
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Development and Implementation of a
Reusable Web-API for Online 3D

Reconstruction

Moritz Krüger

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Development and Implementation of a
Reusable Web-API for Online 3D

Reconstruction

Entwicklung und Implementierung einer
wiederverwendbaren Web-API für Online 3D

Rekonstruktion

Author: Moritz Krüger
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: Linda Rudolph, M.Sc.
Submission Date: 15.08.2021

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.08.2021 Moritz Krüger

Acknowledgments

Firstly, I would like to thank my advisor, Linda Rudolph, for her excellent support and
skilled expertise throughout this thesis. Moreover, I would like to especially thank her for the
help during the writing stage of this thesis.

I would like to extend my sincere thanks to Katharina Aichinger and Stephan Krüger for
their omnipresent helpful advice, practical suggestions, and continuous encouragement.

Lastly, I would like to express my deepest gratitude to my parents for their continuous
emotional and financial support throughout my Bachelor’s studies at TUM.

Abstract

In this thesis we propose an architecture for a reusable web service for online 3D recon-
struction. The purpose of this service is to enable developers and end-users to perform
reconstructions, compare photogrammetry software, and support the future development
of photogrammetric applications by offering all functionalities through a single reusable
web-API. The main focus point of this work is the reusability aspect of the web service
architecture. We introduce a decentralized and containerized microservice structure that
allows new components and photogrammetry software to be integrated into the system easily.
Our web service provides a platform to manage image-sets and image metadata as well as
a standardized way of starting and parameterizing reconstruction pipelines. Further, we
implement a way of using existing camera poses during the reconstruction process. The
system is evaluated from structural and functional viewpoints and it is shown that our
proposed web service presents a reusable and well maintainable approach for web-based
reconstruction and lays the structural foundations to support further development of our
service in the future.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 2
1.3. Thesis Structure . 2

2. Fundamentals 3
2.1. Photogrammetry . 3

2.1.1. Basic Photogrammetry Workflow . 3
2.1.2. Used Photogrammetry Software . 5

2.2. Microservice Architecture . 6
2.2.1. General Concept . 6
2.2.2. Benefits of a Microservice Architecture 6

2.3. Containerization . 6
2.3.1. General Concept . 8
2.3.2. Distinction to Virtual Machines . 8
2.3.3. Benefits of Containerization . 9
2.3.4. Synergies With Microservice Architectures 10

2.4. Terms & Definitions . 10
2.4.1. Client-Server Architecture . 10
2.4.2. API . 11
2.4.3. Web Server, Web-API, and Web Service 11
2.4.4. Web Service Reusability . 11

3. Related Work 13
3.1. Related Publications . 13
3.2. Existing Cloud-Based Reconstruction Services 14

4. Web Service 16
4.1. Development Challenges . 16
4.2. General Concepts . 17
4.3. Server Architecture . 17

4.3.1. Server Components . 18
4.3.2. API Structure . 18

v

Contents

4.4. Provided Functionalities . 18
4.4.1. Basic Functionalities . 21
4.4.2. Additional Functionalities . 21

4.5. Structural Design Decisions . 21
4.5.1. Using a Microservice Architecture . 22
4.5.2. Using Containerization Technology . 22
4.5.3. Provider Interface . 23
4.5.4. Provider Subdivision . 23
4.5.5. Using a Task Queue . 24

4.6. Implementation . 24
4.6.1. Design Goals . 24
4.6.2. Code Design . 25
4.6.3. Used Technologies . 25
4.6.4. Upload Process . 26
4.6.5. Task Execution . 28
4.6.6. Database Operations . 30
4.6.7. Server Configuration . 32
4.6.8. Testing . 32

4.7. Provided Pipelines . 32

5. Evaluation 35
5.1. Structural Evaluation . 35

5.1.1. Client Integration . 35
5.1.2. Web Service Reusability . 36

5.2. Functional Evaluation . 38
5.2.1. General Procedure . 38
5.2.2. Evaluation Script . 38
5.2.3. Evaluation Image-Sets . 39
5.2.4. Pipeline Functionality . 40
5.2.5. Camera Pose Integration . 40

5.3. Summary . 41

6. Discussion 43

7. Conclusion 44
7.1. Summary . 44
7.2. Future Work . 44

A. API Route Specifications 46

B. Pydantic Model 48

List of Figures 49

vi

Contents

List of Tables 50

Bibliography 51

vii

1. Introduction

1.1. Motivation

3D reconstruction is a broad term that finds its main application in the computer vision and
computer graphics field. The derivation of a 3D model from the shape and appearance of
an real-life object or scene represents the main task of 3D reconstruction. A vital research
domain in this field is photogrammetry. It includes image-based 3D reconstruction approaches
which use images from multiple viewing angles to obtain a 3D model.

Deducing spatial information to reconstruct the structure of visual features from 2-
dimensional photographs has been a demanding challenge for a prolonged period of time
and is essential to numerous applications. Besides a wide range of possible applications,
the most commonly used fields of application include object identification, robot navigation,
scene understanding, industrial control, 3D modeling and animation, and medical diagnos-
ing. Algorithms to recover the third dimension from two-dimensional images have been
thoroughly researched for several decades. [HLB19, p. 1]

In recent years the number of areas 3D models are being used in has been increasing
rapidly, leading to a strong rise in the demand for 3D content. Whether used to conserve
cultural heritage, depict real-life scenes in video games or movies, or to create models for 3D
printing or AR applications, models generated through the use of 3D reconstruction software
are omnipresent in today’s world. With it, requirements for photogrammetry software have
become more variant, depending on its field of application.

As of now, there are several photogrammetry software solutions available. Most notably:
Agisoft Metashape, AliceVision Meshroom, COLMAP, OpenDroneMap and 3DF Zephyr.
Despite the vast pool of available software, there are few fully automated reconstruction
pipelines available and many steps still need to be performed manually by the user. Compar-
ing different photogrammetry tools is a time-consuming task as local installations are required,
images need be to imported into numerous applications multiple times, and interactions with
various photogrammetry graphical user interfaces (GUIs) are necessary. Sharing, testing, and
comparing newly developed 3D reconstruction approaches represents another laborious task
since code has to be shared and built on another system. Further, there exists no standardized
way of starting reconstruction tasks. In addition, improved wireless connectivity and the
rise of cloud-based services have sparked interest in the research and development of cloud-
or web-based online 3D reconstruction services. For those reasons, the development of a
reusable web-API for online 3D reconstruction is required.

1

1. Introduction

1.2. Contributions

In this thesis, we propose a concept for an extendable web-based server for online 3D
reconstruction providing a reusable web-API. Our main contributions include:

• A reusable and RESTful API suitable for different client applications

• A web-based service capable of handling the upload and management of image-sets
and performing reconstructions easily

• An extendable and maintainable server that allows for simple integration of different
photogrammetry software

• An architecture that helps develop, share, test, compare and utilize 3D reconstruction
software

1.3. Thesis Structure

The thesis is structured as follows. To begin, we examine the fundamentals required to
understand concepts and implementations that were put to use in our application in Chapter
2. After that, we discuss related work in this field in Chapter 3 in regards to similar existing
web services and existing cloud reconstruction services related to our proposed system. In
Chapter 4 we describe our proposed web server architecture and its implementation. After
having discussed the development and implementation aspects, we evaluate our system
in Chapter 5 using a brief structural and functional evaluation assessing if the operative
and architectural properties of our web service are as expected. In Chapter 6 we critically
discuss certain aspects of our web service architecture and implementation. Finally, Chapter
7 concludes this thesis with a short summary and an outlook on future work.

2

2. Fundamentals

In this chapter, we discuss fundamentals that form the basis of our project. We start by
examining the basics of photogrammetry and introducing different photogrammetry software
that were integrated into our system before introducing the microservice architectural pattern
which was also implemented in our proposed architecture. Lastly, we explore the foundations
of containerization technology and define terms and definitions required as prerequisite
knowledge.

2.1. Photogrammetry

In order to get a rough understanding of the technologies used in this thesis, photogrammetry,
the photogrammetry workflow, as well as the used photogrammetry software have to be
introduced.

Though there is no universally accepted definition of photogrammetry, it can in essence be
described as “the science of obtaining reliable information about the properties of surfaces
and objects without physical contact with the objects, and of measuring and interpreting this
information” [Sch05, p. 3]. Other definitions may be more specific, characterizing it as the
“science of measuring in photos” [Lin09, p. 1], directly associating it with the use of image
information.

2.1.1. Basic Photogrammetry Workflow

For most applications, the basic photogrammetry workflow is divided into seven steps,
though deviations are possible. These steps will be discussed briefly in the following:

Image Acquisition Every reconstruction task starts with the acquisition of images. This
is typically done by collecting multiple photos of the object or scene from various angles
and grouping them into an image-set which will be the basis for the reconstruction process.
Furthermore, extra reference information and scale metrics should be collected and correct
exposure of the images needs to be ensured. For outdoor environments, the weather is an
important factor. Wind, rain, or other weather conditions causing objects to move or cause
vast changes in the lighting conditions can lead to poor reconstruction results and should
therefore be avoided. [Lac17] Lastly, it is recommended to have a good amount of overlap in
the images.

3

2. Fundamentals

Feature Extraction In order to find prominent elements in the images feature keypoints
need to be extracted from the images. These can later be matched to one another, as a means
of finding 2D correspondences. Popular feature descriptors are SIFT (scale-invariant feature
transform) and SURF (speeded up robust features).

Feature and Image Matching In this step common points in images and images looking
at similar areas of the scenes are identified. This is commonly done by matching feature
descriptors using different matching methods. These 2D matches provide the basis for the
reconstruction process.

(a)
(b)

(c) (d)

Figure 2.1.: (a) shows an illustration of the SfM process, finding a common point in four
images and re-projecting them into the scene to estimate the 3D location. (b)
shows an example sparse point cloud, whereas (c) shows the dense point cloud
after dense reconstruction. Finally (d) shows the corresponding untextured mesh.
Images taken from [Gep+20] and [Aga+10].

