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Abstract

With more geospatial data becoming available each year, the demand for interactive
2D and 3D visualization solutions grows. This includes the still in-development
TallShipEngine, whose developers plan to implement a specialized interactive 3D GIS
for all device types supported by the engine.

With this thesis, we design the basics of such a system. It provides capabilities
for visualizing common geodata sources of different spatial reference systems in the
same environment and focuses on creating an easily extendable layer structure with
a low impact on the engine’s real-time performance. The resulting implementation
allows adjustable triangulated and line-based mesh creation for vector data, channel
conversion for raster data as well as object creation for POIs.

The work presented in this thesis could be used as a starting point for the implemen-
tation of a specialized interactive visualization for a selected use-case with a fixed set
of geodata requirements. The idea of a system for fire department coordination was
pursued throughout this thesis, hence the focus on German geodata sources and scene
preparation in advance.

It was found, that an advanced understanding of any used geodata is required to
implement optimized visualizations of this data.
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1. Introduction

In the recent worldwide pandemic, the “GIS [Geographic Information System] use for
COVID-19 has been the most comprehensive and effective one to date” [23]. Many different
regional and global interactive online maps were used by the population to monitor
the latest infection trend. In such an overview, regions can be compared by difference
in color or symbol size. When selecting a region, its current statistics and past develop-
ments are shown. Additionally, a growth is expected for the 3D geospatial market [14]
which also results in an increasing demand for customized visualization solutions.

The significant increase of employees working from home showed an additional need
for collaborative infrastructure and frameworks in general [8]. According to Sun and
Li [29], this is an ongoing research area of the geographic sector in the form of real-time
collaborative GIS, which show high potential in application scenarios for urban project
planning specialists, emergency operations or public meetings.

In this thesis, a system for visualizing common geodata formats is designed and
implemented using the TallShipEngine. This 3D real-time engine was created to support
a variety of device types in a collaborative environment, examples include: interactive
touch tables, Augmented Reality (AR) and Virtual Reality (VR) hardware as well as
tablets. The possibility to visualize geodata on these platforms creates a foundation for
further research of specialized interactive geodata visualizations.

Beforehand, geodata basics as well as the used data sources for this thesis are
introduced. Followed by a presentation of GIS software and a discussion about the use
of real-time 3D engines for the creation of such an application. Then, different details
about the implementation results are presented. In the end, current limitations as well
as connection points for future work are discussed.
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2. Geospatial Data

In this chapter, components of geospatial data (alias geodata) are introduced, followed
by a differentiation of the two data types raster and vector data. Afterwards, different
file formats for storage and the used library for interfacing this data are presented.
Finally, the geodata sources used for the creation of this thesis are introduced.

2.1. Spatial Reference System

A Spatial Reference System (SRS) enables locating geographic objects in a common
space, which is based on the earths surface [7]. They have differences in accuracy,
computational complexity and applicable regions, but for geodata, coordinate transfor-
mations into different SRS are available, for example with tools included in the used
Geospatial Data Abstraction Library (GDAL). Coordinates are either angular (longitude
and latitude) for geodetic SRS or projected on orthogonal axes (x and y) for cartesian
SRS, both types allow usage of height as a third component [7]. Similar to most online
maps, mainly projected SRS were used for this implementation.

As spatial coordinates require high precision, they are stored in 64bit floating-point
numbers [5]. Popular SRS are listed with an assigned code in the global European
Petroleum Survey Group (EPSG) database, managed by the Geodesy Subcommittee
of the Oil and Gas Producers [27]. There are several online services for acquiring
information about different EPSG codes from this database, for example [13] was used
throughout this thesis. The globally most known and used SRS are:

World Geodetic System (WGS) 84 - EPSG: 4326 Used by the Global Positioning
System (GPS), unit: degrees, ellipsoid

Pseudo/Web Mercator - EPSG: 3857 Used by most online map services, unit: me-
ters, WGS 84 projected on a flat, rectangular and tileable surface

The details are explained in [7] and [27].
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2. Geospatial Data

2.2. Raster Data

Figure 2.1.: Multi channel DOP raster
data of the TUM univer-
sity campus (via WMS)
[10].

According to Pingel [22], raster formats are "well
suited" for representing continuous spatial data,
as storing them is more efficient than equivalent
point-based in vector systems. Popular example
raster data include: Digital Orthophoto (DOP),
meteorological variables such as temperature
or rainfall, Digital Elevation Map (DEM) [22], a
DOP can be seen in Figure 2.1.

They have regular fixed sample points (pixels)
as well as a limited size, and may contain either
a single band of continuous or discrete data,
or multiple bands, which are then represented
by individual color channels [22]. Discrete re-
gional classification is also representable using
raster formats and a stored color palette [5]. It
is possible to extend the implementation of this
thesis when a visualization of this data type is
required.

2.3. Vector Data

Data represented by or linked to discrete points, edges, areas or volumes is classified
as vector data. The OpenGIS Consortium (OGC) that releases standards for geodata,
created the Simple Features Specification (SFS) [19] for describing 3D base spatial
types that make up more complex multidimensional features. Figure 2.2 shows such a

Figure 2.2.: Complex CityGML vector object showing coherence of semantics and ge-
ometry (taken from [26]).
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2. Geospatial Data

complex object, which is used in the CityGML [17] semantic data model [16, 26]. Other
example vector data include: Points of Interest (POIs), street networks or regional areas
in addition to 3D buildings.

CityGML vector data is represented with different Levels of Detail (LODs) which
range from a 2D polygon representation of the building (LOD0), over simplified 3D
shapes with flat roofs (LOD1) and more detailed shapes (LOD2) up until even more
details and the inclusion of interior structures or rooms with furniture for LOD3-4
respectively [17]. Public available datasets usually contain data between LOD0 and 2.

Every feature may have metadata attributes assigned. Such an attribute field has a
name (key) and a value which is given in a data type defined in advance by attribute
field definitions. These definitions can also include optional alternative names, default
values or other constraints for the value domain of its attribute values [5, 16].

