
Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics: Games Engineering

Dynamic Storytelling Based on Complex Graphs

Dominik Huber

Technical University of Munich
Department of Informatics

Bachelor’s Thesis in Informatics: Games Engineering

Dynamic Storytelling Based on Complex Graphs

Dynamisches Storytelling auf Basis komplexer
Graphen

Author: Dominik Huber
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisors: Daniel Dyrda, M.Sc.
Submission Date: 15.07.2021

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.07.2021

DOMINIK HUBER

iii

Abstract

Many interactive storytelling tools and plugins for game engines like "Fungus" are based
on graphs. An important type of complex graphs are the statecharts extended and mod-
ernized by David Harel. Therefore, the topic investigated in this thesis is the extent to
which statecharts can be used as environment for representing dynamic stories in games.
At the beginning, we summarize the most important statechart feature definitions and
introduce some new features that are useful for story representation. Thereupon, it is de-
termined, which storytelling elements can be represented by which statechart features.
With the help of example statecharts and a paper-prototype representing example game
scenarios, it can be demonstrated that this mapping makes it possible to successfully
use statecharts as environment for representing dynamic storytelling in games. Thereby,
the disadvantages, like the fast-arising complexity due to many dependencies between
parallel components, the lack of a uniform syntax and the ambiguous semantic, are dom-
inated by the advantages. Example benefits would be the structured overview and the
visualization of the hierarchical or parallel structure that reveals logic gaps in the story
as soon as they are created. Additional advantages also lie in the factor that interactive
elements and the interaction of the story with game-mechanics and with the game itself
can be implemented very well by statecharts using actions, activities, or trigger events.
Furthermore, the existing statechart-feature-canon can be directly used in large parts to
represent storytelling elements and can also be easily extended by further features, like
the extended history entrance or the feeder states compound.

Keywords: Statecharts, dynamic storytelling, mapping, statechart features, prototype

iv

Acknowledgements

The author would like to thank Prof. Dr. Gudrun Klinker for the interesting topic of
this paper. In addition, deepest thanks go to the supervisor Daniel Dyrda for the always
informative support and discussion on topics of this thesis.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Related Work 2

3 Storytelling and Statecharts 4
3.1 Storytelling . 4

3.1.1 Dynamic Storytelling . 4
3.1.2 Story Elements . 4

3.2 Definition of Statecharts . 5
3.3 Selected Statechart Features . 5

3.3.1 State-Types . 5
3.3.2 Event-Types . 9
3.3.3 Transition-Types . 10
3.3.4 Actions and Activities . 12
3.3.5 Refinement and Abstraction . 13
3.3.6 Abstract Concepts . 14

3.4 Final States and Exits . 16
3.4.1 Definition Final States . 18
3.4.2 Completion Event Handling with Final States 18
3.4.3 Definition Exits, Exit Receivers and Implicit Exit States 21
3.4.4 Completion Event Handling with Exits 22
3.4.5 Differences between Final State and Exit 27
3.4.6 Reasons for Leaving-Option of Final States and Implicit Exit States 29

3.5 New Statechart Features and Pattern . 29
3.6 Mapping Storytelling Elements onto Statechart Features 36

4 Prototype 48
4.1 Advantages of a Paper-Prototype . 48
4.2 Interaction of Statechart with Game Environment in the Prototype-Context 49
4.3 Setting of the Prototype . 53
4.4 Quests and Interrupts . 53
4.5 Story of the Prototype . 55
4.6 Parallel Components in the Prototype . 59
4.7 History Entries and Final States . 61
4.8 Results of the Prototype . 62

5 Outlook 63

6 Conclusion 64

vi

Contents vii

Appendix 71
1 Base States of the Knight . 72
2 Paper-Prototype . 77

1 Introduction

"Wenn die drei ??? sich zeigen und mit den Erwachsenen reden sollen, lies weiter auf
Seite 84. Wenn die drei ??? sich doch lieber zurückziehen sollen, lies weiter auf Seite 87."
(English: "If you want the three investigators to show up and talk to the adults, continue
reading on page 84. If you would rather have the three investigators withdraw, continue
reading on page 87.") [1]. In this snippet from a German book of the series "The Three
Investigators", the reader has the choice to determine how the three protagonists should
proceed in the detective story. Books in which the reader decides the progression of the
story by continuing reading on a particular page are classified as "choose your own ad-
venture" or "find-your-fate" books. This book category uses dynamic storytelling. This
means that the reader creates the storyline of the book while reading by choosing be-
tween already predefined paths. Therefore, every decision influences the development
of the storyline. Although the possible sub-paths and the various endings are predefined
in such books, the final storyline is created by the reader’s decisions. However, dynamic
storytelling is not only used in books, but also in many story-based video games, where
the player’s actions and decisions affect the development and outcome of the storyline.
Examples are the horror game "Until Dawn" or the action-adventure game "Detroit: Be-
come Human" [2][3]. On wiki and game-guide webpages, the developer or the player-
community often publish overviews, which decisions or actions lead to which results in
these games. As visualization format, in most cases they choose something similar to
a graph. This leads to the idea that dynamic storytelling could also be implemented in
video games using graphs. Since in such graphs states of the storyline must be modeled,
statecharts would be a suitable approach. These diagrams, modernized and expanded
by David Harel, originate from the world of reactive technical embedded systems, like
aviation [4]. In essence, dynamic stories in games are reactive systems. Hence, this thesis
examines the extent, to which statecharts can be used as environment for representing
dynamic stories in games.

1

2 Related Work

As mentioned in the introduction, storylines of interactive storygames are often illus-
trated by informal graphs. For the interactive game "Detroit: Become Human", for exam-
ple, an overview of which action and decision results in which situation can be found on
the website "Powerpyx" [5]. As the cutout of this overview in figure 2.1 shows, this is an
informal diagram that indicates the various decision options on the nodes and refers to
the next resulting decisions with unlabeled transitions. Therefore, this could also be seen
as an informal statechart, which describes a storyline.

Figure 2.1: Cutout of overview of decision-path of the game "Detroit: Become Human"
(Source: [5])

Statecharts are not the only way to achieve interactive storytelling in games. For game
engines like "Unity 3D", there are countless plugins and tools that enable narrative games
and interactive narratives. Example tools would be "Inky", "Twine", "YarnEditor", "Talkit"
or the "Fungus" plugin. The latter uses flowcharts to implement interactive storylines in
"Unity 3D" [6]. The developer edits the story by working directly in the nodes or tran-
sitions of these flowcharts [6]. Figure 2.2 shows an example flowchart from "Fungus" in
"Unity 3D", representing a short game scenario. This tool follows a very similar approach
to the one used in this thesis, except that instead of statecharts, it uses flowcharts.

2

3

Figure 2.2: Example game scenario from "Fungus" in "Unity 3D" (Source: [6])

To the ideas presented in this theses related approaches can not only be observed in
editors. Also, in scientific papers considerations to dynamic storytelling and their best
implementation in games exits. For example, in the paper "Character-Based Interactive
Storytelling" by Cavazza, Charles and Mead, a hierarchical task network is used to imple-
ment the decision options of a character to achieve the main goal [7]. Other approaches to
achieve dynamic stories are presented in the paper "Interactive Storytelling: Approaches
and Techniques to Achieve Dynamic Stories" by Merabti et al. [8]. There, planning algo-
rithms are investigated that select the events, the timing, and the way of presenting the
events the player experiences [8]. Also, behaviors of emotional non-playable characters
and their relationships to the player are addressed to enable more realistic storytelling
[8].

Another area of interest that is strongly related to statecharts is SCXML. This is an attempt
to convert XML in such a way that it can be used to render statecharts [9]. The way in
which XML is adapted to obtain SCXML is described in the paper "Developing Natural
Language Enabled Games in (Extended) SCXML" by Brusk and Lager [9]. Since SCXML
is merely a realization format of statecharts, it seems obvious that it can also be used for
storytelling. In the paper "DEAL - Dialogue Management in SCXML for Believable Game
Characters", for example, Brusk et al. describe a way to use SCXML to manage dialogs
so that believable non-playable characters are created [10].

3 Storytelling and Statecharts

3.1 Storytelling

3.1.1 Dynamic Storytelling

There can be no better story than one that you write yourself. In this way, the story
meets all own expectations about what the story should be and how it should best de-
velop. Even character decisions can be determined by oneself. The big disadvantage
of own stories is that the tension is lost, because one inevitably knows how one’s own
story ends. But that does not necessarily have to be the case if the distant future is not
yet fixed. This is exactly the case with dynamic storytelling. Through decisions and ac-
tions, the reader, or in video games, the player, can shape his/her own path. The story
changes dynamically. This means that in advance it is not clear, how exactly the story will
unfold. Similarly, Alain Leclerc von Bonin described the core characteristic of dynamic
storytelling in an interview in the context of a presentation back in 2015. He said that "the
major characteristic of dynamic storytelling is not having a fixed narration in advance"
[11].

3.1.2 Story Elements

Stories can generally be described as a sequence of events involving entities [12]. As this
definition indicates, a story consists of many different story elements. The basic frame-
work for the story is set by the setting. It describes the background where the action takes
place and the place of the story within the storyworld. The term "storyworld" describes
"the shared universe in which the settings, characters, objects, event, and actions of one
or more narratives exist." [13]. Examples for storyworlds would be the "Star Wars" or
the "Harry Potter" universe. Furthermore, in every story there is a main character and
an antagonist. The former can be a hero or an antihero. In video games, the protagonist
is usually the character through whom the player dives into the story and interacts with
the gameworld.

The story patterns "3-act scheme" or the "Hero’s Journey" often serve as a structure for
stories. However, these will not be discussed in more detail in this paper. Instead, struc-
ture elements and storytelling methods and components are of more relevance for this
thesis. In video games, the main storyline and multiple parallel side storylines – also
called plot and sub-plot – can contain quests and interrupts. The difference between the
two terms is explained in the chapter "Quests and Interrupts" using the prototype as an
example. In addition to events and actions of the characters, within the quests and in-
terrupts, various storytelling methods can be applied. For example, characters can have
dialogs, foreshadowing of future events can take place, or flashbacks can refer to earlier
events.