Sparse Reconstruction After getting information about 2D correspondences in the image,
the 3D locations of these points are estimated. This can be done by using SfM (structure from
motion) algorithms, yielding a sparse point cloud of the object or scene. SfM algorithms also
approximate the camera parameters, i.e. camera intrinsics and extrinsics, for every image,
besides the set of 3D points [FHP15]. Figure 2.1a illustrates the SfM process and Figure 2.1b

4

2. Fundamentals

shows an exemplary sparse point cloud.

Dense Reconstruction In the dense reconstruction step, the sparse point cloud is used to
compute depth information. This is done in the form of estimating depth and normal maps
for each image. This is then used to create a dense point cloud. Though this dense cloud may
already resemble a “solid” surface from certain angles, it is still just an aggregation of single
pixels [Sac+20]. A dense point cloud can be seen in Figure 2.1c.

Meshing At this stage, a 3D mesh can be created using the depth and normal information
of the dense point cloud. An example can be found in Figure 2.1d.

Texturing The produced mesh can be textured using different texture generation approaches.
In general, these methods use the original images and information from the previous steps,
i.e. camera intrinsics and extrinsics, as for instance proposed by Baumberg.

2.1.2. Used Photogrammetry Software

For our application, we integrated several photogrammetry software. This section aims to
give a short overview of the used technologies.

AliceVision Meshroom

Meshroom1 is a free and open-source 3D Reconstruction Software based on the AliceVision
framework [Alia]. AliceVision2 is a photogrammetric computer vision framework, which
provides 3D Reconstruction and Camera Tracking algorithms [Alib]. Meshroom supports
the execution of a basic photogrammetry pipeline via the command-line interface which is
essential for the integration into an automated pipeline.

COLMAP

COLMAP3 is an open-source, multipurpose SfM and Multi-View Stereo (MVS) pipeline. It
includes a graphical and command-line interface and offers a broad range of functionalities
for the reconstruction of organized and unorganized image-sets. [Scha] COLMAP is based
on [SF16] and [Sch+16]. COLMAP offers multiple command-line interface commands and
can therefore be integrated into an automated pipeline easily. However, it does not support
texturing. Thus, OpenMVS was partially substituted in COLMAP’s dense reconstruction
steps in order to provide textured models.

1https://alicevision.org/#meshroom
2https://alicevision.org/
3https://colmap.github.io/

5

2. Fundamentals

OpenMVS

OpenMVS4 is an open-source library for MVS reconstruction. It addresses the last part of the
photogrammetry chain-flow and provides a full set of algorithms to reconstruct the complete
surface structure of objects. It includes steps for dense point-cloud reconstruction, mesh
reconstruction, mesh refinement, and texturing. [Cer20]

It was integrated, due to partially missing texturing features in COLMAP.

2.2. Microservice Architecture

In this thesis, we develop a web service composed of multiple internal web microservices
based on the microservice architectural pattern. For that purpose, the following section
will focus on the basics of the microservice architecture and what differentiates it from a
monolithic architecture.

2.2.1. General Concept

In a microservice architecture, tasks get split up into smaller, modular components, each being
handled by a microservice. Communication with the client or other microservices takes place
through lightweight REST API requests. Microservices enable the design of applications as a
collection of loosely coupled services, which provides easy scaling capabilities and further
supports the maintainability of the system. [Ora21]

2.2.2. Benefits of a Microservice Architecture

In order to understand the advantages of using a microservice architecture, one has to
understand how this approach differs from a traditional monolithic architecture.

In a monolithic architecture, the whole system consists of a single component capable of
performing each task. Figure 2.2 illustrates the monolithic and microservice architecture on
the example of an online shop. There are many key differences in the characteristics of the
two architectures, a list of which can be found in Table 2.1.

The further motivation behind the utilization of the microservice architectural pattern for
our web-based application will be discussed in further chapters of this thesis.

2.3. Containerization

In the implementation of our proposed system, we utilize containerization technology in
combination with the aforementioned microservice architecture. Hence, in this section,
we examine the general concept of containerization, its benefits, and synergies with the
microservice pattern.

4https://github.com/cdcseacave/openMVS

6

2. Fundamentals

Characteristic Microservice Architecture Monolithic Architecture

Unit design
The application consists of loosely
coupled services. Each service
supports a single business task.

The entire application is designed, developed,
and deployed as a single unit.

Functionality reuse
Microservices define APIs that
expose their functionality to any client.
The clients could even be other applications.

The opportunity for reusing functionality
across applications is limited.

Communication within
the application

To communicate with each other,
the microservices of an application
use the request-response communication
model. The typical implementation
uses REST API calls based on the HTTP
protocol.

Internal procedures (function calls) facilitate
communication between the components of
the application. There is no need to limit the
number of internal procedure calls.

Technological flexibility

Each microservice can be developed
using a programming language and
framework that best suits the problem
that the microservice is designed to solve.

Usually, the entire application is written in a
single programming language.

Data management
Decentralized: Each microservice may use
its own database.

Centralized: The entire application uses one
or more databases.

Deployment
Each microservice is deployed independently,
without affecting the other microservices in
the application.

Any change, however small, requires
redeploying and restarting the entire
application.

Maintainability
Microservices are simple, focused, and
independent. So the application is easier
to maintain.

As the application scope increases,
maintaining the code becomes more complex.

Resiliency

The application functionality is distributed
across multiple services. If a microservice
fails, the functionality offered by the other
microservices continues to be available.

A failure in any component could affect the
availability of the entire application.

Scalability
Each microservice can be scaled
independently of the other services.

The entire application must be scaled, even
when the business requirement is for scaling
only certain parts of the application.

Table 2.1.: Table summarizing the central differences between the microservice architecture
and monolithic architecture. Table directly taken from [Ora21].

7

2. Fundamentals

Figure 2.2.: Illustration of the monolithic (left) and microservice architecture (right) on the
example of an online shop. The left side shows the main application as a single
instance app, internally divided into multiple services. On the right side, the main
application is divided into multiple microservices. Further, intercommunication
between the microservices is represented by gray arrows between the services.
Image taken from [Kap20].

2.3.1. General Concept

Containerization defines the concept of packaging applications into small lightweight ex-
ecutable containers. It bundles the software code, operating system (OS) libraries, as well
as other code dependencies into a single unit, that can be executed continuously on any
infrastructure. Though the general concept of containerization and isolation is not completely
new, it first started seeing usage in 2013 utilizing the Docker Engine5, an open-source and
now industry standard for universally packaging applications. A main characteristic of a
container is its lightweight nature. This can be attributed to the fact that containers do not
necessitate overhead in the form of linking the application’s OS with the host OS as they also
utilize the very same OS kernel as the host system. This is achieved by use of the container
runtime responsible for the actual execution of the containers. A key benefit of this structure
is the increased portability as applications can be “’written once and run anywhere’”[Edu21].
[Edu21]

2.3.2. Distinction to Virtual Machines

Virtual machines (VMs) enable the execution of several operating systems on a single machine.
For that purpose, the entire operating system, as well as the application dependencies, are

5https://www.docker.com/

8

2. Fundamentals

Figure 2.3.: The left side shows a containerized structure, whereas the right side shows the
structure of virtual machine-based applications. Note that no full copy of the
utilized OS is required in the containerized structure, in contrast to the VM
architecture. Image taken from [Hat].

packaged into a virtual machine. [Edu21]
As opposed to the container runtime, VMs use a hypervisor that segments the physical

resources that will later be partitioned and allocated to each virtual machine [Hat].
Even though containers are in a way comparable to virtual machines as they have similar

security benefits due to the isolation of applications, the former has some crucial benefits over
the latter. The above-mentioned overhead is significantly less as containers do not require a
full copy of the OS and can therefore use resources more effectively. Another advantage is that
containers are innately smaller in size. The enhanced portable packaging allows containerized
applications to be deployed and used across any cloud or platform. To sum up, it can be
stated that containers are more portable, efficient, and flexible than virtual machines. [Edu21]
Figure 2.3 illustrates an exemplary structure of containerized and virtual machine-based
applications.

2.3.3. Benefits of Containerization

In the following, we summarize the beneficial characteristics of containerization from a more
generalized perspective.

Portability As previously mentioned the containerized structure allows for greater portabil-
ity, due to its compact packaging and ability to be deployed in a wide range of environments.

Speed and Efficiency The remarked lightweight nature, little overhead, and compact size
of containers allow for greater execution speeds and increased efficiency.

9

2. Fundamentals

Fault Isolation As containers are isolated from the host system and other containers, a
container’s failure does not influence the execution of other containers. [Edu21] Hence, other
parts of the system’s functionality are unaffected.

Management Simplicity Containers can be orchestrated with the help of container or-
chestration platforms. These platforms can provide more benefits including scaling and
monitoring of containerized applications. The most notable container orchestration system is
Kubernetes6. [Edu21]

Security Potentially by malware infected containers can not affect other containers or the
host system, as both systems are inherently isolated from each other. [Edu21]

2.3.4. Synergies With Microservice Architectures

Monolithic, as well as microservice structures, are both suited to be used with containerization
technology. However, great synergy effects are inherent in a combination of a microservice
architecture and containerization technology in such a way that microservices gain all of the
containerization benefits. Both the microservice architecture and containerization technology
try to divide an application into smaller, more modular components, and thus the goals of
both architectures are similar. [Edu21]

Commonly, a single microservice is embedded into a single container, though at times
multiple apps can also be run in a single container, e.g. in the form of an app and its related
database.

As of today, utilizing microservices encapsulated in containers is common practice in web
development and other distributed systems. Thus, in this thesis, we will also implement a
combination of both technologies. Further details will be presented in later chapters.

2.4. Terms & Definitions

This section introduces frequently used terms and definitions as well as prerequisite knowl-
edge in relation to web-based systems that aid the understanding of our proposed service.

2.4.1. Client-Server Architecture

The Client-Server architecture is widely used as a form of communication in a network-based
environment. A client can be described as “a system or a program that requests the activity of
one or more other systems or programs, called servers, to accomplish specific tasks” [Han00,
p. 3]. In our context, a client can be a mobile device, another computer, or even another
server requesting our resources through the use of the API. A server can be characterized as
“a system or program that receives requests from one or more client systems or programs
to perform activities that allow the client to accomplish certain tasks” [Han00, p. 3]. In the

6https://kubernetes.io/

10

2. Fundamentals

client-server workflow the server processes said received request and sends a response back
to the client. This interaction is made possible by the use of the API.

