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Abstract

The thesis evaluates possible use cases for statecharts in games and extracts requirements
from them. With these requirements an engine is developed which executes statecharts in
the Unity game engine. This engine is then optimized using caching, cache optimizations,
and other optimizations; and an approach for multithreading the engine is presented.
The final engine is able to execute 1000 copies of a statechart within nine milliseconds
on average. It is publicly available at https://github.com/file-not-found42/
StatechartEngine.
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1. Introduction

As interactive media, games are reactive systems. Reactive systems as defined in [10]
are systems which react to external input with both internal change and an output. The
concept of statecharts presented in [11], which is an extension of finite state machines, is
an approach to visualize and formalize these reactive systems.
A reactive system can often be split into many equally reactive subsystem, this is also the
case for games. An example for such a subsystem in computer games are character con-
trollers: Character controllers, among other features, define the movement capabilities
of usually human controlled characters in a 2D or 3D level environment. Many games
feature complex movement systems; examples include Titanfall 2 [30] and Warframe [8].
Both games feature extensive jumping capabilities, a ground slide, and wall running or
wall hopping. Like any reactive systems the character controllers in these games can
be modeled with statecharts, which provide formal, clear, and complete information on
their capabilities, behavior, and complexity.
The capabilities of statecharts can also be used to inverse the process: Instead of modeling
a statechart to visualize a character controller, the character controller is defined by the
statechart. This allows for easy iteration over the controller: The different states a char-
acter can be in are clearly separated and transitions between the states are explicit and
visually connected to their states, as opposed to a state machine implemented in code by
e.g., a switch statement.
In addition to character controllers, the development of many other reactive systems in
games can also profit from statecharts. For this reason some game engines already pro-
vide an implementation of state machines which resembles statecharts, usually in the
form of animation graphs for layering and blending character animations [15]. Given the
number of reactive subsystems in games and their real-time nature, the execution time
for any statecharts is an important factor in the viability of statechart based systems in
games. Computer games must produce a new image for the player (frame) usually 30
or 60 times per second, which means that all calculations for such a frame must be done
within 33.3 or 16.6 milliseconds.
This thesis documents the implementation of a software which can execute 1000 state-
charts in less than 16.6 milliseconds in the Unity game engine. First, it gives an overview
on the syntax and semantics of statecharts as defined by their original author David Harel
[11] [12] and summarizes the results of other papers concerned with the topic. It then de-
scribes use cases for statecharts in games to derive the required features and capabilities
of the software. Afterwards the software is implemented and optimized to fulfill the ob-
jective of the thesis. Finally it presents and discusses the results.
The software developed in this thesis is available at https://github.com/file-not-
found42/StatechartEngine
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2. Overview on Statecharts

2.1. Statecharts: A visual formalism for complex systems

David Harel first presented statecharts in his article ”Statecharts: A visual formalism
for complex systems” with the goal to solve state count blowup and visual noise when
modeling complex systems in a flat space. He did so by introducing abstraction and
concurrency and many consequential concepts to state diagrams. While statecharts were
designed as a formal but visual model of real systems, this thesis instead executes them
as component of a game engine. As such, the visual aspects of statecharts are only of
interest in this thesis to display examples. [11]

Events and Conditions In statecharts, a transition is triggered by a matching event, or
always if there is no event necessary. When the transition is triggered, an optional guard
must be true for the transition to be active. The guard can be anything that evaluates to
a logical value, e.g., a greater-than comparison. Event triggers can be simulated using
guards by testing it the event exists; guards can be simulated with event triggers by
adding an event when a value changes. [11]
Events are labeled with their trigger event and a guard expression in square brackets, as
depicted in figure 2.1. [11]

Hierarchy The first major concept which distinguishes statecharts from state diagrams
is hierarchy. In statecharts, a state can contain other states to accumulate the common
properties of these states. Such a superstate has one or more components or substates; a state
which has no components is a basic state. Inversely, since the state hierarchy forms a tree,
the state which is not a component of any other state is the root. Unchanged from state
diagrams, only one basic state can be active at any time, therefore at most one component
of a superstate can be active at any time. Transitions can start and end on any level of the
hierarchy. Superstates have a default state similar to the start state of a state diagram in
case they are entered by a transition. [11]
Visually, substates are drawn inside their superstates, as shown in figure 2.2. [11]

Orthogonality The second major concept new in statecharts is concurrency. Statecharts
can model multiple interacting systems in parallel to avoid quick increases in state count.
Parallel states are superstates of which every component is active simultaneously or none
are, while in normal superstates at most one component can be active at once; for this

Figure 2.1.: Transition containing both a trigger event and a guard expression
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2.1 Statecharts: A visual formalism for complex systems 3

Figure 2.2.: Compound state containing components of which one is another compound
state

Figure 2.3.: Parallel state containing two components with two basic states each

reason normal superstates are also called OR states, and parallel states are called AND
states. The components of parallel states themselves are usually superstates too. The
components are inherently independent from each other, i.e., the behavior and actions of
one component do not influence the other components by default. This does not prohibit
explicit communication; a component can react to state changes in other parallel compo-
nents, e.g., by transitions triggering when another state is entered or exited.
The components of parallel states are drawn with separating lines between them, as
shown in figure 2.3. [11]

Actions and Activities Actions are sequences of statements a statechart executes. Ac-
tions are executed when a transitions is taken or a state is entered or exited. Actions take
not time, they are defined to be executed instantaneously. Actions can both interface with
external system and trigger transitions in their own statechart. [11]
Activities are executed while a state is active and hence take time to execute. Activities
can be simulated with actions: Instead of executing an activity A, the state executes the
action StartA when entered and the action EndA when exited. [11]

Other Features In addition to hierarchy and orthogonality statecharts also feature some
additional and often related capabilities.

History A commonly useful feature in state based models is to resume previous be-
havior after an interrupt. For this purpose, statecharts feature history states. History
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states are states which, when entered, redirect to the last visited state of their superstate.
A variation are deep history states which not only remember the last visited state on their
own level but also all levels below. The previously visited state(s) of history states can be
deleted. History states are the first occurrence of pseudo-states in statecharts, despite the
concept of pseudo-states in its entirety not being introduced in the article. Pseudo-states
are states in which the statechart cannot stop but must proceed further though transitions
or other means. [11]
History states are drawn as circles marked with a capital H; deep history states are
marked with H*. [11]

Transition Pooling Statecharts also support the only visual transition pooling to re-
duce visual clutter brought by multiple transitions with their labels connecting distant
states. Pooled transitions represent common sources, targets or events among transitions.
They are drawn as pseudo-states in the form of single filled dots. [11]

Selection Selection states again are pseudo-states which, when entered, present the
user with a choice between all components of their super state. [11]

Timeouts and Delays States with timeouts automatically trigger an exiting transition
after a time span passed after the state was entered. Inversely, states with delays ignore
all exiting transitions until the delay has passed. [11]

Problems When examining statecharts, some problems are evident. When multiple
transitions originating from a state are triggered simultaneously the behavior is unde-
fined. When transitions of superstates are triggered in addition to transitions starting
from lower levels the behavior is equally undefined. The order of transitions and actions
executed between the components of a parallel state is also undefined, which is espe-
cially problematic in the case of these transitions and actions triggering other transitions
in other components, as is the behavior when states in multiple concurrent components
have active transitions exiting the parallel superstate to different states. Michael von der
Beeck lists these problems and more in [35], but the original article identifies some of
them already. Many will be solved in the proposed semantics in [12].

