
Technical University of Munich

Department of Informatics

Bachelor’s Thesis in Informatics: Games Engineering

Procedural generation of
parameterizable earth-like planets with

adaptive level of detail

Felix Brendel

Technical University of Munich

Department of Informatics

Bachelor’s Thesis in Informatics: Games Engineering

Procedural generation of parameterizable
earth-like planets with adaptive level of detail

Prozedurale Generierung von parametrisierbaren
erdähnlichen Planeten in Verbindung mit

adaptiven Detailgraden

Author: Felix Brendel
Supervisor: Prof. Dr. Gudrun Johanna Klinker
Advisor: Sven Liedtke
Submission Date: 15 May 2018

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Garching, 15 May 2018 Felix Brendel

Abstract

Procedural content generation in games can be used to generate a more flexible and
interesting environment for the player. This work explains the fundamentals of proce-
dural generation while showing different kinds of generation methods. The midpoint
displacement method and noise functions for generating terrain on a flat surface are
shown and the problems of projection onto a sphere are explained. As a result methods
of adapting the generation process to generate the terrain directly on the sphere are dis-
cussed and compared to each other. The hierarchical structure index tree is introduced
which is used to allow for adaptive level of detail. The performance for different
implementations are compared to each other and the visual results are shown. Addition-
ally, for all relevant topics, sample implementations are provided and some programming
techniques that proved helpful or more efficient are introduced.

Contents

1 Introduction 1
1.1 Definition of procedural generation . 1
1.2 Motivation of procedural generation . 1
1.3 Random numbers . 2
1.4 Types of generation . 3

1.4.1 Feature based . 4
1.4.2 Grammar Based . 4
1.4.3 Agent based . 5
1.4.4 Noise based . 6

1.5 Level of Detail . 10
1.5.1 Chunks . 10
1.5.2 Spatial hierarchies . 11

1.6 Problems when generating on a sphere . 11
1.6.1 Mercator projection . 12
1.6.2 Peirce quincuncial projection . 12
1.6.3 Drawbacks of map projections . 13

1.7 Games and comparisons . 13
1.7.1 MineCraft . 13
1.7.2 Astroneer . 14

2 Generating planets 16
2.1 Generating a sphere . 16

2.1.1 Base mesh . 16
2.1.2 Index tree . 25

2.2 Generating the terrain . 32
2.2.1 Noise based approach . 32
2.2.2 Midpoint displacement based approach 32
2.2.3 Variable roughness . 37
2.2.4 Coloring the terrain . 38

3 Implementation details 40
3.1 Gradients . 40
3.2 Mesh optimization . 41
3.3 Multi threaded generation . 41
3.4 Hook based memory management . 41

4 Results and discussion 44
4.1 Coastline . 44
4.2 Coloring . 45
4.3 Performance . 45
4.4 Parameterization . 47

4.4.1 Water level . 47
4.4.2 Coloring . 48
4.4.3 Terrain generation . 48

4.5 Usages of the index tree . 48

5 Future work 50
5.1 Sharp cliffs with overhangs . 50
5.2 Texturing . 50
5.3 Water level . 51
5.4 Biomes . 51
5.5 Clouds . 51

6 Summary 53

7 References 54

1 Introduction

Procedural content generation is a technique of letting a computer program generate
objects like virtual worlds, buildings, flora and fauna or even abstract concepts like
writing systems. Often this program is using some kind of noise- or random functions to
be able to generate a wide variety of content.
In this work, the fundamentals of procedural generation for games with the focus

on generating planets are shown. The aim of this work is to give an overview of the
fundamentals of procedural generation and showing the difference between generating
terrain on a plane and on a sphere.
In contrast to the traditional approaches of mapping a two dimensional terrain onto

the sphere, the main focus of this work lies on generating the geometry directly on
the sphere to avoid projection imperfections and to produce a higher quality result.
Additionally, the layout of the geometry in memory is an important subject of this work
and the index tree will be introduced for this purpose and its operations and usages are
discussed. Different approaches to generate spheres are shown and compared to each
other. To generate terrain on them the two methods midpoint displacement and 3d
noise are used for generating the elevation information. The methods explored in the
context of this work were all implemented to verify the functionality using C++ and the
irrlicht 3d engine. Irrlicht was chosen because it is lightweight and it is easy to set low
level data, for example switching the vertex buffer 1 between frames. Additionally to the
explanations of the used algorithms many code examples and sample implementations
are shown.

1.1 Definition of procedural generation
In general, procedural generation describes a program taking zero or more input pa-
rameters and generating an output. The input parameters and the output could be of
any type, for example numbers, strings, images or 3d meshes. Procedural generation
can happen online which means generating the assets while also using them at runtime
or offline meaning the assets were procedurally generated beforehand and just used at
runtime. [TYSB11]

1.2 Motivation of procedural generation
Procedural generation can be used to reduce the amount of work artists have to do
while developing assets for video games. It can also enable artists to generalize assets

1more information regarding vertex buffers can be found in subsection 2.1.2

1

http://irrlicht.sourceforge.net/

1.3. Random numbers

and let the program generate more assets following the artists description. For example
an artist can design a part of a plant and describe the shape of plants with some rules
so the program can generate plants that use the provided parts the artist designed
and place and displace them in a way described by the rules. This kind of generation
is called rule based generation and will be discussed together with other methods
in section 1.4. The result of a procedural generation is defined by the parameters and
therefore by randomizing the exact parameters a huge amount of assets can be generated,
both reducing the work of artists while at the same time increasing the available assets
in the game and thereby extend the quality of the game.

1.3 Random numbers
The motivation behind procedural generation is often times to be able to generate many
different assets with the same program. Because of that many generation methods make
use of random numbers to add more variation to the result. To generate seemingly ran-
dom numbers the program makes use of a pseudo random number generator. This is an
algorithm that produces seemingly random numbers. Since a computer is deterministic –
it executes the given program – there is no way to produce completely random numbers
without the use of an external source of noise, like the atmospheric noise or radiation.
To still be able to generate different random numbers each time the algorithm is run the
algorithm additionally takes a seed as an argument which is used for the initialization of
the algorithm. With the same seed the algorithm will produce the same pseudo random
values. A common technique is using the current time stamp as the seed so that the seed
will never be the same.
Random number generators can have different distributions. With the uniform dis-

tribution the generator produces every possible number in the given range with equal
possibility. This distribution should be used when there is no bias towards a specific
number and can be used for example to simulate dice rolls or choosing an event based
on a percentage as can be seen in Table 1.1.

Table 1.1: Lookup table to decide which random event occurred based on each event’s
probability and on the value of the random number chosen to determine the
event. In this example the random number was chosen to be an integer in the
interval [0, 99]

probability interval
event1 10% [0, 9]
event2 20% [10, 29]
event3 25% [30, 54]
event4 45% [55, 99]

In contrast to the uniform distribution, random numbers can also have a normal
distribution. The user is able to specify the number µ which will be the number with

2

1.4. Types of generation

the highest probability of being generated (expectation value) and the number σ which
is the standard deviation. The probability density function for a normal distribution is

f(x)µ,σ = 1√
2πσ2

e− (x−µ)2

2σ2

and can be seen in Figure 1.1 [Sil18].

Figure 1.1: Exemplary probability density functions with different values for the expec-
tation value µ and the standard deviation σ

A normal distribution should be chosen when a random variable should have the value
around a certain value µ for example when the height information of a new vertex has to
be calculated the resulting random hight should be around the height of the neighboring
vertices.

1.4 Types of generation
For the purpose of this work the field will be divided into four categories which fundamen-
tally differ in the approach taken to generate. A procedural generation implementation
is not limited to only one technique but can implement multiple types of generation
for different tasks. For example the base terrain might be generated using noise, but
hydraulic erosion or rivers are constructed using agents.

3

1.4. Types of generation

1.4.1 Feature based
The most intuitive way of generating assets procedurally is by generating feature based,
meaning the parameters already give clear instructions on what the output should look
like. The input parameters describe the output in a for the user predictable way. An
example of this is "MakeHuman". It is a program designed to generate realistic looking
3d models of humans. The user has great control over the outcome and can set parameters
like gender or age, height or even details like the nose tip position relative to the skull,
as can be seen in Figure 1.2. [Mak]
In case of MakeHuman the parameters are limited to be in reasonable bounds so

that the outcomes can look more realistic. The aspect that separates a feature based
generation method from the other methods is that the parameters correspond to clearly
expectable outcomes and there is no randomness involved.

Figure 1.2: In MakeHuman the user can provide a precise specification on what the
resulting human mesh should look like

1.4.2 Grammar Based
Formal grammars have been introduced by Noam Chomsky and have a set of rules from
which a given formal language can be created. Chomsky wanted to create a mechanism
to formalize natural languages. As an exotic example, the rule set that generates the
basic structure of (simplified) Korean sentences looks like this:

4

1.4. Types of generation

〈korean sentence〉 → 〈base sentence〉("."|"?"|"!")
〈base sentence〉 → 〈subject〉? 〈object〉? 〈verb conjugation〉
〈base sentence〉 → 〈subject〉? 〈noun〉〈이다 conjugation〉

〈subject〉 → 〈noun〉"이"?
〈object〉 → 〈noun〉"을"?