2.4.2. API

As described by Reddy, “[a]n Application Programming Interface (API) provides an abstraction
for a problem and specifies how clients should interact with software components that
implement a solution to that problem” [Red11, p. 1]. Usually, in web-based development,
the software component that implements the solution is the server and is accessible through
the web-API. Web-APIs act as the main layer of interaction between client and server and
are used to provide the server’s functionalities and services to client applications. This is
commonly done by utilizing HTTP requests. Further, there exists the concept of RESTful
APIs. For this type of API, resources can be requested by making use of standardized HTTP
methods, namely GET, POST, PUT, DELETE, and other RESTful methods [SR19]. Requests
are stateless, meaning that a single request contains all required information to perform the
requested task [Cas07].

2.4.3. Web Server, Web-API, and Web Service

A web server is a particular instance of a server and provides its functionalities through
web-based methods. The terms web server and web-API can often be confused, as their
functionalities are closely interwoven and the functionalities of the web-API also cascade to
the web server. However, we want to remark that per definition the web-API is the interface
that allows client and server, in this case the web server, to communicate in a standardized
way. To group both terms we can use the term web service. A web service is a web server that
provides its functionalities through the web-API.

2.4.4. Web Service Reusability

Our goal is to design a reusable web-API for 3D reconstruction. This reusability facet also
cascades to the implementing web server as we also want to further develop and reuse our
web server. Hence, we ought to describe the concept of reusability in the context of web-based
services.

General Concept Fundamentally, the term reusability describes the idea of reusing a web
service for multiple purposes. This entails that as opposed to creating a new client-specific
API for every new client the same API is used each time. This increases maintainability as
only one generalized API has to be actively maintained. Benefits include fast development
and simple integration of new clients. To allow new functionalities to be implemented
easily and existing code to be reused, the implementing web server should be extensible
and maintainable. As it is intended for our web service to be utilized by multiple client
applications and extended further in the future, reusability is an important aspect of our
development process.

11

2. Fundamentals

Required Characteristics We define the following criteria a web service needs to meet in
order to comply with our definition of reusability:

• Generalized Functionalities The web-API needs to provide generalized functionalities
that are not limited to the use case of a single client. As remarked, this allows for
multiple reuse of the API by various client applications.

• Documentation The web service needs to provide extensive documentation for the
usage of the API routes to client applications and future developers to help client-side
integration and later development.

• Extensibility In order to be reused continuously, a reusable web service has to be
extensible. The addition of new features and functionalities has to be straightforward
and uncomplicated.

• Maintainability The reusable web service needs to be maintainable meaning it should
be easy to implement code changes and feature adjustments.

12

3. Related Work

In this chapter, we discuss similar publications related to the development of a web-based
API for 3D reconstruction and explore existing cloud-based solutions.

3.1. Related Publications

In 2015, Heller et al. developed an SfM web service aimed to provide access to SfM meth-
ods developed at the Center for Machine Perception of the Czech Technical University in
Prague. The authors propose a web service allowing users to access and execute different
photogrammetry “jobs”. They offer different job types ranging from camera calibration,
different sparse and dense reconstruction algorithms to so-called “One-button” methods, in
essence full photogrammetry pipelines. They also integrated third-party photogrammetry
software in the form of Bundler1. [Hel+15]

Unfortunately, the mentioned publication does not go into detail about the exact structure
and implementation of the system and merely presents the features and capabilities of the
service. Also, there is no source code publicly available. The goals of this thesis are partially
overlapping with the mentioned publication as they too develop a web service for online 3D
reconstruction, aimed at the execution of reconstructions and also developmental aspects.
The task-description that will be introduced in this thesis is inspired by the custom job XML
files proposed by Heller et al.

A key difference to this publication is that our thesis is further aimed at the development
of an extensible and maintainable web server, giving insight into the structure and imple-
mentation of the proposed system. Further, we are more focused on comparing different
photogrammetry software and the integration of our service by a wide variety of client
applications using our reusable web-API. Lastly, our system is not meant to be limited to SfM
algorithms, but to house other 3D reconstruction methods in the future as well.

3Dnow is another web-based 3D reconstruction service. It was proposed by Tefera et al. in
2018 and utilizes the open-source photogrammetry software COLMAP. Its main innovative
aspects include providing a fully automatic web-based photogrammetry pipeline as well as a
fully automated cleaning process of the output meshes and point clouds. It includes parameter
tuning capabilities, scaling and georeferencing of point clouds, an objective evaluation schema
of sparse point clouds, and detailed reconstruction metrics. 3Dnow is accessible through a
standard web browser. It uses a decentralized service structure that is accessed through a
central request manager. It is implemented using a Python-based web framework and utilizes
queue-based task scheduling. [Tef+18]

1https://www.cs.cornell.edu/ snavely/bundler/

13

3. Related Work

There is no explicit mention of a dedicated web-API for integration by different client
applications, so it is assumed to be used using its provided browser interface which is the first
distinction to be made in regards to our thesis. Another main difference between 3Dnow and
our proposed system is that our web service is designed to be extended and used to compare
different photogrammetry software. Also, there is no source code available for review, hence
we can not fully understand its implementation and architectural decisions made by the
authors. 3Dnow offers a lot of functionalities that could also be beneficial in our system and
the proposed architectural structure seems to be a valid approach. In our thesis, we will also
implement COLMAP, a comparable decentralized service architecture, and task-scheduling
technology.

3.2. Existing Cloud-Based Reconstruction Services

As of now, there are a few existing cloud-based reconstruction services available. This section
will introduce some of the most popular services and outline the main differences to this
thesis.

Autodesk ReCap Photo Autodesk ReCap Photo2 is a cloud-based service and is based on
Autodesk ReCap Pro. It provides reality capture, 3D scanning, and intelligent model creation
[Aut]. It offers a lot of advanced features such as georeferencing and mesh editing tools.

Agisoft Cloud Agisoft Cloud3 is another cloud platform specialized in photogrammetric
reconstruction tasks. It is based upon Agisoft’s standalone photogrammetry software Agisoft
Metashape and offers photogrammetric reconstructions, areal LIDAR workflows, and many
more features [LLC20].

WebODM Lightnight & PIX4Dcloud Services primarily focused on drone image process-
ing include WebODM Lightning4 and its main competitor PIX4D5. WebODM Lightning uses
the open-source software OpenDroneMap, whereas Pix4D uses its own proprietary software
solutions. Both provide tools for cloud-based photogrammetric reconstruction for aerial
images.

There are many key distinctions between the aforementioned, already existing cloud solutions
and the web service proposed in our thesis. Firstly, the mentioned cloud solutions are
consumer-focused, meaning their goal is to provide software solutions to the end customer.
Yet, our thesis does not only aim to provide a tool for the execution of 3D reconstruction tasks
but is also directed at the research and development aspect of photogrammetric software. Our
goal is to develop an extensible web service capable of integrating multiple other software

2https://www.autodesk.de/products/recap/overview
3https://www.agisoft.com/
4https://webodm.net/
5https://www.pix4d.com/

14

3. Related Work

solutions. Another major difference is that the exact implementation and structure of these
cloud-based systems are unknown and, with the exception of WebODM Lightning, use their
own proprietary software. Lastly, all of the mentioned systems are paid services, while we
intend the development of a free and open-source based web service. The main similarity
lies in the features and functionalities we wish to provide. The mentioned platforms offer a
lot of advanced and powerful tools for 3D reconstruction that would also be advantageous
for our service. Hence, in conclusion, it can be emphasized, that the main purpose of these
applications differs vastly from the goals of this thesis.

15

4. Web Service

In this chapter, we outline the development challenges of the system and introduce the server
architecture of our proposed system, its provided functionalities, followed by the made design
decisions and the implementation of the web service.

4.1. Development Challenges

In this thesis, we want to propose a system that is capable of managing image-sets, and their
associated metadata, perform reconstruction tasks with different photogrammetry software
and comply with our definition of web service reusability. Hence, in the first step, we identify
the main challenges in the development of our web service.

Image-Set and Image Management It is required to model the relationship of image-sets,
images, and its associated metadata in a way that allows the user to manage image-sets and
its metadata easily and intuitively.

Integration of Multiple Photogrammetry Software The next challenge is the integration
of multiple photogrammetry software. We need to develop a structure that can perform the
needed tasks but also satisfies the reusability aspect of our web service. The reusability aspect
is the most demanding prospect of the development process as the entire service has to be
maintainable and extensible. This presumes that a standardized way of extending the service
and utilizing photogrammetry software is found.

Task Management and Execution Though the used photogrammetry software can be used
very differently, it is required to find a common method of managing and executing recon-
struction tasks. This also means that our image-sets and metadata have to be in a structure
that allows them to be used or at least modified effortlessly in a way that makes them usable
for multiple applications.

Reusability and Future Development As it is intended for this application to be developed
further and continuously reused in the future, special requirements for the structure of the
entire system are set. Therefore, we must lay the structural foundations for future features
and provide technological flexibility to achieve them in the future.

16

4. Web Service

4.2. General Concepts

In response to the remarked development challenges, we introduce the following general
concepts.

Project To model the relationship between images and image-sets, we introduce the concept
of projects. A project in our web service is the entity we use to group images into image-sets.
It consists of a project name and project owner. The project name could be the object or scene
that the related images show. The project owner was added to associate the images with an
owner or the person who created the project. The images can then get uploaded to a given
project.

Image The uploaded image model consists of the image file as well as its metadata, including
camera pose, camera intrinsic information, depth image, and the CPU image (an unprocessed
version of the image). These images get linked using the image identifier, currently in the form
of a common filename. The CPU image was added in response to requirements made by a
potential client application.

Provider A provider in our web service refers to a single or a collection of reconstruction
software used in our web service to perform a reconstruction pipeline or task. We define
common API endpoints a provider has to offer in order to be integrated into our system,
such that new providers can also be integrated using the very same endpoints. We integrated
the photogrammetry software COLMAP, in combination with OpenMVS, and AliceVision
Meshroom into our system. Hence, we can define the providers Meshroom and COLMAP.