2.4. File Formats

Both vector and raster data occur in a wide variety of different storage and file formats,
some are human readable or compressed. These can be read and converted into each
other, for example by using GDAL command line applications [5]. Because of large
file sizes (especially for raster data), they may be available on an web request base
where the currently displayed area boundaries are sent to a server [27]. Often used
are Web Map Service (WMS) [20] or Web Coverage Service (WCS) for raster and Web
Feature Service (WFS) [18] for vector data that is individually requested by a correctly
formatted Uniform Resource Locator (URL).

Most online mapping services use Web Map Tile Service (WMTS) instead of WMS
as this improves scalability and performance when tiles are pre-computed [21]. Ste-
fanakis [27] describes the access and storage structure of these tiles, which are usually
256x256 pixel in size, and can correctly be addressed by row, column and zoom-level.
They are stored in a quadtree based on halving the initial single tile spanning the entire
earth area [27].

2.5. Geospatial Data Abstraction Library

The GDAL open source library [5] supports over 150 different drivers for different
geodata formats by default, and over 200 in normal configurations. Therefore it is is
suitable for usage in this thesis, as most common geodata file formats are supported.
Special examples include direct and random network access, on-the-fly reading of
compressed files and hosted files from known cloud services such as Google Cloud
Storage, Microsoft Azure or Amazon Web Services. Additionally, it is possible to
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2. Geospatial Data

read and write data from and to database servers. This type of data source was
not researched in this thesis, but it is of importance for software directly accessing
optimized data storage. An example use-case with potential for geodata writing
capabilities is covered in section 5.3. For developers, a documentation is provided on
how to create raster and vector drivers for custom formats, as well as usage of the
library functions. More advanced file sources or structures require some knowledge of
formatting appropriately chained open paths. There are over 100 applications linked
on the GDAL website using this library including QGIS (previously Quantum GIS)
[24], the GIS used for this thesis, as well as for the upcoming example Graphical User
Interface (GUI) in section 3.2.

2.6. Used Geodata Sources

For the development process, it is helpful to have access to different types of geodata of
the same physical location, ideally in different SRS, which enables testing temporal data
transformation as well as well as visual coherence between them when superimposed.
In the beginning, a spare set of datasets were downloaded in order to familiarize with
the data, GDAL and QGIS. This was followed by using a variety of locally tested
geodata sources for the implementation. While progressing further, the usage of web
services was increased due to an observed improvement in speed and predictability of
the loading performance, especially for larger raster sources.

In the following subsections, different used geodata sources are presented.

2.6.1. Bavarian Open Data

The regional open accessible data of Bavaria does include 2D vector and raster data, but
was mainly used for the implementation of raster support and initial mesh generation.
Most vector data is both available as WFS and rasterized as WMS for simplified
overview and GIS integration. The datasets are listed and searchable by type, but
higher resolutions as well as 3D buildings are not openly available [10].

2.6.2. North Rhine-Westphalia Open Data

In this dataset, all obtainable data for a selected area is available in an online map to
allow downloading different sources of only the required region [6]. Especially for a
large file sizes, the underlying 2D and 3D datasets are directly downloadable [11]. Of
high interest are the open availability of two different LODs for buildings, as well as
point cloud laser scanned data. The latter is not covered in this thesis. Additionally, a
list of open accessible web services can be used [2].
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2. Geospatial Data

2.6.3. Berlin Open Data

The city of Berlin offers textured 3D city models both in common geodata format as
well as different common rendering 3D mesh formats. These are more optimized for
loading into 3D engines, as the data is already triangulated. They can be selected
on a map and downloaded as individual tiles or as a single exported region [1], an
example mesh is shown in Figure 2.3. Additionally normal 2D geodata web services
can be selected from a searchable list including preview and information [25]. Other
Berlin data visualizations using the implementation created in this thesis are depicted
in Figure 4.15

Figure 2.3.: Textured triangulated mesh of Berlin downloaded as OBJ file and opened
using blender [1]. The Brandenburg Gate is not included in some available
datasets.
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3. Geographic Information System

In this chapter, basic functionality of a GIS application is shown and some common
user interaction elements are explained based on the GUI of QGIS. With regards to the
thesis topic, advantages and disadvantages of an implementation using a real-time 3D
engine are discussed.

3.1. Definition

According to Steiniger and Weibel [28], GIS software "is used to create, manage,
analyze and visualize geographic data". Individual programs offer different specialized
tools for their use cases. But most commonly used GIS applications implement some
functionality in all three subcategories (Viewer, Editor, Analyst) [28].

Multiple geodata sources can be loaded simultaneously into the current scene, where
they are now managed as layers. In case of vector data, similar items may be grouped
together into their own sublayers. If the loaded data is not present in the scene’s
selected SRS, it is temporarily transformed. Subsequently, the layers are superimposed
in their current hierarchy order onto the final resulting image. For every layer, different
visualization parameters can be changed by the user. Most importantly, this includes
changes to color and transparency, but more advanced visual changes are possible as
seen on the right side of Figure 3.1. When changing the displayed area, the opened
layers are queried again with the current area bounds and the scene gets redrawn.

Most GIS support interaction with the displayed data in form of querying the layers
data for the selected point or area. Additionally applications with editing capabilities
allow the creation of temporal layers for manual feature creation out of points, these
are turned into permanent layers when saved to a system drive by the user. Figure 4.14
contains such manually in QGIS created vector data.

3.2. Example GIS Graphical User Interface

In this thesis, the open source program QGIS [24] (version 3.16.6-Hannover) was used
for gaining familiarity with geodata in general as well as comparing expected geodata
visualization results and multiple figures.

7



3. Geographic Information System

Basic panels include: the current layer hierarchy, a layer source browser with saved
remote services, the main map view, a list of processing tools and, if applicable,
information about the current selection. In addition, the GUI shows information about
the current viewport on the bottom and a selection of available tools on the top. This
can be seen in Figure 3.1.