〈verb conjugation〉 → 〈verb stem〉"아""요"?
〈이다 conjugation〉 → "이에요"|"예요"|"이야"

Every line corresponds to a rule in the grammar. When generating a "Korean sentence"
a "base sentence" has to be created and then a symbol "." or "?" or "!" will be appended.
The "|" symbol means selecting one from a set and the "?" expresses the possibility for
the previous symbol to appear in the resulting string.
Even without any knowledge of Korean, given these rules and a set of words for the

open variables "noun" and "verb stem" it is possible to generate sentences, taking a
random applicable rule and apply it and substitute random words of the sets of open
variables. This technique can be used to generate names phrases or sentences.
Grammars can also be used to generate other constructs, other than languages. Aris-

tid Lindenmayer invented Lindenmayer-systems as a formal method to describe the
fractal shapes of plants. An example of this can be seen in Figure 1.3 It also has an
underlying rule set that gets applied to the axiom – the start state – and form there the
rules will be applied from the last state. Lindenmayer-systems can also assign a proba-
bility to a rule, meaning if there are multiple rules that have equal left hand sides, it is
decided stochastically which one to apply. [Smi84]

Figure 1.3: Plants generated with Lindenmayer systems. [Apa]

1.4.3 Agent based
A procedural generating agent is an entity that is influenced by and has influence on
its environment and acts autonomous. When generating terrain with erosion by rivers,

5

1.4. Types of generation

typically the sources of the rivers are spawned on mountains so that the river can find a
path and flow down the mountains into the valleys. In that sense the rivers are generating
agents since they are influenced by the environment – they flow in direction of the
steepest slope down the hill – and they themselves influence the environment by applying
erosion on the terrain.
Cellular automata are related to procedural generating agents in that they act de-

pending on their environment, they are can be defined as:

"A cellular automaton is a discrete model often studied in mathematics in
the context of computability theory. It consists of a regular grid of cells, each
in one of a finite number of states. Time is also discrete, and the state of a
cell at time t + 1 is a function of the states of the cells in its neighborhood
at time t." [Coo09]

In Figure 1.4 a seashell can be seen who’s shell has similarities to the result of the
cellular automaton "rule 30". These similarities are not random but rather the cells in the
automaton have a similar behavior as the color in the shell. Like this, cellular automata
can be used to model real world phenomena.

Figure 1.4: left: a seashell that exhibits a pattern that resembles a texture generated by
a "rule 30" cellular automaton, right: the rule 30 automaton. [Coo09]

1.4.4 Noise based
Noise is like a n-dimensional map where at each position there is a random value.
Two-dimensional noise is often used in terrain generation because the noise map only
has to be calculated once and can be used for the whole landscape. If the noise values
correspond to the elevation the noise map is called height map. An application of this
can be seen in Figure 1.5. Different kinds of noise can be seen in Figure 1.7.

White noise When generating a noise map with white noise, every position in the map
has a random number chosen independently from their surroundings, making it a
discontinuous function. The result can be seen on the top left in Figure 1.7.

6

1.4. Types of generation

Figure 1.5: left: height map generated with the midpoint displacement algorithm, right:
the resulting terrain

Cell noise To generate cell noise, first seeds have to be distributed over the map and the
value of the cell noise map at a certain position equals the distance to the nearest
seed. Also other metrics are used, for example the distance to the second nearest
seed or de n-nearest seed in general. The resulting cells correspond to the voronoi
diagram when using the seeds as vertices. Therefore the cells are guaranteed to be
convex and can be used as caustics in water simulations or if each seed is colored
differently the map can be used as influence for biomes or other characteristics in
map generation.

Midpoint displacement Midpoint displacement is an iterative method of generating
noise. It starts by setting random values at the corners of the line, square, or n-
dimensional volume. Then the remaining points will be filled iteratively by finding
the midpoints of regions generated by the last iteration and setting it relative to
the value of its neighbors. In theory this can be done to a n-dimensional volume
of any shape as long as there is a clear notion of determining midpoints. Since
points close together should also have a noise value not far apart – to make the
function continuous – the value for the new point is picked as the average of
the neighboring points plus a normal distributed random value. To reduce the
variance with each iteration the random value is taking to the n-th power in the
n-th iteration. The diamond square algorithm is a two-dimensional variation of
the midpoint displacement algorithm that produces a square noise field. Its steps
are as follows:

1. Set the four corners to random values
2. Diamond Step: For every square generated in the last iterations, create a

new vertex in the center of the square and set its noise value according to the
rules, using the four corner vertices as reference points

3. Square Step For the same squares generate new vertices in the center of
the edges of the square with the same rules, using the edges’ vertices and the

7

1.4. Types of generation

nearest two vertices generated in the diamond step as reference points
4. goto step 2 as often as how many iterations are desired

Since the noise is pre computed at discrete points the noise map can not be directly
used for values between two generated points, however adjacent points can be
interpolated. A noise texture generated with the diamond square algorithm can be
seen in Figure 1.7 on the top right.

Simplex noise Simplex noise is a more efficient version of Perlin noise and able to
compute a n-dimensional continuous noise field. A property of simplex noise is
that the noise details in the field have the same size. This can be used to generate
fractal noise, meaning a noise field where details occur in deferent scales. Since
real world landscapes often also have fractal properties, simplex noise is often used
to generate height maps. To generate fractal noise, multiple scaled simplex noise
fields are added together.

Warped noise When using the output of a function as the input to a noise function the
resulting noise map is called "domain warped noise", depending on the function,
different patterns can form. In subsection 2.2.3 a noise function will be used as
input to another noise function so that some parts of the terrain can have a higher
roughness than others. Examples of shapes formed by warped noise can be seen in
Figure 1.6.

Figure 1.6: Domain warped noise sometimes creates patterns where nearby visible lines
seem to "flow" in the same direction, like particles in the air with disturbances
and thus looks like smoke. [Qui]

8

1.4. Types of generation

Figure 1.7: Comparison of different noise maps. Top left: white noise, top right: midpoint
displacement, bottom left: cell noise, bottom right: simplex noise

9

1.5. Level of Detail

1.5 Level of Detail
When dealing with highly detailed meshes there is a method to reduce the complexity
for the computer to render it but at the same time keep the level of detail for the player.
Because the more vertices the computer has to render, the more time is has to spend
on each frame rendering the exact result. To keep the game interactive it should have a
frame rate of at least around 30 frames per second since the human eye can clearly see
the video stuttering if the frame rate drops below that.
The level of detail or LOD can be reduced for objects that are far away or in areas of

the mesh that the camera does not see, for example because it is hidden behind another
object, or because it is behind the camera. Geometry that is not seen usually does not
have a big impact on the scene 2. Traditionally games often have multiple versions of
the high detailed mesh that differ in vertex count and depending on the distance to the
camera, the appropriate mesh will be rendered so that a difference in detail can not be
seen or appears minimal. An example of this can be seen in Figure 1.8 where there are
different meshes representing different detail levels. The leftmost has the least amount
of vertices and should be rendered when the object is far away and most detailed one
should be rendered when the camera is really close to the object.

Figure 1.8: The same model in different level of details. The model can be exchanged
depending on the camera’s distance to the model, so that the total number
of vertices that need to be rendered can be reduced without a visible loss of
quality

1.5.1 Chunks
Another method to deal with massive amounts of geometry is to partition the geometry
in parts called chunks. These chucks contain all the necessary information in that region
and when again placed next to each other will look like one big continuous model. With
chunks only the momentarily relevant parts are kept in memory and rendered. This
method is used for example with the enormously large worlds in "MineCraft" where the
world consists of chunks the size of 16x16x256 blocks (meters) [Per10]. Of course more

2Exceptions occur for example with reflections where an hidden object is reflected by a surface the
camera can see, so the hidden object becomes visible

10

1.6. Problems when generating on a sphere

than one chunk has to be loaded at a time so that the horizon does not appear to be so
near. An approach to keeping the necessary chunks in memory is to check which chunks
are nearer to the player than the desired distance to the horizon. This is illustrated in
Figure 1.9.

Figure 1.9: Simplified top down view on a world made of chunks with the player position
marked black and the desired horizon marked red. The chunks that the game
should hold in memory are the ones inside or touching the horizon circle

This technique makes it possible to have an nearly infinite game world while still
having control over how many actual details to hold in memory.

1.5.2 Spatial hierarchies
A more advanced technique to deal with a huge amount of geometry is the usage of a
spatial hierarchy. It is a hierarchical structure that divides space. In three dimensions, a
well known example is the octree. An octree divides the space into 8 parts, for example
the octants of the three dimensional Euclidean coordinate system. Spatial hierarchies
can be used for reducing the search space for collision detection or also as a LODing
method.
In subsection 2.1.2 the index tree is presented. The index tree is another kind of spatial

hierarchy that solves the problem of an adaptive level of detail very well and is suitable
for procedurally generating meshes.

1.6 Problems when generating on a sphere
For terrain that is projected onto a plane a planar height map can be generated and
then used to displace the plane. This works since it is easy to project a flat texture onto
a flat plane. Projecting a flat texture onto the surface of a sphere is more complicated

11

1.6. Problems when generating on a sphere

and there are many different methods of projecting a planar surface onto a sphere. Two
methods will be shown and their properties will be discussed.

1.6.1 Mercator projection
The mercator projection was first presented by Gerardus Mercator in 1596 and is one
of the best known map projections and used in Google Maps [Ran06]. It is a cylindrical
projection that preserves angles. The surface of the sphere is projected onto a cylinder
and the resulting map, points with equal latitude or longitude lie on straight lines.
But because the actual distance around the sphere decreases with higher latitude, the
resulting map displays areas near the poles distorted as seen in Figure 1.10.

"The classic comparison of areas is between Greenland and South America.
Greenland appears larger, although it is only one-eighth the size of South
America. Furthermore, the North and South Poles cannot be shown, since
they are at infinite distance from other parallels on the projection, giving a
student an impression they are inaccessible (which of course they seemed to
explorers long after the time of Mercator)." [Sny78]

Figure 1.10: The poles can not be represented in a mercator projection and the areas
near the poles are distorted

1.6.2 Peirce quincuncial projection
Peirce developed his quincuncial projection to "have a projection of the sphere which shall
show the connection of all parts of the surface" [Pei79]. His work was published 1879. A
benefit over the mercator projection is having a lower average exaggeration of scale, and
therefore having a more equally distributed information density. The sphere is projected
onto square that can be tiled. An image showing the peirce quincuncial projection of the
earth can be seen in Figure 1.11. The equator is represented as a square and the other
lines of constant latitude are complex curves.

12

1.7. Games and comparisons

Figure 1.11: The peirce quincuncial projection maps the sphere onto a square in a way
that the image can be tiled and so that the map shows the connection of
all parts on the earth

1.6.3 Drawbacks of map projections
Every projection method onto a sphere has some kind of distortion and is therefore
not optimal. The information density is not equally distributed along the surface and
some areas will have more details while others have less. Mapping can be avoided by
generating the height and color information directly on the sphere, without generating
a flat map first. In section 2.2 two methods will be shown to generate elevation without
generating a flat map and projecting it on the sphere.