Task The providers are used to execute tasks. A task in our web service represents a 3D
reconstruction task. It is associated with a project and provider and executes the reconstruction
on the images of the given project.

Task-Description The task execution can further be refined by the optional task-description.
Each provider can specify different functionalities through the use of task-descriptions. A
task-description consists of the task type and task parameters. The providers are free to
define the task types and parameterization they offer. These tasks in combination with the
task description will be used by the provider in order to execute the selected task with the
given parameters.

4.3. Server Architecture

This section aims to give an overview of the server architecture, describe its components and
how they interact with each other.

17

4. Web Service

4.3.1. Server Components

The web service is divided into three web-based microservices and seven components in total.
An overview of the service structure can be seen in Figure 4.1.

Backend-Manager-Service The first microservice is the Backend-Manager-Service. Its
main purpose is the management of project and task data as well as the dispatching of
tasks to the providers. Further, it acts as the main entry point for client applications.

Central Database The central database is used to store metadata for projects and tasks.
The project data includes the project id, the project name and owner, as well as the creation
timestamp. The task data contains the task id, the associated project id and provider, the task
status, the creation timestamp, the start- and end-time, as well as further metadata that can
be filled by the providers.

Message Broker We use a task queue to schedule the reconstruction tasks. This is done
using the message broker. The message broker manages a message queue from which
applications can enqueue and dequeue tasks.

Meshroom- and COLMAP-Service The remaining two web microservices are the Meshroom-
Service and COLMAP-Service. These services manage the task metadata and schedule the
task execution. Their reconstruction capabilities are accessed through the Backend-Manager-
Service that dispatches the client’s requests to the respective provider.

Meshroom- and COLMAP-Worker The execution of the requested task is done by the
Meshroom-Worker and COLMAP-Worker. These worker components dequeue tasks from their
respective task queue and execute the given task.

4.3.2. API Structure

Figure 4.2 gives an overview of the existing API routes and how they are related. A full
specification of the API can be found in Appendix A.

4.4. Provided Functionalities

With the given server and API structure, our service provides a wide variety of functionalities.
We differentiate between the basic functionalities, that were among the initially required
capabilities of our service, and the additional functionalities, that were added during the
further development of the web service.

18

4. Web Service

Figure 4.1.: Illustration of our proposed server architecture.

19

4. Web Service

Figure 4.2.: Illustration of the API structure. Note that the file_type refers to the metadata
of the image and can be the ’image’, ’depth_image’, ’camera_pose’, ’camera_-
intrinsics’, or ’cpu_image’.

20

4. Web Service

4.4.1. Basic Functionalities

Our service is capable of performing the following basic functionalities:

BF1 Image-sets: Image-sets can be created.

BF2 Images and metadata: Images can be uploaded to the specified image-set. In addition,
image-related information can be added. This includes the camera pose as well as the
related depth image.

BF3 Image and image-set management: Image-sets, images, and related metadata can be
uploaded.

BF4 Reconstructions: Reconstruction tasks can be started with different photogrammetry
software on the provided image-set.

BF5 Output files: The output files of the finished reconstruction task can be retrieved.

4.4.2. Additional Functionalities

Furthermore, we support these additional functionalities:

AF1 Image metadata: The images metadata also includes camera intrinsic information. This
was necessary, as our initial plan to refine the model using the camera pose with
COLMAP also required the corresponding camera intrinsic to each image.

AF2 Image and image-set management: Image-sets, images, and related metadata can
further be updated and deleted through corresponding endpoints. This was added to
provide more generalized functionalities and management options.

AF3 Reconstructions: For the reconstruction tasks, the task type and parameters can be
specified. This allows for a more customizable use of the provider pipelines. In addition,
after a reconstruction is started, detailed status information about the task and pipeline
steps can be queried. Running tasks can be canceled and deleted.

AF4 Use of additional information: Our system partially supports the use of camera pose
information in the reconstruction for the provider COLMAP.

AF5 Browser integration: The web-API can be accessed through a browser interface and
provides detailed documentation of the API routes.

4.5. Structural Design Decisions

We made the following design decisions for our web architecture:

21

4. Web Service

4.5.1. Using a Microservice Architecture

We utilize the microservice pattern. We can divide our web-microservices into two main
categories: the components responsible for handling the image and metadata management
and entities performing the reconstruction tasks, i.e. the providers. The metadata management
will be handled by a single microservice, whereas each provider will function as its own
microservice. This has the following benefits, also keeping in mind the properties from Table
2.1:

Increased Maintainability As microservices are independent of each other the applications
can also be developed autonomously. This is especially helpful for the development of the
providers. In essence, no knowledge of the other systems is required, as we define a given set
of endpoints that need to be implemented in the provider microservice. Further details will
be discussed in the implementation section.

Technological Flexibility It is possible to develop every microservice utilizing a different
technology stack. A technology stack consists of programming languages, frameworks,
and other tools and technologies required to develop an application. This enables us to
integrate photogrammetry providers that are for instance native C++ applications or offer
no command-line interface. These can then be integrated using a C++-based or another
alternative implementation of a microservice.

Deployment and Scalability The created microservices can be deployed and scaled sepa-
rately. Note that though we currently do not utilize scaling of microservices, it is supported
in future development by use of the microservice architecture.

In summary, using a microservice pattern is perfect for our use case, as this structure allows
for new providers to be integrated easily using its own microservice. Further, it aids the future
development of the web service because of its modular structure as well as its maintainability
and flexibility aspects.

4.5.2. Using Containerization Technology

As stated before, containerization works great in combination with a microservice architec-
ture. The following properties of containerization were especially important factors for its
integration into the system:

Portability As this platform is still in development, later development may take place in
different environments. Using containerization allows us to deploy our system in a wide
variety of environments easily, whether local or in the cloud. This relieves much of the work
associated with setting up the system and its dependencies, aiding further development.

22

4. Web Service

Fault Isolation The failure of a single provider will not influence the stability of the system,
which means that during the integration of new providers, potential errors or instabilities
will not affect the reliability of the rest of the system.

Use of Container Orchestration Systems In the future, the use of a containerization orches-
tration system is feasible. This could provide horizontal and vertical scaling capabilities.

4.5.3. Provider Interface

To incorporate the providers uniformly into our system, we have set requirements in the
form of API-routes the providers have to implement in order to get integrated into our web
service. Thereby, we can further increase the maintainability and extensibility of our system.
An illustration of the provider interface can be seen in Figure 4.3.

Figure 4.3.: Illustration of the provider interface. The Backend Manager Service uses the
required API-endpoints to integrate the providers in a standardized way.

4.5.4. Provider Subdivision

For our providers COLMAP and Meshroom we apply an additional division step. Each
provider is divided into a service and worker part. The service part is responsible for
receiving the initial task and other provider-specific management aspects, whereas the worker
part is in charge of the actual execution of the tasks. The idea behind it is that the worker
application can potentially be scaled horizontally and vertically independently from the
service application in the future. This division is highly recommended for the integration of
new providers but is not compulsory.

23

4. Web Service

4.5.5. Using a Task Queue

The task execution is powered by the use of a task queue. Tasks queues are advisable when
resource-intensive background computations or other application blocking tasks are to be
performed. In our case, this is given by the long and computationally intense reconstruction
tasks. As we do not want our provider services to block during a reconstruction, we instead
use the task queue to hand over our tasks to the worker applications. This allows tasks to
be scheduled sequentially and executed one by one or in parallel by multiple workers. We
utilize the task queue system in both of our providers. Again, the use of the provided task
queue system for new providers is strongly advised, but not compulsory. This will give new
providers technological freedom to use their own implementations for task management if
required. An illustration of the task queue system is shown in Figure 4.4.

Figure 4.4.: The Backend Manager Service receives the initial request for task creation and
dispatches it to the selected provider. The corresponding provider service then
schedules the task by enqueuing it into the message queue. The provider worker
then consumes said message and starts the task execution.

4.6. Implementation

In this section, we describe the implementation details of our proposed web service. Python
is a simple and flexible programming language and offers fast development of web-based
applications [TG14]. For that reason, the code was developed, implemented, and tested using
Python 3.8.5. The source code is available on GitLab [Krü21].

4.6.1. Design Goals

We have set these design goals for our implementation and codebase:

D1 Readability: The code should be understood easily.

24

4. Web Service

D2 Modularity: The code should be divided into modular components. Further, the purpose
of each component should be intuitive and well defined.

D3 Modifiability and Extensibility: Code components should be refactorable and easily
replaceable. Moreover, new code segments should be able to get integrated without
difficulty.

4.6.2. Code Design

Based on the implementation design goals we also have to discuss structural decisions made
for the source code, as it has a big impact on the maintainability and extensibility of the
application.

Applied Principles For our source code, we tried to divide the application into modular,
intuitive, and well-organized components. Furthermore, we try to use a similar structure
in all components in a way that allows future developers to understand each component
more easily. For the general code flow, we try to use descriptive function names that make it
obvious what the function does exactly and keep functions short whenever possible. We try
to use meaningful variable names to improve the readability. Additionally, we try to reduce
duplicate code to a minimum. Lastly, it was attempted to integrate dynamic code into the
web server whenever feasible, as opposed to hard-coded code.

4.6.3. Used Technologies

Web Microservices For our web microservices components we use FastAPI1, a framework
for building web-based APIs. An alternative option to build web services in Python is Flask2.
In the following, we will briefly go over why we chose FastAPI over Flask for our application.

The first prototype for our web-based services was utilizing Flask, one of the most popular
web frameworks for Python. During early development stages, it was discovered that Flask
does not provide an automatized way of documenting API routes. We used the Flask extension
Flask-RESTplus3 that provides more REST support and includes a Swagger UI4 integration.
The Swagger UI is generated from an OpenAPI specification and enables enhanced API
documentation and provides a browser interface to view and test API endpoints, with detailed
information about the request and response payload. The crucial factor that discouraged the
further use of Flask, was the lack of data validation that had to be implemented by hand.
Consequently, we decided to use FastAPI.

FastAPI is quite similar to Flask but natively includes a Swagger UI integration and data
validation all-in-one. It allows for the creation of complex Pydantic5 data models that are

1https://fastapi.tiangolo.com/
2https://flask.palletsprojects.com/en/2.0.x/
3https://flask-restplus.readthedocs.io/
4https://swagger.io/tools/swagger-ui/
5https://pydantic-docs.helpmanual.io/

25

4. Web Service

automatically validated in our API. The interested reader can find a small code example of a
pydantic model in Appendix B.