2.2. The STATEMATE Semantics of Statecharts

Since no governing body for statecharts exists and no semantics were presented in [11]
many organizations developed their own semantics for statecharts. The semantics used
in the STATEMATE system, developed by the original inventor of statecharts David Harel
and Amnon Naamad among others, are presented in [12] and provide the closest approx-
imation to official semantics available. [12]
In the article some core terminology is defined: A run describes everything happening in
a statechart from the start of execution to the end. It consists of statuses, which describe
the current status of the statechart, and steps, the transitions between those statuses. [12]
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General Rules A few general rules are set for the semantics: Statuses are immutable;
during a step the status the step operates on does not change; therefore a step cannot
influence itself. Events have a lifetime of exactly one step. Following the first rule, an
event originating in step n only exists in step n + 1 and it cannot influence the step it is
created in; the same applies to changes in the set of active states. Everything that can be
done in a step must be done in this step. Finally, a step takes no time; it happens in an
instant to outside observers. [12]

Configuration A configuration of a statechart is a valid set of active states. A configura-
tion is valid if the following properties taken directly from [12] apply:

C contains R.
If C contains a state A of type OR, it must also contain exactly one of A’s
substates.
If C contains a state A of type AND, it must also contain all of A’s substates.
The only states in C are those that are required by the above rules.

Consequently, if a configuration contains a basic state it also contains all of its superstates,
and knowledge of the currently active basic states is sufficient to uniquely determine the
current configuration. Such a set of basic states is a basic configuration. When a step does
not change the configuration of a statechart the step is empty. [12]

Transitions A maximal sequence of transitions which can be executed is a basic com-
pound transition or CT. A full CT consists of one or more basic CTs and results in a valid
configuration of the statechart. The scope of such a full CT is the superstate which con-
tains all states entered and exited by this full CT. A CT is enabled when all its transitions
are triggered and the guards evaluate to true. Two or more CTs are in conflict when they
share exited states. In STATEMATE, the CT with the largest scope is chosen; if there is no
largest scope the system halts or chooses a CT at random. [12]
The paper also introduces some new pseudo-states. Connectors are the non-visual vari-
ant of transition pooling. In fork pseudo-states all exiting transitions must be contained
in any CT including the state; in join pseudo-states all incoming transitions must be con-
tained in the CT. In condition, selection, and junction pseudo-states exactly one incoming
and one outgoing transition must be included any CT that passes them. [12]
In history pseudo-states, an incoming transition always enters the superstate containing
the history state from the outside regardless of the source of that transition. If there is no
previously active state for the history state to enter, the default entry for its superstate is
taken or a transition originating from the history state. [12]

Step The paper also lists a complete step algorithm in pseudocode. For details see [12].

Time Models STATEMATE supports multiple time models to synchronize the execu-
tion of a statechart with external systems, e.g., physics engines. The synchronous model
executes one step per external time unit. The asynchronous model triggers when an ex-
ternal event occurs, and then steps repeatedly until the configuration stabilizes, i.e., the
steps are empty. When a statechart steps multiple times in a single unit of time it performs
a superstep. STATEMATE also features additional commands to fine-tune its stepping be-
havior. [12]
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Remaining Problems Some problems remain from [11]. Like in many concurrent sys-
tems, race conditions can occur in statecharts. When multiple actions from a single super-
step modify the same property the result is not clearly defined, as is the order in which
parallel components are executed. When CTs with the same scope are in conflict the
result is undefined. [12]



3. Related Work

Statecharts are a part of the UML specification in the form of behavior state machines.
UML behavior state machines extend statecharts with actual pseudo-states in which the
system cannot stop, in addition to initial pseudo-states. Initial pseudo-states are the de-
fault state of a superstate and, when entered, immediately forward to their associated
single transmission. [27, Section 14.2.3.2]
Another standard for statecharts is SCXML. SCXML is a XML standard for serializing
statecharts. A SCXML file contains all data a statechart requires, including e.g., states,
transitions, actions, and guard expressions. SCXML does not support the concept of pure
pseudo-states, only history states and initial pseudo-states are included. [36]
In [14], E. Höfig examines executing behavior models, e.g., statecharts, directly and com-
pares it to compiling the behavior models into program code regarding performance.
The author comes to the conclusion that executing statecharts is sufficiently fast for some
of the uses cases presented in [14] but compares unfavorably with compiling regarding
performance. Executing statecharts directly is between 3 to 460 times slower than execut-
ing the compiled statechart. This trade-off may be balanced by the possibility to adapt
a statechart at runtime [14], but this possibility is not examined in this thesis. As such,
when maximum performance is required the engine developed here likely cannot com-
pete with compiled code.
In the case the statechart is compiled, [7] presents multiple optimization techniques for
event handling in statecharts, e.g., when dealing with event priorities and thread counts.
It determines that reducing the thread count where possible and avoiding unfiltered
global event broadcasting are effective at decreasing the event management overhead.
[4] presents the DEAL system, which uses statecharts to create convincing interactive di-
alogue in a serious game. The statecharts in the form of SCXML files models the dialogue
of a merchant with whom the player haggles for an object. The system combines these
statecharts with natural language recognition to allow immersive interactions with non
player characters. While the use case of interactive dialogue is not considered in this the-
sis it is nevertheless an area of games where innovation is currently rare; and the system
presented is another example for the benefits gained from statecharts in games.
An application of statecharts in games which is presented in this thesis is AI. [9] examines
the reusability of AI behavior across games by using statecharts. Since their hierarchical
nature splits statecharts into smaller components these components can be modular and
can be reused across multiple projects. The paper identifies some problems with unfil-
tered global broadcasting as events can be received by the wrong statecharts.

7



4. Engine Features

4.1. Use Cases in Games

Before implementing the engine, some considerations were necessary. Which features of
the original statechart paper are going to be implemented? How to resolve ambiguities in
the semantic of a statechart? How and where to interface with Unity? The use cases were
of great value here as they showed which features would be commonly used in game
development. Statecharts are not limited to these use cases, an example for another use
case can be found in [4].

Player Character Controller Figure 4.1 shows an example for a character controller. The
character controlled by it can walk, run, and sprint. It can also slide on the ground for a
limited time and dodge incoming attacks. It is able to jump and can slow its fall when
aiming, it can also doge when it is falling or jumping. Its statechart contains multiple
levels of hierarchy and initial pseudo-states. Its transitions are triggered both by events
and by default; they also often feature guards.
While character controllers influence both rendering and the physics simulation of game
engines, contrary to rendering engines many physics simulations become unstable when
modifications are not synchronized; therefore the statechart should be synchronized to
the physics engine of the game engine. The number of character controllers which have
to be computed is often limited to less than a hundred, and since players often control
instances of similar or even the same character the statecharts in use are also the same
which presents opportunities for optimization. In single player games the character con-
troller is spawned once at the start of the game or level; in multiplayer games character
controllers may be spawned more often but still less frequent than e.g., AI.

Character Decision AI The statechart in figure 4.2 depicts a primitive AI for a shooter.
The AI walks aimlessly until it finds clues which point to the presence of an enemy. It
then investigates these clues while staying vigilant. Once it spots an enemy, it tries to
kill the enemy by gunfire it it can see the enemy. It the enemy is not visible, it employs
suppression fire to try to pin the enemy to a position while approaching carefully. The
statechart again features a multi-level hierarchy; its transitions are mostly triggered by
events.
Character decision making does not need to be synchronized to the rendering or physics
engine since it at most reads from these engines. Characters in multiplayer games how-
ever need to make the same decision in every game instance, as such the statechart must
be synchronized across all game instances. At the same time, a limited step frequency
may resemble a human reaction time, a property which can be desirable to simulate in a
game. Depending on the type of the game, a large count of characters has to be simulated
therefore the computation time for a step needs to be as low as possible. In many cases,
many of these characters share the same AI so the statechart can be reused between these

8



4.1 Use Cases in Games 9

Fi
gu

re
4.