Figure 3.1.: QGIS GUI, displaying a vector layer of local conservation areas on top of an
OpenStreetMap raster layer. There is one feature selected and its attributes
are shown. On the right, the vector layers property panel is opened with
symbology customization options.

3.3. Advantages of Creating a GIS in a Real-Time 3D Engine

For scientific research with the most used CityGML data format, 3DCityDB [30] is a
good performing database for accessing large 3D datasets. As with many other 3D
GIS applications, the viewing is done in a web client for universal device access. A
real-time 3D engine allows advanced use case extension, e.g. other non-geospatial 3D
assets, specialized controller support, simultaneous multi-user interaction and most
importantly, VR, AR as well as other specialized hardware visualization capabilities in
the same environment.

8



3. Geographic Information System

3.4. Disadvantages of Creating a GIS in a Real-Time 3D Engine

The GeoBIM benchmark [15] studied different CityGML implementations on example
real-world data and criticized the lack of uniformity in geospatial applications (not
limited to GIS) when handling this type of open standard data. The studied users
showed a low success rate for opening a large file with a size of 5GB (city of Amsterdam),
with half of the successful participants requiring more than one hour to load. For a
real-time 3D engine, there is additional effort required to triangulate the data to create
optimized for real-time viewing performance. If the interpretation of a standard for
interfacing this data limits the performance this much, the resulting time required to
open is even more noticeable. For example, a conversion into the more optimized
CityJSON [12] format could result in a better loading performance. But any iteration
over universal geodata formats solely for mesh creation is still less performing than
loading 3D mesh files directly.

Additionally, when dealing with a mixed scene of 2D and 3D data, it is necessary
to move the flat results up on the same height level as the already correctly elevated
3D objects. This results in more required user effort (for manual elevation adjustment)
or knowledge of their supplied (or now required) geodata in form of a DEM. Without
manual adjustment and preparation, visual problems may occur at this stage, an
example of this can be seen in Figure 4.14.

For 3D geodata, special live visual customization options (e.g. infill pattern) from
section 3.2 would be increasing the generation time, complexity and resource overhead,
which results in a limited selection of options available for users. For developers
wanting to implement these advanced customization options, this requires an in-depth
understanding of the project, but could be added more easily for specific custom layer
types if required.
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4. Implementation

In this chapter, different implementation decisions are presented. These are divided
into individual system components as well as the different layer types.

4.1. Base System Requirements

A solid system should allow a mixture of various different geospatial datasources in
the same view. Different hardware platforms should be able to render the same data
formats with equal visual results. Each source layer should have a set of exposed
controls to enable adjustment by the user or other systems running in the engine (such
as User Interface (UI), remote synchronization or other input devices). The displayed
area of the visualization is required to be limited within previously set dimensions,
this allows one or multiple independently operating maps to be placed in a the 3D
environment. Changing the maps coordinate bounds must not lead to a complete
rebuild of the scene by first unloading the previously seen data, which is the default
behavior for 2D GIS applications without real-time requirements and can be observed
when using QGIS.

4.2. Map Instance

Since the TallShipEngine allows creation of multiple independent objects with attached
scripts, there can be multiple unique map instances existing in the same scene. Each
instance has a SRS set at the beginning, in which the map operates and coordinates
forwarded to the individual layers are given. As different data types or future custom
layers require different transformation techniques, the layer itself handles this step at
some point before displaying. An instance can be created by adding the main map
script to an empty GameObject while its creation, which now becomes the parent of all
3D objects later instantiated by this map.

10



4. Implementation

4.3. Data Layers

One map instance handles a list of layers that receive updated coordinate bounds when
the displayed area changes. Subsequently, they load new displayable data from their
managed geospatial datasource, which is converted into objects displayable by the 3D
engine. Through the use of an individual GameObject as a child of the map instance,
independent object management between the different layers of a map is realized.
This additionally simplifies potential implementations for hiding a complete layer by
deactivating its object.

The base class from which all different layer types inherit offers common function-
ality and attributes. It holds its own SRS, as well as basic coordinate transformation
functionality to and from a local copy of the map’s SRS. It also manages the flags
required for the update process as well as other layer parameters.

4.4. Preloading of Larger Layer Boundaries

Figure 4.1.: Debug view of a Cologne
DOP raster layer with
overprovision factor 1
(via WMTS) [2].

To reduce the frequency of data fetching on map
movements, it is possible to increase the loaded
area individually for each layer. The here self-
titled overprovision factor is the multiplier of in-
crementation relative to the visible map dimen-
sions. For example a value of zero is equal to no
change and a value of one results in 100% size
increase, which will double the loaded bounds
dimensions. This behavior was selected over
an alternative chunk based solution to reduce
the number of active rendering objects. This is
currently a major limitation for real-time render-
ing in the TallShipEngine, which is reasoned in
subsection 4.9.5.

For each layer, a debug view can be toggled.
It enables displaying the whole currently loaded
data, ignoring the usually active restriction to
the maps displayed area. This can be seen in
Figure 4.1, where the white lines drawn by the shader form a frame around the latter.
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4. Implementation

4.5. Triggering Layer Updates

Loading geodata requires a varying amount of time and memory, depending on size
and complexity. When the visible map area reaches the end of currently displayed
data, this layer will display nothing until new data is loaded through an update call.
Therefore, a method is implemented to individually customize the behavior with
which an update is initiated. Figure 4.2 visualizes two implemented automatic trigger
conditions, that are controlled by an outer trigger multiplier and an inner trigger multiplier.