The web microservices are deployed using Gunicorn6 and Uvicorn7 which is the recom-
mended way of deployment as described in the FastAPI documentation. The interested reader
can find more information about the deployment technologies on the respective website.

Task Queue Our task queue scheduling is implemented using celery8 and the open-
source message broker RabbitMQ9. Celery is a distributed task queue focussed on real
time-processing. It offers a Python-API to manage the task queue and send tasks to the
queue. Further, it processes said tasks in a dedicated worker application. Hence, our provider
workers are run using celery and the provider services use the celery Python-API to manage
the execution of tasks. Celery further requires a message broker. We chose RabbitMQ, a
lightweight message broker, as it is listed as a stable broker for celery [Cel].

An alternative to celery is the Python package ’RQ’10. However, due to the various broker
support and flexible celery API, we chose celery over ’RQ’ for our task queue implementation.

Containerization We package our web application into standardized and shareable units
for development and deployment using Docker11. The Docker Engine is the most common
software used for containerizing applications. Another advantage of using docker is its
compose tool12. We can define our services, network bridges, and shared volumes using a
docker-compose.yml file. By doing that, we can build and run our application using only
a few command-line calls. Using Docker Compose allows for uncomplicated deployment
of our entire application on any machine. Further, it can be used to configure parts of our
application such as database passwords, application ports, et cetera.

4.6.4. Upload Process

As before-mentioned, our uploaded image model consists of the image, the depth image, the
CPU image, a camera pose file, and a camera intrinsic file.

Image Files The image files are uploaded as-is, meaning that they will not be modified
during the process. They are expected to be standard image files, e.g. jpg and png, however,
there are currently no validity checks implemented.

6https://gunicorn.org/
7https://www.uvicorn.org/
8https://docs.celeryproject.org/
9https://www.rabbitmq.com/

10https://python-rq.org/
11https://www.docker.com/
12https://docs.docker.com/compose/

26

4. Web Service

Camera Intrinsic File The camera intrinsic file is a standard text file in the format:
px py fx fy w h, representing the principle point x and y (in pixels), the focal length x and y
(in pixels), and the sensor width and height respectively. This information encapsulates the
information required to construct a camera intrinsic matrix. The interested reader can find
additional information about the camera intrinsic matrix in [Sze10].

Camera Pose File If a camera pose file is uploaded, additional information is required.
We further require the pose format the transformation direction and the coordinate system. The
pose format specifies if the camera pose is represented as a quaternion + translation string
(QT), a 4x4 transformation matrix string (T), or a 3x4 rotation-translation (3D Euclidean
transformation) matrix string (RT). In any case, the camera pose file is a standard UTF-8
formatted text file. The transformation direction specifies whether the given pose is a world
to camera (W2C) transformation or camera to world (C2W) transformation. Lastly, the
coordinate system defines which coordinate system is used. This can be a left-handed (LH) or
right-handed (RH) coordinate system. We also offer the the possiblity to upload the camera
pose as a ’formatted’ text file. A formatted text file contains the required metadata in the
first line of the text file, for instance ’QT LH W2C’, and the rest of the information in the
following lines. Examples for each type can be seen in Listings 4.1-4.4. For the interested
reader, we refer to [Sze10] for further information about camera pose representations and
transformations.

Camera Pose Handling In order to handle camera pose information we implemented the
camera_poses package. It provides the CameraPose class that can load camera pose data
from text files, apply transformations, such as switching coordinate systems or inverting the
camera pose, and is used by providers to process the supplied camera pose data into the
required format. It is capable of handling data from quaternions, 4x4 transformation matrices,
and 3x4 camera projection matrices.

-0.433219993583 -0.055553650375 -0.899574471120 3.247106620677
0.056781376558 0.994433571044 -0.088756678939 0.140327149378
0.899497811246 -0.089530244667 -0.427654092525 0.557238856010

Listing 4.1: Example camera pose file in ’unformatted’ RT format. Each row represents a row
in the rotation-translation matrix.

-0.433219993583 -0.055553650375 -0.899574471120 3.247106620677
0.056781376558 0.994433571044 -0.088756678939 0.140327149378
0.899497811246 -0.089530244667 -0.427654092525 0.557238856010
0.000000000000 0.000000000000 0.000000000000 1.000000000000

Listing 4.2: Example camera pose file in ’unformatted’ T format. Each row represents a row
in the transformation matrix.

27

4. Web Service

1 0 0 0 0.55555 0.66666 0.7777

Listing 4.3: Example camera pose file in ’unformatted’ QT format (qw qx qy qz tx ty tz).

QT LH C2W
1 0 0 0 0.55555 0.66666 0.7777

Listing 4.4: Example camera pose file in ’formatted’ QT format (qw qx qy qz tx ty tz)

Resulting File Structure The data is accumulated in the project’s folder in different sub-
folders. The entire file structure of our proposed system is shown in Figure 4.5.

4.6.5. Task Execution

Celery Worker The tasks are executed using celery workers13. Tasks are Python functions
decorated with the celery task decorator. Each provider worker has its own tasks and own
task queue. We currently have two tasks: the meshroom_batch and the colmap_pipeline.
They are parameterized with the task id, the project id, and the parameters given by the
task-description. For debugging purposes, we added a FastAPI web server for the execution
of said task methods, as celery workers can not be debugged easily. This web server can be
found in the debug.py file in the respective worker folder.

Command Executor As previously remarked, we use the provider’s command-line interface
in order to perform reconstruction tasks. For that purpose, Python offers the subprocess
module that can be used to execute command-line commands in a Python-based applica-
tion. To add an additional abstraction layer to the execution of command-line commands
and manage the execution of more complex command pipelines, we implemented the com-
mand_executor package into our system. The command_executor package consists of the
classes: CommandPipeline, Executable, Command, and Function. The CommandPipeline encap-
sulates an ordered list of Executables that can be added using the provided append method
and then executed using the execute method. The abstract Executable can either be a
Command or a Function. Commands enable the execution of command-line commands and
utilize the Python subprocess module. However, as sometimes more complex steps are
required, we added the Function class capable of wrapping native Python functions into the
CommandPipeline. Additional features of this package include the creation of status and log
files. The status files are used by the /api/tasks/{task-id}/status route whereas the log
information is currently only used for debugging purposes.

In further steps the providers can implement more classes inheriting the Command, allowing
to utilize and parameterize photogrammetry command-line calls easier. The provided classes
help integrate new photogrammetry software as command-line pipelines can be implemented
in an intuitive manner. Furthermore, duplicate code is reduced as photogrammetry operations

13https://docs.celeryproject.org/en/stable/userguide/workers.html

28

4. Web Service

Figure 4.5.: Illustration of the proposed file structure. The files folder is a shared volume
mounted into every container that requires file access. The first layer consists of
the project folders, referenced by their project id. The second layer contains the
image and metadata folders as well as the task folders, also referenced by their id.
The last layer are the actual image, image metadata, and task files. Note that for
the images and image metadata, related files share the same filename, given by
the identifier.

29

4. Web Service

only need to be defined once and can be used by multiple methods. The class diagram for
the command_executor package is shown in Figure 4.6.

Figure 4.6.: Illustration of the classes of the command_executor package. Note that the Ex-
ecutable class provides implementations for every method except the abstract
_execute method. The if_fails attribute is an Executable that is executed in
case the main execution fails. This was implemented as sometimes the OpenMVS
pipeline crashed due to errors with the CUDA integration.

4.6.6. Database Operations

Database operations are conducted with help of the crud package. This is again subdivided
into the GenericCRUD, the ProjectCRUD, and the TaskCRUD classes. The GenericCRUD class
provides the basic database operation functionalities such as creating, updating, querying, and
deleting database instances. The ProjectCRUD and TaskCRUD provide more specific functions
and shortcuts, as for instance getting a task or project by id. As the exact implementation
of these more specific functions is unknown to the caller, a potential swap of databases
would only require changes in the crud package. This extra layer of abstraction increases the
maintainability and modularity of the system and reduces duplicate code to a minimum. An
overview of the provided classes of the crud package can be seen in Figure 4.7.

30

4. Web Service

Figure 4.7.: Illustration of the classes of the crud package. The main functionalities are given
by the GenericCRUD class, which are partially overridden by the child classes. The
overridden methods then use the implementations provided by the parent class.

31

4. Web Service

4.6.7. Server Configuration

The server’s main configuration is done using the config.py files found in the individual
service folders and the docker environment variables. The config files use the pydantic
BaseSettings implementation, which allows it to be natively overridden by the environment
variable of the same name. This allows them to be configured using our docker environment
variables. The environment variables are specified in the docker-compose.yml file. The main
use case for this is currently the configuration of service ports, number of worker threads (for
our web microservices), application credentials, and some other settings.

4.6.8. Testing

We use some unit-tests for the Backend-Manager-Service to check the core functionalities of
the service. These tests are focused on the metadata management aspect, asserting that all
related file operations and API-routes work properly. Unit-tests for other components, besides
minor tests for the camera_poses package, have not yet been implemented. During develop-
ment, the Backend Manager Service was responsible for most of the system’s dysfunction
which is why we particularly integrated unit-tests here. Our other web-based applications
are not very complex and are therefore not prone to many errors.

4.7. Provided Pipelines

In this section, we briefly go over the implemented photogrammetry pipelines.

Provider Meshroom Meshroom was the first pipeline we integrated into our system, as
it provides a complete photogrammetry pipeline in one command-line command. Inter-
nally, it produces status files and log file information that we could use to extract task
status information. This is one of the main reasons each provider currently has its own
/api/tasks/{task-id}/status integration. The entire pipeline is structured as seen in Fig-
ure 4.8.