1.
:E

xa
m

pl
e

st
at

ec
ha

rt
fo

r
th

e
ch

ar
ac

te
r

co
nt

ro
lle

r
us

e
ca

se



4.1 Use Cases in Games 10

Fi
gu

re
4.

2.
:E

xa
m

pl
e

st
at

ec
ha

rt
fo

r
th

e
ch

ar
ac

te
r

de
ci

si
on

A
Iu

se
ca

se



4.1 Use Cases in Games 11

Figure 4.3.: Example statechart for the interactive narrative use case

characters. Instancing time is also important in the case a game featuring many charac-
ters loads a level or some player action results in an entire army spawning.

Interactive Narrative An example narrative is depicted in figure 4.3. The narrative in-
volves an item which is wanted by two characters. The player can choose who to give
the item; they can also keep the item themselves which requires killing both characters.
The statechart consists of a parallel state controlling the states of the characters involved
and a compound state which contains the final outcome of the narrative. Its transitions
are exclusively triggered by events.
Narratives, in games often called missions or quests, again do not need to be synchro-
nized to anything. Changes in such narratives do not happen often enough to warrant
synchronization with the physics or render engine. Hence, it is sufficient when the state-
chart steps when an event occurs. The events the statechart reacts to are sparse, therefore
the statechart rarely steps. Computing the step can even be done asynchronously since
latency is less important in this use case. However, the number of unique statecharts
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active at any time may be large. Statechart initialization time is also not important; the
statechart is initialized at game startup and is then active until the game is finished.

4.2. Statechart Features to Implement

The use cases determine the statechart features included in the engine: All use cases use
hierarchy of at least one level. The interactive narrative use case uses orthogonality to
enable concurrent state changes. The character controller use cases uses initial pseudo-
states to instantly determine the correct state for the character. While actions are not
included in the statecharts they are a necessary feature for the engine to allow interfacing
with external code. The use cases also use event triggers and guards extensively.
The engine therefore must support hierarchy, orthogonality, (initial) pseudo-states, ac-
tions, event triggers, and transition guards.

4.3. Semantics

The engine follows the semantics in [12] closely but to remove ambiguities when exe-
cuting a statechart the engine includes the following changes: In the semantics multiple
transitions originating from a single state can be active at once, the same problem exists
in hierarchies. To remove any ambiguities in the single state case, each transition in ex-
ecuted statecharts must have a unique per state priority which is implicitly given by the
order in the XML file. Similarly, the order of execution for the components of parallel
states is not defined. In this case the order in the engine is depends on the implementa-
tion of C# HashSets.

4.4. Unity Interface

Using Unity also suggested using C#, which is well integrated into the engine [32]. C# is
designed for object oriented programming, as is the standard Unity scripting system.
To mesh well with the Unity workflow, implementing the engine within the standard
Unity scripting system with the name MonoBehaviour was an obvious choice. A script
extending the MonoBehaviour class can be added to any object in a Unity game scene,
similar to a collision shape, rendered mesh or rigidbody. The component can then inter-
face both with other scripts on this object and with components native to Unity. A stat-
echart instance is implemented as such a MonoBehaviour component. MonoBehaviour
components can also implement methods which are called by Unity, e.g., once per frame
rendered, once per physics step or when the component is first loaded. Once imple-
mented this behavior can not be deactivated. Therefore, even when the methods pre-
dictably do nothing they are called and hinder performance. For this reason a single
component spawned by the instances on demand handles these methods for all instances.

Loading a Statechart Statecharts are a new Unity asset introduced with the engine by
using [34]. This statechart asset consists of both a text asset in which a statechart is se-
rialized and some settings, e.g., a synchronization mode. The asset can be assigned to
a statechart instance either in the editor or by code. If no asset is assigned the instance
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raises an error. The engine performs no validity checks on the statechart on load or exe-
cution.

Synchronizing with the Unity Game Loop As seen in the use cases, the instances need
to be able to step at several different moments in the Unity game loop. For this purpose,
the following modes of synchronization are available per statechart:

• Unity Update
The instance steps whenever Unity renders a frame. The order in which objects and
in extent their components and the centralized engine are called depends on Unity.
The order in which the instances themselves are called is undefined.

• Unity Late Update
The instance steps whenever Unity renders a frame after the Update() method of
all objects has been called. It otherwise behaves like Unity On Update.

• Unity Fixed Update
The instance steps whenever the physics simulation advances. The exact moment
within a physics step again depends on Unity. The order in which the instances
themselves are called is undefined.

• On Event
The instance steps whenever a statechart event is handed to it.

• Manual
The instance steps whenever its SuperStep() public method is called.

External Input For the statecharts to be useful external input is needed, which comes in
two forms. External code can hand custom events to a statechart instance which trigger
transitions when the instance steps. Transitions can also contain guards, which need of
an external value to evaluate. These values are relayed by external code to the instance
and inserted into a data structure. From there they are accessed by the transition when
needed.

Statechart Output Once a new configuration is computed, all corresponding actions are
executed. Multiple methods for how these actions trigger external functions exist within
C#. For example, it is possible to connect arbitrary external functions to internal triggers
using reflection. The actions withing the statechart file contain the names of the functions
they trigger. Using this name, an instance then searches through other components on its
object to find matching functions and connects them. This method allows actions to only
be executed when they are connected, resulting in potentially increased performance.
Unfortunately, it also limits statechart reusability by binding actions to specific functions
on a statechart level. Additionally, support for reflection is limited on some platforms
Unity can export to [33]. For this reasons the engine ultimately uses the subscriber pat-
tern.
External code hands the engine a reference to a method to execute when a specified action
occurs. Once an instance steps, all actions are triggered and the connected methods are
executed. This approach allows any code running in a scene to subscribe to any instance’s
actions. A method can be unsubscribed from an action in a similar way.
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4.5. Terminology

The remainder of this thesis contains some previously not mentioned terms. The term
node covers states and pseudo-states and describes a connection point for transitions.
States are explicitly exited when they are superstates of the source of a transition. States
are explicitly entered when they are the superstates of a transition’s destination or they are
the states entered when the transition’s destination is a parallel state. A state is implicitly
exited or entered when it is not explicitly entered or exited but entering or exiting is
required to arrive at a valid configuration. A property is an externally set value which is
evaluated in a guard.

4.6. File Format and File Requirements

The engine uses a custom XML format derived from SCXML. It only supports states, par-
allel states, and transitions. Additionally it supports pseudo-states which are designated
with the node name pseudo. All states in the XML file must have a unique id attribute.
All non-parallel states which contain at least one component must include a default state
using the initial attribute. Transitions must include an event and a destination attribute
containing the trigger type and destination state id. Optionally, transitions can have a
cond attribute which contains the name of a property which is used as guard.



5. Implementation

5.1. Performance Test Methodology

All tests were done on the same computer with the following specifications:

• CPU: AMD Ryzen 9 3950X, featuring 16 cores and simultaneous multi-threading,
resulting in 32 threads. It computes with a minimum frequency of 3.5 GHz, which
it increases to 4.7 GHz depending on its temperature.

