
1

Aesthetic Graph Drawing of Hierarchical State Diagrams

 Maximilian Rudolf Hotter, B.Sc.

maximilian.hotter@tum.de

Guided Research

Advisor: Daniel Dyrda, M.Sc.

Supervisor: Prof. Gudrun Klinker, Ph.D.

Chair for Computer Aided Medical

Procedures & Augmented Reality

Technical University of Munich

May, 2020

ABSTRACT

This paper discusses an approach to automatically generate

edges that represent transitions between fixed, user-created

states in a hierarchical state diagram with emphasis on

aesthetics and clarity. For this purpose, we applied the

graph search algorithm A* to a generated grid that uses

distance fields as well as different weights and prioritizations

for crossing edges and states to calculate different path

costs. The results are very promising, and there is a need for

further research into post-processing and the avoidance of

unwanted edge bending.

Keywords

aesthetic; visual; graph; graph drawing; hierarchical state

diagrams; state diagrams; A* algorithm; A star algorithm;

graph search algorithm; Voroni; distance field; edge; node;

state; grid; path; path cost; automatic; generation; unmovable

nodes

INTRODUCTION

State diagrams are widely used. They are needed to show the

behavior of classes in response to events. Depending on what

state a system is, it can respond differently to the same event.

For example, the numeric keypad on your keyboard can be

in two states, depending on whether Num Lock is active or

not. If Num Lock is active, the keys 2, 4, 6, and 8 are handled

as numbers. If Num Lock is inactive, these keys are handled

as arrow keys down, left, right, and up.

Hierarchically state diagrams introduce hierarchically nested

states, which means that there are super-states and sub-states.

If a system is in a sub-state, it also implicitly is in the

corresponding super-state. The system tries to handle all

events in the context of the sub-state but if the sub-state is

not able to react to a certain event, it passes the event to its

super-state, where it is handled in the super-state’s context.

[1]

To keep an overview of a system with many different states,

visualization is very important. It should be legible, and the

individual transitions should be clearly identifiable.

Nowadays, the drawing of hierarchical state diagrams is

often done manually in order to obtain the most pleasant and,

for humans, the most aesthetic and readable graphs. The

illustrators decide where to draw the states, where to group

them if they wish, and draw the transitions to get visually

pleasing results. For this they use aesthetic criteria, which

will be presented later in this paper.

Furthermore, there are computer aided graph editors like yEd

[2] or Lucidchart [3] that allow users to easily create and

manually arrange nodes and edges. The drawback of these

solutions is that there are often no fully automated tools that

automatically arrange the edges in a pleasing way so that

they do not cross or overlap, for example. Nevertheless, they

sometimes offer automated assistance like rearranging or

manipulating nodes and edges to facilitate this manually.

But there are also graph visualization tools like the open

source software Graphviz [4] or PlantUML [5], which take

descriptions of graphs in text language together with options

like concrete layouts, shapes, colors, styles, fonts, and many

more to automatically create diagrams in formats, such as

images and SVG. On the one hand, these tools can create

visually appealing diagrams that can take up as much space

as they need, or the user decided. They can avoid overlapping

2

and even crossing edges. But on the other hand, the

disadvantage of this type of software is that users do not have

the freedom to take some decisions that could be important

to them. An example would be to move the nodes to where

they want them to be. Even more significant is the possible

transformation of the whole diagram when a new node is

added. This can lead to a loss of orientation in the diagram if

nodes are moved to other places where they have not been

before.

MOTIVATION

All existing solutions found do not offer the capabilities of a

state diagram editor, which allows the user to decide where

the states are to be drawn and automatically creates smart,

fitting edges that represent the transitions between these

states with focus on aesthetics and clarity.

Moreover, existing solutions are often designed for planar

graphs, and the nodes must be movable by the algorithm. If

the formatting of the states is only done by the users, the

algorithm should not be able to move states to get promising

results. Since finding the perfect location of states is a mental

and conscious process of the users, such behavior would

probably confuse and annoy them. Consequently, we can no

longer guarantee planarity of the diagrams, and crossing or

overlapping edges will be unavoidable.

For this reason, we are looking for a new approach that

allows users to automatically generate aesthetically pleasing

edges for their defined hierarchical states and transitions.

