edges do not lead in and out of dead ends. 

Furthermore, by using the A* algorithm, edge lengths 

should not become unnecessary long. 

Problems can arise, when making the grid very small. The 

more grid points are used, the more performance and 

memory is needed to compute the edges. Our algorithms are 

not really optimized for that case.  

Furthermore, we could think of other grid representations. 

The A* algorithm runs way faster with fewer possible graph 

points. Probably using Voronoi for edge “highways” where 

multiple edges can be combined to a thicker strand could be 

beneficial for computational complexity. 

Another problem is the bends that this approach creates in 

probably unwanted places (e.g. Figure 12 shows bends in the 

center of the image that a user would probably not have 

drawn manually). Squared grids encourage this behavior. 

There is not much that users can do to currently prevent this. 

They can try to change the different costs and the distance 

field size to get a better result for their graphs.  

For this purpose, post-processing algorithms (like “string 

pulling” algorithms or Lerp) could be used to straighten 

unwanted bends. Active Contour Models (“Snakes”) [18] to 

find smother contours can also be promising. 

A different approach is to use this result as a template, extract 

important points from the edges and use these points for 

more suitable algorithms for drawing edges. There, possible 

curved paths with Bezier or similar would be possible. 

a b c d 
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CONCLUSION 

The approach presented in this paper delivers useful results. 

It respects all the rules and aesthetic criteria we have 

established and quickly computes the edges during runtime. 

Further research needs to be done to avoid unwanted bends. 

Various post-processing methods could be explored to obtain 

even better edges. Even curved edges using Bezier would be 

possible. 

In terms of performance our approach delivers good results. 

Nevertheless, further optimizations should be done for 

bigger grids or other grid representations should be used. 
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