However, this paper is not about classical dynamic storytelling, but about realizing dy-

4

3.2 Definition of Statecharts 5

namic storytelling through statecharts. Therefore, we now move on to these complex
diagrams.

3.2 Definition of Statecharts

When we are speaking about statecharts in this thesis, we are referring to statecharts
according to Harel’s definition in the paper "Statecharts: A Visual Formalism for Com-
plex Systems" from 1987. He described: "Statecharts constitute a visual formalism for
describing states and transitions in a modular fashion, enabling clustering, orthogonality
(i.e., concurrency) and refinement, and encouraging ’zoom’ capabilities for moving easily
back and forth between levels of abstraction." [14].

3.3 Selected Statechart Features

When considering statechart features, the definitions of these are mainly based on the
same paper from which the definition above was taken. We refer to this paper, since
Harel modernized and extended the statecharts with his publication. Today, the features
described in it are still implemented in editors, like the "VisualParadigm Online"-editor,
in the same form, with only a few minor changes [15]. In addition, almost all papers
about statecharts refer to the statechart features of Harel defined in the paper of 1987.
These features are also very easily customizable and extensible, which will be used later
in this thesis in the "New Statechart Features and Pattern"-section 3.5.

Before examining the mapping of storytelling elements onto statechart features, we will
take a closer look at selected groups of statechart features of great importance. While
discussing those central elements of statecharts in more detail and elaborating the differ-
ences between the various types, additional reference is made to recent literature and to
the implementation in statechart editors or projects like the "statecharts.dev"-project, see
[16].

3.3.1 State-Types

States are the nodes of the statechart [14]. These can be fundamentally divided into con-
crete and non-concrete states [17]. The state machine can only be resting in concrete
states, whereas in non-concrete states the state machine immediately continues to tran-
sit [17]. Therefore, non-concrete states are also called "pseudostates" or "transient states"
[17]. The first example of the concrete type is the atomic state, also known as simple
state. In Figure 3.1 "A", "B", "C", "E", "F", "G" and "H" are atomic states. This state-type
has no substates [17]. It should be mentioned that substates are states within other states,
the super-states [14]. In Figure 3.1 "OrState" and "AndState" are super-states while "A",
"B", "C", "E", "F", "G" and "H" are substates. If a substate is active, the super-state also
counts as active. So, in Figure 3.1 when "A" is active, also "OrState" is active. A com-
pound state, on the other hand, has substates. Examples of compound states are the XOR
state – where only one of the substates can be active at a time – and the AND state –
also called parallel state or orthogonal state [14][17]. In this state, the substates are di-
vided into separate parallel regions which run in parallel [17]. Here, several orthogonal
substates can be active at the same time. In the context of orthogonality, a state must be

3.3 Selected Statechart Features 6

active in each parallel region [14]. Harel visualizes parallel components in the way it is
done in Figure 3.1 in the "AndState", but the label of the whole component is not placed
in the header but is written in an outer box added to the AND state [14]. The labels of the
parallel regions are noted at the top of the respective region in both visualization forms.
In Figure 3.1 in the "OrState" either "B" or "C" can be active, while in the "AndState" in
"D" both "E" (or "G") and "F" (or "H") are active at the same time. XOR states require
a branching decision, which results in two or more exclusive, independent paths [14].
With AND decomposition, on the other hand, a single event leads to two or more simul-
taneous happenings [14]. This is a certain kind of synchronization [14]. Within the AND
block prevails independence between the two paths, but this can be broken by an "in
<stateName>"-condition [14]. This condition of a transition ensures that a substate in an
AND-component depends on another substate being active in a different parallel region
[14]. In Figure 3.1, "G" in "Region1" just gets active, when "H" is active in "Region2". So,
this creates a dependency between AND-components.

Figure 3.1: OR state and AND state

Besides atomic states and compound states there are final states and implicit exit states.
However, both will be discussed in more detail in the "Final States and Exits" chapter
3.4 and are therefore not described further in this chapter. Two rather rarely occurring
concrete state types are parametrized states and overlapping states. As shown in figure
3.2 parametrized states have a special form of visualization due to their identical inner
structure, which differs only in one parameter [14].

3.3 Selected Statechart Features 7

Figure 3.2: Situation from left is shown on the right side with the help of a parametrized
state (Source: [14], Fig. 38, 39)

Overlapping states are substate of two super-states simultaneously. Figure 3.3 shows the
visual representation of overlapping states. Reasons for using these states are conceptual
similarities between the involved states or more convenient way to model joint exits [14].
By overlapping states, it is now also possible that OR states emerge and no longer only
XOR states exist. This means that in figure 3.3, "A" or "D" can not only be exclusively
active, but "A" and "D" can be at the same time active if state "C" is active.

Figure 3.3: Overlapping states (Source: [14], Fig. 41)

After all concrete states have been listed, the non-concrete states follow. The default state,
also called initial state, start state, or default-entrance, is used in almost every statechart.
It marks the first active state of the whole statechart or just a compound state [14]. In a
compound state the default state is the substate that is entered by default when the super-
state gets active [17]. It is visualized with a black circle that is left by one transition. An
example for an initial state can be found in figure 3.1 in the "OrState". Furthermore, exit
and exit receiver are non-concrete states. But just as with the concrete final states and
implicit exit states, these will be discussed in more detail in the chapter "Final States and
Exits". Two other non-concrete states to reduce transitions are the condition states and
the selection states. Condition entrances choose the substate to enter based on a condition

3.3 Selected Statechart Features 8

[14]. In the visualization, transitions with only a condition leave the condition entrance
state, represented by a circled C, and target all substates. In figure 3.4, we can see that
with a conditional entrance, the statechart appears more organized than when traversing
into the substates unbundled from directly outside the super-state. Furthermore, the
visual representation indicates that conditional entrances can be compared with an if-
else block in programming languages like "Java" or "C".

Figure 3.4: Comparison of situation with conditional entrance and without (Source: [14],
Fig. 33)

The selection entrance, on the other hand, can be compared with a switch statement of
these programming languages. In this entrance, the substate to be entered is determined
based on a generic event [14]. The event is the selection of one of several clearly defined
options, which are placed as triggering events on each transition between the selection
state and the substates. This means that where in figure 3.4 conditions are written on
the transitions, in the case of a selection entrance events would be written, one of which
occurs in each case. Similar to the comparison entrance, the selection entrance state is
represented by a circled S.

The last non-concrete state type to be mentioned at this point is the history state. This
pseudo-state remembers the most recent sibling states that were active [14]. So, when
the history state becomes active, it is not dwelled in it, since it is a non-concrete state-
type, but it immediately moves on to the most recently visited state, which then gets
active. History states are divided into shallow and deep history states [17]. Shallow
history states appear in the statechart as an encircled H. They only remember which
of their direct siblings was active last. This one then becomes active again. But if the
sibling has more than one substate, the default state within the sibling of the history state
becomes active and not the last active substate in it, because the history does not know
which of the substates was active last. This is different for the deep history state. This
state represented with circled H* remembers the deepest active state. So, the last active
substate of the last active sibling of the deep history state becomes active. In figure 3.5 in
"ShallowHistory" the shallow history only remembers if "A" or “B” was active last. If "B"
was active, "C" will be active in "B" due to the default state, even if "D" was active last,
because shallow history only knows if "A" or "B" was active most recently, but not which
one of "C" or "D" was active. In "DeepHistory" the deep history remembers if "E", "G"
or "H" was active last. So, the last active state gets active again no matter if it is a direct
sibling of the history state or the deepest substate. When the history state is entered
for the first time, the state to which the transition points becomes active. In figure 3.5,
these are state "A" and "E". It should also be mentioned that transitions which originate
directly at a super-state, i.e., in figure 3.5 the transitions with the events "a" and "e", can

3.3 Selected Statechart Features 9

be traversed out of all substates of the respective super-state when the respective event
occurs. So, if event "e" occurs while the system is in state "G" or in "H", the transition to
state "E" is activated.

Figure 3.5: Shallow history and deep history

In addition to the division of states into concrete and non-concrete types, states can also
be characterized by their relation to other states. Two states can be exclusive, orthogonal
or ancestoral. Exclusive means that the states are not on the same path and their last
common ancestor is an XOR state [14]. Orthogonal states are not on the same path as
well and their last common ancestor is an AND state [14]. Ancestoral states are on the
same path [14].

3.3.2 Event-Types

Events, also called triggering events, are responsible for triggering transitions in state-
charts and therefore are written next to these transitions [14]. If the situation described
by the triggering event occurs, the transition becomes active, and the target state of the
transition is entered. In figure 3.5, all lowercase letters are triggering events. A basic dis-
tinction is made between external and internal events. The former signalizes that some-
thing has happened [17]. In contrast to internal events, external events are sent from the
outside of the system to the statechart, which then responds to these [17]. On the other
hand, internal events are nameless events that are generated automatically within the
statechart [17]. This can be the case when a transition occurs, when a service started by
the statechart completes, or when an exit or final state is entered [17]. Internal events
can be sensed by transitions that specify events such as the "in <stateName>"-condition
introduced in the section 3.3.1 "State-types" [17].

As with states, events also occur in different types. The first one is the signal event. This
asynchronous event is queuing until the element is ready to process it [18]. The sender
"sends and forgets" the event [18]. That means that it does not know if the event has
been successfully processed. Also, a signal event can be broadcasted to all objects of a
system [19][20]. Therefore, it is plausible that exceptions can be named as an application
example for this type of event [19][20]. The notation for signal events used in this thesis
is "<Signal> (<Condition>) / <Action>". The condition and the action, both of which
will be discussed later, can be omitted for all event types presented here. Also, further
conditions can be added via "&&" or "||" and additional actions can be attached via "&".

Unlike the asynchronous signal event, the next event type, the call event, is synchronous.

3.3 Selected Statechart Features 10

Here the sender is blocked from continuing until the state processing it is completed
[18]. As notation in this paper "<Operation> (<Condition>) / <action>" is chosen for call
events, where "<Operation>" represents the call event.