REQUIREMENTS

In this chapter we define the necessary requirements that our

approach should meet. They can basically be divided into

three main categories: Hierarchical state diagram, grid, and

aesthetic criteria.

1. Hierarchical State Diagram

The hierarchical state diagram in our approach consists of

states and transitions.

States are represented as rectangle nodes with variable height

and width. Each state can become a super-state by adding

another nested state to it, which consequently becomes a sub-

state. Furthermore, multi-level state nesting is possible. A

state without any sub-state is also called atomic state.

To switch from one state to another, transitions are

necessary. A transition consists of a start state, a target state,

and a triggering event simply called trigger that activates the

event and thus the transition from the start state to the target

state.

Transitions are represented as edges, which should be

automatically generated by our algorithm.

Figure 1. Hierarchical State Diagram with descriptions.

2. Grid

In our approach we use a grid structure, which is made up by

straight vertical and horizontal lines. It is used to align the

state nodes and transition edges of our hierarchical state

diagram. Besides, graph search algorithms can use it for

calculating paths from one state to another.

In our example, the grid is visually displayed as dots

representing the intersecting points of the grid lines. This

grid is located on a canvas on which users can draw their

state nodes.

3. Aesthetic Criteria

There are plenty of possibilities how to visualize a graph.

Edges are often drawn as curves but can also be straight lines

or arrows. Nodes can be either round, square, rectangular, or

other shapes. Furthermore, color, thickness, and other

graphical properties can be changed.

But even if these characteristics are undeniably important for

the legibility of state diagrams, algorithms usually just

compute vertex positions of the nodes and curves

representing the edges. It is the users’ decision how they

want to visualize them.

In our example, the state nodes are rectangular, and edges are

visualized as several connected horizontal, vertical and

diagonal lines.

What is important for us is which specific criteria the

algorithm should be able to consider in order to draw the

edges.

Battista et al. [6] wrote down some commonly accepted

aesthetic criteria for graph drawing:

• Small number of crossings,

• Small drawing area,

3

• Small total edge length,

• Uniform edge length,

• Small number of edge bends,

• Large angular resolution,

• As symmetric as possible.

One of the most important criteria is the small number of

crossings. Our approach should cause as few crossings and

overlaps as possible. They can confuse users and lead to loss

of orientation.

In our case, the drawing area is only restricted to the canvas

size. Nevertheless, we want an edge to not move too far away

from the state nodes, for example if they are grouped at one

point of the canvas.

The total edge length should be kept as small as possible. If

the edge lengths become too long, the diagram could appear

chaotic and untidy. The same happens if the edge lengths are

too different and not uniformed.

Another important criterion is the small number of edge

bends. The algorithm should avoid bending the edges when

this is not necessary. The edges should not move into dead

ends and then move out again.

Since we use horizontal, vertical, and diagonal edges, the

angular resolution1 of the graph is not that important. If the

edges do not overlap when entering or exiting a state, they

can be differentiated well.

The last criterion is to make the graph as symmetric as

possible. Our approach should not be able to autonomously

move state nodes, so this is not possible without the help of

the users. But it could handle parallel edges as symmetric as

possible.

One criterion that is not mentioned in the list is that we do

not want the edges to be too close to other state nodes to

which they do not belong. On the one hand, it could block

possible outgoing edges. On the other hand, it could become

confusing if an edge wanders very close around other state

nodes. Preferably, edges are supposed to go along the center

between two states.

Nonetheless, the computational complexity is mostly NP-

hard in general. So, we might never get a perfect result,

especially if the computation should be done quickly.

1 Defined as the sharpest angle between two edges coming

from or going to a vertex.

Beyond that, it is not possible to simultaneously optimize all

aesthetic criteria at once. For example, you cannot always get

the smallest total edge length if you want the number of

crossings to be zero.

In summary for our approach, we prioritize the following

criteria:

1. Edges should not come too close to state nodes to

which they do not belong.

2. The number of crossings and overlaps should be as

small as possible.

3. Edges should not use unnecessary paths (e.g. into

and out of dead ends) and should not move too far

from the direct path.