Provider COLMAP The second provider we integrated was COLMAP. Its pipeline is com-
posed of multiple chained command-line calls, therefore requiring the implementation of the
aforementioned command_executor package, which we also use as the main way of extracting
status information. We offer two different pipelines: The ColmapPipeline, purely consisting
of COLMAP commands, and the ColmapOpenMVSPipeline, where the dense reconstruction
was replaced by OpenMVS commands. Both pipelines can be parameterized with the option
use_camera_poses. If enabled, the pipeline uses the given camera pose information inside its
reconstruction, meaning that it will skip the SfM step that is usually used to create the sparse
model. The pipeline structure can be seen in Figure 4.9.

32

4. Web Service

Figure 4.8.: Illustration of the photogrammetry pipeline for provider Meshroom. For more
detailed information about the single steps, we refer to [Con20].

33

4. Web Service

Figure 4.9.: Illustration of all available pipelines for provider COLMAP. For more detailed
information about the used commands, we refer to [Schb] and [Cer] respectively.

34

5. Evaluation

In the next step, we want to evaluate our web service. We split our evaluation approach into
the structural evaluation and the functional evaluation of our web service.

5.1. Structural Evaluation

The structural evaluation of our web service focuses on the client-side integration and the
reusability aspect of our web service. We show how client applications can be integrated using
our web service and give an overview of an example API workflow. Further, we examine
whether each defined characteristic of a reusable web service could be satisfied.

5.1.1. Client Integration

In 2021, Stolz investigated the impacts of gamification-based user guidance on photogrammic
3D reconstruction. He proposed an AR-based application to guide users through the image
acquisition step of the photogrammetry pipeline. In order to capture all necessary angles, a
three-phase system is introduced directing the user around the object, taking pictures from
different predefined viewpoints. Further gamification elements were added to keep users
motivated. The reconstructions were conducted by hand using the photogrammetry software
COLMAP. [Sto21]

Based on the AR poses of said application, we implemented the camera pose integration
into our system. During the image acquisition steps, the AR pose can also be extracted and
used in our web service. In the following, we will show how our service can be used to act as
a suitable backend for the mentioned application.

Project Creation We can use a POST request to the /api/projects/ route to create a project
at the beginning of the image acquisition process.

Image Upload In the next step images can be uploaded using a POST request to the
/api/projects/{project_id}/images route after each viewpoint in the gamification process.
As we know the AR poses we can add this information as well.

Get Provider Descriptions If not known already, we can use a GET request on the
/api/providers/ route to get a list of all available task-descriptions and display it to the user.

35

5. Evaluation

Figure 5.1.: Illustration of the gamification process. The spheres indicate the viewpoints from
which the user needs to take pictures. Image taken from [Sto21].

Start Task We start the reconstruction task using a POST request to the /api/tasks/ route
with the user-chosen task-description and provider. When using the COLMAP provider we
can further decide whether to use the implemented camera pose integration through the task
parameters defined in the task-description.

Query Task Status Now we can query the task status through a GET request on the
/api/tasks/{task_id}/status route and output the status to the user.

Download Files After task execution is finished we can download the output.zip, containing
all output files, via GET request on /api/tasks/{task_id}/output/output.zip .

Using these routes we can utilize our web service in the client application making our web
service a valid backend for the application.

5.1.2. Web Service Reusability

In the beginning of this thesis, we defined our requirements for a reusable web service. In this
section, we will revisit each characteristic and evaluate whether or not our service complies
with our definition of reusability.

Generalized Functionalities

Our web service provides a complete set of functionalities to manage image-sets, images, and
image metadata through provided routes for upload, update, and deletion. Our web-API
allows for a straightforward execution of tasks of a given project. As the task-description is

36

5. Evaluation

optional it can be used in a wide variety of ways. Clients seeking a basic reconstruction can
use the API without the specification of further a task-description or parameters, whereas
specialized clients can refine the reconstruction parameters using the task description. To
sum up, it can be said that our web service does indeed provide generalized functionalities.

Documentation

As mentioned before, we provide our API documentation in form of the built-in Swagger
integration. A detailed description of the required parameters, returned status codes and
a textual description of the functionality of the API routes are given, usable for both client
applications and future development. Hence, we also satisfy the documentation aspect of
web service reusability.

Extensibility

We have already extended our web service based on new requirements that arose during
the development of this system. The first expansion was the integration of the COLMAP
provider. After we integrated the first provider Meshroom, it was found that other, newer
alternatives exist that can be parameterized more easily than the existing implementation
with Meshroom. As we already had an existing provider integration, the code could be
reused for the new provider COLMAP. The integration worked flawlessly, as the pipeline
could be easily constructed using the provided Command Executor package. The Backend
Manager Service required little to no adjusting as the request dispatching process is almost
fully dynamic and only needs to be parameterized using few variables.

The next feature expansion was the camera pose integration, motivated by the possible
use of AR poses for the reconstruction. The web-API could be extended easily, as the
project management is also dynamic and bound to a few key parameters. The new pipelines
could be integrated into our system using updated task-description. The parameters for the
camera pose were added to the task-description and the internal pipelines could be adjusted,
again utilizing the Command Executor package. As it was discovered that the camera pose
integration also requires the use of camera intrinsics, a new metadata field was added to
the image model. This could also be implemented without effort. We also added the CPU
images and depth images to the image metadata as they were part of new requirements set
by client applications during the development of the system. As a result of the very dynamic
parameterization of the Backend Manager Service, the addition of new image metadata
information was very straightforward.

We can thus retain that our web service offers good extensibility.

Maintainability

We utilized a microservice in combination with containerization technology. As discussed
earlier this has crucial benefits for maintainability.

37

5. Evaluation

As there is no objective measure of maintainability, the subsequent impressions are solely
based on the author’s opinion. The structure of the code was also designed in a modular
fashion decomposing the code into intuitive components as remarked earlier. During the
development of the web service, the code refactoring processes were straightforward as the
responsibilities of each code component are defined clearly.

On the basis of the made structural decisions and applied code principles, the web service
appears to be well maintainable.

5.2. Functional Evaluation

For our functional evaluation, we want to determine if the core functionalities of our systems
work properly and test the stability of our system. Furthermore, we want to validate that our
web-API can be used for our specified purposes. To achieve that, we test our application using
different image-sets. We verify the functionality of each implemented pipeline, including our
camera pose integration. At this point, it ought to be remarked that this is less focused on
the evaluation of the providers, but more on the qualitative evaluation of the web service in
general.

5.2.1. General Procedure

We test the functionalities using an evaluation script that accesses our web-API. We perform
reconstructions on the image sets with every dataset with different providers and task-
descriptions. For each dataset we test every available photogrammetry pipeline in our
system:

• Provider Meshroom: MeshroomBatch pipeline

• Provider COLMAP: ColmapOpenMVSPipeline

• Provider COLMAP: ColmapPipeline

If the camera poses are available in the dataset, we will conduct one run with and one
without the camera pose integration (for the provider COLMAP).

5.2.2. Evaluation Script

The evaluation script is found under evaluation/scripts/evaluation_script.py of our
project’s repository and works as follows:

1. We create a project using the corresponding API-route.

2. We add all images using HTTP-POST requests.

3. We start the task with the specified provider and task description. This is done in the form
of a variable in the evaluation script file.

38

5. Evaluation

4. During the execution of the task we enter an infinite loop and query the task’s status using
the analogous route. We check our tasks status each minute and exit the loop as soon as
the task is finished.

5. We use the output route to download the task’s compressed output.zip.

6. Lastly, we query the task details to determine the start- and end-time.

7. We print the task duration and exit the script.

5.2.3. Evaluation Image-Sets

We use three different image sets: The LINEMOD dataset introduced by Hinterstoisser et al.,
Tanks and Temples ’Temple’ dataset, presented by Knapitsch et al., and an own created
dataset ’Bird Box’.

Bird Box Dataset This self-made dataset consists of 60 high-resolution images of a well-
textured bird box. Example images can be observed in Figure 5.2.

Figure 5.2.: Example images of the ’Bird Box’ dataset.

LINEMOD Dataset To test our camera pose integration we utilize the LINEMOD dataset1.
We use a subset of the LINEMOD dataset consisting of 1254 images. It shall be noted that the
main purpose of this dataset is not for 3D reconstruction, but for 6D pose estimation. The
image resolution is quite low, which is not ideal for photogrammetry applications. However,
as we currently do not have another dataset with ground-truth poses and intrinsics available,
we will make use of the LINEMOD dataset. Figure 5.3 shows some example images of the
image set.

1https://bop.felk.cvut.cz/datasets/

39

5. Evaluation

Figure 5.3.: Example images of the LINEMOD dataset [Hin+12].

Temple Dataset The ’Temple’ dataset2 was specifically created for 3D reconstruction bench-
marking. It consists of 302 high-quality images all around the building. Example pictures are
shown in Fig 5.4.

Figure 5.4.: Example images of the ’Temple’ dataset [Kna+17].

5.2.4. Pipeline Functionality

We conducted runs for each dataset for each available pipeline configuration. All tasks were
executed and finished successfully with the exception of the ’Temples’ dataset. Testing our
COLMAP pipeline on the ’Temples’ dataset resulted in an error. This was due to the lack of
sufficient RAM on the testing system which caused the reconstruction process to be killed by
the OS. Other internal errors were not observed during the testing so we can conclude the
basic functionalities work as expected. The interested reader can find the resulting models on
the GitLab repository [Krü21].

5.2.5. Camera Pose Integration

The camera pose integration was tested using the COLMAP provider and the mentioned
LINEMOD dataset. The task execution was successful each time and we could retrieve the
corresponding output model. In the following, we will briefly compare the model obtained
from the ColmapOpenMVSPipeline with and without the camera pose integration to briefly
demonstrate how our web service helps to compare photogrammetry pipelines.

The two retrieved meshes can be seen in Figure 5.5. Both meshes have roughly the same
quality, but the model without the camera pose integration could pick up more of the
background. The textures of the model using the camera pose integration are a touch sharper.
In general, there is no big difference between both models. In terms of time the model

2https://www.tanksandtemples.org/download/

40

5. Evaluation

utilizing the camera pose integration was roughly 30 minutes faster, taking only one hour in
total.

5.3. Summary

In this section we have shown our system meets the required specifications and can be used
by client applications as a valid backend application. The task execution has been without
error during our testing, except for errors caused by RAM limitations, showing the stability
of our system. Furthermore, we have seen that our web service allows us to compare models
created through different pipelines and configurations which was one of the initial goals of
this thesis.