The next type of event is the time event or sometimes only called timeout. This event is
triggered due to the expiry of a time interval [18]. If the state with the timeout interval is
re-entered or receives another event, the interval starts again from the beginning [18]. If it
has expired, the transition triggered by the time event is traversed [18]. These events can
be used to synchronize time-dependent parts of the system [19]. Also, they will appear
in delayed transitions, which are discussed in the section 3.3.3 "Transition Types". In this
paper we will use the notation "after <amountOfTime> s (<Condition>) / <Action>".

Another event type is the change event. It represents a change in a state variable or in an
attribute of the classifier [18]. To trigger change events, a condition must be met by the
change [19]. A generic example for a change event would be "when(x > y)" [20]. Here
the condition that the state variable "x" is greater than the variable "y" must apply, so that
the corresponding transition is travelled. The notation can also be extended by condi-
tions and actions as in the previous types: "when(<SomeSortOfTest>) (<Condition>) /
<Action>".

The last event-type is the completion event or null event. As the name suggests, there is
no specific trigger event [18]. The event occurs as soon as the state is entered or when the
state’s activities are completed [18]. Nevertheless, the entry actions are executed in the
state before the completion event occurs [18]. The notation also lacks the actual event:
"(<Condition>) / <Action">

As a small preview of the mapping table in section 3.6 "Mapping Storytelling Elements
onto Statechart Features", we will conclude this section by listing possible elements from
the game context that can be represented by events in statecharts. As can be seen later
from example statecharts, game elements depicted by events are versatile. Events can
represent changes in the gameworld, events or situations occurring in this world or in-
teractions with it. Also, effects and results of the interaction with non-playable charac-
ters or the gameworld as well as effects and results of player actions can be depicted by
events. But not only the outcomes of the player’s actions can be mapped onto events, but
also the actual actions and decisions of the player, as well as technical input and changes
of the game environment in the background, like "OnTriggerEnter", "OnButtonDown",
"OnKeyDown" or "Timeout" can be represented by events.

3.3.3 Transition-Types

Transitions are the arrows of statecharts [14]. Here several different types exist, too. The
first transition, the automatic transition, also called completion transition or eventless
transition, uses the completion event. Therefore, it is a transition without a triggering
event that is traversed as soon as the state is entered and all entry actions and activities are
completed [17]. Automatic transitions are usually guarded [17]. That means they have a
condition, also called guard, which is checked if the state they are leaving is active. This
condition is not an active trigger but is just a barrier that must be true for travelling the
corresponding transition [14]. Multiple conditions can be combined with "&&" or "||". If
conditions are connected with "&&", it means that all conditions must be fulfilled for the
result to be true, and if conditions are linked with "||", only one must be fulfilled for the
outcome to be true. For comparisons in conditions the logical operators are used: <, >, <=,

3.3 Selected Statechart Features 11

>=, !=, ==. In this paper conditions are written in brackets behind the triggering event and
before the action, which is separated with a "/". In some literature and editors, conditions
must be written into square brackets. But after the short excursion to conditions back to
automatic transitions: In figure 3.6, the transition leaving state "A" and targeting state
"B" with the generic condition "(x > 3)" and the transition leaving "B" and entering "C"
without a condition are examples for automatic transitions. However, the latter is only
traversed as soon as the entry action "x=x+1" and the activity "activityB" are completed.

Figure 3.6: Different transition-types

In figure 3.6, the transition from state "C" to "D" is a conditional transition. To travel this
transition, the attached condition must be met [17]. If the condition is not fulfilled, the
transition is ignored [17].

The next transition-type is the delayed transition, which occurs in figure 3.6 between
states "D" and "E". This transition uses a time event to become active after a certain
period of time. As already mentioned in the explanation of the time event, the state
from which the transition starts must have been active continuously until the end of
the period. Otherwise, the time interval starts again from the beginning [17]. Also, self
transitions, which is another transition-type, interrupt the continuity since they restart
the state [17]. This means that when leaving and re-entering the same state, the exit and
entry actions are executed and the timer that indicates how long the state has been active
is restarted [17]. An example of a transition that enters the same state it leaves is the
self transition in "A" with the triggering event "a" and the action "x=x+1" in figure 3.6.
When a self transition leaves and re-enters a compound state all active substates are left
and the default state gets active [17]. Thus, in figure 3.6, when the self transition with
the event "f" and the action "x=x+1" is triggered in "F", state "H" becomes active after
the entry action "x=5" has been performed, regardless of whether "I" or "H" were active
before. Transitions leaving a super-state like this self transition or the transition with the
event "g", can be triggered in each substate and when this happens all substates are left
[14]. Therefore, when in "I" or "H" "g" occurs, the whole super-state "F" is left to state "G".

Self transitions are also examples of external transitions. Unlike local transitions, these
transitions are from one super-state to another super-state, performing exit and entry
actions [17]. Examples of external transitions are the transition with the trigger event
"g" between "F" and "G" and the self transition in "F" in figure 3.6 For these, the actions
"x=x-2" or "x=5" are executed when they enter their target state. Local transitions, or
internal transitions, as they are also called, do not leave the super-state, and therefore do

3.3 Selected Statechart Features 12

not perform exit or entry actions [17]. They occur between substates within a super-state,
like the transition between "H" and "I" in figure 3.6, or they appear between the super-
state itself and a substate of it, like the transition with the triggering event "h" and the
action "x=x-1" in figure 3.6. Since both examples are local transitions, the entry action
"x=5" of state "F" is not executed when these transitions get traversed.

Furthermore, there are transition hubs, which try to combine transitions through a pseudo-
state and thus require fewer transitions and provide more structure. Examples would
be transitions with common targets (figure 3.7 (a)), triggering events (figure 3.7 (b)), or
sources (figure 3.7 (c)) [14]. Transition hubs for common sources and common targets are
often used in AND-components [14].

Figure 3.7: Transition hubs (Source: [14], Fig. 17)

3.3.4 Actions and Activities

In the preceding chapters, the keyword "action" has often been mentioned. Now it will be
explained in more detail. Actions are split-second happenings that occur instantaneously
and ideally take zero time [14]. Furthermore, they can generate events, which in turn can
immediately trigger a transition in an orthogonal component without necessarily having
any immediate external effects [14]. The created event will have the same name as the
action and the transition labeled with this triggering event gets immediately traversed
[14]. Moreover, actions can change the value of a condition or a variable [14]. They can
be placed in states or can be attached to the label of transitions by the notation "<event>
(condition>) / <action1> & <action2> & . . . ". In states, actions can be performed when
entering ("entry <action>") or leaving the state ("exit <action>"). In some papers and
editors, the notation "entry / <action>" is also common for actions in states. Another
characteristic of actions is that they cannot be interrupted by events [19].

This does not apply for activities. These can be interrupted by events [19]. Activities are
durable. That means they will be carried out continuously throughout the state being
active [14]. The notation for activities in states is "throughout <activity>". Since they
are only allowed in states, there is no notation for activities attached to labels of tran-
sitions. In addition, activity "X" can be started by the action "start(X)" and stopped by
the action "stop(X)" [14]. "throughout <activity>" combines "entry start(<activity>)" and
"exit stop(<activity>)" [14]. Furthermore, the new condition "active(X)" gives feedback
whether the activity "X" is still active or not [14].

3.3 Selected Statechart Features 13

A special action that should be mentioned at this point explicitly is the clear-history ac-
tion. This action causes forgetting of recently visited states on the first level or on all
levels [14]. After this action has been performed, history states no longer remember
the last active state and therefore apply their default transition as if the area contain-
ing the history entrance had never been entered before [14]. Clear-history actions are
allowed in states and can be attached to labels of transitions. In states, they are noted as
"clh(<stateName>)" when only the first level of history in the state "<stateName>" should
be forgotten or when all levels of history in the state "<stateName>" should be deleted,
they are written down as "clh(<stateName>*)". Attached on the label of states the nota-
tion "<event> (<condition>) / clh(<stateName>)", respectively "<event> (<condition>) /
clh(<stateName>*)" is used.

In figure 3.8, the application of actions and activities are demonstrated in a practical ex-
ample statechart. If the event "d" is triggered in state "C" at the beginning, the action
"ActionC" is executed, and state "D" is entered afterwards. In this state, activity "Ac-
tivityD" is played continuously. However, if event "b" is triggered, "A", and thus also
substate "D", is left. The "ActivityD" is also interrupted at this point. In the now active
parallel component "Region1", action "h" is executed when state "F" is entered. This gen-
erates an event of the same name "h", which in the parallel component "Region2" causes
state "G" to be exited to state "H". If event "g" occurs in this state, the clear-history action
is executed during the transition back to "G", whereby the history on the first level is
forgotten in state "A". This means that if event "a" occurs and state "A" is entered again,
the history state no longer knows that "D" was last active when "A" was exited. Since the
default transition of the history state points to "C", "C" would now become active instead
of "D".

Figure 3.8: Application of actions and activities

3.3.5 Refinement and Abstraction

Unlike the features discussed so far, refinement – zooming-in –, and abstraction – zooming-
out – are not features that can occur directly in statecharts but are processes that can be
performed on statecharts to convert them into white-box-view or into black-box-view.
The white-box-view describes a visualization of a super-state in which all substates and
transitions of it are shown in detail. In the black-box-view, on the other hand, super-states

3.3 Selected Statechart Features 14

can be represented as black boxes into which one cannot look. In this way substates and
transitions can be hidden. The black-box-view is mainly used when the inner structure
of super-states is irrelevant or has not yet been determined. To express in the black-box-
view that a transition leaving the black box originates from a specific substate and not
from the entire super-state, the transition is visualized by an arrow starting from a bar
inside the black box [14]. And the other way round: Transitions from outside the black
box to a specific substate inside the black box are represented as arrows that end on a
dash inside the black box [14]. To get into the black-box-view – so zooming-out –, the
substates and transitions of the respective super-states are omitted, and incoming and
outgoing transitions are represented by the two new visualization options for transitions
[14]. This can be seen in figure 3.9, where the right statechart is the left one but in black-
box-view. To get into the white-box-view – so zooming-in – , the inner structure of the
super-state is displayed and the outer elements are omitted [14]. This is visualized in
figure 3.10, where the right statechart is the "A"-state of the left one in white-box-view.