4. Edge lengths should not become unnecessary long.

APPROACH

1. Graph Search Algorithm

To find an optimal edge for a transition between two states,

we use a graph search algorithm. The edge length and the

number of crossings between edges and other edges but also

between edges and states should be kept as small as possible

to satisfy our aesthetic criteria. Furthermore, the algorithm

should be rather performant. It should be able to calculate the

edges in a few moments not hours.

a) Breadth-first Search

Figure 2. Breadth-first Search starting at node S and finishing

early at node G. The depth-level (distance) is displayed in each

node.

The Breadth-first search algorithm explores equally in all

directions. It starts at a given start point and explores all

4

neighbor points at the present depth level before moving to

the next depth level.

The time complexity is 𝑂(|𝑉| + |𝐸|), where |𝑉| is the

number of vertices (grid nodes) and |𝐸| is the number of

edges in the graph. In our approach, each grid node has at

least three but a maximum of eight edges [7]. Since we know

the number of grid nodes, we could introduce an additional

data structure that knows which grid nodes have already been

added and explored. This would reduce the space

complexity. Furthermore, we can introduce an early exit

approach. We do not need to know all the paths to our goal,

so we can stop expanding as soon as we have reached the

destination. This would result in a time and memory

complexity of 𝑂(𝑏𝑑+1), where 𝑑 is the distance to the goal

from the start and 𝑏 is the branching factor2 of the graph [8].

In our case, we cannot use this algorithm properly. Since

breadth-first search treats each grid node in the same way, it

will always return the same path to its goal, even if we

introduce different costs for each grid node. Moreover, this

algorithm does ignore the costs at all. Therefore, we cannot

use it without further algorithms to prioritize other paths with

fewer obstacles (e.g. other paths).

b) Dijkstra’s Algorithm

Figure 3. Dijkstra’s algorithm finding the shortest path

(yellow nodes) on a grid with different movement costs

(displayed as number on each node). Blue nodes were explored

until the path was found.

The Dijkstra’s algorithm, which is also often called Uniform

Cost Search, has the benefit of assigning different costs to

our grid nodes. Other than the Breadth-first algorithm, it

favors lower cost paths and prioritizes grid nodes to explore

instead of exploring all nodes equally. We can assign higher

2 Defined as outdegree; the number of edges from each

vertex. An average branching factor can also be calculated.

costs to grid nodes which contain other paths or represent

state nodes, for example. It returns the shortest path, if there

are no negative costs.

If there are no negative costs, the optimal runtime is

𝑂(|𝑉| log(|𝑉|) + |𝐸|), where |𝑉| is the number of vertices

(grid nodes) and |𝐸| is the number of edges in the graph [9].

In our case this algorithm would give satisfactory results. We

can use different movement costs, and it guarantees the

shortest and most cost-efficient paths. The disadvantage is

that, like the Breadth-first search algorithm, it extends in all

directions.

c) Greedy Best-first Search

Since we often have only one path to calculate to our goal,

we can introduce a heuristic function that tells us how close

we are to the goal. It estimates the costs from one specific

node to the goal node (e.g. by using the Manhattan distance).

Instead of ordering the priority queue with the actual distance

from the start node, we order the queue by using the

estimated distance to the goal. The closest node to the goal is

then explored first.

This results in a faster runtime, but the paths are no longer

the shortest. Therefore, we cannot use this algorithm if we

expect shortest paths and as few bends as possible. In

addition, it again ignores the movement costs.

Figure 4. Greedy Best-first Search does not find the shortest

path, but it does not need to explore into every direction.

d) A* Algorithm

If we combine the Dijkstra’s algorithm and Greedy Best-first

Search, we get the A* algorithm. Like Dijkstra’s algorithm

5

it is used to get the shortest path, but it also uses a heuristic

to guide itself to the goal.

For this, it uses the sum of the actual distance from the start

and the estimated distance to the goal as priority:

𝑓(𝑛) = 𝑔 (𝑛) + ℎ(𝑛)

where n is the next node, 𝑓(𝑛) is the priority of node 𝑛,

𝑔 (𝑛) is the actual distance (costs) from the start to node 𝑛,

and ℎ(𝑛) is the heuristic function, thus, the estimated

distance (costs) to the goal from node 𝑛. The priority is used

to order the nodes so that it is more likely to find the goal

node. [10]

If the heuristic function does not overestimate the costs, the

A* algorithm finds an optimal path. If ℎ(𝑛) = 0, the

algorithm is equal to the Dijkstra’s algorithm. The larger

ℎ(𝑛) becomes, the more this algorithm turns into Greedy

Best-first Search. If ℎ(𝑛) is larger than the actual distance,

the A* algorithm is not guaranteed to find the shortest path.