1.7 Games and comparisons
As examples of procedural generation, in this section two games are presented that
generate terrain procedurally and their approaches are analyzed. The source code of
these games is not public and therefore it is difficult to get information on how the games
implement the terrain generation internally. However, some developers talk about the
development in blogs or interviews, which this section is based on.

1.7.1 MineCraft
In MineCraft players can explore and modify procedurally generated worlds, which are
defined by the seed the player provides when the world is first set up, or chosen random
if no seed is provided. Because of the nature of seeds in random number generation,
two identical worlds will be generated given the same seed. The creator of MineCraft

13

1.7. Games and comparisons

Markus Persson described in his blog that MineCraft uses three dimensional perlin noise
to generate the terrain. A screenshot of MineCraft can be seen in Figure 1.12. The terrain
in MineCraft is made out ouf blocks and the noise function is checked at each 8th position
on the planar axes and every 4th position on the vertical axes. The noise values are
then linearly interpolated for every block position. If the noise function has a positive
value after subtracting the block’s height, a block is placed otherwise air is placed.
[Per11] More elaborate techniques are still needed to generate different Biomes which
are areas with certain vegetational features, like desert, taiga or tundra. As described in
subsection 1.5.1, MineCraft uses chunks to store and load the relevant piece of terrain,
since it is impossible to hold the whole terrain in memory.

Figure 1.12: The world in MineCraft is made of blocks in a 3d grid. The noise function
is evaluated at many grid cells and depending on the value a block or air is
placed. The blocks between the evaluation points are linearly interpolated

1.7.2 Astroneer
In Astroneer the players explore spherical planets. The planets are generated using points
that are generated by a noise function. Similar to MineCraft the noise function is eval-
uated at many points and based on the result a point is placed. These points then are
combined to a mesh using the marching cubes algorithm. It takes a set of points as
input and tries to connect them using edges and faces. Since the whole planet consists
over a enormous amount of points, only the relevant ones are kept in memory. For that
purpose an octree is used. Using an octree it is easier to determine which points are
relevant for the players position and should be rendered. [Lie16]

14

https://notch.tumblr.com/post/3746989361/terrain-generation-part-1

1.7. Games and comparisons

Figure 1.13: The terrain in Astroneer is made out many points laying on a grid, con-
nected using the marching cubes algorithm and spatially divided using an
octree. [Ast]

15

2 Generating planets

The task of generating planets can be split up into two parts. The first part corresponds
to generating a sphere. This is necessary as the terrain later will be generated on the
sphere. So in the first step, methods of generating spherical meshes are shown and the
hierarchical structure index tree is introduced that will be used to subdivide regions
or delete unneeded geometry. In the second part, ways to generate the geometry are
explored. The geometry will be generated directly on the sphere to avoid distortions
caused by projections.

2.1 Generating a sphere
In this section, ways of programmatically generating sphere-like meshes are compared
to each other. The methods should be able to create the geometry incrementally as only
the relevant geometry should have to be generated. As the player moves around the
planet, new geometry should be created and the parts that are no longer needed should
be deleted. Building incrementally allows existing vertices to keep their positions and
just add the new ones.

2.1.1 Base mesh
There are a number of different approaches of generating spheres. In the case of proce-
durally generating a planet it is required that the information density should be equal
around the planet to avoid regions that are more detailed in comparison to others. All
areas should have an equal level of detail. That means, that the standard deviation of the
distances from the vertices to their neighbors should be minimal, or in other words, the
vertices should be evenly distributed on the sphere. In this subsection different methods
of generating polygonal meshes that approximate spheres are introduced and evaluated
with regards to the information density. Additionally formulas to calculate the exact
number of vertices and faces are presented, as it is sometimes necessary to know in
advance how much memory should be allocated to store the geometry in. For that pur-
pose also tables are shown which contain the number of vertices and faces up until the
subdivision level 8.

Cube as base mesh

The probably simplest method of creating an approximation of a sphere is by taking a
cube and subdividing it in a way to make it look spherical. To do this, all 6 faces of
the cube are getting subdivided n times. Table 2.1 shows the number of vertices and

16

2.1. Generating a sphere

faces for the subdivision levels and the resulting meshes can be seen in Figure 2.2. One
Subdivision creates 4 new squares from every original face. After subdividing the sphere
as often as desired, every point in the mesh will be scaled to have the desired sphere
radius as distance from the origin of the mesh. The information density heavily depends
on the position on the sphere, which can be seen by looking at the different edge lengths
in Figure 2.1.

Figure 2.1: The information density of a subdivided and normalized cube varies across
the surface. The edge length is displayed for the selected edges. Near the
original corners the vertex densitiy is higher and in the areas of the original
face centres, the vertex density is lower.

Figure 2.2: The first fice subdivision levels of a subdivided and normalized cube

The face count can be expressed as

#Faces(s) = 6 · 4s

where s is the subdivision level. This is the case because the initial number of faces is
6 and for every subdivision every face will be divided into four new faces. The vertices
follow the formular

#V erts = 6 · 4s + 2

which is always two more than the face count.

17

2.1. Generating a sphere

Table 2.1: The vertex and face count for each subdivision level of the subdivided cube
until level 8

subdivision level vertex count face count (quadrilaterals)
0 8 6
1 26 24
2 98 96
3 386 384
4 1538 1536
5 6146 6144
6 24578 24576
7 98306 98304
8 393218 393216

This follows Euler’s spherical polyhedra formula

#Faces+ #V erts−#Edges = 2

where #Faces denotes the number of faces, #V erts the number of vertices and
#Edges the number of edges in the mesh [Law97]. The mesh of the subdivided cube
exclusively consists of quadrilaterals and every face has four edges around, but since
every edge will be counted by the adjacent two faces the result has to be divided by two.
So the formula for the number of edges is

#Edges(s) = 4 ·#Faces(s)
2 = 2 ·#Faces(s)

Entering this in Euler’s formula the result is:

#V erts(s) = 2 + #Edges(s)−#Faces(s)
= 2 + 2(6 · 4s)− 6 · 4s

= 2 + 6 · 4s

= 2 + #Faces(s)

UV-sphere

The vertices of a UV-sphere lay on planes with equal latitude or longitude. The resulting
sphere looks similar to models of the globe where the lines with equal latitude and
longitude are marked. The mesh consists of quadrilaterals as every face except those
connected to the pole vertices which form triangles. An image of a UV-sphere can be
seen in Figure 2.3. A UV-Sphere is defined by its number of rings (horizontal face loops)
and segments (vertical face loops).
Around the poles the vertex density is higher than at the equator because every

horizontal layer has the same number of vertices but near the poles the distance between

18

2.1. Generating a sphere

them is much smaller. To build the mesh incrementally the number of rings and segments
have to be doubled or halved from one LOD-level to the next. This can be seen in
Figure 2.4.

Figure 2.3: The vertices of a UV-sphere lie on circles with equal latitude or longitude

Figure 2.4: The first five subdivision levels of a UV-sphere starting with 3 rings and 6
segments and doubling both at each following subdivision

When a UV-sphere is getting subdivided the new rows are created by taking the aver-
age of all adjacent vertices that share the same longitude (subdivide the vertical edges)
and scaling the points to the desired sphere radius. The new segments are generated
by subdividing all edges between vertices that have the same latitude (subdivide the
horizontal edges) but instead of scaling them to have the given radius they have to have
the same latitude as the vertices they were created from. So they have to be moved out
on the plane with equal latitude until their distance from the sphere’s origin is equal to
the desired radius, making the computation a little more elaborate.

19

2.1. Generating a sphere

Figure 2.5: To subdivide individual
faces on the UV-sphere,
the faces are split ver-
tically and horizontally
and the new vertices
have to be moved to
sphere’s surface accord-
ing to the subdivision
rules

Figure 2.6: When the triangles at
the poles are subdi-
vided, two new quadri-
laterals and two new tri-
angles are created

The subdivision can also be applied locally, subdividing individual quadrilaterals (or
triangles near the poles). When a quadrilaterals is subdivided, between one and five new
vertices have to be created, depending on the subdivision level of the adjacent quadri-
laterals, as shown in Figure 2.5. The rules for their displacement are the same as the
global subdivision. If a triangle at the poles is being subdivided, two new quadrilaterals
and two new triangles are created. This can be see in Figure 2.6.
The actual numbers of the faces and vertices when subdividing the whole sphere can

be seen in Table 2.2. To calculate the exact numbers depending on the subdivision
level the rows and segments are used. The number of rows and segments doubles every
subdivision. Starting with 6 rows and 3 segments the formulas for the rows and segments
is

#Rows(s) = 3 · 2s

#Segments(s) = 6 · 2s

Based on these formulas the vertex count and the number od triangles and quadrilat-
erals can be calculated. The triangles occur only in the topmost and bottommost face
loop. So for each row on the UV-sphere there are two triangles, one in the top face loop
and one in the bottom face loop.

20

2.1. Generating a sphere

Table 2.2: The vertex and face count for each subdivision level of the UV-sphere until
level 8.

subdivision level vertex count quadrilaterals triangles
0 14 6 12
1 62 48 24
2 266 240 48
3 1106 1056 96
4 4514 4416 192
5 18242 18048 384
6 73346 72960 768
7 294146 293376 1536
8 1178114 1176576 3072

#Tris(s) = 2 ·#Rows(s)
= 6 · 2s

The quadrilaterals make up the rest of the faces and can be calculated by multiplying
two less than the number of rows with the number of segments. It is two less than
the total number of rows because the top and bottom row are just triangles and not
quadrilaterals.

#Quads(s) = (#Rows(s)− 2) ·#Segments(s)
= (3 · 2s − 2) · 6 · 2s

= 18 · 22s − 12 · 2s

Finally, the number of vertices is equal to the number of vertical edge loops, which is
one less than the number of face loops, multiplied by the number of segments plus the
two vertices at the poles.