Figure 3.9: Abstraction to black-box-view
Figure 3.10: Refinement to

white-box-view

3.3.6 Abstract Concepts

This section covers some features that are mentioned only briefly in Harel’s "Statecharts:
A Visual Formalism for Complex Systems". Nevertheless, they must be explained, as
they are also included in the mapping in section 3.6 "Mapping Storytelling Elements onto
Statechart Features".

Unclustering is a feature that provides improved overview in statecharts [14]. For this
purpose, parts of the statechart are placed outside their natural location [14]. This would
also be a feature that could enrich a possible statechart framework in game engines. For
example, a developer could be given the option that when he/she clicks on states, they
appear in large size outside the statechart. This could also be realized in the combination
of unclustering with the concepts of refinement and abstraction. Figure 3.11 shows a
possible approach for unclustering.

3.3 Selected Statechart Features 15

Figure 3.11: Unclustering (Source: [14], Fig.36)

3.4 Final States and Exits 16

Temporal logic, which is already used in many programs, can also be beneficially ap-
plied to statecharts [14]. Temporal logic can be used, for example, to specify many types
of global conditions, like timing constraints, eventualities, or absence from deadlocks
in advance [14]. The temporal logic clauses must then be met by every statechart [14].
However, since temporal logic is another far-reaching area that would be too large for
this paper, it will be left at that.

Even since, according to Harel, there are only a few use cases for it in practice, recursion
can also prevail in statecharts [14]. In this case, the name of a separate statechart, of
which the present one is a special case, is specified in the label of a transition of the
present statechart [14].

Statecharts in pure form are deterministic [14]. This can be overcome if probabilism is
added. Thus, one could allow nondeterminism and specify a bias on the coin to be tossed
when it arises [14]. Nondeterminism could be used in a variety of ways in dynamic
and interactive storytelling, like for an increasing probability of a dragon attack when
the player gets stronger or for non-playable characters, which enable non-deterministic
dialogs. However, these considerations are too far-reaching for this paper, as the focus
lies more on the fundamentals.

3.4 Final States and Exits

Ending things plays a big role in storytelling. Be it in ending dialogs, tasks, quests, sub-
plots, backstories, the main storyline or even the lives of characters. Nevertheless, as
figure 3.12, figure 3.13 and figure 3.14 show, the author had to realize that neither in ed-
itors nor in literature, there is a uniform definition for final states or exits of statecharts.
For this reason, the following chapters will attempt to develop a uniform definition of
final states and exits as well as determine their precise mode of operation.

Figure 3.12: Final state and finished-signal of "QT Core - The State Machine Framework"
(Source: [21])

Figure 3.13: Exit point of „UML Diagrams – State Machine Diagrams” (Source: [22])

3.4 Final States and Exits 17

Figure 3.14: Named exit state - notation: #<exitStateName» of "YAKINDU Statechart
Tools" (Source: [23])

3.4 Final States and Exits 18

3.4.1 Definition Final States

A final state is defined as a state in a compound state which designates that the com-
pound state has completed, i.e., will not process any further events and denotes the end
of the execution flow of a statechart or region [17][24][23]. Final states can be left again
in other states at any time by direct leaving transitions. Event propagation or "bubbling"
is not possible with final states, since the final state compound is left via transition with
"in <componentName>.final/finalAll"-condition and not via a broadcasted event. Final
states are visualized by an ordinary state with a second dashed surrounding. This way,
it can be achieved that in implementations, final states can be implemented like normal
states and no additional code is needed.

The label of the transition leaving the final state component must also be defined. The
exiting transition leaves the super-state when the "in <componentName>.final/finalAll"-
condition is met. So, if one respectively all final states within the super-state are ac-
tive, the super-state will be exited via that transition, which can also be extended by
further conditions or actions. The advantage of the condition chosen here over the "in
<finalStateName>"-condition already present in the classic Harel-features is that with
the latter, the name of the final states must always be specified. This is not necessary
with the first condition. By using the in "<componentName>.final/finalAll"-condition, a
decoupling takes place.

3.4.2 Completion Event Handling with Final States

In the following, the application of the definition will be shown by means of some repre-
sentative example situations. Figure 3.15 shows a feeder states compound, which is ex-
plained in more detail in the "New Statechart Features and Pattern" section 3.5. This com-
ponent is left to an external state via final state "StateN" and "in FeederStatesCompound.final"-
condition. In this example, if the event "EventN" occurs in the state "StateN", the final
state is exited again.

Figure 3.15: Final state with "in <componentName>.final"-condition

3.4 Final States and Exits 19

In figure 3.16 and figure 3.17, several final states occur in a parallel component. The
difference is that in figure 3.16, due to the "in FeederStatesCompound.final"-condtion,
the "FeederStatesCompound" is exited as soon as the first final state is reached. In fig-
ure 3.17, on the other hand, all parallel final states must be active because of the "in
FeederStatesCompound.finalAll"-condition. Until this is the case, the system waits in
already active final states until all of them are active. Only then, the transition to "Exter-
nalState" is traversed.

Figure 3.16: Multiple final states with "in
<componentName>.final"-
condition

Figure 3.17: Multiple final states with "in
<componentName>.finalAll"-
condition

This leaves the case where final states are used in a hierarchical structure. This is quite
simple since transitions with "in <componentName>.final/finalAll"-condition must start
in the active state to be traversed and can end in all other states of the system. In contrast
to exits, the problem does not emerge that the broadcasted event is caught on several
levels by several receivers due to event propagation, since we are not broadcasting an
event but using the transitions with "in <componentName>.final/finalAll"-condition to
leave the completed component. When more than one transition can be taken, the tran-
sition starting in the least-nested state – the state on the outermost level – is traversed,
because leaving an outer level compared to leaving an inner level has a greater effect,
since the inner levels are also left when leaving the outer level of a nested state. So, the
more important event will be executed. Some statechart editors provide both the "parent-
first execution"- and the "child-first execution"-option. In "YAKINDU Statechart Tools",
for example, the code lines "@ParentFirstExecution" and "@ChildFirstExecution" can be
used to specify which execution order is to be followed [25]. If all matching transitions
start in the same state, then a hidden order is created. Depending on the implementation,

3.4 Final States and Exits 20

this can yield different results. In this paper, the first transition found is traversed as it is
done in SCXML [26].

In figure 3.18 are several matching exit-transitions. The transition ending in "External-
State1" is taken, since it is the transition starting in the least-nested state on the outermost
level.

Figure 3.18: Final state with multiple "in <componentName>.final"-conditions

Figure 3.19 shows a scenario in which two final states and two leaving transitions ex-
ist. Nevertheless, in this example there is always only one matching exit-transition for
each final state. "StateN" is left into "ExternalState2" due to the condition "in Feeder-
StatesCompound.finish" and "Level2StateN" is left into the "ExternalState1" because of
the "in Level2.finish"-condition.

Figure 3.19: Multiple final states with multiple "in <componentName>.final"-conditions

3.4 Final States and Exits 21

3.4.3 Definition Exits, Exit Receivers and Implicit Exit States

Exits are pseudo-states that are used to leave a previously entered super-state, while also
exiting possible existing substates. Since these are non-concrete states, it is not possible
to dwell in them. Furthermore, they can only be entered when a counterpart exists, oth-
erwise the system throws an exception. Additionally, exits are not allowed to have direct
leaving transitions. When an exit is entered, it broadcasts an EXIT event. This procedure
allows limited event propagation. Why this is only limited event propagation will be
explained in the section 3.4.4 "Completion Event Handling with Exits". The exit is visu-
alized as a black square inside another square and is located within the component that
will be left.

Exit receivers – also called counterparts – are pseudo-states that receive EXIT events from
exits and control the transition to the next component of the system. Therefore, they have
an outgoing transition, which is explained in more detail at the end of this definition
chapter. At this point it should only be mentioned that the transition can be labeled with
an EXIT trigger event and an EXITALL trigger event. These trigger events are also called
flags in this section. If an exit receiver catches an EXIT event broadcasted from an exit
and the transition leaving the exit receiver has an EXIT flag, the super-state is left to the
external state targeted by the transition leaving the exit receiver. But if an exit receiver
catches a single EXIT event broadcasted from an exit, but the transition leaving the exit
receiver is labeled with an EXITALL flag instead of an EXIT flag, the exit receiver sends
back that not all parallel regions are ready to exit the whole component. Thereupon the
exit in the finished orthogonal component is left to the respective implicit exit state, which
is also defined in this chapter. The implicit exit state is then active until the exit receiver
has gotten an EXIT event from all exits of all parallel components. If this has happened,
the gates of the transitions from the implicit exit states to the exits are opened again and
all components enter their exits. Via the transition of the exit receiver, the entire super-
state is then exited to an external state. Furthermore, one exit receiver can receive EXIT
events from multiple exits of the component. Therefore, the exit-exit receiver interaction
presented in this paper can be understood as a transition hub. Also, all connections to
the outside run via the exit receiver. By broadcasting an EXIT event, even the physical
transitions within the component between exits and exit receiver can be omitted. In ad-
dition, the internal components do not know the external ones. Therefore, an interface
is needed, which is provided by the exit receiver. The visualization of exit receivers is
the same as for exits, except that now a transition leaves the state and does not enter it.
In addition, exit receivers are positioned on the line of the component to be exited, as
this better expresses the fact that the entire component with all substates is being exited.
Exits and exit receivers can also melt. This happens when the receiver is positioned at the
same level as the exit. In this case the EXIT event broadcasted by the exit is immediately
caught again by the merged exit receiver. Visually, both states melt as well. This means
that only the exit receiver is still on the line, but it has both, an outgoing and an incoming
transition. This can be seen in figure 3.20, figure 3.21 and figure 3.22 in the next section.