Currently Displayed Layer Bounds Currently Displayed Layer Bounds

Next Visible
Map

Dimensions

Scaled by
Overprovision Factor

Increased by Inner
Trigger Multiplier

Next Visible
Map

Dimensions

Decreased by Outer
Trigger Multiplier

Scaled by
Overprovision Factor

Next Displayed Layer BoundsNext Displayed Layer Bounds

Figure 4.2.: Visualization of two different layer update triggers, not in scale. Trigger
conditions are based on the relation between computation result (red) and
currently displayed bounds (green).

Both trigger conditions are adjustments relative to the current visible map bounds,
that are already scaled up by the overprovision factor and are clamped to be in the
range [0;1]. If one of these two trigger conditions apply, this layer is added into the
respective update queue. The outer condition (left) triggers if the downsized resulting
red bounds are not fully inside the currently displayed (green) layer bounds. The
inner condition (right) operates inverted, it triggers when the current layer bounds
are not fully inside the expanded result. The debug view mentioned in section 4.4
helps with visual understanding of current tuning parameters to optimize a given
scene. The two triggers are required to handle map pan and map zoom with the same

12



4. Implementation

functionality. Additionally, each layer has a dirty flag to manually force an update at
the next opportunity.

4.6. Concept of Map Objects

Figure 4.3.: Non-uniform Distribution
of Floating-Point Numbers
(taken from [4]).

The TallShipEngine supports 3D object
transformation with 32bit floating-point
precision, whereas SRS coordinates require
the use of 64bit precision. The density of
available floating-point numbers increases
towards the value zero [4] as seen in Fig-
ure 4.3. As the current map view will only
display data with close proximity relative
to the zoom level, it is possible to transform
the global 64bit coordinates into lower pre-
cision local 32bit coordinates.

Any displayable object with geospatial
high precision coordinate requirements is
managed as a MapObject. This references the GameObject of the engine, including
transformation and rendering material, and stores the 64bit floating-point coordinates.
When the map’s coordinates are changed, they are forwarded to every layer, each of
which can manage their child MapObjects differently.

4.7. Layer Ordering

In a 2D GIS application, overlaying the individual layers is done by the order in which
they are rendered. In this project implementation, the layer order is controlled by a
vertical offset to the layer’s transform. Zooming in the map scales up the coordinate
parent in all three dimensions, which also increases the layer objects scale including
their vertical offset. This leads to inconsistent layer spacing and even introduces z-
fighting when zooming out, which shows floating-point accuracy errors. This problem
is resolved by updating every layer’s local vertical position to be located at a fixed
global height over each other whenever the map changes its zoom value.

For overlapping 3D geometry, this approach only resolves z-fighting on the horizontal
plane. As this implementation is designed to be viewed mainly from above, and z-
fighting for vertical geometry only occurs when displaying the exact same 3D geometry
in different layers, we see this as a valid solution.
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4. Implementation

4.8. Raster Layer Base

A raster layer is designed for displaying one or more here named RasterParts, which
consist out of geographic boundaries, a target texture with adjustable size and a MapOb-
ject. When displayed, a tessellated quad geometry is instantiated with correct scaling,
additionally the texture is created and applied to the objects material. The raster layer
differentiates between current and future RasterParts, which by default get exchanged
after displaying. But this behavior is overridable by child class implementations.

4.8.1. WMS Prototyping Layer

Initially, a WMS layer was implemented for prototyping as a subclass of the raster
layer, with the use of its specification document [20]. This dynamically created correctly
formatted request strings for the current map area, followed by loading and displaying
the layer data. Later in the the development process we found, that the generalized
GDAL raster layer from the upcoming subsection 4.8.2 is able to support these request-
based layer types with minor changes. The following data sources were tested: WMS,
WMTS and WCS.

4.8.2. Default GDAL Raster Layer

Figure 4.4.: Visualization of Cologne
DEM values from 40 to
60 meters (via WCS) [2].

This layer implementation is used for display-
ing individual GDAL raster layers. The current
map boundaries are converted into the correct
raster pixel coordinates. With these, the avail-
able bands of data are sampled into the four
color-channels (red, green, blue, alpha) of the
texture. If the source raster does not contain a
fourth band, a fixed value is inserted. Addition-
ally, if only a single band is present, its values
are copied into all three base color channels,
which allows later coloring through the material.
As sources may use different value interpreta-
tions (e.g. height in meters for DEM, or [0;255]
color values for DOP), all values can be clamped
to an adjustable range, which then gets mapped
to the full displayable color channel range. By default, this is set to display colored
raster data, but allows displaying data that is not encoded with red, green and blue
color values, which can be seen in Figure 4.4.
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4.9. Vector Layer

Visualization of a vector layer requires iterating over the individual features described
in section 2.3. These may be grouped into different sublayers with similar data, which
are usually exposed to the user as an individual datasource inside GIS applications. Of
interest for this implementation are only different geometry groups such as parts of
buildings from different LODs, bridges and tunnels. But other data attributes may be
present in different sublayers. It it therefore required to allow displaying of a subset
of these sublayers. This can be done by sublayer index or name, whereas for larger
datasets, the list and name length can become longer. For example, the largest dataset
from the GeoBIM benchmark [15] (Amsterdam) lists 1,407 sublayers, of which around
80 contain geometry according to GDAL utilities.

4.9.1. Preloading all Features

For raster layers, displaying the whole dataset in the beginning is limited to the set
or largest supported texture resolution of the Graphics Processing Unit (GPU) and
therefore of no use. For vector data, preloading the whole geometry independent from
the currently visible map area may be desired by the user for known datasets in order
to reduce processing delays on movements afterwards. This advanced usage can be be
enabled for each layer individually and is disabled otherwise.

4.9.2. Default Feature Iteration Strategy

The default strategy iterates over the available sublayers in the dataset. If the current one
is enabled for visualization, every contained feature is iterated over. The pseudo-code
for this implementation is shown in algorithm 1.

When updating the layer, it begins by setting a spatial filter on the GDAL sublayers.
This results in all fetched features to geometrically intersect with this area. After the
mesh creation process, the mesh objects are stored relating to area at the time of creation.
When upcoming update boundaries do not intersect with stored ones, and removal of
old data is not disabled for this layer, every related MapObject as well as their stored
meshes are marked for removal.