41

5. Evaluation

(a) Model produced without the camera pose integration.

(b) Model produced with the camera pose integration.

Figure 5.5.: Comparison between models created with and without the camera pose integra-
tion. Note that (a) could recover more of the background of the scene.

42

6. Discussion

We have shown that our system works as expected and our structure satisfies our defined
requirements, however, like in every system under construction, there is always room for
improvement. In this chapter, we discuss lacking or suboptimally implemented aspects of
our web service. Note that these impressions are based on the author’s opinion.

As remarked earlier, the general functionalities work as expected for most of the time,
though errors can not be excluded. Currently, we have not implemented extensive error
handling in the web service, for example when individual components dysfunction or become
unavailable. This has not been a big issue during the development as there were only very
few exceptions occurring that were not related to the general functionality of the system. In
the worst case, the service restarted after an uncaught internal exception. Nonetheless, for
the completeness and stability of the web service an extensive error handling system could
have been implemented.

Another closely related aspect is the lack of logging. It was attempted to add this function-
ality during the development as it is a key factor in the monitoring and debugging of the
application. Python offers an easy way to implement logging into any system, but during
the implementation of said logging functionality, it was discovered that the deployment with
Gunicorn and Uvicorn makes the initially easy logging a lot more complex. Due to the lack
of time and comparably high effort involved in the implementation of logging into our web
service, it was not implemented into the final system.

Meshroom was the first provider we integrated into the system. It was chosen as it
offers a complete photogrammetry pipeline in a single command-line command. Initially, this
allowed for very easy integration of the provider. During later stages of development, with the
implementation of the task-description allowing for a precise definition of task parameters, it
was discovered that the Meshroom’s parameterization options are not ideal for the integration
into an automated pipeline. Its graph-based structure is great for the use in graphical user
interfaces, but using the AliceVision framework directly might be a better choice for the
integration into our system as we could utilize the individual command-line commands
directly. Swapping Meshroom with AliceVision was considered during the development but
not implemented as the integration of the COLMAP provider was prioritized higher.

Another minor flaw in the implementation was the integration of the CPU image. In later
stages, it was discovered that the use of the CPU image as image metadata is redundant as its
main use case would have been the use of CPU images as the basis of reconstruction which
can equally be done using the image field of the image model.

The made structural decisions that were mentioned in this thesis provided the desired
benefits and there were no negative aspects of the made decisions noticed. This further
implicates that the right decisions were made in regards to the proposed system architecture.

43

7. Conclusion

7.1. Summary

In this thesis, we proposed a well-functioning and reusable web service for online 3D
reconstruction providing web-API with generalized functionalities for client applications. Our
architecture uses state-of-the-art technologies with the use of containerization technology and
the microservice architecture. Moreover, our web service was developed in a future-oriented
manner. It provides basic and advanced functionalities for expert and non-expert users and a
well-documented API. Further, we implemented three different photogrammetry software
into two different providers and have shown how our service can be used to upload images
to image-sets, start reconstructions and compare different providers. The made structural and
code design decisions have made the service extensible and reusable. We have evaluated the
structure and functionality of our system showing that our web service works as intended
and satisfies our reusability requirements. Though there are some minor things that could not
at all or not sufficiently be implemented in the scope of this thesis, we have laid the structural
foundations for future development and further refinement of the provided features and
server architecture.

7.2. Future Work

Integration of More Providers We have proposed a web service, that integrates photogram-
metry software from AliceVision Meshroom, COLMAP, and OpenMVS. In the next step
more providers should be implemented in order to make our web service more diverse and
powerful.

Use of Additional Information We integrated the use of camera pose information into
the provider COLMAP. The use of more additional information such as depth information
through the use of depth images should be implemented and investigated in the future. The
integration of depth information should contribute to a more realistic scaling of the resulting
3D model.

Use of Other Input Formats As of now, our system uses image data as the base of our
reconstructions. More input types such as video input data could be implemented in future
work projects.

44

7. Conclusion

Further Modularization of Pipeline Steps Our providers have the ability to execute differ-
ent tasks with given parameters. For further research, one could investigate the possibility
to break down these pipeline steps into the modular components of each pipeline. These
new task types could be used to stitch together more complex pipelines using different pho-
togrammetry software providing even more customization options to the client applications.

Reconstruction Metadata We have already added the structural foundations to add meta-
data to the reconstruction tasks. However, further implementations need to be done to
provide more detailed information about the reconstruction task. Metrics and metadata, like
number of images, number of successfully processed images, camera lens models, number
of triangulated points, number of points for the sparse or dense point cloud and many
more, as implemented by Tefera et al., could also be integrated into our system. This could
provide valuable information and would help to compare different models made with other
parameters or created using alternative providers.

Evaluation of the Models Further future work could include the integration of a model
evaluation service. Adding a ground truth model to the project and comparing it with the
task output could be a vital metric for comparability.

Parameter Tuning We have introduced a scheme that allows us to pass parameters to our
providers. A next step in research could be finding algorithms to tune our reconstruction
parameters by using an objective evaluation process. For that to happen, we need to implement
more parameterization options into our task-descriptions.

Scaling With Kubernetes The proposed architecture is designed to be scaled in the future.
The provided docker images and used technologies should make an integration into a
container orchestration tool like Kubernetes feasible. This could help deploy the application
into cloud computing platforms like the Google Cloud Platform (GCP), which makes scaling
the services vertically, by adding more CPU and RAM resources, as well as horizontally, by
adding more worker threads or machines, possible.

45

A. API Route Specifications

For the full API route specifications, we refer to the built-in Swagger documentation in
our web service. Each web-based microservice in our system offers two endpoints for API
documentation. The /api/swagger route provides the mentioned Swagger documentation,
whereas the /api/redoc route redirects to the redoc1 documentation. Given a local deploy-
ment the documentation can be accessed as seen in Table A.1. A small excerpt of the swagger
documentation of the Backend Manager Service can be seen in Figure A.1.

Microservice Swagger URL Redoc URL
Backend Manager Service http://localhost:8011/api/swagger http://localhost:8011/api/redoc
COLMAP Service http://localhost:8002/api/swagger http://localhost:8002/api/redoc
Meshroom Service http://localhost:8001/api/swagger http://localhost:8001/api/redoc

Table A.1.: List of the available documentation routes

1https://github.com/Redocly/redoc

46

http://localhost:8011/api/swagger
http://localhost:8011/api/redoc
http://localhost:8002/api/swagger
http://localhost:8002/api/redoc
http://localhost:8001/api/swagger
http://localhost:8001/api/redoc

A. API Route Specifications

Figure A.1.: Screenshot of the Swagger documentation of the Backend Manager Service.
The Swagger documentation provides detailed information about the required
payload, returned response codes and enables the testing of routes via browser.

47

B. Pydantic Model

An example pydantic model is defined in Listing B.1. The pydantic also supports model
nesting, which means that models can use other models within themselves.

from pydantic import BaseModel

class ProjectInitialization(BaseModel):
project_name: str
project_owner: Optional[str]

Listing B.1: Simplified code of our ProjectInitialization model, which is used during
project creation. The project_name is marked as a required string, whereas the
project_owner is marked optional. This model will automatically be validated by
FastAPI. Invalid route payload will result in an HTTP response with the status
code: 422 Unprocessable Entity and a description of the invalid fields.

48

List of Figures

2.1. Illustration of the SfM algorithm, sparse and dense point clouds and a 3D mesh
[Gep+20] [Aga+10] . 4

2.2. Illustration of the monolithic and microservice architecture [Kap20] 8
2.3. Comparison between containerization and virtual machines [Hat] 9

4.1. Illustration of our proposed server architecture 19
4.2. Illustration of the API structure . 20
4.3. Illustration of the provider interface . 23
4.4. Illustration of the Task Queue Mechanism . 24
4.5. Illustration of the proposed file structure . 29
4.6. Illustration of the classes of the command_executor package 30
4.7. Illustration of the crud package . 31
4.8. Illustration of the photogrammetry pipeline for provider Meshroom 33
4.9. Illustration of all available pipelines for provider COLMAP 34

5.1. Illustration of the gamification process [Sto21] 36
5.2. Example images of the ’Bird Box’ dataset . 39
5.3. Example images of the LINEMOD dataset [Hin+12]. 40
5.4. Example images of the ’Temple’ dataset [Kna+17]. 40
5.5. Comparison between models created with and without the camera pose inte-

gration . 42

A.1. Screenshot of the Swagger documentation of the Backend Manager Service . . 47

49

List of Tables

2.1. Table summarizing the central differences between the microservice architecture
and monolithic architecture [Ora21] . 7

A.1. List of the available documentation routes . 46

50

Bibliography

[HLB19] X.-F. Han, H. Laga, and M. Bennamoun. “Image-based 3D object reconstruction:
State-of-the-art and trends in the deep learning era”. In: IEEE transactions on
pattern analysis and machine intelligence 43.5 (2019), pp. 1578–1604.

[Sch05] T. Schenk. “Introduction to photogrammetry”. In: The Ohio State University, Colum-
bus 106 (2005).

[Lin09] W. Linder. Digital photogrammetry. Vol. 1. Springer, 2009.

[Lac17] J. C. Lachambre S Lagarde S. “Unity Photogrammetry Workflow”. In: (2017). url:
https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammet
ry-Workflow_2017-07_v2.pdf (Last accessed: 2021-08-12).

[Gep+20] M. Geppert, V. Larsson, P. Speciale, J. L. Schönberger, and M. Pollefeys. “Privacy
Preserving Structure-from-Motion”. In: European Conference on Computer Vision
(ECCV). 2020.

[Aga+10] S. Agarwal, Y. Furukawa, N. Snavely, and I. Simon. 2010. url: http://grail.cs.
washington.edu/rome/dense.html (Last accessed: 2021-08-12).

[FHP15] Y. Furukawa, C. Hernández, and N. Publishers. Multi-view Stereo: A Tutorial.
Foundations and trends in computer graphics and vision. Now Publishers, 2015.
isbn: 9781601988379. url: https://www.nowpublishers.com/article/Download
Summary/CGV-052 (Last accessed: 2021-08-12).