#V erts(s) = (#Rows(s)− 1) ·#Segments(s) + 2
= (3 · 2s − 1) · 6 · 2s + 2

Icosahedron as base mesh

An Icosahedron a spherical mesh that consists solely of triangles. An icosahedron to-
gether with its subdivisions can be found in Figure 2.7. To subdivide the icosahedron,
every face will be split into four new faces like shown in Figure 2.8.
The spherical meshes in the former sections do not have an even distribution of the

vertices along the surface of the sphere. The vertex distribution of an icosahedron is

21

2.1. Generating a sphere

much better but not perfectly even still. Subdividing an icosaeder is straight forward,
create a new vertex at the center of every existing edge and scaling it until it has the
desired radius as distance from the origin. Like this every former face will be divided in
four new faces. Another benefit of icosahedra is that they exclusively consist of triangles,
making it easier to render them. Triangles are preferred since they always lie on a plane
making it easier to for example calculate face normals.

Figure 2.7: The first five subdivision levels of an icosahedron

Figure 2.8: For each subdivision, every face will be split into four new faces

The unsubdivided icosahedron has 20 faces and for each subdivision level, each face will
be divided into four new faces so the number of faces will quadruple every subdivision.

#F (s) = 20 · 4s

The vertex count seems to follow the formula

#V (s) = 22s · 10 + 2

22

2.1. Generating a sphere

Table 2.3: The vertex and face count for the icosahedron for the subdivision levels until
8.

subdivision level vertex count face count (triangles)
0 12 20
1 42 80
2 162 320
3 642 1280
4 2562 5120
5 10242 20480
6 40962 81920
7 163842 327680
8 655362 1310720

The 12 vertices of an icosahedron with edge length 2 can be described as

{

 0
±ϕ
±1

 ,

±1
0
±ϕ

 ,

±ϕ±1
0

}
where ϕ is the golden ratio. [Bae11]

ϕ = 1
21 +

√
5

To generate an icosahedron with radius 1, every coordinate will be normalized.

{

 0
±Z
±X

 ,

±X0
±Z

 ,

±Z±X
0

}
where

X ≈ 0.525731112119133606
Z ≈ 0.850650808352039932

Since the icosahedron has the most equally distributed information density, it will be
used to implement the planets. When referring to the planet mesh it will always be based
off an icosahedron. This allows further optimizations.

Avoiding generating duplicate geometry

When subdividing the faces of any base mesh, an edge in the face might already have
been subdivided by the adjacent face. To avoid generating the same vertex again, the
vertices can be stored in a map that maps the edge to the vertex that got created when

23

2.1. Generating a sphere

subdividing the edge. When a face is being subdivided, for all edges it is checked if the
edge is in the map and thus already has a center vertex. If it is not found in the map,
a new vertex is created and pushed onto the vertex buffer, and its position is written
in the map for the subdividing edge. Then the center vertex is used to build the inner
structure of the new faces. An implementation of this can be seen in Listing 2.1. The
two vertex indices of the edge are packed into a unsigned 64 bit variable and used as a
key in the map.

Listing 2.1: To avoid generating duplicate vertices and store redundant information in
the vertex buffer, a map is used which maps the edge to its center vertex
when it is subdivided. When an adjacent face is getting subdivided, the
center vertex of the edge does not have to be generated again if it is found
in the map.

struct edge {
u32 from, to; // vertex indices

};

struct edgeHash {
u64 operator() (const edge e) const {

u64 ret = e.from;
ret <<= 32;
ret |= e.to;
return ret;

}
};

struct mesh {
std::unordered_map<edge, u32, edgeHash> edgeToCenterVertex;
/* other members:
- index buffer
- vertex buffer
...
*/

};

To be able to use the edge – consisting of the indices of the two connected vertices
– as the key in the map, the two unsigned 32 bit integers are packed into a single 64
bit value. Since the edge from vertex v1 to vertex v2 is semantically equivalent to the
edge from v2 to v1 there is an ambiguity in representing the edge. This can be solved by
always guaranteeing that v1 is always smaller than v2, or flipping them if needed when
packing them into an 64 bit integer. That’s why, when looking up an edge in the map,
there is only one key possible that has to be checked.

24

2.1. Generating a sphere

2.1.2 Index tree
Traditionally when rendering a mesh, the user has to provide a vertex buffer and
an index buffer holding the necessary information for the positions of the individual
vertices in the mesh and their connections. The vertex buffer is a list of vertices, so a
list of coordinates. The index buffer declares which vertices are forming triangles. It is a
list of triples of the indices of the vertices in the vertex buffer. An example of a vertex
buffer can be seen in Table 2.4, an index buffer is shown in Table 2.5 and the resulting
mesh is show in Figure 2.9.

Table 2.4: Sample vertex buffer with two dimensional coordinates that defines the po-
sition of the vertices. The buffer can be extended to three dimensional coor-
dinates by adding a third column.

index x y
0 0 1
1 -1 0
2 1 0
3 0 -1
4 3 0

Table 2.5: Sample index buffer describing the connections between the vertices from
Table 2.4. Each row corresponds to a triangle.

index v1 v2 v3
0 0 1 2
1 1 3 2
2 0 2 4
3 3 4 2

To be able to have more control over the mesh – to subdivide specific regions while
leaving others the same while generating new vertices – is hard with only the vertex
and index buffer. Suppose the planets mesh is an icosahedron at subdivision level 3.
According to Table 2.3 it has 642 vertices and 1280642 faces. Suppose now further that
the geometry on the backside of the planet is no longer needed and should be removed.
The backside cannot be completely deleted since then it requires much work to restore
the geometry later. The geometry has to be reduced in a controlled manner to restore
the original geometry of the icosahedron. This is not possible with just the index and
vertex buffer. Instead an index tree is used. An index tree consists of index tree nodes.
Each node corresponds to a triangle and contains the three indices of the vertices in the
vertex buffer. If the triangle is subdivided it also has pointers to its four children nodes.
The implementation can be seen in Listing 2.2. An image showing an exposed view of a
partially subdivided sphere using the index tree can be seen in Figure 2.10.

25

2.1. Generating a sphere

Figure 2.9: An example mesh created with the vertex buffer in Table 2.4 and the index
buffer in Table 2.4. The gray lines correspond to the edges of the mesh, which
are surrounding the faces (marked orange). The blue dots are the position of
the vertices.

Figure 2.10: Exposed view from the side over the generated geometry. The geometry
will be generated in a way so that the player will always face the side of
the planet that has a high level of detail. On the backside of the planet, the
geometry will not be generated.

26

2.1. Generating a sphere

Listing 2.2: Implementation of the index tree. Because an icosahedron has 20 faces, the
root has 20 children. Every other node has either 4 or 0 children. However it
is not known how many faces are currently represented in the tree. Because
of that, the exact number is stored in the attribute numberFaces in the
indexTree struct

struct indexTree {
u32 numberFaces;
indexTreeNode* children;

~indexTree() {
if (children) {

delete[] children;
}

}
};

struct indexTreeNode {
u32 v1, v2, v3; // vertex indices
indexTreeNode* children;

~indexTreeNode() {
if (children) {

delete[] children;
}

}
};

27

2.1. Generating a sphere

Subdividing a node

A fundamental benefit of using the index tree over the index buffer is being able to
generate more geometry in a specific region in a controlled manner. This can be done
recursively by subdividing the tree nodes until the tree’s leafs – the most subdivided
triangles – are reached and then generating new geometry on them. A sample imple-
mentation for subdividing the tree nodes can be found in Listing 2.3.

Listing 2.3: Recursive implementation to subdivide the whole sphere. When the leaf
nodes are reached the new geometry will be generated.

void subdivTreeNode(mesh* m, indexTreeNode* n) {
if (n->children) {

subdivTreeNode(m, n->children+0);
subdivTreeNode(m, n->children+1);
subdivTreeNode(m, n->children+2);
subdivTreeNode(m, n->children+3);

} else {
subdivTriangle(m, n);

}
}

The function that generates the new geometry then checks if the edges already have
been subdivided by the neighboring faces like described in section 2.1.1, by looking up the
edges in the edgeToCenterVertex map . If edge was not found in the map, a new vertex
will be created. Then the tree node creates the four new children of itself corresponding
to the four new faces created from the triangle represented by the tree node.

Reducing geometry of a node

When a part of the geometry is not needed anymore it can be deleted from the index
tree by simply deleting the children of a index tree node and freeing their memory. Since
this only affects the index tree, the vertices will still be present in the vertex buffer
and also be referenced in the edgeToCenterVertex map but not rendered any more. If
new geometry is generated and never deleted this will turn into a problem and will be
addressed in section 2.1.2. Sometimes it is better, if the vertices that are not used right
now are not deleted immediately after they are removed from the index tree. When the
player visits the area again after the faces were removed from the index tree – and the
vertices have to be rendered again – they do not have to be generated again if they still
are in the vertex buffer and in the edgeToCenterVertex. Like this they are cached and
not in use right now, but it is trivial to render them again by rebuilding tree nodes that
reference them.

28

2.1. Generating a sphere

Updating the geometry when the player moves around the planet

As the player moves or flies around the planet the geometry has to be updated all the time
because only the relevant geometry is shown to the player to improve the performance.
When the player has moved enough to trigger a geometry update, first the geometry
that is too far away has to be deleted from the tree. Like this for every of the 20 nodes in
the index tree it is checked if they contain faces that are too far away from the region of
interest. It makes sense not to check all of the faces in the index tree, because there are
possibly really many of them, where most of them also are not too far away because if
the player just moves enough to trigger the geometry update, most of the faces will still
be near enough. So what can be done instead is only checking the tree until a certain
depth on each branch. The value 2 seems to be a good balance between deleting enough
faces and not having to check many faces for their distance to the player. A value of 2
means that the children of the children of the triangles of the icosahedron are checked
for deletion but not their children. A triangle is considered in range, if it has at least
one vertex that is in range. A lower number means less checks and thus potentially more
vertices that are not deleted even if they are too far away. A higher number deletes more
faces that are too far away but the process could take exponentially longer since the
branching factor in the tree is 4.
Deleting the faces in the tree does not delete the vertices themselves. In general it is

not safe to delete the vertices of faces that are being deleted in the tree because these
vertices might be used by faces that are still near enough to not be deleted. The easiest
way to deal with the dead vertices is having a threshold of how many vertices are allowed
in the vertex buffer, regardless if they are rendered or not, and once the vertex count is
bigger than the threshold, do a full rebuild of the mesh and delete the old one. This is the
easiest solution and at the same time the slowest, because rebuilding all the geometry is
unnecessary overhead.
There is a way to find out which vertices in the vertex buffer are actually dead by

keeping track of by how many faces the vertices are used. However this information is
not really helpful because then the vertex buffer has to be defragmented, and all the
indices will be wrong. So additionally every index in the index tree, index buffer and the
edgeToCenterVertex has to be updated, which seems to be an expensive operation and
was not explored further.