4.9.3. Optimized Driver Dependent Feature Iteration Strategy

Especially but not exclusively, the most commonly used CityGML [17] format is
internally structured with randomly ordered features. The default iteration approach is
performing suboptimal for these datasets. After successful verification of this capability,
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while geodata has sublayers left do
if new mesh was started then

store old meshes and current ID list;
set dirty to force next update call;
end current update to display result;

end
if end of sublayer reached then

get next sublayer;
end
while sublayer has features left do

get next feature;
if feature has geometry and feature ID is not stored then

recursively generate mesh from geometry;
add feature ID to current ID list;

end
end

end
store old meshes and ID list;

Algorithm 1: Update iteration over features per geodata sublayer.

the different update iteration approach from algorithm 2 is used. This primarily iterates
over each feature and then checks the layer it is assigned to.

4.9.4. Comparison of Strategy Loading Times

Figure 4.5.: Whole Cologne scene data
used for strategy comparison
[2, 11].

Figure 4.5 shows the scene with the vec-
tor data, that was used for comparing the
strategies. The downloaded CityGML data
should use the optimized strategy. This
shows when loading the whole file, which
is finished after 10 seconds. For the default
strategy with spatial filtering, this speed
can only be achieved when loading a small
portion, otherwise loading is finished after
one minute. But further optimization could
be researched with different datasets.
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while geodata has features left do
if new mesh was started then

store old meshes and current ID list;
set dirty to force next update call;
end current update to display result;

end
get next feature;
if feature has geometry and layer of feature is enabled and feature ID is not stored then

recursively generate mesh from geometry;
add feature ID to current ID list;

end
end
store old meshes and ID list;

Algorithm 2: Update iteration over randomly ordered geodata features.

4.9.5. Mesh Generation from Geodata Geometry

While iterating over the individual features of a vector layer, the feature geometry has to
be converted into 3D meshes for the TallShipEngine. Both algorithms perform the same
geometry generation, where the results are added into a single buffer. This increases
the required calculation time before the result is displayable, but more importantly it
drastically reduces the amount of meshes, GameObjects and therefore engine drawcalls.

Increasing the amount of rendered objects results in a higher required time to render
the frame. After initial testing, the limit at which the native refresh rate of current
VR Head Mounted Displays (HMDs) (e.g. 90Hz) could not be achieved anymore, was
found at at less than 1,500 individual objects for last generation desktop computer
hardware. Though, for actual VR hardware this is assumed to be lower. As the GPU
usage was not a limiting factor at that time, it showed either a Central Processing
Unit (CPU) or Input/Output (I/O) limitation for the current state of rendering in the
TallShipEngine.

For this reason, a mesh is only displayed when the maximum mesh buffer size is
reached, or there is no geometry left while iterating. This combined vertex and index
buffer is currently limited to the maximum size allowed by a 16bit unsigned integer
(65,536), where each vertex counts as one, each line segment as additional two or each
triangle as additional three. When this limit is increased in the future, implementation
of an alternative trigger (e.g. time-based) for displaying the results is advised.

Geometry of the SFS consists out of different types shown in the hierarchy from Fig-
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Figure 4.6.: Geometry class hierarchy taken from the SFS [16]. Ultimately consisting
out of individual Point class instances.

ure 4.6. All complex types are based on lists of points, which are given another context
based on the owning geometry class. All instantiable subclasses of the specification are
2-dimensional geometric objects in an up to 4-dimensional coordinate space (x, y, z and
m as a measure) [19]. In this thesis, only up to three dimensional data was used and
therefore implemented.

Recursive Traversing through Geometry

As the exact geometry type in a dataset can be different from the available types in
the specification, its nearest base class has to be determined. To accomplish this, the
inheritance tree is traversed, and for every subclass in a collection, the generating
function is called recursively. The mesh generation is split up into line meshes and
polygon meshes based on what the vector layer is set to display.

Line Mesh Generation

This geometry type does not need additional processing, as every complex type except
MultiPoint consists of elements of the LineString subclass, including surfaces. Each
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Figure 4.7.: Line mesh of LOD1
Cologne Cathedral [11].

points coordinates get transformed into the cor-
rect SRS and the current boundary coordinates
get subtracted before getting appended onto the
vertex list. Beginning at the second point, for
every new point, a line segment between the
last two vertices is created by adding their two
indices to the index list. If the buffer limit is
reached, only the latest vertex has to be copied
into the buffer of the next mesh. A 3D geometry
visualized as a line mesh is shown in Figure 4.7.

The SFS [19] mentions the possibility for cus-
tom variants of the Curve class, where two
points could be connected by a different path
than the default shortest path. In this implemen-
tation such types would be handled as a normal
LineString.

Polygon Mesh Generation

Any geometry surface is built out of polygons. These consist of at least one exterior
ring and optionally any amount of interior rings. With the latter being holes in the
surface spanned by the exterior ring, some examples are shown in Figure 4.8. It is
well defined what visual form classifies as multiple polygons and what is still a single

Figure 4.8.: Example polygons taken from the SFS [19] with arrows showing the point
order. a, b and c having 0, 1 and 2 holes respectively.

19



4. Implementation

polygon. The order of points from the rings defines the normal direction of the surface,
as the top side is where the points appear ordered counter-clockwise. Whereas the
order of points is clockwise for holes.

Figure 4.9.: Triangulated LOD1
Cologne Cathedral [11].

To create a geometry triangulation, an open
source implementation based on the ear clip-
ping algorithm is used [3]. This implementation
requires structured 2D input geometry and re-
turns an index list for the resulting triangles. In
order to span a local 2D coordinate system for
each surface, its normal direction is calculated,
as this information is not stored in geodata ge-
ometry. The ring with the least amount of points
is used, which results in flipping the normal if
this is an inner ring. This normal in combina-
tion with the first two different points define the
base of a 2D plane, through which all points are
represented by 2D coordinates.