• RAM: Four times G-Skill F4-2133C15-8GRB for a total of 32 GB of RAM, running at
2133 MHz

• CPU-Cooler: Corsair iCUE H150i RGB PRO XT all-in-one liquid cooler mounted in
the top of the case.

• Motherboard: ASUS PRIME B550-PLUS

• Case: be quit! Silent Base 801

• Operating system: Microsoft Windows Home 64 Bit 20H2 (Build: 19042.867)

Unity was set to the Mono scripting backend for all tests. The Mono backend uses just-
in-time compilation which may influence the first sample of any test [32].
All measurements were done using the C# Stopwatch class [24]. On the test computer,
Stopwatch measures time spans with a precision of 100ns. According to tests, using the
Stopwatch class removes any measurable measurement overhead. The measurements
start immediately before the code of interest and stop immediately after.
The engine generated at least 10.000 samples per run. Minimum, maximum, and mean
of all samples were determined. In addition, for the last 5000 samples of any run the
minimum, maximum, mean, and median were determined separately. For every sample
an instance receives ten random events from a list oft recognized events; additionally,
twelve random properties are set per sample.
All tests performed are only a limited simulation of a real workload. The amount of
states, transitions, and added events may differ greatly from the values used in the tests
which will lead to different results. Figure 5.1 shows the statechart used for measuring
the execution time of the engine. It contains both compound and a parallel state in a five
level deep hierarchy; and its transitions feature a mixture of events and guards. It should
therefore be sufficient to represent the complex statecharts used in games.

5.2. Naive

The naive implementation is feature complete but ignores any performance aspects; it
serves to evaluate any optimizations made. The naive implementation also fixates the
interface for the software.

15
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5.2.1. Public Interface

Statecharts

The statechart asset exposes some properties to the editor. First, a Unity text asset con-
taining a statechart in the form of an XML file. Second, the synchronization mode which
will be used for all instances of this statechart. And third, the maximum number of steps
a superstep may perform. This is useful to remove spikes in the execution time and to
avoid infinite loops.
The statechart asset does not contain any methods designed for public use, nevertheless
some methods are exposed out of necessity. The Instance() method converts the XML
file into a custom memory format (it this has not been done already) and then creates and
returns the default status for this statechart.

Instances

The statechart instance component exposes a field for a statechart asset in the editor. This
facilitates an editor-based workflow and removes the need to add instances with scripts.
When an instance is created from code, the Initialize(statechart) method must be
called directly after. The method also initializes the instance to the default configuration
for the given statechart. The SuperStep() methods performs repeated steps either until
the step limit given in the statechart asset is reached or a step is empty. It also reports
whether the superstep was empty itself. Any script can add events to the instance using
the AddEvent(event) method. If the statechart’s synchronization mode is On Event the
statecharts immediately performs a superstep. To be notified when an action occurs,
scripts can subscribe an event handler to an action with the Subscribe(name, type

, event handler) method. It requires the name of the statechart element (node or
transition), the type of action to subscribe to (exit, stay, passthough or enter), and the
event handler. The Unsubscribe(name, type, event handler) method unsubscribes
an event handler from an action. Properties for use in guards can be set or read using
SetProperty(name, value) and GetProperty(name). IsStateActive(name) returns
whether the state with the given name is currently active.

5.2.2. Central Classes

Statechart The Statechart contains lists of statechart elements and can parse an XML
file into these lists. It does so by first parsing all states in the statechart and then parsing
all transitions. It can report some basic errors in the file such as missing defaults states
in compound states and missing attributes in transitions. It does not explicitly report
duplicate states or referenced states which do not exist.

Statechart Elements The custom memory format for statecharts consists of nodes and
transitions which both inherit from the empty interface ISCElement. Nodes are then split
into states, which can be active, and pseudo-states, which cannot. States are again split
into the types basic, compound, and parallel.
All nodes contain a method which tries to enter them: It returns the default basic states
which are active when the node is active or, in the case of pseudo-states, forwards to
the next transition. All states also contain a method to try to exit them: It checks every
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transition in the current hierarchy of states, starting with the root. Transitions similarly
contain a method which tries to traverse them. All three methods can fail if a necessary
transition is not active, in this case they return an empty set. All methods also record the
elements they traversed which are later used to send the corresponding actions.
Nodes also contain some utility methods for computing both the list of superstates and
the common superstate for a set of nodes. When the name of a node is accessed it gener-
ates a name consisting of all names of its hierarchy, e.g., the name of the node A with the
superstate B (itself with the superstate Root) is Root.B.A.

StatechartInstance The StatechartInstance inherits from MonoBehaviour and is there-
fore a Unity MonoBehaviour component. It contains a reference to its statechart, its sta-
tus and a dictionary which connects statechart actions to external functions. The interface
class performs steps autonomously when in the OnEvent synchronization mode, the step
can also always be executed manually. In other synchronization modes the instance will
autonomously register itself in the statechart engine when enabled, and deregister it-
self when disabled. The statechart can log every internal and many external actions to
the Unity log output, this must be activated using the preprocessor directive SC_LOG_

FUNCTIONALITY in the Unity project settings.

Status The Status contains the basic configuration, events, and properties of a state-
chart and allows access to them. It also contains a reference to the statechart it belongs
to. Using this reference a status can validate itself, i.e., it verifies that its configuration
is valid for the statechart. This is not done in the normal operating mode and must be
activated using the preprocessor directive SC_DEBUG.

CT The CT class represents a full compound transition. It contains its source state,
destination states, and all elements (nodes and transitions) traversed. The CT class also
computes all its explicitly exited and entered states. It implements the IComparable<CT>
interface [20] and can be sorted by scope, which is used in the step algorithm.

StatechartEngine The StatechartEngine is a singleton which is automatically created
whenever a statechart instance is created. It contains a list of statchart instances per syn-
chronization mode. It iterates over these lists and executes the statecharts at the corre-
sponding points in the Unity main loop.

SCEvent An SCEvent represents an internal or external event the statechart can react
to. It only contains its type in form of a string. The class overloads all equality operators
and methods for easy comparison.

Guard The Guard class represents a transition guard. It contains a property name which
is used to retrieve a boolean value from a statechart status. Currently this summarizes
the entire functionality but the class can easily be extended to support full expressions
for arbitrary property types.
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5.2.3. Step Algorithm

The step algorithm in the instance class executes a single step in the statechart. It is
separated into four steps:

Prepare The algorithm prepares data structures for later use. It creates an empty list
of CTs and fills a set of all currently active states. It also initializes sets for all entered and
exited states.

Search The algorithm searches for active full CTs in all active states and adds them
to the list.

Validate First, the algorithm sorts the found CTs by scope from high to low. Then it
computes preliminary entered and exited states for each CT and adds them to the sets. If
a CT is in conflict with a CT with a higher scope the Ct with the lower scope is discarded.
The algorithm then removes any remaining states of which a superstate was exited be-
fore. Finally, it enters all remaining parallel components which must be active for a valid
configuration.

Execute The algorithm updates the basic configuration in the status. The algorithm
then executes the ENTER, EXIT, STAY, and PASSTHROUGH actions for the computed
sets. After clearing the list of events it finally adds any generated events to the status for
the execution of the next step.