[11]

The time complexity depends on the heuristic function and

the implementation of the open and closed lists. The better

the expected costs, the less nodes will be explored [13]. Very

expensive are operations that include, remove, and change

elements in lists. If you use data structures, which can run

these operations efficiently the runtime will be shorter. The

optimal worst-case time complexity is 𝑂(|𝑉| ∙ log(|V|)),

where |𝑉| is the number of vertices (grid nodes).

The limiting factor is often memory, since the open and

closed list contain every grid node [13]. There are different

optimizations and related algorithms that try to solve this

problem.

For our approach, we use the A* algorithm as graph search

algorithm.

2. Voronoi Tessellation and Distance Fields

According to one of the aesthetic criteria we want the edges

to be further away from state nodes they do not belong. It

would be desirable for the edges to run centrally between the

nodes.

For this purpose, we could think of Voronoi tessellation to

calculate the central paths between all state nodes. The

vertices of these paths could be then used as anchor points to

connect our edges to the center paths of the graph.

Figure 6. Example Voronoi diagram for rectangles. [14]

To efficiently calculate a Voronoi diagram for rectangular

vertices with variable sizes instead of equal sized vertices,

Figure 5. The A* algorithm finds the optimal path like Dijkstra’s algorithm, but explores less nodes like Greedy Best-first

Search. [12]

6

Papadopoulou and Lee wrote an algorithm that calculates

critical areas for shorts using Voronoi diagrams [14].

Another related approach is using distance fields around our

state nodes. If they are big enough, they automatically create

a Voronoi field because the movement costs between two

nodes is lower the more centered you are.

Figure 7. Rectangular vertices with colored distance fields.

The brighter the grid points become, the lower the movement

costs.

For our approach, we decided to use the distance field

because there might be several edges using the same central

paths. Thus, you can easily adjust the sizes of the distance

fields to get different and hopefully better results.

3. Movement Costs

To meet our aesthetic criteria, we need different movement

costs for the A* algorithm to know which grid nodes the

algorithm should rather pass.

First, we have different costs for diagonal movement than for

horizontal and vertical movement. It should not be as cheap

as taking one step horizontally or vertically. Otherwise, the

algorithm would prefer diagonal movement. If it is too

expensive, the algorithm would rather proceed horizontally

or vertically.

A good approach is using the Pythagorean theorem

𝑎2 + 𝑏2 = 𝑐2

𝑐 = √𝑎2 + 𝑏2

where 𝑐 is the cost of diagonal movement, 𝑎 is the cost of

horizontal movement and 𝑏 is the cost of vertical movement.

If 𝑎, 𝑏 = 1, 𝑐 = √12 + 12 ≈ 1.414.

There should be also costs for intersecting and overlapping

foreign edges, costs for running through foreign states, and

staggered costs for moving through foreign distance fields.

4. Prioritization

To avoid intersections and unnecessary long edge lengths,

we need a prioritization that decides which edges should be

calculated first.

For this, we could either use our heuristic function to

calculate the approximate distance or we calculate the real

distance by using the A* algorithm without having other

edges. While the latter will have much better results for being

more precise, it is much more costly. The faster heuristic

function, however, is going to ignore other states blocking

the direct way, so the actual path could be much longer.

The following applies to all methods: The shorter the edge

length, the higher the priority should be.

Figure 8. State nodes with shorter edge lengths to each other

are prioritized and calculated first. This is the reason why

there are no intersections above the large centered state node.

5. Summary

In summary, we have agreed on the following points for our

approach:

1. We use the A* algorithm to calculate the optimal paths

for our transitions.

2. We use distance fields to move the edges away from

other state nodes.

3. We use different movement costs for the diagonal

movement than for the vertical or horizontal

movement. There are also other costs for intersecting

edges, crossing foreign state nodes and distance fields.