After the triangulation step is finished, the
points and triangles are appended to the current mesh buffer. Similar to section 4.9.5,
the points’ coordinates get transformed into the correct SRS, followed by subtracting the
center point of the displayed bounds. If the results do not fit into the current mesh, but
are small enough to fit into a single mesh, a new mesh is started in advance. Otherwise,
it is necessary to split the buffer and create duplicate vertices where required. Figure 4.9
displays a single layer of triangulated vector
geometry, whereas a mixture of two polygons

Figure 4.10.: Scene with three
instances of LOD2
Cologne Cathedral [11].

and one line visualization is shown in Fig-
ure 4.10.

Displaying a finished Mesh

Any generated mesh is stored until the layer up-
date is finished. As in the following step update
results get displayed. For each mesh an indi-
vidual MapObject is created with the respective
GameObject as a child of the layer. Then the
engine mesh and its correct material type get
initialized and added, followed by setting the
MapObjects’ coordinates to the reference point
used while creating the mesh.
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4.10. Point of Interest Layer

Figure 4.11.: TUM campus visualiza-
tion with three groups
of POIs [10]

A specialized third layer type was implemented
for point data visualization. It allows displaying
a customizable textured mesh object for every
point of the source geodata. Depending on the
used mesh and texture paths in combination
with optional automatic scaling based on the
current map zoom, different visualization re-
sults can be achieved.

For this layer, an attribute filter string can be
set, which is a functionality offered by GDAL
and explained in the documentation [5]. The
string is similar to the WHERE clause of a Struc-
tured Query Language (SQL) query, to include
only a subset of features with matching attribute
values. Currently, different GIS applications can
be used to view the attribute table of individual
features in order to create such queries.

Figure 4.11 shows a small dataset created with QGIS containing points with a title
string attribute, these represent larger entrances of a selection of buildings as well as
the train station at the university campus. The dataset is loaded in three differently
colored layers, each visualizing a subset of the points using filters.

4.11. Multithreaded Layer Updates

An important aspect of this implementation was the focus on offloading the time-
consuming geodata operations onto different threads of the CPU. On the other hand,
engine-related object creation is currently not implemented thread-safely, which is why
the display operations have to be separated from the geodata updates. The latter are
performed by a user-adjustable number of worker threads, which are scheduled by an
additional thread. The simplified update procedure is shown in Figure 4.12. As GDAL
datasources in general are limited to single-threaded access, the geodata instances are
not shareable between the layers, which is a parameter specified while opening them.

4.11.1. Work Scheduler

The singleton work scheduler iterates over the layers of every registered map instance.
It uses the latest instance coordinate bounds to check for the layer update triggers from
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Scheduler

check layer triggers

push to work queue

Map Instance Layer

update coordinate bounds

get active layers

return active layers

get bounds, updating, frozen

return bounds, updating, frozen

Worker

sleep

notify

pop from work queue

return work

set updating

disable dirty

update layer

set updating finished

push to display queue

clear updating, updating finished

display update results

option 

if layer update triggered

Figure 4.12.: Sequence diagram showing the simplified multithreaded layer update
process. Orange colored activity originates from engine scripting updates
out of the main application thread, other colored activity from their own
looping threads.
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section 4.5. Two additional cases are taken into consideration, as they override the
triggers from section 4.4, either when the layer is already updating through a worker,
or the frozen flag is set by the user. Otherwise, if an update is triggered, or the layer is
flagged dirty, it is added to the work queue with a copy of the current bounds, followed
by notification of a worker thread.

4.11.2. Worker

Each worker thread handles the update procedure of the individual layers. Initially
the layer update flag is set, which acts as a guard for its attributes. This is followed
by disabling the dirty flag and execution of the layer update itself. Subsequently,
the implementation marks that the update is finished, and adds the layer into a
display queue of the map instance. This handles displaying the results from the main
application thread in the next global scripting system update step, as well as clearing
of the update and finished flags.

4.12. Object Material and Shader

The map display is limited to specified physical dimensions in the 3D scene. As the
visible geodata often exceeds these boundaries, it has to be ensured that out-of-bounds
data is not displayed for the default layer types. For this reason, the materials used on
these objects were customized. To achieve this effect, the shared vertex shader as well
as for each geometry type the geometry and pixel shaders were exchanged.

4.12.1. Restriction to Map Boundary

To know the global offset of each vertex relative to the map’s center point, each
material instance is given the transposed world matrix of the owning map including
its dimensions. Since the world position of every vertex is calculated in the vertex
shader, this can now be multiplied by the map matrix to receive its map position. The
pixel shader uses this value to allow interpolated per-pixel clipping for every pixel
whose map position is outside the displayed boundaries. Changes to this clipping
functionality could allow displaying a circular map. When the debug mode from
section 4.4 is enabled for an object, its clipping step is skipped and pixels on these lines
are colored instead.

23



4. Implementation

4.12.2. Elevating 2D Geodata

When displaying 3D buildings from geodata, these are usually positioned at their
correct elevation level. Otherwise, or if additional 2D geodata is displayed, these
require manual or automatic height adjustment through the use of a DEM loaded as a
layer. This stores the elevation at each pixel in meters or feet (whereas only meters are
expected for this thesis) as a floating-point number. It is loaded as a regular raster layer,
but instead of displaying on an object, the texture and boundaries are stored in the map
instance. They are then assigned to the individual material instances, where for every
vertex the 2D map position is used to calculate the height map texture coordinates.
Subsequently, the texture is sampled at this coordinates and the vertex is moved in the
maps sky direction by the correctly scaled meter amount. In Figure 4.13 a change in
elevation can be seen for a DOP, depicting stairs and a neighboring ramp between the
Cologne Cathedral and the Rhine.