Another way of cleaning up the vertex buffer is by rebuilding the index tree, enumer-
ating every vertex index and in parallel rebuild the vertex buffer. After that only the
edgeToCenterVertex map has to be updated. The algorithm that cleans up the whole
planet can be seen in Listing 2.4.

The key to this algorithm is the oldToNewIndices map. When, while traversing the
tree, the indices of a tree node are found in the map, it will be assigned to the updated
one. If indices are encountered that are not in the map yet, they will be assigned the
next free numbers and added to the map. At the same time the vertices at these indices
will be pushed into the new vertex buffer. After following this algorithm and visiting
every node in the index tree, the vertex buffer will only contain the vertices referenced
by the nodes in the tree. In section 4.3 the different approaches are compared.

29

2.1. Generating a sphere

Listing 2.4: The algorithm that is used to clean the planet from not needed vertex
information.

void cleanup(planet* p) {
auto n_vb_water = new CVertexBuffer(EVT_STANDARD);
auto n_vb_land = new CVertexBuffer(EVT_STANDARD);
auto oldToNewIndices = new std::unordered_map<u32,u32>;

for (u32 i = 0; i < 12; ++i) {
n_vb_water->push_back((*p->water->vertexBuffer)[i]);
n_vb_land ->push_back((*p->land ->vertexBuffer)[i]);
(*oldToNewIndices)[i] = i;

}

auto n_it = cleanTree(p->indexTree, p->water->vertexBuffer,
p->land->vertexBuffer, n_vb_water, n_vb_land, oldToNewIndices);

p->water->vertexBuffer = n_vb_water;
p->land ->vertexBuffer = n_vb_land;
p->indexTree = n_it;

auto n_etc = new std::unordered_map<edge, u32, edgeHash>;

for (const auto e : *p->edgeToCenterVertex) {
// skip if vertex is not used any more
if ((*oldToNewIndices)[e.second] == 0) continue;

// the indices in a edge have to be sorted
u32 from = (*oldToNewIndices)[e.first.from];
u32 to = (*oldToNewIndices)[e.first.to];

if (from < to) {
(*n_etc)[{from, to}] =

(*oldToNewIndices)[e.second];
} else {

(*n_etc)[{to, from}] =
(*oldToNewIndices)[e.second];

}
}

p->edgeToCenterVertex = n_etc;
}

30

2.1. Generating a sphere

Generating an index buffer from the tree

The index tree can then be used to extract an index buffer, containing the most sub-
divided faces, which correspond to the leaf nodes of the tree. Since an icosahedron has
20 faces, its index tree has 20 children. For each of the tree nodes it is checked if it has
further subdivision information, meaning if it has any children. If it has, the indices are
not written to the buffer but the children have to be checked recursively. This can be seen
in Listing 2.5. The function getIndexBufferFromTree gets the pointer to a indexTree
as a parameter and returns a new index buffer.

Listing 2.5: Simple recursive implementation of the algorithm to generate an index
buffer from the index tree

void writeIndicesToBuffer(indexTreeNode* n, CIndexBuffer* buff) {
if (n->children) {

for (u32 i = 0; i < 4; ++i) {
writeIndicesToBuffer(n->children+i, buff);

}
} else {

buff->push_back(n->v1);
buff->push_back(n->v2);
buff->push_back(n->v3);

}
}

CIndexBuffer* getIndexBufferFromTree(indexTree* t) {
// three vertices per face
auto buff = new CIndexBuffer(EIT_32BIT);

// the indexTree of an icosahedron has always exactly 20 children
for (u32 i = 0; i < 20; ++i) {

writeIndicesToBuffer(t->children+i, buff);
}
return buff;

}

31

2.2. Generating the terrain

2.2 Generating the terrain
In the previous section different methods were discussed for generating a sphere and
only generate and render the relevant parts using a tree structure to hold the geometry
in a hierarchical structure. This section continues with generating elevation information
and displacing the sphere to generate a planet base. Additionally a second not modified
spherical mesh will be used as the water on the planet. Like with the different methods
of generating a spherical mesh, two different methods of generating elevation data will
be presented. And a technique for a variable roughness around the planet and assigning
colors to the vertices are shown.

2.2.1 Noise based approach
As discussed in section 1.6 mapping a flat texture onto a sphere should be avoided if
possible to have equal information density around the sphere. To avoid having to map a
flat texture onto a spherical surface, a spherical noise map will be generated which can
directly be mapped onto the sphere. Like explained in subsection 1.4.4 simplex noise can
be n-dimensional. For this approach a tree dimensional simplex noise will be used since
the coordinates of the surface of the sphere are also three dimensional.
So when generating the planet surface, the noise map is queried with the yet undis-

placed vertex on surface of the sphere. It is important that the point used to query the
map lies on e surface of the sphere and is not just the average of its neighbors to have a
continuous noise map for the surface.
Typically when using simplex noise to generate a terrain multiple layers of noise at

different wavelengths to generate a fractal landscape. An example of this can be seen in
Listing 2.6. The function get3dNoiseHeightAt is used to find out the definite elevation
of a vertex on the sphere. In it multiple results of calling the function heightNoise
are being accumulated, which directly looks up a specific coordinate in the map. The
waveLen parameter specifies the wavelength of the noise, so the amount the point is
scaled by before it is looked up in the map. The different layers of noise can be seen as
having different purposes. The first call to heightNoise is scaled down by less than the
others because it will be used to generate the basic shape of the continents, therefore its
wavelength is high (so the point is scaled less in the noise field). A smaller wavelength
would result in more smaller continents. To add finer details to the planet more layers
will be added on top. Every noise layer tries to keep the overall shape of the planet but
add more details to it. That is why the noises are scaled down more, the finer details
the add to the planet.

2.2.2 Midpoint displacement based approach
As explained in subsection 1.4.4 midpoint displacement works by taking the midpoint of
an existing structure and displacing it. So when a triangle will be subdivided the three
new vertices will lie in the center of the edges and their height depends on the vertices
that the edges connects. A sample implementation can be seen in Listing 2.7.

32

2.2. Generating the terrain

Listing 2.6: Example implementation of a function to get the elevation of a point on the
sphere using fractal noise

// generates values between -1 and 1 then scales down
f32 heightNoise(f32 x,f32 y,f32 z, f32 waveLen, f32 scaleDown) {

f32 r;
r = noiseHeight->GetSimplex(x * waveLen, y * waveLen, z * waveLen);
return r * scaledown;

}

f32 get3dNoiseHeightAt(f32 x,f32 y,f32 z) {
f32 n = 0;

n += heightNoise(x, y, z, roughness * 200, 0.0009f);
n += heightNoise(x, y, z, roughness * 400, 0.00045f);
n += heightNoise(x, y, z, roughness * 2000, 0.0002f);
n += heightNoise(x, y, z, roughness * 4000, 0.0001f);
n += heightNoise(x, y, z, roughness * 8000, 0.00005f);
n += heightNoise(x, y, z, roughness * 16000, 0.000025f);
n += heightNoise(x, y, z, roughness * 32000, 0.0000125f);

return n;
}

33

2.2. Generating the terrain

Listing 2.7: Basic algorithm showing how to generate new points on the unit sphere and
displacing them with the midpoint displacement method.

vec3 oldVertex1 = edgeVertex1;
vec3 oldVertex2 = edgeVertex2;
normalize(&oldVertex1);
normalize(&oldVertex2);

vec3 newVertex = oldVertex1 + oldVertex2;
normalize(&newVertex);

f32 vertex1_height = vector_lengh(&oldVec1);
f32 vertex2_height = vector_lengh(&oldVec2);

f32 scaledown = vector_lengh(&(oldVec1-oldVec2));
f32 newVertex_height = (vertex1_height + vertex2_height) / 2;
newVertex_height += (noiseValue*scaledown);
newVertex = newVec * newVertex_height;

To generate a new vertex the average of its two normalized neighbors is taken and
normalized so the new vertex lies exactly between its neighbors in terms of latitude and
longitude. Then to generate the elevation information, the average height of its neighbors
is taken and a normally distributed random value is added on top. The random value
however is scaled down by the distance of the two vertices, since the distance always
halves, it has the same effect as multiplying it with c 1

2i where c is the distance of two
adjacent vertices in the icosaeder at subdivision level 0 and depends on the planets radius
and i is the subdivision level. As a last step, the new height is applied to the vertex by
multiplying it with its new height.
But since the same portion of the planet should look the same every time the player

visits it – and the LODing system might have deleted the geometry in between the visits
– the same random value has to be the same for every vertex every time. A way of doing
this is using the vector on the sphere before applying the height information as seed for
the normally distributed random number generator. To get a single value from a vector
to be used as a seed, a hashing function can be used.
The hashing function in Listing 2.8 works by reinterpreting the floating point values

as signed integers and adding them together. With this method the same random values
will be generated for the same vertices. Floating numbers have a limited accuracy but
the same vertex should always have the exact same position because the vertices in the
iteration before have to be at the exact same position since they all came from the first
set of 12 vertices, which will always be the same. The height information at some vertices
has no influence on the position of the new vertex because it is normalized before being
used as a reference point for the new vertex. Even if the calculation of the normalized

34

2.2. Generating the terrain

vector is not fully accurate, it will be wrong by the same amount every time, making
the process deterministic.