For completeness, implicit exit states and labels of transitions leaving the exit receiver
must also be defined. Implicit exit states are the predecessor states of exits. Since these
states are concrete states, it is possible to dwell in them. What makes them special is that
these states have a transition to the exit. However, this transition can only be travelled if
there is a valid counterpart of the exit. This means that the system waits in the implicit
exit state until the component can be exited through the exit ant the exit receiver. This is,
where the name implicit exit state comes from. Implicit exit states can also have transi-

3.4 Final States and Exits 22

tions to other states through which they can always be left, like final states. As mentioned
in the definition of exit receivers, when an EXITALL flag is set in the label of the transi-
tion leaving the exit receiver, the system waits in the implicit exit states until all parallel
components have reached their exit states. Only when the implicit exit states are active
in all parallel components, the transition into the exit becomes active, to then leave the
entire component via the exit receiver and the transition out of them. Since the implicit
exit states are normal states of the statechart, which have a transition to the exit as the
only extraordinary feature, they are visualized as normal states.

The last thing to define are the labels of the outgoing transitions of the exit receivers. As
triggering events there can be the flags EXIT and EXITALL. The EXIT flag means that
if the exit receiver receives an EXIT event from an exit, the transition is immediately
traversed. The EXITALL flag, on the other hand, activates the transition only if in all
parallel components the implicit final states are active, so if the exit receiver has caught
a broadcast EXIT event from all parallel components. In addition, the transition can also
have actions, that are performed while traversing, and conditions, that must be met,
when exiting the component through this exit receiver. If not all conditions are met,
the broadcasted EXIT event is not handled by the receiver but is passed on to the next
receiver. If an EXIT event is never caught, it will continue to propagate until it causes
the entire program to terminate. This could be prevented by the implementation of a
warning system.

3.4.4 Completion Event Handling with Exits

As it was done with the final states, in the following, the application of the definitions for
exits, exit receivers and implicit exit states will be shown by means of some representative
example situations.

In figure 3.20 the exit is also the exit receiver. This is an example situation where they melt
because they are on the same level. As flag for the transition leaving the exit receiver, the
EXIT flag is chosen. Furthermore, in this example, the implicit exit state "StateN" can be
left when event "EventN" occurs.

Figure 3.20: Melted exit and exit receiver on single level with an EXIT flag and a leaving
transition in implicit exit state

3.4 Final States and Exits 23

Figure 3.21 and figure 3.22 show situations with one orthogonal component and three
exits, all of which melted with one exit receiver. The difference between the two figures
is that in figure 3.21, an EXIT flag is used, while in figure 3.22 an EXITALL flag is applied.
This means that in figure 3.21 the component "FeederStatesCompound" is exited to the
"ExternalState" as soon as the first orthogonal region reaches the exit. In figure 3.22, how-
ever, the orthogonal components must wait in the implicit exit states until they are active
in all parallel regions. Only then is the entire component exited to the "ExteralState".

Figure 3.21: Orthogonal component with
multiple exits melted with one
receiver with EXIT flag

Figure 3.22: Orthogonal component with
multiple exits melted with one
receiver with EXITALL flag

Next, situations where exit and exit receivers appear in hierarchies must also be consid-
ered. The exit broadcasts an EXIT event, which is caught by the exit receiver. Due to
hierarchy, there could be more than one exit receiver. Now the problem arises, which exit
receiver manages the broadcasted EXIT event. To be able to solve this problem, we first
must answer what broadcasting means in the statechart context. Yacoub and Ammar de-
scribed in "A Pattern Language of Statecharts" broadcasting in the context of orthogonal
components. In this paper, Broadcasting is used to enable events and actions to interact
in different parallel components [27]. For this purpose, broadcasting is implemented in
the sense that a kind of virtual super-state contains all other components and can thus
access all of them, enabling the system to broadcast something [27]. This approach can
also be used when broadcasting the EXIT event. The EXIT event propagates through the
virtual super-state until it finds an exit receiver that handles the broadcasted event. At
this point, it will stop propagating to outer levels like it is done with exception handling
in "Java" or other programming languages. Since the event no longer bubbles after it has
handled, we speak of limited event propagation.

3.4 Final States and Exits 24

In the following figures, the use of exits and exit receivers will be illustrated by selected,
hierarchical example scenarios. Figure 3.23 shows a situation where the exit and the exit
receiver are not melted, since they are located on different levels. In this example the exit
in "FeederStatesCompound" broadcasts an EXIT event that is caught by the exit receiver
on level "Level1". After receiving the broadcasted event, the whole component is left to
"ExternalState".

Figure 3.23: Exit and exit receiver

Now the scenario of figure 3.23 is extended by another exit in figure 3.24. The broadcasted
EXIT events from both exits are caught by the same exit receiver. Therefore, no matter
which exit is reached, the entire nested component is always exited to the state "External-
State" via the same exit receiver and the same transition. Furthermore, the generic state
"Level2StateN" is again an implicit exit state, which can be left to another state, or in this
case to another super-state.

Figure 3.24: Multiple exits and one exit receiver

Figure 3.25 shows the exact opposite case. Now there is only one exit and two exit re-
ceivers on different levels. In addition, in this scenario the transitions leaving the exit
receiver are guarded by a condition. After the EXIT event was broadcasted, it is first

3.4 Final States and Exits 25

received by the exit receiver in "Level2". When the value of the variable "VarX" is zero,
the state "ExternalState2" is entered, and the broadcasting of the EXIT event is stopped.
But if the Value of "VarX" is not zero, the EXIT event is passed on. Next, the exit receiver
in "Level1" catches the EXIT event, tests if "VarX" is equal to one and if this is fulfilled,
it leaves the component to "ExternalState1". However, if the value of "VarX" is not one
or zero, the broadcasted EXIT event is never caught and is passed on until it is handled
on a higher level or eventually causes the entire program to terminate, when it is never
caught.

Figure 3.25: One exit and multiple exit receiver

The last scenario presented in this section to explain exit and exit receiver interaction
combines a melted exit and exit receiver with a normal exit and exit receiver in figure 3.26.
When the exit in "FeederStatesCompound" is entered, it broadcasts an EXIT event which
is immediately caught again by the fused exit receiver. Afterwards, the exit transition is
travelled and the "ExternalState2" gets active. When the exit in "Level2" is entered, an
EXIT event is broadcasted. This event is caught by the exit receiver in "Level1" and the
"ExteralState1" gets active. In this case the melted exit receiver does not receive the EXIT
event since the broadcasted event only bubbles up and not down.

Figure 3.26: Melted exit and exit receiver and not melted exit and exit receiver

3.4 Final States and Exits 26

In the first approach, it was tried to implement unlimited event propagation. What this
means and why it was finally decided not to do so will be explained in the following.
Since event propagation is not a big issue with conventional Harel statecharts, let us see,
how it is handled on the web with "JavaScript". Event propagation is defined in the web
context as the following process: A single event, fired on a particular node, propagates
through the tree hierarchy, and indirectly triggers a series of other event-handlers at-
tached to other nodes [28]. In this context, the term tree hierarchy represents the entire
structure of a website since they consist of nested hierarchical elements. Furthermore, the
event handler can be triggered in two directions. If bubbling is enabled, the event first
triggers the handler of the deepest child element, on which the event was fired and then it
bubbles up and triggers the parents’ handlers [28]. That means that here we proceed from
the most-nested element to the least-nested one. If capturing – also called trickling – is
enabled the opposite direction is done. The event is first captured by the parent element
and then passed to the event handlers of the children [28]. So, the deepest child element
is the last one capturing the event [28]. Therefore, Event handling has the effect that, for
example, a single click on an element causes several boxes to expand due to bubbling.
Thus, the user’s click is processed by several hierarchically arranged handlers. Applied
to statecharts, this could be used to allow broadcasted EXIT events to bubble up. In this
case, all exit receivers would catch the EXIT event and travel their EXIT or EXITALL
transition. So, all levels with exit receivers are exited until the least-nested transition gets
triggered and the respective level is left. Consequently, not only the closest level having
an exit receiver is left, but also the levels up to the level with the least-nested exit receiver
are exited. In the end, this results in the fact, that all levels up to the level containing the
least-nested exit receiver are left to the state targeted by the transition leaving this exit re-
ceiver, regardless of whether they were left already before due to an own exit receiver to
another external state. This is the reason why unlimited event propagation is not useful
in the statechart context and why only limited event propagation is used for the propaga-
tion of EXIT events. In the web context it makes sense that bubbling events are handled
multiple times even at different levels. For example, it is useful that an "onClick"-event
expands several hierarchically arranged areas. In the statechart case, however, it does not
make sense to first exit the component on an inner level and move to another state, and
then to exit the entire component, including the state just entered, when the outer receiver
catches the broadcast event. In addition to the unnecessary extra work, this can also lead
to side effects in the only briefly entered state. For example, in this state an entry action
could be triggered. But possible exit actions are ignored since the state does not really
become active and therefore is not regularly exited. Figure 3.27 shows this problematic.
When the EXIT event was shot by the exit in "FeederStatesCompound", it is received by
both exit receivers due to bubbling. At first the exit receiver on the level "Level2" catches
the EXIT event and processes it, i.e., the exit receiver is left to the state "ExternalState2".
While entering this state the entry action "ActionA" is performed. But when the second
exit receiver on the outer level "Level1" catches the broadcasted EXIT event, the “Level1”
and all inner levels are left immediately to the "ExternalState1". That includes that the
"ExternalState2" is not active anymore. However, the exit action “ActionB” is not per-
formed since the state is not left regularly. So in the end, only "ExternalState1" is active
and in state "ExternalState2" exclusively the entry action was performed, but not the exit
action. This could lead to an unwanted behavior or also to bugs. Therefore, only limited
event propagation is used for EXIT evens. Nevertheless, some application examples for
unlimited event propagation in statecharts would be conceivable. The "Outlook" section
5 provides some ideas for this.

3.4 Final States and Exits 27

Figure 3.27: Multiple exit receivers - example for unlimited event propagation

3.4.5 Differences between Final State and Exit

After defining final states and exits and explaining their application, the question arises
in which way they differ. Table 3.1 compares final states and exits by considering the
most important aspects.