Figure 4.13.: Scene with LOD2 Cologne Cathedral and DOP elevated by a DEM (local,
WMTS and WCS respectively) [2, 11].

This solution performs well for raster layers, as they can use an already tessellated
quad mesh. For vector layers, an extension of the shader pipeline with tessellation
on the GPU is advised but not implemented. Otherwise, the individual source vector
area greatly influences the visual result, as the DEM is only sampled at the individual
polygon vertex positions. For line meshes, the individual distance between the available
data points could be reduced through GDAL (by insertion of additional points at fixed
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intervals), but for the current default layer implementations this functionality was not
used.

Figure 4.14.: Scene from Figure 4.13
with example vector lay-
ers of stairs and ramp
created in QGIS.

An example dataset has been created in QGIS,
to explain such problematic data through a vi-
sualization. Figure 4.14 contains multiple 2D
features: A ramp (yellow) next to equivalent
stairs in two different variants (blue and red).
The blue stairs are modeled using only the four
corner points, whereas the ramp contains more
points, defining its curved path. This leads to
less problems and a more accurate elevation rep-
resentation for the ramp similar (but not equal)
to results of a tessellation. The points of the
blue stairs are connected through two triangles,
which are in this case most of the time located
below the surface represented by the DEM. The
red line contains two points per meter, which
allows more accurate elevation sampling. This scene therefore requires further manual
adjustment of the height offsets to reduce visual problems, on the cost of the corner
points floating above the ground.

4.13. Asynchronous Command System

To control individual layer parameters and options mentioned throughout chapter 4 of
this thesis, a string-based command system was implemented. This was intended for
the initial layer settings loaded from the configuration file, but it is designed to allow
thread-safe execution while the application is running. The implementation with a
unified command system based on strings enables simple implementation of additional
and overriding of existing commands in current and custom layer types.

In order to enable unguarded access to layer settings and objects, it is ensured that
commands are executed from the main thread with no simultaneous layer update.
Therefore, if an update is in progress, they are queued up until in between displaying
update results and clearing of the guarding flags, which are the final two steps seen in
Figure 4.12.

A full command string is split into command and arguments at the first existing
space character. The former is case-insensitive, whereas the latter is dependant on the
specific layer implementation. A full list of currently implemented commands can be
seen in Table A.1.
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Figure 4.15.: Scene with LOD2 and DOP data of Berlin [1, 25]
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5. Outlook and Current Limitations

5.1. Revisit after Specification Updates

As mentioned in section 3.4, the specification implementation can greatly influence
the usability of any GIS application. But the same applies to manual preparation
of an optimized scene. Especially larger vector datasets contain upwards of 100.000
individual features, any excluded data (mostly whole layers) may lead to improved
performance.

Currently, the used CityGML specification is nearing its next revision CityGML 3.0
[9]. This includes for example a space concept to distinguish between occupied and
unoccupied space, changes to LOD handling for less redundancy, time versioning and
a concept for transportation space. It will take some time until scientific research will
be concluded, as the release itself and the following implementations are not completed
yet. It would then be useful to revisit this project with matching geodata.

5.2. Categorization as GIS Viewer

This thesis implementation currently enables capabilities for loading and viewing
of different geodata. It lacks editing and analysis functionality and is therefore in
the "GIS Viewer" category of possible desktop GIS software, according to Steiniger
and Weibel [28]. In the following two subsections it is explained why this limitation
currently is necessary.

5.2.1. Graphical User Interface Requirement

In the current state, the TallShipEngine does not have a subsystem for simple GUI
management. For example, it is only possible to render a string of text at runtime
by loading a texture stored on a system drive beforehand. The early stage of this
thesis project enabled the support for live instantiation of GameObjects. This was
later extended by CPU texture and mesh creation at runtime. Such functionality is
a requirement for the future creation of a working GUI system, which in turn is a
necessity for usable interaction on HMD platforms. The layers command interface

27



5. Outlook and Current Limitations

from section 4.13 is a now existing exposed entry point that allows controlled and
customized interaction with the different layer types.

Some example functionality of a GUI for interaction with a map instance and its
layers is listed in Figure 5.1

Layer list
Minimize option Hide adjustments for this layer to clean up GUI
Sliders and checkboxes Adjust individual layer parameters, e.g. disable,

freeze, set dirty, change color, change transparency
Information icons Depicting if errors occured or layer is currently up-

dating
In-depth information table Displaying information about SRS, the current

dataset string and name, number of objects and fea-
tures or color channels currently displayed

Map Instance
Information fields Showing current coordinates, if every layer is fin-

ished updating
Lock coordinates or zoom Disable accidental navigation, if e.g. swipe to move

is possible

Figure 5.1.: Example GUI functionalities

5.2.2. Layer Interaction using Raycasts

Similar to interaction with a GUI, there is a need to interact with visible 3D geodata.
GIS applications offer a tool, that allows clicking on a point in the 2D view to display
information including attributes of data at that location from every visible layer, such
a tool was used to select the red feature on the left of Figure 3.1 in QGIS. Similar
functionality can be achieved by casting a ray onto the displayed geodata meshes,
but was not researched for this implementation. Querying of the data has to be
implemented asynchronously. Therefore, the command system from section 4.13 is
again suitable for initiating this task, that would be executed instead of the next
visualization update. To receive feedback on such queries, an asynchronous command
callback functionality could be researched. Otherwise, custom layer types could be
implemented with that specific feature in mind, for example by deriving from this
project’s layer implementations. For optimizing load times, it may be helpful to allow
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disabling of interaction for some layers in a scene, if it is known that no important
attributes are available from this dataset.

5.3. Implementation of a Specific Use-Case

There are a multitude of different geodata source types that require some prototyping
and a more in-depth expertise in order to implement optimized interactive visual-
izations. For customized interaction and display strategies of specific available data
sources, it is required to focus on a single use-case with a limited subset thereof.