Listing 2.8: Hashing algorithm for a three dimensional vector. Idea
taken from: https://cs.stackexchange.com/questions/37952/
hash-function-floating-point-inputs-for-genetic-algorith

s32 getSeedFromCoordinate(f32 x, f32 y, f32 z) {
s32 floatAsInt;
s32 h = 1;

floatAsInt = *(s32*)(&x);
h = 31 * h + floatAsInt;

floatAsInt = *(s32*)(&y);
h = 31 * h + floatAsInt;

floatAsInt = *(s32*)(&z);
h = 31 * h + floatAsInt;

return h;
}

A big benefit of using the midpoint displacement method over the simplex noise
method is being able to use preexisting data. The algorithm works iteratively, mean-
ing using the data from the previous iteration. This makes it possible to feed a base
mesh of the planet into the program and let it calculate as many more steps as are
necessary. This gives artists a great flexibility to only define the basic structure of the
planet, for example until subdivision level 2 and let the program generate the rest. To
illustrate this possibility, elevation information was queried from the Google Maps API
at the locations the subdivided icosaeder has its vertices. A visualization of the vertices
of the icosaeder mapped to the Google Maps map can be seen in Figure 2.11
The data from Google Maps is stored in a file where each line corresponds to a single

vertex in the icosahedron mesh and contains the queried latitude, longitude and the
elevation data. When read into the program the latitude and longitude will be rounded
to a few decimal places as a 32 bit wide floating point value and then packed together
into a single 64 bit unsigned integer value that can be used as a key in a map to query
the elevation or stored sorted in an array. With this method the elevation data from
earth could be stored and queried up to subdivision level 8 without missing a height
information.
The extended midpoint displacement algorithm also needs the elevation information

as parameter and when generating a new vertex, first checks if elevation information for
its position is available, and if it is, applying it directly or if there is none, generate it in

35

https://cs.stackexchange.com/questions/37952/hash-function-floating-point-inputs-for-genetic-algorith
https://cs.stackexchange.com/questions/37952/hash-function-floating-point-inputs-for-genetic-algorith

2.2. Generating the terrain

Figure 2.11: The position of the vertices of an icosahedron at the first three subdivision
levels converted to latitude and longitude and plotted on the world map

36

2.2. Generating the terrain

the same way as described above.
Since the midpoint displacement method is able to work on a given base mesh, it

is possible to use it in combination with the 3d noise method. The base mesh can be
created by using the 3d noise approach for the first few LOD levels and after that the
midpoint displacement algorithm can be used to generate the new geometry starting
from the existing elevation information.

2.2.3 Variable roughness
In terrain generation the roughness describes how fast the height can change over the
distance. When the overall roughness is set low, the planet tends to have less but bigger
continents, while setting it higher results in many smaller islands. To add more variation
to the generation and avoid having the same island or continent size on the whole planet,
the roughness can be generated depending on the position on the planet. The updated
function to generate 3d noise values can be seen in Listing 2.9.

Listing 2.9: The roughness has impact on the wavelength when looking up the height
at a specific position while the roughness itself is depending on the position.
Since the roughness is used as an input to the height noise map, the output
is a warped noise

f32 get3dNoiseHeightAt(f32 x,f32 y,f32 z) {
f32 n = 0;// = -0.0001f;

// normally distributed between 0 and 1
f32 roughness = getRoughnessAt(x, y, z);

n += heightNoise(x, y, z, roughness * 200, 0.0009f);
n += heightNoise(x, y, z, roughness * 400, 0.00045f);
n += heightNoise(x, y, z, roughness * 2000, 0.0002f);
n += heightNoise(x, y, z, roughness * 4000, 0.0001f);
n += heightNoise(x, y, z, roughness * 8000, 0.00005f);
n += heightNoise(x, y, z, roughness * 16000, 0.000025f);
n += heightNoise(x, y, z, roughness * 32000, 0.0000125f);

return n;
}

For that a tree dimensional noise map can be used, for example simplex noise. The
wavelength should be fairly low so that the roughness does not vary too much since this
looks unnatural and later will produce results that look like warped noise. An example
of a landscape with strong warped noise features can be seen in Figure 2.12.

37

2.2. Generating the terrain

Figure 2.12: If the wavelength in the roughness map is set too high, the terrain will
show noticeable features of warped noise.

Instead the wavelength should be so low that around the planet some larger areas have
a noticeable higher roughness and thus smaller islands but some continents should still
be large. This helps creating the illusion of plate tectonics. Or if realism is not a goal of
the generation but it is rather desired to create a fantasy world, a smaller wavelength
can be used so that the warping produces a more fantasy like terrain like in Figure 2.12.

2.2.4 Coloring the terrain
So far only the generation of the elevation of the terrain was discussed. In this chapter
a method to color in the geometry is presented. The method is based on coloring in the
vertices, the resulting color in between the vertices will be interpolated. An alternate
solution will require future research and will be shown in chapter 5. Primarily the colors
visible from the orbit of the earth are dependent on its latitude. Satellite images of the
earth show, that near the poles the prominent color is white, because of snow and ice. On
the way down to the equator, brown to greenish colors are prominent in areas of tundra.
In desert areas the terrain has a color resembling the color of sand. A simple algorithm
just checks the latitude of the vertex that should be colored in and solely depending from
that assigns a color. For this a simple linear gradient can be used. The implementation
and other usages of gradients will be discussed in section 3.1. For a simple approximation,
these colors can be assigned to their respective latitude in the gradient and mirrored on
the southern hemisphere. To improve on this coloring scheme, areas next to water are
colored in more green than otherwise, since the water is a source for plants to grow and
make an area appear more green. It is however hard to determine how far away water

38

2.2. Generating the terrain

exists, especially because the vertex colors are assigned during the generation, so it is
possible that not all relevant data is available how close or even if there is near water
at all during generation. Instead it has proven to be a good approximation to use the
height over the water level to determine how close water is found. Near seas or oceans
this works really well, since the water level is the same around the planet. If however
the terrain has really low elevation near the water level but is not close to the water it
will be colored in green regardless.

39

3 Implementation details

Throughout the implementation, small design choices or implementations have proven
to work really well and allowed for a better runtime or easier and more maintainable
code base. This section will introduced these concepts. Not all patterns and methods are
exclusive to procedural planet generation and can also be used in other contexts.

3.1 Gradients
When setting up the equations for the view range in respect to the players distance
from the planet or to determine the color of a piece of terrain, the values should be
continuous in that they do not have noticeable jumps. For example the colors should not
have visible borders but flow into each other. Instead of setting up many linear equations
which linearly interpolate a value table like Table 3.1 gradients can be used to easily look
up arbitrary values without the need of setting up the linear functions. Gradients are
based on lerp, an easy mechanism for linear interpolation. The fundamental equation
for lerp is

lerp(A,B, t) = t ·B + (1− t) ·A

Table 3.1: Table showing the view range on the planet given the players distance from
the planet

distance view range
0 3
5 6

10 10
15 15

> 25 20

where A and B are values or vectorial values and t is the interpolation step in the range
[0, 1]. A value of t = 0 just returns A and a value of t = 1 returns B, for every number
between that the weighted average between A and B is calculated. The algorithm to
look up a value in a gradient first has to check in which segment on fe gradient the
desired position is, in other words which line in the gradient’s table similar to Table 3.1
is relevant. Then it calculates the t value based on the distance to the A and B value
specified by the line in the table.

40

3.2. Mesh optimization

t = point−A
B −A

Then the gradient value can be determined by evaluating the lerp function with these
parameters.

3.2 Mesh optimization
Until now, for the planets two meshes are used. One for the land mass and the other
one for the water. It is however enough to store only one index tree and index butter
as well as the edgeToCenterVertex map and use it for both meshes, since both meshes
are always updated simultaneously and the patch on the surface of the mesh that has
a high definition is based only on the players position and will always be the same for
both meshes. This gives a huge performance improvement, because the mentioned data
structures only have to be updated once for both land and water.

3.3 Multi threaded generation
To avoid performance issues and low frame rates, the meshes can be updates in parallel
to the rendering using a second thread. This thread waits in the background until the
mesh should be updated and then generates the new mesh and once it is finished, swaps
the new mesh with the old one. The implementation of the thread logic can be seen in
Listing 3.1.

3.4 Hook based memory management
When setting up the terrain generation multi threaded like described in section 3.3, the
meshes are generated and then swapped out with the old ones. However the old ones can’t
be deleted in the terrain generation thread because the render thread still expects the
geometry to be there. Instead a hook based memory management system has proven to
work really well. Hooks are a concept that allow execution of user defined code at specific
events. A hook is a collection of functions. So for the purpose of the planet generation
two hooks where created the systemShutdownHook and the afterMeshReloadHook that
are executed before the program exits and after the mesh has been reloaded. The hooks
are implemented as std::vector of std::function. Since c++ lambdas can be implicitly
casted to a std::function is really easy to insert code into a hook that will be executed
later. The implementation of the hooks can be found in Listing 3.2 and a usage can
be seen in Listing 3.3. Using these hooks it was easy to prevent memory leaks, and in
general specify the lifetime of an object at creation time.

41

3.4. Hook based memory management

Listing 3.1: The thread logic checks repeatedly if the meshes need to be updates and
calls a procedure to subdivide the planet at the given position in that case
so that the players position has a high definition in the mesh.

while (true) {
if (info->shouldStart) {

info->isBusy = true;

subdivPlanetAt(info->p, &info->playerPos, info->playerDist);

info->isBusy = false;
info->shouldStart = false;
info->shouldUpdate = true;

} else {
// check 50 times a second if the terrain needs to be updated
Sleep(20);

}
}

Listing 3.2: The implementation of hooks as collection of std::function<void()>

#include <vector>
#include <functional>

#define runHook(hook) \
for(auto f : hook) \

f(); \
hook.clear()

#define addHook(hookName, lambda) \
hookName.push_back(lambda)

extern std::vector<std::function<void()>> systemShutdownHook;
extern std::vector<std::function<void()>> afterMeshReloadHook;

42

3.4. Hook based memory management

Listing 3.3: The hooks take a lambda as parameter and can be used to delete the old
geometry when the planet is getting reloaded

addHook(afterMeshReloadHook, [=] {
delete oldLand;
delete oldWater;
delete oldTree;
delete oldIBuffer;
delete oldMap;

});

43

4 Results and discussion

The different methods discussed in the previous sections er all implemented and com-
pared to each other. This section is dedicated to showing the results of the implementa-
tion and analyzing the performance. The visual results featuring the coastline and the
color generation are presented and the runtime of the generation and cleanup algorithms
is compared. In the end a critical look at the available parameterization with the given
generation algorithms is taken and the general use cases of the index tree are analyzed.