[Sac+20] E. Saczuk et al. Processing Multi-spectral Imagery with Agisoft MetaShape Pro. 2020.
url: https://pressbooks.bccampus.ca/ericsaczuk/chapter/chapter-2-1-
dense-point-cloud/ (Last accessed: 2021-08-12).

[Bau] A. Baumberg. “Blending Images for Texturing 3D Models.” In: Citeseer.

[Alia] AliceVision. Meshroom. url: https://alicevision.org/#meshroom (Last accessed:
2021-08-12).

[Alib] AliceVision. AliceVision. url: https://github.com/alicevision/AliceVision
(Last accessed: 2021-08-12).

[Scha] J. L. Schönberger. COLMAP. url: https://colmap.github.io/ (Last accessed:
2021-08-12).

[SF16] J. L. Schönberger and J.-M. Frahm. “Structure-from-Motion Revisited”. In: Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2016.

[Sch+16] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. “Pixelwise View
Selection for Unstructured Multi-View Stereo”. In: European Conference on Computer
Vision (ECCV). 2016.

51

https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow_2017-07_v2.pdf
https://unity3d.com/files/solutions/photogrammetry/Unity-Photogrammetry-Workflow_2017-07_v2.pdf
http://grail.cs.washington.edu/rome/dense.html
http://grail.cs.washington.edu/rome/dense.html
https://www.nowpublishers.com/article/DownloadSummary/CGV-052
https://www.nowpublishers.com/article/DownloadSummary/CGV-052
https://pressbooks.bccampus.ca/ericsaczuk/chapter/chapter-2-1-dense-point-cloud/
https://pressbooks.bccampus.ca/ericsaczuk/chapter/chapter-2-1-dense-point-cloud/
https://alicevision.org/#meshroom
https://github.com/alicevision/AliceVision
https://colmap.github.io/

Bibliography

[Cer20] D. Cernea. “OpenMVS: Multi-View Stereo Reconstruction Library”. 2020. url:
https://cdcseacave.github.io/openMVS (Last accessed: 2021-08-12).

[Ora21] Oracle. Learn about architecting microservices-based applications on Oracle Cloud. 2021.
url: https://docs.oracle.com/en/solutions/learn-architect-microservic
e/index.html#GUID-1A9ECC2B-F7E6-430F-8EDA-911712467953 (Last accessed:
2021-08-12).

[Kap20] S. Kappagantula. What Is Microservices – Introduction To Microservice Architecture.
2020. url: https://www.edureka.co/blog/what- is- microservices/ (Last
accessed: 2021-08-12).

[Edu21] I. C. Education. Containerization. 2021. url: https://www.ibm.com/cloud/learn/
containerization (Last accessed: 2021-08-12).

[Hat] R. Hat. Containers vs VMs. url: https://www.redhat.com/en/topics/container
s/containers-vs-vms (Last accessed: 2021-08-12).

[Han00] M. D. Hanson. “The Client/Server Architecture”. In: Server Management (2000).

[Red11] M. Reddy. API Design for C++. Elsevier Science, 2011. Chap. 1. isbn: 9780123850041.
url: https://books.google.de/books?id=IY29LylT85wC (Last accessed: 2021-08-
12).

[SR19] H. Subramanian and P. Raj. Hands-On RESTful API Design Patterns and Best Prac-
tices: Design, develop, and deploy highly adaptable, scalable, and secure RESTful web APIs.
Packt Publishing Ltd, 2019. Chap. REST architectural constraints. url: https://
learning.oreilly.com/library/view/hands-on-restful-api/9781788992664/
(Last accessed: 2021-08-12).

[Cas07] T. Cashion. Rails Refactoring to Resources (Digital Short Cut): Using CRUD and
REST in Your Rails Application. Pearson Education, 2007. Chap. 2.1. url: https://
learning.oreilly.com/library/view/rails-refactoring-to/9780321501745/
(Last accessed: 2021-08-12).

[Hel+15] J. Heller, M. Havlena, M. Jancosek, A. Torii, and T. Pajdla. “3D reconstruction
from photographs by CMP SfM web service”. In: 2015 14th IAPR International
Conference on Machine Vision Applications (MVA). IEEE. 2015, pp. 30–34.

[Tef+18] Y. T. Tefera, F. Poiesi, D. Morabito, F. Remondino, E. Nocerino, and P. Chippendale.
“3DNOW: Image-based 3D reconstruction and modeling via web”. In: International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42.2
(2018), pp. 1097–1103.

[Aut] Autodesk. ReCap Pro. url: https://www.autodesk.com/products/recap/overvi
ew (Last accessed: 2021-08-12).

[LLC20] A. LLC. Metashape Presentation. 2020. url: https://www.agisoft.com/pdf/
metashape_presentation.pdf (Last accessed: 2021-08-12).

52

https://cdcseacave.github.io/openMVS
https://docs.oracle.com/en/solutions/learn-architect-microservice/index.html#GUID-1A9ECC2B-F7E6-430F-8EDA-911712467953
https://docs.oracle.com/en/solutions/learn-architect-microservice/index.html#GUID-1A9ECC2B-F7E6-430F-8EDA-911712467953
https://www.edureka.co/blog/what-is-microservices/
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization
https://www.redhat.com/en/topics/containers/containers-vs-vms
https://www.redhat.com/en/topics/containers/containers-vs-vms
https://books.google.de/books?id=IY29LylT85wC
https://learning.oreilly.com/library/view/hands-on-restful-api/9781788992664/
https://learning.oreilly.com/library/view/hands-on-restful-api/9781788992664/
https://learning.oreilly.com/library/view/rails-refactoring-to/9780321501745/
https://learning.oreilly.com/library/view/rails-refactoring-to/9780321501745/
https://www.autodesk.com/products/recap/overview
https://www.autodesk.com/products/recap/overview
https://www.agisoft.com/pdf/metashape_presentation.pdf
https://www.agisoft.com/pdf/metashape_presentation.pdf

Bibliography

[TG14] S. Taneja and P. R. Gupta. “Python as a tool for web server application develop-
ment”. In: JIMS8I-International Journal of Information Communication and Computing
Technology 2.1 (2014), pp. 77–83.

[Krü21] M. Krüger. ba-ss21-krueger-moritz-photogrammetry-backend. 2021. url: https://
gitlab.lrz.de/IN-FAR/Thesis-Projects/ba-ss21-krueger-moritz-photogra
mmetry-backend (Last accessed: 2021-08-12).

[Cel] Celery. Backends and Brokers - Celery 5.1.2 documentation. url: https://docs.
celeryproject.org/en/stable/getting- started/backends- and- brokers/
index.html (Last accessed: 2021-08-12).

[Sze10] R. Szeliski. Computer vision: algorithms and applications. Springer Science & Business
Media, 2010. Chap. 2.1 Geometric primitives and tranformations.

[Con20] M. Contributors. Node Reference - Meshroom 19.02.003 documentation. 2020. url:
https://meshroom- manual.readthedocs.io/en/bibtex1/node- reference/
node-reference.html (Last accessed: 2021-08-12).

[Schb] J. L. Schönberger. Command-line Interface - COLMAP 3.7 documentation. url: https:
//colmap.github.io/cli.html (Last accessed: 2021-08-12).

[Cer] D. Cernea. OpenMVS Github. url: https://github.com/cdcseacave/openMVS/
tree/master/apps (Last accessed: 2021-08-12).

[Sto21] S. Stolz. Improving photogrammetric 3D Reconstruction by Augmented Reality and
Gamification based User Guidance. 2021.

[Hin+12] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige, and N.
Navab. “Model based training, detection and pose estimation of texture-less 3d
objects in heavily cluttered scenes”. In: Asian conference on computer vision. Springer.
2012, pp. 548–562.

[Kna+17] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. “Tanks and Temples: Bench-
marking Large-Scale Scene Reconstruction”. In: ACM Transactions on Graphics 36.4
(2017).

53

https://gitlab.lrz.de/IN-FAR/Thesis-Projects/ba-ss21-krueger-moritz-photogrammetry-backend
https://gitlab.lrz.de/IN-FAR/Thesis-Projects/ba-ss21-krueger-moritz-photogrammetry-backend
https://gitlab.lrz.de/IN-FAR/Thesis-Projects/ba-ss21-krueger-moritz-photogrammetry-backend
https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html
https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html
https://docs.celeryproject.org/en/stable/getting-started/backends-and-brokers/index.html
https://meshroom-manual.readthedocs.io/en/bibtex1/node-reference/node-reference.html
https://meshroom-manual.readthedocs.io/en/bibtex1/node-reference/node-reference.html
https://colmap.github.io/cli.html
https://colmap.github.io/cli.html
https://github.com/cdcseacave/openMVS/tree/master/apps
https://github.com/cdcseacave/openMVS/tree/master/apps

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Contributions
	Thesis Structure

	Fundamentals
	Photogrammetry
	Basic Photogrammetry Workflow
	Used Photogrammetry Software

	Microservice Architecture
	General Concept
	Benefits of a Microservice Architecture

	Containerization
	General Concept
	Distinction to Virtual Machines
	Benefits of Containerization
	Synergies With Microservice Architectures

	Terms & Definitions
	Client-Server Architecture
	API
	Web Server, Web-API, and Web Service
	Web Service Reusability

	Related Work
	Related Publications
	Existing Cloud-Based Reconstruction Services

	Web Service
	Development Challenges
	General Concepts
	Server Architecture
	Server Components
	API Structure

	Provided Functionalities
	Basic Functionalities
	Additional Functionalities

	Structural Design Decisions
	Using a Microservice Architecture
	Using Containerization Technology
	Provider Interface
	Provider Subdivision
	Using a Task Queue

	Implementation
	Design Goals
	Code Design
	Used Technologies
	Upload Process
	Task Execution
	Database Operations
	Server Configuration
	Testing

	Provided Pipelines

	Evaluation
	Structural Evaluation
	Client Integration
	Web Service Reusability

	Functional Evaluation
	General Procedure
	Evaluation Script
	Evaluation Image-Sets
	Pipeline Functionality
	Camera Pose Integration

	Summary

	Discussion
	Conclusion
	Summary
	Future Work

	API Route Specifications
	Pydantic Model
	List of Figures
	List of Tables
	Bibliography