3.4 Final States and Exits 28

Table 3.1: Comparison of final states and exits

3.5 New Statechart Features and Pattern 29

3.4.6 Reasons for Leaving-Option of Final States and Implicit Exit States

Finally, only one aspect remains to be clarified before final states and exits are consid-
ered fully defined. Final states and implicit exit states are defined in such a way that it
is permissible to leave them to another state. This allows the criticism that final states
and implicit exit states are not final since they can be left. The fact that they can be left is
merely the default behavior selected by the author. The default behavior can be changed
simply by redefinition so that these states cannot be exited, i.e., outgoing transitions are
not evaluated. This would lead to dead-code, since now transitions, which were valid
transitions before, can no longer be traveled. However, this would not limit the general
functionality of a statechart. Nevertheless, the author has decided that final states and
implicit exit states can be left. This is because external influences can exist, which affect
a component in such a way that it is necessary to leave the final state or the implicit exit
state. This can be the case because the system is influenced by the external influences in
such a way that the current situation of the system no longer corresponds to the condi-
tions and circumstances of the final state or the implicit exit state. As an example, a state
diagram representing the landing process of a helicopter onto a ship can be provided at
this point. When the helicopter is just above the landing zone, the statechart is in the
final state. However, if the position of the ship deviates or the helicopter is driven off by
a gust of wind (the external influences), the helicopter is no longer in a state that allows
landing. Consequently, the final state is left again in the statechart until the helicopter is
hovering directly above the landing zone again.

3.5 New Statechart Features and Pattern

As shown in the chapter "Mapping Storytelling Elements onto Statechart Features", with
Harel’s statechart features almost any situation that might arise in storytelling can be
realized. Nevertheless, some new features and patterns are conceivable to facilitate sto-
rytelling in statecharts.

The first new pattern, the feeder states compound, has already been used in the figures
of the last section. The idea behind this new pattern is, like a feeder road of a highway,
to make sure that a path is traveled that leads only in one direction and can be left only
at one point. Formally the feeder states compound consists of a sequence of states that
terminates in an exit and has no outgoing transitions. A generic example can be seen in
figure 3.28.

Figure 3.28: Generic feeder states compound example

Ahead of the mapping chapter, it can be said that feeder states compounds can represent
a sequence of events of the plot that ends in a fixed state. This fixed state of the plot is
always the same state. A concrete example from the storytelling context for which the
feeder states compound can be used, is an introduction sequence before a quest. In this
case, the only end point lies in the beginning of the quest. So, apart from this point, there
is no other possibility where the introduction can be left. Figure 3.29 shows an example

3.5 New Statechart Features and Pattern 30

scenario where the introduction of the "Blacksmith"-quest is realized by a feeder states
compound. In it, the player meets the blacksmith, who introduces himself to the player
through a cutscene, which is realized as an activity. Once this activity is completed, the
introduction is exited to the end point. In this state, the blacksmith asks the player for
help. He offers him a quest in a cutscene realized by an activity that can be aborted at
any time by leaving the forge. After the payment for the forged sword has been delivered
to the blacksmith or the player has incurred the displeasure of the blacksmith or left the
forge, the quest ends in one of three final states that describe the relationship between the
player and the blacksmith.

Figure 3.29: "Blacksmith"-quest with the introduction being realized via feeder states
compound

Feeder states compounds are used in the next new feature, the extended history entrance.
The basic problem to solve is that with the Harel features, it is very cumbersome to cre-
ate a possibility to offer an individual introduction for each state after a history entrance.
This can be seen in figure 3.30. However, this feature is often needed in storytelling to pre-
serve the immersion. Why should a blacksmith give the player a complete introduction
including introducing himself, if the player was already in the middle of the quest and
only interrupted it? In this case, only a short question about where the player was and
a brief repetition of where the player stopped when he interrupted the quest would be
more appropriate. Furthermore, in the short individual introduction before re-entering
the last entered state, reference could be made to current events and the ongoing situa-
tion. This would make the game experience even more immersive.

Technically, the extended history entrance is a history state with feeder states compounds
as substates. Thus, the extended history entrance is not a pseudo-state in contrast to the
conventional history state. Nevertheless, the basic function is the same: The last ac-
tive sibling state is revisited after entering the extended history state. Before that, how-
ever, a feeder states compound is traversed within the extended history state. Which
feeder states compound of several feeder states compounds is selected, depends on the
H-entrance decision, so which state was last active when the component was left. This
is implemented in such a way that in the extended history state, there is a condition en-
trance whose various conditions consist of the states in which the system may have been
before the interrupt. Thus, when the extended history entrance is entered, the history
state is evaluated, resulting in the fulfillment of a condition of the condition entrance. In
this context, the condition "first time" means that the extended history state is visited for
the first time, i.e., when the component, in which the history entrance is located, has not

3.5 New Statechart Features and Pattern 31

been active before. In addition, within the feeder states compound, events and states of
a parallel compound can also be referred to by the "in <stateName>"-condition. After
traversing the feeder states compound, as with the conventional H-state, the last state
visited in the component is entered.

The extended history entrance is represented by an "EH", which is circled and labeled
with a name. The substates within the extended history state are represented due to
refinement and unclustering outside the statechart.

As mentioned at the beginning of the explanation of the new feature, extended history
entrances are ideal for offering varying introductions when starting and resuming quests
based on the progress already made before the interruption or the current situation of
the storyworld. To show this in practice, the following statecharts (figure 3.30, figure
3.31) take up the situation of figure 3.29, in which the player carries out a quest for a
blacksmith. But now this scenario is extended by an interrupt that allows the player
to pause the quest. When the player resumes the mission, i.e., leaves the interrupt, an
individual introduction is performed based on different cutscenes. Which introduction
is chosen depends on the state the player was in when he left the quest for the interrupt.
For example, if the player left the quest in the "ReturnWithTheMoneyToTheBlacksmith"-
state, when he resumes the quest, he will be asked by the blacksmith’s wife when he will
finally deliver the money. But if the player was only in the state "ForgingTheSword", the
blacksmith will ask, where the player was and will briefly explain the current blacksmith
step in which the player was before he left.

If we compare figure 3.30 and figure 3.31, we can observe that the scenario in figure 3.30
using only the Harel features, is significantly less structured than the same situation in
figure 3.31 with the extended history feature.

Figure 3.30: Extended history situation but with only Harel features

Figure 3.32 shows the same situation as in the previous figures. But this figure has only
been extended by a parallel side quest, which can be referred to in the introductions in the

3.5 New Statechart Features and Pattern 32

Figure 3.31: Example situation extended history entrance

3.5 New Statechart Features and Pattern 33

extended history. For example, the player may be alerted to a bandit hideout by a guard
when he re-enters the "DeliverSwordToTheKing"-state. Another parallel interaction takes
place when the player re-enters the "ReturnWithTheMoneyToTheBlacksmith"-state. The
blacksmith’s wife, in addition to asking for the money, also gives a warning about the
mercenaries, if the player has accepted the mercenaries’ job in the parallel "Mercenary"-
quest.

Figure 3.32: Example situation extended history entrance with two parallel quests

Despite the better structure of the extended history feature compared to the approach
using only Harel features, it also has some disadvantages. In an implementation, many
additional lines of code are needed to implement this feature. Furthermore, the name of
states appears in several locations, which breaks the decoupling. To avoid these disad-
vantages, the new feature "extended colored history entrance" will be introduced. The

3.5 New Statechart Features and Pattern 34

purpose of this feature should be the same as for extended history states: After a history
entrance, individual paths should be traversed before the last active state becomes active
again. Therefore, a conventional history state determines the last active state. In front
of all states, however, there is a colored feeder states compound that is entered instead
of the state determined by the conventional history state before. After this compound
has been traversed, the last active state is entered as usual. As with the extended his-
tory entrance, only a colored and circled "ECH" is shown in the actual statechart before
the states. The corresponding-colored feeder states compound can be found outside the
actual statechart.

Figure 3.33 shows the same scenario as figure 3.30 and figure 3.31 but realized with the
extended colored history entrance feature

Figure 3.33: Example situation extended colored history entrance

To conclude the section on extended history features, table 3.2 compares extended history,
extended colored history and the realization with only Harel features in the most impor-
tant aspects. Red text shows a disadvantage and green text indicates that the respective
aspect has a positive effect.

3.5 New Statechart Features and Pattern 35

Table 3.2: Comparison of extended history, extended colored history and Harel statechart
features

3.6 Mapping Storytelling Elements onto Statechart Features 36

3.6 Mapping Storytelling Elements onto Statechart Features

As the last part of the theoretical section, storytelling elements will be mapped onto the
statechart features. This means that we now determine which storytelling elements can
be represented by which feature of the statechart. A table with three columns was se-
lected as the most suitable format for this. The first column contains the statechart fea-
tures, the second column stores the mapped story elements, and the last column provides
examples from the games-context for the respective feature and references to figures in
which the mapped feature is realized. Some of these figures are described below the
table, while others have already appeared in previous sections.

Statechart Features Storytelling Elements Examples in the context of games
Hierarchical structure elements

Node, atomic
state

Concrete state of the plot The Player tries to shoot
the dragon – see figure
3.35

Super-state Quest, Part of the plot House-building quest or
dragon attack – see figure
3.35

Substate Part of a quest like a dialog
or action

In the “BuildingAHouse”-
quest the player is search-
ing for a good building
site – see figure 3.35

Parametrized
state

Different states of the plot,
which differ only in one
point

Given answer options
within a dialog, from
which the player can
choose one – see figure
3.36

Overlapping
state

Part of a quest like a dialog
or action, which is part of
two quests

The player must visit the
president’s place of resi-
dence to make sure he is
alive for the first quest and
also to get advice from
him for another quest.