5.2.4. Performance

Table 5.1.: Last 5000 easurements of the step algorithm in the naive implementation in the
editor (in µs)

Minimum Maximum Mean Median Median/Mean
Prepare 4.1 21.3 4.8 4.5 93.8%
Search 2.8 1939.0 5.3 4.4 83.0%
Validate 5.3 1891.5 15.9 14.0 88.1%
Execute 5.6 3263.5 15.1 11.6 76.8%

Table 5.2.: Last 5000 measurements of the step algorithm in the naive implementation
outside the editor (in µs)

Minimum Maximum Mean Median Median/Mean
Prepare 1.4 237.9 2.3 2.0 87.0%
Search 0.9 133.6 2.1 1.7 81.0%
Validate 1.7 232.9 6.9 4.9 71.0%
Execute 2.2 251.7 6.6 4.3 65.2%

Step Algorithm Table 5.1 shows the measurements of the step algorithm when running
in the Unity editor. It is quickly visible that both mean and median of the last 5000 sam-
ples are closer to the minimum than to the maximum. Meanwhile the mean and median
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are still close. Combined with the high values in the maximums, with the exception of the
low value in the prepare maximum, these observations lead to the conclusion that the C#
garbage collector likely interferes with the measurements but, since these extremes ap-
pear to be rare, this does not impact the median severely. Still, spikes in the execution
time may lead to unpleasant spikes in the frame time.
Table 5.2 shows the same measurements when the project is built and runs outside the
editor. The values show that the execution time is much lower in this case, especially the
maximums. Despite that, the median deviates slightly more from the mean than in the
editor measurements, indicating a more skewed value distribution.
Both tables show that the least amount of time is spent searching for active CTs while
executing the CTs is the slowest part of the algorithm. Were functions subscribed to the
actions generated by the step the execution time of theses functions would have to be
added to the execute measurements. Despite this being not the case in the test scenarios
the execute part of the algorithm takes longer to compute than any other part. It and the
prepare and validate parts therefore provide the largest potential for performance gains.
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Figure 5.2.: Time per instance in µs for the naive engine when built

Table 5.3.: Last 5000 measurements of the engine in the naive implementation outside the
editor when executing one instance (in µs)

Minimum Maximum Mean Median
Engine measurements 6.8 290.6 27.8 15.6
Sum of the algorithm measurements 6.2 856.1 17.9 12.9

Engine Figure 5.2 shows the execution time per statechart instance for 1, 10, 100, and
1000 instances in the last 5000 samples of the run. It shows that minimum, mean, and me-
dian are largely constant whereas the maximum falls quickly as any outliers are smoothed
out by the larger total execution time. The mostly constant values indicate an expectedly
low engine overhead. For large instance counts all values converge to a single value. At
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Figure 5.3.: Screenshot of the Unity profiler showing the script (blue) and garbage collec-
tor (brown) execution time of the project in the naive implementation when
built.

a mean of 16.5361 ms the engine barely fulfills the goal of 1000 staecharts within 16.6 ms
already, but currently there is no time left for rendering or other calculations.
Table 5.3 shows the execution time for a single statechart when measuring the engine
and the sum of the measurements of the algorithm. The large discrepancy in the max-
imum case indicates that maximums in the algorithm measurements do not appear to-
gether. The still noticeable deviation in the mean and median is surprising though since
the minimum values are close. Figure 5.3 shows a screenshot of the builtin Unity profiler
measuring the script and garbage collector execution times of the engine running a single
instance outside the editor. While theses values include the test script used to generate
events and change properties and the usual profiling overhead they clearly show that the
spikes in the script execution time mostly originate from the garbage collector. Screen-
shots showing methods calls from both a low and a high execution time can be found in
Appendix B.

5.3. Reducing the Workload

This section discusses how the execution time for the step algorithm can be reduced using
various techniques.

5.3.1. Precomputation and Caching

The engine does not need to spend time on computing information during the runtime
which can be either computed beforehand or remembered from the last time it was com-
puted. This may increase the memory footprint of the software which is a common trade-
off. However, the rising fidelity of game graphics and audio and the accompanying in-
crease of the memory footprint dwarfs the increase caused by precomputing or caching
in the software. Though as section 5.3.2 shows an increase in memory can lead to a reduc-
tion of performance which the following exaggerated example depicts: Computing the
prime factors of a large number is a notoriously intensive problem in computer science.
Reading the prime factors from memory or even retrieving them via the internet will gen-
erally be faster than computing them given a large enough number. In contrast, adding
two small numbers is barely slower than even reading the result from a CPU register.
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Precompute

As the performance results of the step algorithm show the validate part is a candidate for
precomputation. The algorithm currently must compute the exited and entered states of
every CT. Before that, the algorithm sorts the active full CTs by scope. Computing the
scope is another intensive calculation. Therefore, replacing the basic transitions currently
in use with precomputed full CTs containing all exited, entered, and visited nodes and
its scope would remove these computations from the runtime of the engine. These com-
putations can be done when building the project.
A problem immediately arises: Computing all full CTs containing a pseudo-state leads
to a large increase in the number of CTs. Given a pseudo-state with x entering and y ex-
iting transitions results in x ∗ y full CTs. This number increases exponentially with every
pseudo-state connected. Not only must all these CTs be saved in memory but they must
also be searched for every step the originating state is active in. Additionally, including
history states in the software would make precomputing the entered states of a CT im-
possible since the target of a history state changes at runtime.
While these issues can be solved by including both precomputed full CTs and basic tran-
sitions and choosing between them at runtime, the work required for this moves the
cost-benefit ratio beyond that of other optimizations.

Cache

A similar but easier approach is to still compute the required data at runtime but to
avoid repeated computation of this data for repeated access. This can be done for the
initial status of a statechart, the scope of a full CT and the full names of nodes. The initial
status is required every time the statechart is instanced. Caching it should lead to reduced
initialization time for an instance, which is not measured. The scope is required for every
comparison between two CTs in the sorting phase of the step algorithm, caching it should
result in a reduced mean time of the validate part of the step algorithm. The full names
of nodes are required for executing actions and generating internal events, caching them
should result in a reduced mean time of the execute part of the step algorithm.

Results

Table 5.4 shows the results of the caching efforts. As expected, the mean of the prepare
and search parts of the step have not changed. The mean of the validate parts is reduced
but the change is low which implies that the number of active CTs is often so low that
sorting them does not involve many comparisons. The biggest gains occur in the execute
part of the step where the number of string concatenations is reduced.

5.3.2. CPU Cache Optimizations

With rising CPU speeds memory was left behind. Accessing a random location in main
memory can take 50-100 ns according to [13, Chapter 2.1]. In this time, the CPU of the
test computer performs approximately 200 to 400 cycles when running at 4 GHz. Faster
memory costs more to produce and needs more power which must be dissipated. To
mitigate this issue modern desktop CPUs have a memory hierarchy consisting of the
CPU registers with instant access, a L1 cache with a latency of a few cycles, a L2 cache
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Table 5.4.: Last 5000 measurements of the step algorithm outside the editor with caching
and also the difference to the naive implementation (in µs)

Minimum Maximum Mean Median
Prepare previous 1.4 237.9 2.3 2.0
Prepare 1.5 152.2 2.3 2.1
Difference +0.1 -85.7 0.0 +0.1
Search previous 0.9 133.6 2.1 1.7
Search 0.8 160.6 2.1 1.8
Difference -0.1 +27.0 0.0 +0.1
Validate previous 1.7 232.9 6.9 4.9
Validate 1.8 276.9 6.4 4.7
Difference +0.1 +44.0 -0.5 -0.2
Execute previous 2.2 251.7 6.6 4.3
Execute 1.5 150.4 4.6 3.3
Difference -0.7 -101.3 -2.0 -1.0

with a latency of 3-10 ns, a L3 cache with a latency of 10-20 ns and the RAM with the
aforementioned 50-100 ns [13, Chapter 2.1]. The sizes of these layers in the CPU of the test
computer are 1 MB L1 cache distributed across all 16 cores, 8 MB L2 cache also distributed
across all cores, 64 MB L3 cache shared between all cores and finally the RAM with a total
size of 32 GB.
When a memory location is accessed its cache line containing a number of bytes is loaded
into the cache. Accessing another memory location already loaded into the cache because
it also is contained within this line then results in a reduced access latency. Therefore,
if data is small more of it is contained in a single cache line and more accesses to this
data result in a cache hit as opposed to a cache miss. For this to work the data must be
contained within consecutive memory locations which limits using data structures with
a variable capacity such as linked lists. Arrays or array based data structures are suited
for this purpose. The C# library data structures List, HashSet, and Dictionary belong to
this category [18] [21] [17].