4. We prioritize the calculation of edges with shorter

length.

7

IMPLEMENTATION

In this chapter we take a closer look at the implementation of

our approach. It was done in JavaScript.

1. Requirements

We have a simple graph editor using a canvas where we can

draw rectangular nodes representing our states. Every state

has an identifier, a x- and y-position, a width, and a height.

They are all stored in a data structure (e.g. Array). It is

possible to draw states into other states to represent the

hierarchical structure. Furthermore, we are able to define

transitions from one state to another. Each transition holds an

identifier, a start state, a target state, and the calculated path

for the edge. They are also stored in a data structure (e.g.

Array).

The canvas is structured as a grid, which is made up by

invisible straight vertical and horizontal lines. The

intersection points of these lines are called grid points and

displayed to the user as dots on the canvas. They are stored

as data holders in a two-dimensional data structure (e.g. 2D-

Array) and can be referenced by their x- and y-positions.

Each grid point knows its x- and y-position, grid point

neighbors and the state nodes, distance fields and transition

edges lying on it.

The states and later also the edges are aligned to the grid.

Figure 9. Image of the editor used for this implementation.

The states are displayed as yellow rectangles with blue

borders. The grid points are shown as grey circular dots.

2. A* Algorithm

There are several ways to implement the A* algorithm. It

depends heavily on the available data structures and the

information to be stored. The A* algorithm can be very

memory intensive, but it can also run slowly if wrong data

structures such as simple arrays are used.

The A* algorithm was implemented in the following way:

1. function A_Star(start, goal, heuristic)

2. openSet := min-heap containing start

3. cameFrom := an empty map

4.

5. costSoFar := map (default value of Infinity)

6. costsSoFar[start] := 0

7.

8. priority := map (default value of Infinity)

9. priority[start] := heuristic(start)

10.

11. while openSet is not empty

12. // This operation needs O(1) time

13. current := lowest priority node in openSet

14. if current = goal

15. return constructPath(cameFrom, current)

16.

17. openSet.Remove(current)

18. for each neighbor of current

19. newCosts := costsSoFar[current] +

getCosts(current, neighbor)

20.

21. if newCosts < costsSoFar[neighbor]

22. cameFrom[neighbor] := current

23. costsSoFar[neighbor] := newCosts

24. priority[neighbor] :=

priority[neighbor] + heuristic(neighbor)

25. if neighbor not in openSet

26. openSet.add(neighbor)

27. else

28. openSet.update(neighbor)

29.

30. return failure

Figure 9. Pseudocode of the implemented A* algorithm. [15]

The method A_Star expects two grid nodes (start and goal)

and one heuristic function (heuristic). heuristic(n) estimates

the costs from node n to goal. A_Star introduces the

following data structures [15]:

• openSet: A min-heap containing all discovered nodes

that may need to be expanded. At the beginning, it only

contains start.

• cameFrom: A map with nodes. cameFrom[n] contains

the preceding node on the cheapest path from start to n

currently known.

• costsSoFar: A map with all nodes set to Infinity except

for start, which is set to 0. For node n, costsSoFar[n] is

the cost of the cheapest path from start to n currently

known.

• priority: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) = 𝑐𝑜𝑠𝑡𝑠𝑆𝑜𝐹𝑎𝑟[𝑛] +

ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠(𝑛). priority[n] contains our current best

guess as to how short a path from start to goal can be if

n is part of the graph.

While the openSet is not empty, the algorithm removes the

node with the lowest priority and stores it as current.

8

If current is a grid point of our target state, the algorithm has

successfully calculated a path from start to goal.

If not, it calculates the costs (stored in newCosts) for every

neighbor of current. The costs are calculated by adding the

costs of going from grid point current to grid point neighbor

and the costsSoFar[current].

If the newCosts is lower than costsSoFar[neighbor], the path

to the neighbor is better than the previous ones. We store

everything and see, whether the neighbor has been in the

openSet before. If not, we add the neighbor to the openSet.

Otherwise, we update the neighbor’s priorty.

If the openSet becomes empty, no path from start to goal

could be found.

3. Heuristic Function

To calculate the heuristic, we basically multiply the distance

in steps by the minimum cost for a step.