4.1 Coastline
When comparing the coastline resulting from a midpoint displacement generation in
Figure 4.1 to the coastline when generating using 3d noise in Figure 4.2, it seems the
coastline in the first image looks cleaner and more realistic.

Figure 4.1: The coastline resulting
from the midpoint
displacement approach
looks sharp and shows
fractal features

Figure 4.2: When generating with
a 3d noise funciton hte
coastline does not ap-
pear as sharp as the
coastline generated with
midpoint displacement
in Figure 4.1

This is probably due to the layered noise values. The noise layers with the low wave-
length which are responsible for the fine details that account for the fractal looking
landscape will create little islands next to the main land.

44

4.2. Coloring

4.2 Coloring
The colors play an essential role in as how realistically the result is perceived. The colors
of the terrain in Figure 4.3 and Figure 4.4 were chosen to mimic the colors of earth that
can be found on satellite images. To prevent the colors to just appear as parallel strips
of colors, the y values of the coordinates that are used for the color determination are
changed by another noise field. This adds variation and is an easy way to make the colors
look more realistic.

Figure 4.3: Vertex color and a dis-
torted gradients were
used to color in this
planet

Figure 4.4: The gradient colors were
chosen to resemble sa-
tallite images of the
earth

4.3 Performance
During the implementation of the planet generator, the performance was measured and
this section will illustrate the performance achieved by different settings or algorithms.
Although the absolute numbers will not be the same as on other machines, they give
an impression on how much influence some settings or algorithms have on the runtime.
All tests were run on a Windows 10 machine with a Intel(R) Core(TM) i7-4790k cpu
running at 4.00GHz and a NVIDIA GeForce GTX 1070 and 8GB of RAM.

To make the working conditions similar for all tests, the planet will be generated at
the same subdivision levels with a constant view range large enough to fully subdivide
half of the planet. The results can be seen in Table 4.1. The cleanup algorithm works like
described in section 2.1.2. The treeCheckDepth variable controls the maximum depth
in the tree that the faces will get checked for generation. This variable was introduced
because it seems easier and more efficient to check only a few nodes deep if they are
in range and then when reached the treeCheckDepth depth, just subdivide everything
because otherwise possibly really many faces would have to be checked if they are in

45

4.3. Performance

range. However looking at Table 4.1 it seems it is more efficient to make more checks
rather than blindly generating the geometry. For the measurements in the last row,
treeCheckDepth was set to 10, meaning it never skipped a check for all subdivision
levels and it performs better for all tested subdivisions than only checking until depth 5
in the row above.

Table 4.1: Comparing the average runtime of a full rebuild, a single cleanup run and
updating the geometry with the subdivision levels specified. The number after
"update" is the depth in the tree that is checked for generation.

algorithm
subdivisions 4 5 6 7 8

full geometry rebuild 10ms 38ms 105ms 616ms 2453ms
cleanup 5ms 20ms 84ms 345ms 1624ms
update (5) 1ms 4ms 19ms 84ms 389ms
update (10) 1ms 4ms 16ms 77ms 336ms

When taking a look at the cleanup run it turned out that a big portion of the run time
was used on updating the indices in the edgeToCenterVertex map. For test purposes the
code to create the updated map was commented out and instead an empty map was
used. This however creates many duplicate vertices as the algorithm for generating new
vertices does not find the old existing vertices in the map and generates them again.
This leads to fewer generation runs until the vertex buffer has to be cleaned up again.
The run times for single cleanups and the average generation time as well as the average
runs before a cleanup can be seen in Table 4.2. As the vertex cleanup threshold 75% of
the vertices of a subdivided icosahedron at that subdivision level were used.

Table 4.2: Comparing the two approaches to update the edgeToCenterVertex map ("up-
date map") and to leave it empty ("clear map")

test case

subdivisions
max vertex count 4

1922
5

7682
6

30722
7

122882
8

491522

clear map: cleanup time 5ms 15ms 55ms 253ms 1016ms
update map: cleanup time 8ms 25ms 99ms 417ms 1758ms
clear map: runs before cleanup 163 206 201 79 21
update map: runs before cleanup 288 305 282 129 26
clear map: overall aver. runtime 1ms 4ms 16ms 83ms 438ms
update map: overall aver. runtime 1ms 4ms 16ms 70ms 440ms

The overall run times for both methods, clearing the map and updating the map are
not far apart for every subdivision level. Which implies that in general it does not matter
if the indices in edgeToCenterVertex are updated during the cleanup. Which raises the
question if the map is necessary at all. A benchmark testing the runtime without using

46

4.4. Parameterization

the map at all compared to the previous run with updating the map from Table 4.2 can
be seen in Table 4.3.

Table 4.3: The edgeToCenterVertex map is necessary to keep the overall runtime low,
even if clearing or updating it does not seem to make a difference in Table 4.2

test case

subdivisions
max vertex count 4

1922
5

7682
6

30722
7

122882
8

491522

no map: cleanup time 6ms 21ms 82ms 326ms 1492ms
update map: cleanup time 8ms 25ms 99ms 417ms 1758ms
no map: runs before cleanup 3 4 6 7 4
update map: runs before cleanup 288 305 282 129 26
no map: overall runtime 3ms 12ms 41ms 161ms 999ms
update map: overall runtime 1ms 4ms 16ms 70ms 440ms

When not using the map, the runs before cleanup shrink drastically forcing a cleanup
much faster and the overall run time is slower as a result.
When comparing the two generation methods midpoint displacement and 3d noise, it

seems that midpoint displacement is consistently around 20% slower than the 3d noise
method, even with seven layers of noise. The midpoint algorithm has to calculate the
elevation for the two neighboring vertices and additionally hash the position of the new
vertex to get an seed for the normally distributed random number generator. Further
studies are needed to improve on the way that midpoint displacement can be carried out
on the surface of the sphere.

4.4 Parameterization
There are a few different ways how the user can influence the outcome of the generated
planets. This section is dedicated to the parameters the user can set to generate a planet
that is closer to the users expectation as a completely random planet.

4.4.1 Water level
By default the planet is made up from the water and the land mass mesh. The water
mesh is a subdivided icosahedron with no additional hight information, thus all vertices
lie on the surface of a sphere with the planets radius. The terrain is then generated using
a normally distributed noise function. Thus about half of the terrain will be above water
level and the rest will be below. On earth, 71% of the surface is covered by the oceans
[Ins].
For the generated planet to look more earth-like and realistic, the percentage of surface

covered with water should resemble the ratio in earth. As can be seen Figure 1.1 in
section 1.3, the spread of the normal distribution is depending on the used σ value.
Depending on σ a small negative value should be picked that is used as a basis of the

47

4.5. Usages of the index tree

accumulation of the noise values to lower the average height of the terrain. If generating
with the midpoint displacement method this value will just be added onto the calculated
new height, to also lower the terrain. Like this the user has more control over the water
levels and can chose to generate a more earth-like planets or ocean planets where there
are only small continents and islands, depending on the desired setting.

4.4.2 Coloring
The colors of the planet are given based on a color gradient that is provided by the user.
In the simple implementation, the absolute value of the y coordinate is used as to look
up the color value from the gradient. As an effect the colors are mirrored on the equator
plane. If the user wants to have more control it is trivial to change the implementation
so that the planet can have a different gradients on both hemispheres. The colors in the
screenshots in section 4.2 were chosen to resemble the colors on satellite images of the
earth but depending on the desired setting any colors can be chosen to be also able to
generate alien looking planets.

4.4.3 Terrain generation
When using the 3d noise approach to generate the terrain, the user also has control over
the different layers of noise that will be added on top of each other to produce the height
data. To produce a realistic looking terrain with a fractal-like coast line, the wavelength
should be doubled form one layer to the next, but is should be scaled down by double the
amount as the layer before. Like this it is possible to introduce self similarities. However
the lowest layer of the noise functions can be chosen to model the desired sized of the
continents since it is the layer that is scaled down the least amount. By choosing a higher
value for the wavelength, more and smaller continents and islands will be generated. If
the wavelength is chosen bigger, less but bigger continents are created.
Also the coordinates on the sphere are not directly used as input to the height noise but

rather they are scaled by the roughness at this point. If the roughness is low, the resulting
wavelength will be low and the terrain looks less rough. However if the roughness map
itself uses a wavelength that is too small, the resulting terrain will show features of
warped noise, like seen in Figure 2.12. in subsection 2.2.3 This can be used deliberately
as an effect, if creating fantasy like worlds is the goal.

4.5 Usages of the index tree
The index tree is a major result of this work and can also be used for other purposes
other than holding geometrical data for planets. The benefit of using the index tree over
just the index buffer or an octree is that is natively corresponds to the topology of the
mesh and makes LODing very easy. In general the index tree can be used when different
parts of the model should have different levels of detail. To generate the next LOD level,
there must exist concrete rules to place the vertices so that te geometry will always look
the same, or alternatively the vertex position has to be stored in a way that can be looked

48

4.5. Usages of the index tree

up upon generation like done with the earths elevation information in subsection 2.2.2.
However the use cases are not limited to spherical meshes or even triangular meshes as
long as there exists a clear rule set how the new vertices are generated. Because of the
nature of a tree structure, most operations like generating or deleting geometry can be
done in logarithmic time in respect to the number of nodes since only certain branches
have to be explored. A cleanup or the generation of an index buffer requires linear time,
since every node has to be visited.
To use the index tree for an arbitrary mesh, the faces of the lowest LOD level will be

the children of the root tree node. In the example of generating planets there are the
20 faces of the icosahedron but this depends on the structure of the mesh that should
be represented. Then, depending on the camera’s position, the area of interest can be
determined and the tree nodes that lie in this area should be subdivided until the desired
level of detail is reached. If an area is not needed anymore it can be deleted by deleting
the children of the tree nodes that encapsulates the unneeded geometry. Furthermore
the vertex buffers can be cleaned from dead vertices like described in section 2.1.2.