Changes to the Software

In the naive implementation, despite being contained in a List, the statechart data is split
into many small objects which may be distributed over the entire available memory. This
is because a class is a reference type in C#, which means that the data of the class is allo-
cated in a large enough memory location while the list contains only a reference to this
location. C# also features the structure type for data. Structures are a value type, i.e. their
content is located where a variable exists. This also means that structures themselves
cannot be contained within more than one object and passing a structure as a method pa-
rameter instead copies the structure. Structures also cannot inherit from other structures,
therefore a hierarchy of references like in the naive implementation is not possible with
structures. [25]
To optimize the statechart for the cache means reducing the size of the elements and mov-
ing them to continuous memory. However, statecharts are a multidimensional structure
which cannot be flattened to one-dimensional memory in an optimal way. The state hi-
erarchy in statecharts forms a tree while the net of states and transitions forms a graph.
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Approaches on optimal memory layout for trees [2] and for graphs [1] exist but are not
designed for the access patterns in statecharts. [2] optimizes trees for root to leaf searches
which are not used here. [1] optimizes graphs for general accesses but the breadth-first-
search recommended does not work for hierarchical graphs.
In the optimized statechart both nodes and transitions are structures. The characteristics
of structures mean that instead of nodes containing direct references to their neighbors
they contain their index in the list of states. The destination in transition functions simi-
lar. Saving the components of states required for parallel states (and validating a status)
is more problematic since the number of components is variable. If the components of a
state follow immediately after a state in the node array only saving the component count
would be possible if it were not for the components of these components. Instead the
indices of the components of a state are saved into a different array while the state itself
only contains the index of the first element in this list. Since the order of components
follows the order of nodes in the array the component list of a node ends where the com-
ponent list of the next node begins. The mapping of transitions to states follows the same
principle. Compound states additionally require an index for their default state. Addi-
tionally nodes must contain their type, either basic, compound, parallel, or pseudo-state.
Using 32 bit integers for all indices and assuming 32 bit for the type enum as well results
in a total structure size of 160 bits or 20 bytes per node.
Similarly, transitions are structures too. A transition still contains its trigger, a guard, and
its destination. Assuming a 64 bit environment this results in 64 bit for the trigger, 64 bit
for the guard and 32 bit for the destination, or in total also 160 bits or 20 bytes.
In addition to the list of nodes, list of components, and list of transitions the statechart
also requires a dictionary mapping strings to node indices to make the IsInState()

method of the instance class possible. The statechart also contains arrays mapping node
and transition indices to their names for debugging and logging purposes. All methods
previously contained in the various statechart element classes are now located in the stat-
echart class.
Since the status already uses continuous data structures only the configuration changed
from state references to integer indices.

Results

Since the search part of the algorithm depends on the structure of the statechart the most,
the biggest performance gains were expected here. Table 5.5 shows that this is not the
case. Since all data for the statechart was previously allocated in immediate succession
it is possible that it was already laid out in an efficient way. Again, most gains appear
in the execute part but all parts of the algorithm perform faster. A possible reason for
this could be the hash-function of the HashSets used in the algorithm. Since the Node
class does not contain a custom hash function the set uses the default hash function of C#
object. This function cannot be faster than converting a 32 bit integer index into a 32 bit
hash integer since the integer is its own hash in this case.
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Table 5.5.: Last 5000 measurements of the step algorithm outside the editor with cache
optimizations and the difference to the previous implementation with caching
(in µs)

Minimum Maximum Mean Median
Prepare previous 1.5 152.2 2.3 2.1
Prepare 1.2 126.0 1.9 1.7
Difference -0.3 -26.2 -0.4 -0.4
Search previous 0.8 160.6 2.1 1.8
Search 0.5 146.2 1.8 1.7
Difference -0.3 -14.2 -0.3 -0.1
Validate previous 1.8 276.9 6.4 4.7
Validate 1.2 226.6 4.9 3.9
Difference -0.5 -50.3 -1.5 -0.8
Execute previous 1.5 150.4 4.6 3.3
Execute 1.2 222.1 2.4 1.7
Difference -0.5 +71.7 -2.2 -1.6

5.3.3. Other Optimizations

Remove Dictionary Lookups

Since C# dictionaries are hash maps the lookup operation complexity approaches O(1)
[17]. Still, the string hash function which must be computed for a lookup can be opti-
mized away. Instead of guards containing the name of a property as a string, and having
to perform a dictionary lookup every time the guard is evaluated, the guard contains
an integer index pointing into an array of property values contained in the status. The
lookup is then only necessary for either setting or reading the property from external
code. The dictionary mapping the name to the index can then be moved to the statechart
which also reduces the memory footprint of the status.

Remove String Comparisons

Another area with potential for optimization are the string comparisons performed when
events are compared. Instead of storing the type of an event as a string, the string is
hashed and the resulting integer is stored. While the computation of such a hash is po-
tentially slower than copying the string this operation is performed once per event while
the type is accessed and compared for every transitions searched. Unfortunately the
hashes produced by the functions in C# cannot be assumed to be collision free [23]. A
collision in this case would mean that different event types produce the same hash value
and are therefore equal according to the comparison. This could lead to rare but severe
failures of the software and would be hard to recognize by users. Hence, the software
does not include this optimization.

Reduce List Allocations

A step uses many data structures of the types List and HashSet. These data structures
resize themselves at runtime when their capacity is insufficient for new elements. While
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the resize operation amortizes itself over all insertions [5, Section 17.4] it still adds to
the insertion time, and it is performed often in the case of fresh structures containing
only a few elements. To reduce the time spent on resizing a list it can be initialized with
sufficient capacity from the start. For HashSets this is not possible in .Net Standard 2.0
[29] which is recommended for libraries such as the software developed here [32].

Garbage Collector

As the measurement results of the naive implementation indicated, the C# garbage col-
lector produces spikes in the runtime of the software when it interrupts its execution [31].
The garbage collector frees memory which belongs to objects which are no longer in use
[3]. To avoid the spikes produced by the garbage collector the number and size of mem-
ory allocations can be reduced. To do this it is possible to reuse objects or memory, e.g.,
by using an object pool [26, Section 19]. Due to the cache optimizations in section 5.3.2
most temporary objects in the software are now value types which are not allocated on
the heap. However, the collections used to store these objects are reference types and
are therefore cleaned by the garbage collector. Instead of creating several temporary data
structures for every step the algorithm now reuses structures created at instance creation
time. These collections must be cleared or emptied before they can be reused which takes
time depending on the number of objects within the collection [22] [19].
To reduce the number of allocations further, both SCEvent and the internal Action class
are short lived data types and were converted to structures.
The changes outlined here have a side effect: Some of the HashSets are reused over many
steps, and since their capacity is not reduced by clearing them this means that resizing
operations are mostly limited to the early steps of an instance.