Feeder states
compound

A sequence of events of
the plot that ends in a
fixed state of the plot that
is always the same

An introduction sequence
before a quest – see figure
3.29

Transitions
Arrow/Transition Step to the next section of

the plot, part of the story-
line

Change in the gameworld,
like when a dragon is
sighted – see figure 3.35

3.6 Mapping Storytelling Elements onto Statechart Features 37

Automatic transi-
tion/completion
transition/event-
less transition

Reaction to change in a
state, but which is not
connected with a concrete
event (1) or a dynami-
cally occurring event (los-
ing life) (2)

(1): A cutscene repre-
sented by an activity
started at entry is fin-
ished and thus the state
is finished and can be
exited – see figure 3.31 in
“Extended_1”
(2): The player is in a
state where he fights a
dragon. If the number
of lives falls below 0, the
player dies and enters a
“PlayerDead” state. This
transition can be modelled
by an automatic transition
– see figure 3.35

Conditional tran-
sition

Step to next section of the
plot but only when some-
thing has happened or has
been achieved

When building a house,
the roof can just be started
when the walls are fin-
ished. The completion of
the walls can be managed
by a condition – see figure
3.35

Delayed transi-
tion

Step to next section of the
plot after an amount of
time has passed

The player tries to kill the
dragon outside the village.
If this takes too long, the
dragon flies into the vil-
lage and devastates it – see
figure 3.35

Self transition Retry a part of the plot
again or return to the same
situation in the plot after
an event has occurred

The player tries to kill
the dragon inside the vil-
lage. If this takes too
long, the dragon devas-
tates the house the player
was building before the
dragon attack. Afterwards
the player tries to kill the
dragon again – see figure
3.35

External transi-
tion

Step on a high level from a
part of the plot to the next
part of the plot

From one quest to another
quest: The player is build-
ing a house, then a dragon
is sighted, and he tries to
fight the dragon – see fig-
ure 3.35

3.6 Mapping Storytelling Elements onto Statechart Features 38

Local transi-
tion/ internal
transition

Step from a state of the
plot to the next state of the
plot within a quest or part
of the plot

After the player has found
a good place to build his
house and has decided on
it, he start digging a hole –
see figure 3.35

Transition leav-
ing a super-state

Finishing a quest or inter-
ruption by an event that
triggers another quest

A dragon is sighted while
building a house – see fig-
ure 3.35

Transitions with
common sources

Choice, Decision (not only
through dialog but also
through actions of the
player or the environ-
ment)

Deciding whether han-
dover the money to the
blacksmith or to escape
with the money, after the
player has received the
wage from the king

Transitions with
common targets

Reunion of two storyli-
nes/story paths

If the player fights a
dragon in the open field
and dies, it leads to the
same condition as if he
dies fighting in the village.

Transitions with
common trigger-
ing event

A global change in the sto-
ryworld effecting all story-
lines

The player is in the a
“Blacksmith”-quest and
in a “Mercenary”-quest
and suddenly an enemy
army attacks the kingdom.
Then the player pauses in
both quests, because he
is drafted by the king to
defend the borders.

Flow of events
Triggering event Change in the storyworld

(also see “Event-Types”
last paragraph)

A dragon is sighted – see
figure 3.35

Condition Event or Action that must
have occurred (1) or vari-
able that must have a cer-
tain value
(2)

(1): When building a
house, the roof can just
be started when the walls
are finished. The com-
pletion of the walls can
be managed by a condi-
tion – see figure 3.35 (2):
Checking after returning
to the “BuildingAHouse”-
quest if the village was at-
tacked – see figure 3.35

3.6 Mapping Storytelling Elements onto Statechart Features 39

XOR in super-
state

Choice, Decision (not only
through dialog but also
through actions of the
player or the environ-
ment)

When the mercenaries ask
for help, the player can
refuse or agree to help,
which will either disgrace
him or give him a quest –
see figure 3.32

Clear-history
(clh(<stateName>))

Event or decision in inter-
ruption or parallel story-
line that makes it impossi-
ble to return to the aban-
doned point in the plot or
in the main storyline.

The “BuildingAHouse”-
quest is interrupted by
a dragon attack. If the
dragon devastates the
entire village, the player
cannot just return to
the point where he left
the building site but
must start building from
scratch. – see figure 3.35

Clear-history
(clh(<stateName>*))

Event or decision in inter-
ruption or parallel story-
line that makes it impossi-
ble to return to the aban-
doned point in the plot
or in the main storyline
and that has global signifi-
cance.

Same example as above,
but now individual
construction steps are
subdivided: Building a
house wall as a super-state
with the substates cutting
down trees, hammering in
pillars, sawing trees into
boards, nailing boards to
supporting pillars – how-
ever, the player does not
return to the step he left,
but starts all over again
even the small substates
in the super-states, i.e.,
cutting down trees.

Time event Obvious or indirect timer
for quests, dialogs, or ac-
tions; higher level: Timer
that indicates how long
the player can stay in the
current state of the plot
until an event happens;
can also be used to lock
later events until a certain
time.

The player tries to kill the
dragon outside the village.
If this takes too long, the
dragon flies into the vil-
lage and devastates it – see
figure 3.35

Final state State of a storyline/quest
where it is finished

Player dead or threat
averted, e.g., the dragon
was killed – see figure 3.35

Exit Indicates that a quest or
dialog or part of the plot is
finished

End of a greeting and in-
troduction sequence – see
figure 3.31

3.6 Mapping Storytelling Elements onto Statechart Features 40

Implicit exit state State before a quest or di-
alog or part of the plot is
finished

The blacksmith welcomes
the player – see figure 3.31

Orthogonality
And decompo-
sition in super-
state/orthogonality/concurrency

One single event causing
two independent happen-
ings leading to two paral-
lel storylines, like plot and
sub-plot, like actions of
the main character and ac-
tions of the non-playable
characters or antagonist,
or two parallel quests (1),
or different subsystems (2)

(1): Two parallel quests:
In one the player helps
the blacksmith forging a
sword for the king and in
the other he helps merce-
naries to plan and execute
a raid on a bandit camp in
parallel – see figure 3.32
(2): Player is in tutorial
(storyspace) and the tuto-
rial takes place in the cas-
tle (worldspace) – see fig-
ure 4.1 (Prototype)

“in
<stateName>”-
condition

Dependencies and inter-
ferences between two par-
allel storylines (1) or be-
tween subsystems in par-
allel components (2)

(1): In the main story-
line, the task is to get the
king’s sword for the black-
smith. At the same time,
the miller offers to give
more money for the sword
in a side quest. If the
player has already given
the sword to the black-
smith in the main story-
line, he can steal it back. If
he still has the sword, he
can give it to the miller in-
stead of the blacksmith. –
see figure
(2): The personal room
(worldspace) can just be
left, when the tutorial (sto-
ryspace) is over – see fig-
ure 4.1 (Prototype)

Entrances
Default state Initial situation of the plot

or of a quest/part of the
plot

The player is in a medieval
village and wants to build
a house – figure 3.35

3.6 Mapping Storytelling Elements onto Statechart Features 41

Shallow history
(H), deep history
(H*)

Coming back to a point in
the plot; digress and re-
turn in a dialog; return af-
ter interrupt in the plot;
pause the story/game

The player is building a
house when a dragon at-
tacks. After defeating
the dragon, the player
returns to the construc-
tion site. Now there are
two options: Return to
unchanged point, where
storyline was interrupted
– construction site un-
changed (see figure 3.34)
or return to changed point,
where storyline was in-
terrupted – construction
site was devastated by the
dragon (see figure 3.35)

First time enter-
ing History

Nothing special – just en-
tering a situation of the
plot for the first time

The player is in a medieval
village and wants to build
a house – figure 3.35

Extended his-
tory entrance,
extended colored
history entrance

Varying introductions
when starting and resum-
ing quests/dialogs based
on progress already made
before interrupting/leav-
ing the mission

At the first meeting, the
blacksmith introduces
himself and gives de-
tailed instructions on
what to do, while when
the blacksmith-quest is
resumed after an interrup-
tion, he briefly asks where
the player has gone and
briefly tells him which
task he was left with – see
figure 3.31, figure 3.2

Conditional
entrance (C)

Entrance to a quest un-
der fulfilment of certain
preconditions, which then
specify the path

The player starts a quest
with a heavy armour
(resp. with silent clothes)
à he is advised to attack
from the front (resp. to
sneak behind enemy lines)
to steal the treasure

Selection en-
trance (S)

Entrance to a quest based
on an event, which then
specify the path

The president was killed
or was only wounded in
the previous event. When
he is dead the player’s
task is to chase the attacker
and when the president is
still alive the task is to take
care of his wounds.

Output generator/Broadcast communication

3.6 Mapping Storytelling Elements onto Statechart Features 42

Action Instantaneous action or
occurrence triggered or
produced (indirectly)
through the player’s ac-
tion which can have an
influence on the entire
storyworld (1); Genera-
tion of an internal event
or change of an internal
variable, which represents
something of the game
world or of the game
mechanics (2)

(1): The player reaches the
presidential suite, but he is
dead. That action triggers
a transition with the event
“presidentWasKilled” in a
parallel storyline. In this
orthogonal storyline, the
player cannot give the gun
to the president anymore.
Mix of (1) and (2): Change
of the night-time to day-
time through sleeping
(example label of a tran-
sition: “sleeping/time =
daytime”). Now some-
where else in the system
the condition “time ==
daytime” becomes true
and enables a transition.
(2): The variable “Vil-
lageAttacked” is set
during the attack of the
dragon on the village
to “true”. After coming
back to the building site,
the condition “VillageAt-
tacked == true” evaluates
to true and results in
an earlier state of the
building process, since the
building site was devas-
tated by the dragon. – see
figure 3.35

Activity Activity in the storyworld,
which is durable and can
have an influence on the
entire storyworld; also
used for durable output
via execution of a game
mechanics method, like
saying something (1) or
playing cutscenes (2).

(1): Saying a text loudly in
a dialog – see figure 3.36
(2): Playing of cutscenes:
Returning after the dragon
attack to the building site
and seeing in a flashback-
cutscene how the dragon
destroyed the house – see
figure 3.35

Abstract concepts
Refinement/zooming-
in

Starting a chapter of the
storyline

Selecting a quest in the
quest-overview menu and
getting into the quest

3.6 Mapping Storytelling Elements onto Statechart Features 43

Abstraction/zooming-
out

Overview over abstract
story parts, like in-
troduction ->mission1
->mission2 ->final mission

Getting into the quest-
overview menu, which
shows all possible quests
and the path of these
quests (Previous quests
and subsequently un-
locked quests)

Transition leav-
ing a state with a
bar (in Blackbox-
view)

Finishing a quest and go-
ing back to the quest-
overview menu

The player has killed the
dragon and thus success-
fully completed the quest,
unlocking the next level of
the quest path.