In our approach, we cannot use the Manhattan distance [16]

defined as 𝑓(𝑛𝑖, 𝑛𝑗) = 𝐷 ∙ (|𝑥𝑛𝑖
− 𝑥𝑛𝑗

| + |𝑦𝑛𝑖
− 𝑦𝑛𝑗

|),

where 𝑥𝑛𝑖
is the x-position and 𝑦𝑛𝑖

is the y-position of node 𝑛𝑖

and 𝐷 is the minimum cost for moving from node 𝑛𝑖 to an

adjacent node 𝑛𝑗, because it is only used for square grids that

allow four directions of movement (up, right, down, and

left).

Since our square grid allows eight directions of movement

(up, up-right, right, down-right, down, down-left, left, and

up-left), we use the Diagonal distance as heuristics function.

To calculate the diagonal distance, we need the following

method:

1. function diagonalDistance(node) =

2. dx = abs(node.x - goal.x)

3. dy = abs(node.y - goal.y)

4. return D * (dx + dy) + (D2 - 2 * D) * min(

dx, dy)

Figure 10. Pseudocode for calculating the diagonal distance

from node to goal.

It returns the number of steps we take, if diagonal movement

is not allowed, and subtracts the steps we save by using

diagonal movement. D is the minimum cost for vertical and

horizontal movement. D2 is the minimum cost for diagonal

movement. [17]

4. Distance Fields

The distance field with variable size s is calculated by

moving s times around the entire state node and moving one

step up as soon as it reaches the start grid point of the last

round again. The start grid point of the first round is the upper

left grid point of the upper left corner of the state node.

Each reached distance field grid point stores |r – s| as

individual cost, where s is the distance field size and r the

current round starting at 0. It is used to calculate the correct

costs for movement on the distance fields.

5. Costs

We implemented modifiable costs for different scenarios that

can occur when calculating the edges.

First, we have the cost for vertical/horizontal and the cost

for diagonal movement.

Second, we have the cost for crossing and overlapping

other edges. This cost gets multiplied by the number of

different edges a grid point shares.

Third, we implemented the cost for movement on states to

which the edge does not belong.

Fourth, we have the additional cost for movement on

distance fields, which gets added to the individual distance

field grid point cost mentioned in the Distance Field section

of this chapter before. The distance field of the start state is

ignored.

The final cost for moving from one grid node to another is

calculated by multiplying the cost for diagonal or

vertical/horizontal movement by the sum of the various costs

mentioned above and 1.

The modifiable costs can be adjusted during runtime below

the graph editor.

Figure 11. Modifiable costs below the graph editor.

6. Prioritization

Prioritization is done by running the A* algorithm for each

transition to sort the transitions by actual cost. Edges of other

transitions are ignored and intersecting costs nothing.

After sorting the transitions from low to high cost, the edge

drawing process is started in this order and the A* algorithm

is run through again for each transition.

9

RESULTS AND OUTLOOK

The results are very promising. Our approach is not only able

to connect all states in hierarchical state diagrams, but also

follows our four defined aesthetic criteria with the

implementation.

Because of our distance field, edges do not come too close

to state nodes to which they do not belong. This can be

altered by changing the distance field’s size or by modifying

the additional distance field cost.

Figure 12. Edges keep distance to nodes.

The number of crossing and overlaps is kept as small as

possible, as this involves high costs. Of course, this cannot

be completely prevented, as this would require dislocation of

nodes, but the cost can be adjusted as desired to prevent all

unnecessary intersections, whether it is states or edges.

Figure 13. Since there is no way above the centered blocking

state, node a must cross the path from b to c to come to d.

Crossing states has high cost.

By using the A* algorithm, we can guarantee that it will find

a shortest path if the heuristic function outputs equal or lower

numbers than the actual cost of moving from one grid point

to another.

Hence, edges do not use unnecessary paths (e.g. into and

out of dead ends) and do not move too far from the direct

path.

Figure 14. Edges do not lead in and out of dead ends.

Furthermore, by using the A* algorithm, edge lengths

should not become unnecessary long.

Problems can arise, when making the grid very small. The

more grid points are used, the more performance and

memory is needed to compute the edges. Our algorithms are

not really optimized for that case.

Furthermore, we could think of other grid representations.