Results

Table 5.6.: Last 5000 measurements of the step algorithm outside the editor with all opti-
mizations and the difference to the previous implementation with cache opti-
mizations (in µs)

Minimum Maximum Mean Median
Prepare previous 1.2 126.0 1.9 1.7
Prepare 0.8 25.1 1.5 1.5
Difference -0.4 -100.9 -0.4 -0.2
Search previous 0.5 146.2 1.8 1.7
Search 0.4 130.5 1.6 1.6
Difference -0.1 -15.7 -0.2 -0.1
Validate previous 1.2 226.6 4.9 3.9
Validate 1.1 227.7 4.0 3.5
Difference -0.1 +11.0 -0.9 -0.4
Execute previous 1.2 222.1 2.4 1.7
Execute 1.0 234.5 1.8 1.4
Difference -0.2 +12.4 -0.6 -0.3

The reduction in dictionary lookups should be visible in the measurements of the search
parts. The results in table 5.6 show a performance gain not only in the search step but
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also in most other areas. This likely stems from the reduced list resize operations and
reduced object allocations. A reduction in the length or frequency of garbage collector
runs which would show itself mostly in lower maximums is not clearly visible.

5.4. Increasing the Workforce

While CPUs have become faster with every generation [6] the performance gains cannot
be fully exploited with a single-threaded program as the test CPU shows: It contains 16
physical cores with simultaneous multithreading and therefore requires 32 threads for
optimal utilization.
Fortunately, assuming a large number of instances, the statechart engine is close to per-
fectly parallelizeable. All instances are independent of each other as long as actions are
not connected to functions which write data to or read data from other statecharts. The
instances themselves only read from the shared statechart.
In this problem each statechart instance forms a task. These engine must schedule these
task for the different threads. There are two approaches to scheduling task: Static schedul-
ing divides the task in n sets of equal sizes where n is the number of threads in use. The
threads then compute the results while the main thread waits. Dynamic scheduling di-
vides the task in batches of a fixed size of which n batches are initially distributed (n
again is the number of threads in use). Whenever a thread finishes its batch it fetches a
new batch from the batch pool. [28, Section 2.11.4, Table 2.5]
In the case of the engine the execution times of the tasks vary wildly. When using static
scheduling the engine must then wait for the slowest set of tasks to be finished to con-
tinue. This again results in suboptimal use of the available resources. However, static
scheduling incurs a lower scheduling overhead than dynamic scheduling. The batch size
in dynamic scheduling balances these tradeoffs and can be changed to suit the task at
hand.
Another characteristic of the engine is the repeated computation. Instead of creating the
required number of threads every frame and then discarding them immediately after
the threads are reused. Since threads which have finished their computations cannot be
restarted the threads must be active continuously. Repeatedly looping would strain the
CPUs resources unnecessarily; therefore the threads wait until the next frame when no
more task are available. Meanwhile the main thread waits while the worker threads com-
plete the tasks. The concept for this stems from [16] and was then extended to support
an arbitrary amount of worker threads.

Results

Despite the instances being independent of each other the implemented threading system
produces race conditions, i.e., more than one thread accesses a memory location which
leads to nondeterministic and erroneous behavior. In this case the batches of at least two
threads overlap and they operate on the same statechart instance. At the same time this
seems to lead to some threads never finishing their work and an effective program halt.
While the engine contains code to detect this behavior this invalidates any attempts to
measure its execution time. Furthermore, random exceptions occur infrequently. There-
fore, measurement results do not exist for the threaded engine.
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Table 6.1.: Last 5000 measurements of the step algorithm outside the editor with all opti-
mizations and the difference to the naive implementation (in µs)

Minimum Maximum Mean Median
Prepare naive 1.4 237.9 2.3 2.0
Prepare optimized 0.8 25.1 1.5 1.5
Difference -0.6 -212.8 -0.8 -0.5
Search naive 0.9 133.6 2.1 1.7
Search optimized 0.4 130.5 1.6 1.6
Difference -0.5 -3.1 -0.5 -0.1
Validate naive 1.7 232.9 6.9 4.9
Validate optimized 1.1 227.7 4.0 3.5
Difference -0.6 -5.2 -2.9 -1.4
Execute naive 2.2 251.7 6.6 4.3
Execute optimized 1.0 234.5 1.8 1.4
Difference -1.2 -17.2 -4.8 -2.9

Algorithm Table 6.1 shows the improvements made during the development. On aver-
age, most gains show themselves in the execution part of the algorithm but the validate
part is also considerably faster now. The least gains can be found in the search part, where
most gains were originally expected due to the cache optimizations. Unsurprisingly, the
minimum shows less improvements than the mean and the median in most cases. The
maximum seems to still depend on the garbage collector and did not noticeably change,
despite efforts to reduce it. Apparently most gains stem from precomputing the node
names and the cache optimizations combined with the now unused hash functions in
sets.
Still, especially in the case of the cache optimizations a much larger improvement was
expected. This leads to the conclusion that the algorithm itself may be the problem here.
Reducing the number of necessary computations especially in the validate part may lead
to greater reductions than ordinary optimization techniques. At the same time, an al-
gorithm which computes the correct set of valid states for a given state will always be
complex thanks to the orthogonality inherent to statecharts.

Table 6.2.: Last 5000 samples of the engine at one instances when built compared to the
sum of the algorithm measurements (in µs)

Minimum Maximum Mean Median
Engine measurements for one instance 4.0 257.3 17.0 11.5
Sum of the algorithm measurements 3.3 617.8 8.9 8.0
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Figure 6.1.: Time per instance in µs for the optimized engine when built

Table 6.3.: Last 5000 samples of the engine at 1000 instances when built compared to the
not optimized engine (in µs)

Minimum Maximum Mean Median
Engine naive 14825.9 18871.7 16536.1 16529.2
Engine optimized 7667.6 10220.0 8872.0 8874.0
Difference absolute -7158.3 -8651.7 -7664.1 -7655.2
Difference percent -48.3% -45.8% -46.3% -46.3%

Engine The mean of the engine measurements in one instance again deviates heavily
from the sum of the algorithm measurements as table 6.2 shows. The reason for this in
unknown, and there is not enough data to hypothesize.
Table 6.3 compares the measurements of the optimized engine to the naive engine. It
shows an execution time reduction of about 46% on average. The goal of 1000 statechart
instances within 16.6 ms is fulfilled for the test statechart and some time for simple ren-
dering and physics calculation is available.
Judging from the measurements about 2000 instances could be executed if the engine
were decoupled from the Unity main thread, but this leads to major problems with race
conditions and synchronization.

Problems Late during the performance measurements the logging functionality of the
engine showed that the test statechart, depicted in figure 5.1, heavily tends towards the
state Eight. While any reductions in the execution times can still be assumed to hold the
values measured likely differ from those of a balanced statechart.

Limitations The engine has some limitations: If a parallel state contains a component
whose default state is a pseudo-state and all of the exiting transitions of this pseudo-state
are inactive and this component is implicitly entered by a CT, the resulting configuration
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will not include this component and therefore be invalid.
The engine also unintentionally violates the semantics in one aspect: Events added by
external code during a step can be sensed immediately and are also removed when the
algorithm finishes. This only comes into play when the external code runs concurrently
to the engine.