One such use-case could be the the design of a system for real-time collaborative
fire department coordination, which could be split up into the visualization part of the
available geodata and the collaborative interaction between the users and live-updating
geospatial information. Implementation of both parts are possible by extension and
modification of the implementation resulting from this thesis. Sun and Li [29] discuss
key technologies as well as the current development status of this research field. Such
a scenario has been as a major thought-focus throughout this thesis. Therefore, it is
possible to design for example a networked synchronization module for controlling
a remote map instance or a module for saving changes made while the application
is running. For a fire department, it is of more importance to handle and perform
dynamic changes in a shared database, that may contain information about the current
operation. Additional GPS synchronization and therefore visualization of a vehicle’s
coordinates and status into accessible geodata can also be researched.

This scenario is nearly completely based on a previously known set of static (e.g.
DOP, DEM) and dynamic (e.g. vehicle or operation state) geodata. This thesis designed
the base system of geodata interfacing in the TallShipEngine, as well as extendable
initial visualization capabilities of static vector and raster geodata. The possibility to
render custom textured meshes at different points of a dataset allows easier exploration
of possible visualization opportunities using the engine. Therefore, researching and
implementing such a use-case is a logical step following after this thesis.
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6. Conclusion

In this thesis, a geodata visualization system using the TallShipEngine was planned and
implemented, which allows displaying common raster and vector data sources in the
3D scene. It was focused on the real-time aspect while loading and converting the data
into objects renderable by the engine. This required gaining a deeper understanding of
geodata in general as well as GDAL specific functionality for data access.

Initially, a prototype was built in the engine to gain a basic familiarity with its
limitations and the datasets. This began with some difficulties of multiple unsuccessful
attempts of installing the GDAL library on the system and integrating it into the
project. Afterwards, the implementation requirements for the system concerning multi-
threading, map instance and layer management were noted. These were implemented
while regularly testing with the data, as e.g. GDAL geometry functions operate on a
horizontal projection instead of the 3D space. The scarce availability of example code
or documentation in combination with the initial lack of support for object creation and
removal at runtime changed the initial plan of only using the TallShipEngine to also
partially editing its functionality.

In its current state, the system allows the correct presentation of a previously prepared
scene of geodata with different SRS. This supports navigation to update the displayed
data at the current visible area. It is possible to implement custom layer types with
extended functionality for specialized visualization. For these, the existing codebase
shows how to generate and display geometry in the TallShipEngine, as well as how to
use the GDAL library to handle geodata in this environment. All of this helps with
realizing custom geodata visualizations with focus on a future use-case in the engine.

It was found that preparation and knowledge of planned and available geodata
sources, with focus on the final visualization result, are important prerequisites that
can greatly influence the real-time performance and program complexity. The growing
diversity of existing geodata does not need to be fully accounted for, as a specialized
implementation for previously unaccounted data types can be added with manageable
resources and effort when enough research about such data types has been made.
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A. Command List

The table below contains all current commands grouped by applicable layer type, the
command system is described in section 4.13.

Command Arguments Description

Any Layer - section 4.3
ClearVisuals - Removes all displayed geometry,

usually followed by SetDirty
SetBoundsOverProvision <multiplier> Sets the non-negative overprovi-

sion factor, see section 4.4
SetBoundsTriggerInner <0-1> Sets the overprovision inner trig-

ger factor, see section 4.5
SetBoundsTriggerOuter <0-1> Sets the overprovision outer trig-

ger factor, see section 4.5
SetColor <R,G,B,A> Sets the layer color as floats [0;1],

default: 1,1,1,1
SetDirty - Updates this layer on the next oc-

casion
SetFrozen [true|false] Disables updating until SetFrozen

false
SetHeight <height> Sets height above 0 as float, adds

to HeightMap
SetIsVisualDebug [true|false] Sets Debug mode, see section 4.4
SetSRS <SRS> Forces layer SRS, required

if not found in dataset, op-
tional speedup of loading,
e.g. ’EPSG: 3857’, using
GDAL OGRSpatialRefer-
ence.SetFromUserInput(<SRS>)

SetUseHeightMap [true|false] Controls if layer is influenced by
height map
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A. Command List

SetUseShading [true|false] Controls if shading is used based
on normal direction, disable for
raster data

Raster Layer - section 4.8
PrintAllData - Prints all information about the

GDAL dataset to the console
SetHeightMap [true|false] Sets this layer to be used as

HeightMap source
SetResolution <resolution> Sets raster resolution integer, com-

mon values are 256, 512, 1024 or
2048, some web sources are lim-
ited to a maximum resolution

SetValueClampEnabled [true|false] Sets this layer to clamp the layer
values (colors) to the set range

SetValueClampMax <maxvalue> Sets the upper clamping value, de-
fault: 255

SetValueClampMin <minvalue> Sets the lower clamping value, de-
fault: 0

Vector Layer - section 4.9
PrintAllData - Prints all information about the

GDAL dataset to the console
SetLayers <layername,...> Enables only the comma-

separated list of sublayers
by name, listed in output of
PrintAllData or GDAL utilities

SetLayersi <layerindex,...> See SetLayers, sublayer indices
starting at 0 instead of names

SetLineMesh [true|false] Changes between surface and
edge line generation

SetLoadWithoutSpatialFilter [true|false] Sets whether to preload the whole
geodata, overrides SetNeverUn-
load, see subsection 4.9.1

SetNeverUnload [true|false] Disables automatic unloading of
geometry further away
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POI Layer - section 4.10
SetAttributeFilter <filterQuery> GDAL attribute query similar to

SQL WHERE clause [5]
SetAutoscale [true|false] Enables scaling based on current

zoom level
SetMesh <meshPath> File path for the used mesh
SetObjectLimit <limit> Sets the maximum number of vi-

sualized objects
SetScale <scale> Sets the permanent scale of cre-

ated objects
SetTexture <texturePath> File path for the used texture

Table A.1.: Current layer command list split by layer type. If optional boolean argu-
ments are missing, true will be used.
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