The A* algorithm runs way faster with fewer possible graph

points. Probably using Voronoi for edge “highways” where

multiple edges can be combined to a thicker strand could be

beneficial for computational complexity.

Another problem is the bends that this approach creates in

probably unwanted places (e.g. Figure 12 shows bends in the

center of the image that a user would probably not have

drawn manually). Squared grids encourage this behavior.

There is not much that users can do to currently prevent this.

They can try to change the different costs and the distance

field size to get a better result for their graphs.

For this purpose, post-processing algorithms (like “string

pulling” algorithms or Lerp) could be used to straighten

unwanted bends. Active Contour Models (“Snakes”) [18] to

find smother contours can also be promising.

A different approach is to use this result as a template, extract

important points from the edges and use these points for

more suitable algorithms for drawing edges. There, possible

curved paths with Bezier or similar would be possible.

a b c d

10

CONCLUSION

The approach presented in this paper delivers useful results.

It respects all the rules and aesthetic criteria we have

established and quickly computes the edges during runtime.

Further research needs to be done to avoid unwanted bends.

Various post-processing methods could be explored to obtain

even better edges. Even curved edges using Bezier would be

possible.

In terms of performance our approach delivers good results.

Nevertheless, further optimizations should be done for

bigger grids or other grid representations should be used.

REFERENCES

1.M. Yannakakis, Hierarchical State Machines, in

Theoretical Computer Science: Exploring New Frontiers of

Theoretical Informatics, Lecture Notes on Computer

Science 1872: Springer-Verlag, 2000, p. 15.

2.Website of the graph editor yEd.

https://www.yworks.com/products/yed (last opened April

28, 2020)

3.Website of the graph editor Lucidchart.

https://www.lucidchart.com/pages/ (last opened April 28,

2020)

4.Website of the open source software Graphviz.

https://www.graphviz.org/ (last opened April 28, 2020)

5.Website of the open source software PlantUML.

https://plantuml.com/ (last opened April 28, 2020)

6.Giuseppe di Battista, Peter Eades, Roberto Tamassia, and

Ioannis G. Tollis. Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall, 1999.

7.Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald

L.; Stein, Clifford. 22.2 Breadth-first search. Introduction

to Algorithms (2nd ed.). MIT Press and McGraw-Hill,

2001, pp. 531–539.

8.Russell, Stuart; Norvig, Peter. Artificial Intelligence: A

Modern Approach (2nd ed.). Prentice Hall, 2003, p. 81.

9.Cormen, Thomas H. Introduction to Algorithms. MIT

Press, 1990, p. 663.

10.Nilsson, Nils J. The Quest for Artificial Intelligence.

Cambridge: Cambridge University Press, 2009.

11.De Smith, Michael John; Goodchild, Michael F.;

Longley, Paul. Geospatial Analysis: A Comprehensive

Guide to Principles, Techniques and Software Tools,

Troubadour Publishing Ltd, 2007, p. 344

12.Patel, Amit. Introduction to the A* Algorithm: The A*

algorithm. Picture was captured from Web Resource.

https://www.redblobgames.com/pathfinding/a-

star/introduction.html (last opened May 1, 2020)

13.Russell, Stuart; Norvig, Peter. Artificial Intelligence: A

Modern Approach (3rd ed.). Prentice Hall, 2009, p. 103.

14.Papadopoulou, Evanthia; Lee, D. Critical Area

Computation -- A New Approach. 1999.

15.Adjusted version of the algorithm provided on Wikipedia.

A* search algorithm. Description, Pseudocode.

https://en.wikipedia.org/wiki/A*_search_algorithm (last

opened May 1, 2020)

16.Black, Paul E. "Manhattan distance". Dictionary of

Algorithms and Data Structures.

https://xlinux.nist.gov/dads/HTML/manhattanDistance.ht

ml (last opened May 1, 2020)

17.Patel, Amit. A*’s Use of the Heuristic.

https://theory.stanford.edu/~amitp/GameProgramming/He

uristics.html (last opened May 1, 2020)

18.Kass, Michael; Witkin, Andrew; Terzopoulos, Demetri.

Snakes: Active Contour Models. International Journal of

Computer Vision, 1988, pp. 321-331.