7. Conclusion and Outlook

This thesis documented the development of a high performance system to execute state-
charts in Unity. It first showed the usefulness of statecharts in game development, then
it presented some necessary synchronization modes for Unity to interface with state-
charts and defined an interface to communicate with external code. Afterwards, it gave
an overview on the developed engine, and presented some optimizations to decrease its
performance impact in the form of caching, cache optimizations and threading in case of
many instances.

Further Optimization

To increase the number of statecharts instances which can be executed at 60 fps some
further optimizations are possible:
Currently, both nodes and transitions occupy 160 bytes per object (without padding).
When imposing some restrictions in the state and transition count this number can be re-
duced by using 16 bit integers (or less) for the fields of statechart elements. Additionally,
all nodes currently possess a component index, transition index and default state index
even though not all states require this data. If the length of a node in the array can be
made dynamic, then the size of nodes can be reduced even further. The engine could also
employ data oriented design principles, which in this case may lead to major speedups
by improved cache utilization across instances.
An optimization which requires users to specify the executed actions in the statechart
itself can reduce the number of actions which are triggered but do not have subscribers.
While the core count of desktop CPUs and their performance still increases, most CPUs
do not come close to the raw computing power of GPUs. Due to their massively parallel
nature and the limits on memory bandwidth between CPUs and GPUs this computing
power cannot be employed for every problem but it may be possible to translate the
search, validate and parts of the execute step to shaders. The resulting jump in possible
instance count would be worthwhile.

Additional Features

Some features are currently missing from the engine. It does not support history states
and some other features present in statecharts, such as guard expressions. Preferably,
statecharts should be parsed and validated at project built time to catch any errors early.
For some statecharts additional synchronization modes may be advantageous: Sched-
uled synchronization executes the statechart at fixed time intervals. Delayed On Event
synchronization waits a fixed interval after receiving an event to also catch any events
which follow the first in a single step.
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Table A.1.: Full measurement data of the naive implementation
Mean Minimum Maximum Median

Algorithm Editor Prepare Total 5.1 4.0 3266.2
Prepare Last 5000 4.8 4.1 21.3 4.5
Search Total 5.2 2.7 2106.1
Search Last 5000 5.3 2.8 1939.0 4.4
Validate Total 16.5 5.2 3303.3
Validate Last 5000 15.9 5.3 1891.5 14.0
Execute Total 14.1 5.5 3369.3
Execute Last 5000 15.1 5.6 3263.5 11.6

Built Prepare Total 2.3 1.3 239.7
Prepare Last 5000 2.3 1.4 237.9 2.0
Search Total 2.2 0.8 264.0
Search Last 5000 2.1 0.9 133.6 1.7
Validate Total 6.8 1.6 290.8
Validate Last 5000 6.9 1.7 232.9 4.9
Execute Total 6.6 2.1 266.0
Execute Last 5000 6.6 2.2 251.7 4.3

Engine Editor 1 instance
Total 59.0 19.1 3410.2
Last 5000 60.1 19.8 3308.4 38.2
10 instances
Total 6466.4 134.5 3981.6
Last 5000 467.9 150.0 3921.3 383.4
100 instances
Total 4228.1 2661.4 10365.2
Last 5000 4226.3 2697.8 7338.8 3898.1
1000 instances
Total 39531.8 34407.6 90361.6
Last 5000 39514.6 35267.4 46222.3 39330.1

Built 1 instance
Total 28.0 6.3 380.8
Last 5000 27.8 6.8 290.6 15.6
10 instances
Total 227.2 45.8 631.0
Last 5000 227.0 55.0 512.5 254.5
100 instances
Total 1983.9 1432.5 7235.2
Last 5000 1975.7 1432.5 2927.2 1964.9
1000 instances
Total 16537.5 14490.8 41471.3
Last 5000 16536.1 14825.9 18871.7 16529.2
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Table A.2.: Full measurement data of the implementation with caching
Mean Minimum Maximum Median

Algorithm Editor Prepare Total 5.0 3.8 2551.6
Prepare Last 5000 4.8 4.1 21.5 4.4
Search Total 5.2 2.8 2629.0
Search Last 5000 5.3 2.8 2301.9 4.3
Validate Total 15.2 5.1 3282.8
Validate Last 5000 15.1 5.3 2307.7 13.4
Execute Total 10.1 3.6 3276.9
Execute Last 5000 10.6 3.7 2315.2 8.7

Built Prepare Total 2.4 1.4 242.6
Prepare Last 5000 2.3 1.5 152.2 2.1
Search Total 2.1 0.8 231.7
Search Last 5000 2.1 0.8 160.6 1.8
Validate Total 6.4 1.7 285.6
Validate Last 5000 6.4 1.8 276.9 4.7
Execute Total 4.6 1.4 255.2
Execute Last 5000 4.6 1.5 150.4 3.3

Table A.3.: Full measurement data of the implementation with cache optimizations
Mean Minimum Maximum Median

Algorithm Editor Prepare Total 4.6 4.0 1540.2
Prepare Last 5000 4.5 4.0 23.7 4.3
Search Total 4.7 1.6 3161.2
Search Last 5000 4.5 1.7 17.0 4.8
Validate Total 11.7 4.6 3504.9
Validate Last 5000 12.0 4.7 1521.1 11.3
Execute Total 4.9 3.3 3503.6
Execute Last 5000 5.0 3.4 1551.8 4.2

Built Prepare Total 2.0 1.2 256.4
Prepare Last 5000 1.9 1.2 126.0 1.7
Search Total 1.8 0.4 236.2
Search Last 5000 1.8 0.5 146.2 1.7
Validate Total 4.8 1.2 271.1
Validate Last 5000 4.9 1.2 226.6 3.9
Execute Total 2.2 1.1 257.4
Execute Last 5000 2.4 1.2 222.1 1.7
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Table A.4.: Full measurement data of the optimized implementation
Mean Minimum Maximum Median

Algorithm Editor Prepare Total 4.0 3.4 118.2
Prepare Last 5000 4.0 3.4 103.9 3.8
Search Total 4.7 1.6 1707.7
Search Last 5000 4.6 1.6 109.5 4.7
Validate Total 10.8 4.1 3422.0
Validate Last 5000 10.7 4.1 1601.6 10.7
Execute Total 4.0 2.8 2008.0
Execute Last 5000 4.2 2.8 1522.3 3.7

Built Prepare Total 1.5 0.8 227.6
Prepare Last 5000 1.5 0.8 25.1 1.5
Search Total 1.6 0.4 235.9
Search Last 5000 1.6 0.4 130.5 1.6
Validate Total 4.0 1.0 293.9
Validate Last 5000 4.0 1.1 227.7 3.5
Execute Total 1.8 0.9 241.2
Execute Last 5000 1.8 1.0 234.5 1.4

Engine Editor 1 instance
Total 39.7 13.2 3285.7
Last 5000 38.3 13.8 1912.1 32.2
10 instances
Total 291.8 80.5 3888.1
Last 5000 293.9 96.0 3744.2 248.2
100 instances
Total 2693.1 1678.2 8613.8
Last 5000 2691.2 1678.2 6602.7 2316.4
1000 instances
Total 26134.8 21832.8 58286.0
Last 5000 26616.2 22269.4 40692.7 26408.5

Built 1 instance
Total 16.9 3.7 3102.8
Last 5000 17.0 4.0 257.3 11.5
10 instances
Total 131.1 27.6 3659.3
Last 5000 130.5 30.8 342.7 95.1
100 instances
Total 1108.9 813.2 6158.9
Last 5000 1105.0 813.2 1564.8 1102.5
1000 instances
Total 8863.5 7667.6 24690.0
Last 5000 8872.0 7667.6 10220.0 8874.0
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