49

5 Future work

This work had its focus on the more technical side of generation and representing the data
in the memory. Even these aspects may not be optimal, but serve as a solid foundation
for future work in any case and enable for more research to make the resulting planets
appear more realistic. This section introduces possible next fields that can be explored
that are based on this work.

5.1 Sharp cliffs with overhangs
A limitation of the current implementation is that the resulting terrain can never have
sharp cliffs and overhangs, because the terrain only consists of a displaced spherical base
mesh. To allow for cliff and overhangs, a position given by its latitude and longitude
could have multiple vertices stacked on top of each other, for example one on the surface
of the overhanging cliff and one on top of the cliff.
A simple solution is, when generating new vertices to also allow the displacement on

the sphere and not only in the height. This displacement should however be small and
only noticeable on the last subdivision steps, since the overall vertex density should stay
roughly equal around the sphere. With this technique little overhangs will be possible.
When it is however wanted to create extreme overhangs like caves, other methods have
to be researched.

5.2 Texturing
Right now the mesh uses vertex colors to color in the terrain. The colors in between the
vertices are interpolated between the colors of the surrounding vertices. Like this it is
impossible to use high definition textures, since at every pixel there would have to be a
vertex and so the number of vertices would be too large to run performantly. Instead a
image texture can be mapped onto the surface on the planet to create a high resolution
texture of the ground. However as described in section 1.6, when mapping a plane onto
a sphere the mapping is never perfect in that the information density is inconsistent.
What can be done instead is generate a texture for each face, as an additional attribute
for every index tree node. The visible size of the triangles on the screen should always
be roughly the same since according to section 1.5 geometry nearer to the player has to
be more subdivided and geometry farer away from the player has to be less detailed.

50

5.3. Water level

5.3 Water level
Until now the water level is constant around the planet. This means that there will never
be land that is under sea level, even if it is technically physically possible. For example
parts of the Netherlands have a negative elevation compared to the sea level. Also it
is impossible to have lakes higher than sea level. This can be fixed by giving parts of
the water mesh a higher or lower elevation. However to prevent visibly uneven water
surfaces, care has to be taken to have an even water surface at all times – the surface of
the water is only allowed to be uneven under the ground.

5.4 Biomes
To create a richer diversity of sceneries different biomes could be generated. Each position
on the world would be assigned to a biome or each position in the world has a weighted
average as its biome influenced by the biome center points. Biomes should probably
also be dependent on the latitude to provide realistic looking biomes. A good basis for
the biomes can be a 3d cell noise where each cell corresponds to a biome. The seeds of
the cells should be placed so that the resulting biomes seem natural. For example near
the equator desert or rain forest biomes should be placed. To avoid the sharp corners
between the cells, the cell noise can be warped using a simplex noise.

5.5 Clouds
When looking at the earth from the same distance as in the screenshots in chapter 4,
the observer would not have such a clear sight on the terrain because there are clouds.
Typical cloud formations can be seen in Figure 5.1.
Because of the nature of air, particles and even whole streams of air near each other

move roughly in the same directions and some cloud formation resemble the looks of
a warped noise field and might be able to be generated using warped noise. Other
formations like the vortex shaped storms require another technique to be generated. To
avoid placing storms using the vortex generation method over existing clouds generated
by warped noise, the vortexes should be generated first. After that, the warped noise
clouds will be placed on top of the whole world but leaving out the areas that are affected
by storms. Since it seems that there are no regular clouds near the storms.

51

5.5. Clouds

Figure 5.1: Typical cloud formations featuring typhoons and tropical storms [Age]

52

6 Summary

In this work a broad overview of the fundamentals and different methods of procedural
generation was given. The different types of procedural generation were discussed and
its usages shown. The problems arising when mapping flat textures onto a sphere where
explained using the two projection methods mercator projection and peirce quincuncial
projection. To avoid projection issues the terrain was generated directly on the sphere.
For that, different kinds of spherical meshes have been introduced and compared to each
other. Since the icosahedron has a relatively consistent vertex density it was chosen as
a base mesh for the planet generation. To be able to have a adaptive level of detail, the
index tree was introduced and it was explained how it can be used to increase or decrease
the LOD in specific areas. To generate the actual elevation information, two methods
were presented. The first one is based on 3d noise functions. By adding multiple layers
of noise with different wavelengths and scaling them accordingly, a fractal noise can be
created to mimic the fractal looking coastline shapes on earth. The second approach, the
midpoint displacement method, generates a fractal noise incrementally. An advantage of
using the midpoint displacement method is, that it can work with preexisting elevation
information. To explore this, a mechanism to store and load elevation data was shown
and the elevation data from the earth was used to demonstrate the ability to load the
earth’s elevation up until a certain level of detail and from that point on generate the
remaining geometry using midpoint displacement. Both methods work directly on the
sphere and no projection is required. A method involving another noise function was
shown to achieve a varying level of detail across the surface of the planet so that some
areas appear rougher and some are rather flat. Using gradients, the vertices could be
colored in with colors that resemble satellite images of the earth to look more realistic.
To avoid strips with the same color an additional mechanism to add variance to the
colors was shown. The different methods and implementations were then compared to
each other and the results were discussed. This work serves as a foundation for future
research allowing the generation of more realistic earth-like planets.

53

7 References

[Age] Japan Meteorological Agency. Japan meteorological agency’s website. http:
//www.jma.go.jp/jma/indexe.html.

[Apa] Apavlov. Apavlov’s weblog. https://apavlov.wordpress.com/2011/08/24/
bush/.

[Ast] Astroneer. Astroneer’s website. https://astroneer.space/.

[Bae11] John Baez. Fool’s gold. http://math.ucr.edu/home/baez/golden.html, 2011.

[Coo09] Stephen Coombes. The geometry and pigmentation of seashells. Techn. Ber.
Department of Mathematical Sciences, 2009.

[Ins] Hawaii Pacific University Oceanic Institute. Aqua facts. https://www.
oceanicinstitute.org/aboutoceans/aquafacts.html.

[Law97] Jim Lawrence. A short proof of euler’s relation for convex polytopes. Cana-
dian Mathematical Bulletin, 40(4):471–474, 1997.

[Lie16] Jacob Liechty. https://www.reddit.com/r/Astroneer/comments/56z055/
have_the_developers_gone_into_detail_on_the/, 2016.

[Mak] MakeHuman. Makehuman’s website. http://www.makehumancommunity.org/.

[Pei79] C. S. Peirce. A quincuncial projection of the sphere. American Journal of
Mathematics, 2(4):394–396, 1879.

[Per10] Markus Persson. Hrmpth. trade-offs. https://notch.tumblr.com/post/
729098863/hrmpth-trade-offs, 2010.

[Per11] Markus Persson. Terrain generation, part 1. https://notch.tumblr.com/
post/3746989361/terrain-generation-part-1, 2011.

[Qui] Inigo Quilez. Inigo quilez’ website. http://www.iquilezles.org/www/
articles/warp/warp.htm.

[Ran06] Bill Rankin. Wall maps of the world. http://www.radicalcartography.net/
?projectionref, 2006.

[Sil18] Bernard W Silverman. Density estimation for statistics and data analysis.
Routledge, 2018.

54

http://www.jma.go.jp/jma/indexe.html
http://www.jma.go.jp/jma/indexe.html
https://apavlov.wordpress.com/2011/08/24/bush/
https://apavlov.wordpress.com/2011/08/24/bush/
https://astroneer.space/
http://math.ucr.edu/home/baez/golden.html
https://www.oceanicinstitute.org/aboutoceans/aquafacts.html
https://www.oceanicinstitute.org/aboutoceans/aquafacts.html
https://www.reddit.com/r/Astroneer/comments/56z055/have_the_developers_gone_into_detail_on_the/
https://www.reddit.com/r/Astroneer/comments/56z055/have_the_developers_gone_into_detail_on_the/
http://www.makehumancommunity.org/
https://notch.tumblr.com/post/729098863/hrmpth-trade-offs
https://notch.tumblr.com/post/729098863/hrmpth-trade-offs
https://notch.tumblr.com/post/3746989361/terrain-generation-part-1
https://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://www.iquilezles.org/www/articles/warp/warp.htm
http://www.iquilezles.org/www/articles/warp/warp.htm
http://www.radicalcartography.net/?projectionref
http://www.radicalcartography.net/?projectionref

7 References

[Smi84] Alvy Ray Smith. Plants, fractals, and formal languages. SIGGRAPH Comput.
Graph., 18(3):1–10, January 1984.

[Sny78] John P Snyder. The space oblique mercator projection. Photogramm. Eng.
Remote Sensing, 44:585–596, 1978.

[TYSB11] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron
Browne. Search-based procedural content generation: A taxonomy and sur-
vey. IEEE Transactions on Computational Intelligence and AI in Games,
3(3):172–186, 2011.

55

	Introduction
	Definition of procedural generation
	Motivation of procedural generation
	Random numbers
	Types of generation
	Feature based
	Grammar Based
	Agent based
	Noise based

	Level of Detail
	Chunks
	Spatial hierarchies

	Problems when generating on a sphere
	Mercator projection
	Peirce quincuncial projection
	Drawbacks of map projections

	Games and comparisons
	MineCraft
	Astroneer

	Generating planets
	Generating a sphere
	Base mesh
	Index tree

	Generating the terrain
	Noise based approach
	Midpoint displacement based approach
	Variable roughness
	Coloring the terrain

	Implementation details
	Gradients
	Mesh optimization
	Multi threaded generation
	Hook based memory management

	Results and discussion
	Coastline
	Coloring
	Performance
	Parameterization
	Water level
	Coloring
	Terrain generation

	Usages of the index tree

	Future work
	Sharp cliffs with overhangs
	Texturing
	Water level
	Biomes
	Clouds

	Summary
	References