Stubbed en-
trance arrow (in
Blackbox-view)

An event leading to the
fact that the player starts
directly in the middle of a
storyline and not at the be-
ginning.

The player finds the key
to the dungeon, which
contains the sword he
wants to steal. This event
of finding the key leads
to the “Sword-robbery”-
quest, but not from the
beginning where the
player must get the key
first, but directly to the
middle of the quest where
he has to break into the
dungeon.

Unclustering Showing details of quests,
dialogs, actions

Feature in framework,
where the developer can
click onto a part of the
statechart, which then is
shown in big. à better
overview

Probabilism Events and actions that oc-
cur only to a certain prob-
ability

The dragon attacks the vil-
lage with a probability of
20%. With every pass-
ing day the probability in-
creases for a dragon attack
by 5%.

Recursion Quest in a quest Steal the key to break into
the dungeon and steal the
sword

Temporal Logic
Temporal logic Specifying the settings Every quest needs a vic-

tory state and at least one
losing condition.

Relation of states

3.6 Mapping Storytelling Elements onto Statechart Features 44

Relation of states
– exclusive

Two states in the plot that
are mutually exclusive

The player helps the mer-
cenaries to plan and exe-
cute their raid on the ban-
dit camp and thus secure
the goodwill of the mer-
cenaries or, on the other
hand, he refuses the mer-
cenaries’ offer and fall out
of favor with the merce-
naries. à two ways a story-
line can play out – see fig-
ure 3.32

Relation of states
– orthogonal

Two states in the plot that
coexist.

The player spies in the
“Mercenary”-quest on the
bandit camp and delivers
the sword to the king in
the “Blacksmith”-quest
à two parallel storyli-
nes/quests – see figure
3.32

Relation of states
– ancestoral

One state in the plot that
was before another state à
the direct, influencing his-
tory

After sawing trees to
boards, the player nails
these boards together to
form walls. – see figure
3.35

Table 3.3: Mapping of storytelling elements onto statechart features with gamestory ex-
amples

The following four statecharts show example scenarios of how storytelling can be re-
alized through statecharts in a games-context. Furthermore, these examples are often
referenced in the third column of the mapping table above. Figure 3.34 and figure 3.35
are very similar. Both present a quest where the player builds a house until suddenly a
dragon is sighted. In both figures, a fight follows against the dragon outside the village.
If the player does not manage to kill the dragon within five minutes, it flies into the vil-
lage and causes destruction there. If the player manages to kill the dragon in the village,
in figure 3.34, he returns exactly to the point of the "BuildingAHouse"-quest that he left.
Nothing has been changed in the progress of this quest. This is different in figure 3.35.
Here, a variable is set when the dragon flies into the village. When the player returns
to his construction site after defeating the dragon in the village within ten minutes, he
will find his house destroyed. Thus, he must start over from the point where he sawed
boards. However, if the player takes longer than ten minutes to kill the dragon in the vil-
lage, when he returns, he will find his entire construction site destroyed. The destruction
is of such magnitude that it is no longer worthwhile to build another house on this site.
Therefore, the player must start from scratch with the search for a suitable building site.
Technically this is done via a clear-history action.

Figure 3.36 shows the first attempt of a dialog pattern between a non-playable character
and the player, who can choose one out of four predefined answer and question options.

3.6 Mapping Storytelling Elements onto Statechart Features 45

Figure 3.34: "BuildingAHouse"-quest with "DragonAttack"-interrupt - returning to un-
changed building site

Figure 3.35: "BuildingAHouse"-quest with "DragonAttack"-interrupt - returning to
changed building site

3.6 Mapping Storytelling Elements onto Statechart Features 46

The main point in this example is that it presents a useful application of the parametrized
state. The answer options the player can select only differ in the variable, which con-
tains the text. Furthermore, in this diagram a possibility is presented to use activities for
durable output by the execution of a game mechanics method, in this case speech output.

Figure 3.36: Dialog pattern - example for parametrized state and activity executing a
game mechanics method

3.6 Mapping Storytelling Elements onto Statechart Features 47

Figure 3.37 is a good example for two parallel storylines that interact with each other. In
the main storyline, the player gets an order from the blacksmith to find the king’s sword.
Once he has found it and given it to the blacksmith, he receives a reward. After the
player has found the sword in the main storyline, he will meet the miller in the parallel
side storyline, who promises him a big reward for the sword. If the player still has the
sword, he can hand it directly to the miller and collect the reward. If, on the other hand,
he has already given it to the blacksmith, he can steal it back and then give it to the miller.
In this example, the path of the subplot depends strongly on the progression of the main
plot.

Figure 3.37: Parallel storylines - two parallel storylines interacting with each other

4 Prototype

Up to this point, it has only been shown for single features of statecharts that they can
represent story elements. Therefore, in the following section, a prototype is developed
to show how the story of a concrete game scenario can be managed by a statechart. Fur-
thermore, it should be practically proven that statecharts can be a possible management
form and implementation of storylines and storytelling-mechanics in games.

4.1 Advantages of a Paper-Prototype

The prototype is not an engine-based videogame, but a kind of paper-prototype. Paper-
prototyping is a means to conduct user testing early, quickly, and frequently, and to elicit
user ideas, as well as to test the concepts of the designers in the early design phase [29].
For this purpose, a graphical user interface (GUI) is tinkered with the simplest means
such as paper, scissors, stickers, and glue [29]. In this way, the time and effort required to
create a working, coded user interface can be easily and inexpensively bypassed [29]. As
a result, design concepts can be quickly created, tested, modified on the fly, and retested
[29]. Since production costs and development times are so small, many alternative de-
signs can be tested simultaneously, and because the production tools are so easy to use,
users can participate themselves and suggest changes and new ideas [29]. However, not
only GUIs can be sketched, but also other graphical elements of a software. In this sec-
tion, paper-prototyping is used to depict the game world and gameplay. Though, this is
not done with paper as traditionally, but through photographically captured gameplay-
situations represented by "Playmobil" figures. In this way it is possible to create graphi-
cally better proximity to a real implemented computer game. Buxton described in 2007
that sketching the user experience can involve more than simple paper-based prototypes
[30]. As experiments have shown, cameras, televisions, tablet PCs, string, cardboard, and
people are also effective means of sketching out elements of a software application in an
early stage of development, with the same advantages that a paper-prototype offers [30].

Specifically, with respect to the goal of showing that a story of a concrete game scenario
can be managed by a statechart, a paper-prototype has other advantages beyond simplic-
ity and low cost. The basic idea that runs through the entire prototype and is thus also
expressed in the form of the prototype-medium itself is reduction to show the essentials.
An attempt is made to fade out everything unimportant and unnecessarily complicating
to test the core concept. The chosen medium offers the optimal framework for this. The
essential points can namely be shown without time-consuming and error-prone imple-
mentation in a computer game-engine like "Unity 3D" or "Unreal Engine". For the goal
pursued here, an implemented prototype would be particularly costly, since one would
first have to provide a framework for the “Unity 3D” engine to handle statecharts or hard-
code the scenario, for example by Enums and switch-cases. However, this would shift
the focus away from the core concepts we actually want to show and towards the frame-
work needed to implement them. Furthermore, the additional effort that would have to

48

4.2 Interaction of Statechart with Game Environment in the Prototype-Context 49

be put into level design, character design, non-playable character implementation and
game mechanics would not be in proportion to the added value of knowledge that one
only gets through a real implementation of the prototype. To show only the practicabil-
ity of the concept of representing stories by statecharts, an abstract paper-prototype is
sufficient in the first step. In a next step, the concept can then be transferred to an in a
game-engine coded prototype to fully show the practicability.

4.2 Interaction of Statechart with Game Environment in the
Prototype-Context

In Advance: The term game environment describes the part of the game that includes
the rest of the game logic, game mechanics and game elements besides the statechart.
As Mifrah Ahmad defined in his paper "Educational Games as Software Through the
Lens of Designing Process", the game environment is a dimension which "collaborates
game rules, objectives, subject, and theoretical aspects together as a whole to provide an
interactive flow of activity." [31].

The overall idea of the prototype is to design a statechart that represents the story of a
medieval open world game. However, the representation in this prototype should be
abstract and reduced to be able to better highlight the essential aspects and thus avoid
unnecessary complexity that offers no added value. For that reason, the statechart-events
and -actions represent only non-concrete interfaces to elements of the game environment.
They are not to be understood as concrete method-calls or functions interacting with spe-
cific game mechanics. For example, in figure 4.1 the action "Alarm" in the "Strategy"-
component only expresses that "Alarm"-events are triggered within the statechart and
that there is a possibility that an "Alarm"-method can be executed outside the statechart
in the game environment. Whether this is the case and if so, what happens in this method
is not relevant. It is equally irrelevant which method in the game environment triggers
an event of the statechart. For example, in figure 4.1, it does not matter whether the
"DragonSighted"-event in the "Storyspace"-component was triggered by an action of the
statechart or by an external method. Also, it does not matter how the external method
that triggered "DragonSighted" is implemented and what other effects it has on other
game-parts. Nevertheless, it should also be mentioned that the statechart must interact
with the remaining parts of the game environment via these interfaces in a real imple-
mentation, since it would not be possible to implement all the necessary game mechanics
in a statechart. For example, many physical calculations or also the control of many
graphic elements firmly belong to a computer game, which can be converted only elab-
orately or not at all into Statecharts. Specifically, for instance, a fanfare-sound could be
played in the game environment method triggered by the "Alarm"-action of the state-
chart. Also, the non-playable characters could be moved to the current player position
to see why the alarm was raised. Especially the latter would be difficult to implement in
a statechart, because then the movements for every single non-playable character would
have to be managed in another parallel component. However, as already mentioned, this
is hidden in the prototype for simplicity, as the intention is to show only the functionality
of the core concept.

Besides events and actions, the most important part of statecharts are the states. In the
prototype, these represent the present state of the game, as was already determined in
the mapping part of this work. States can act as interfaces to the game environment just

4.2 Interaction of Statechart with Game Environment in the Prototype-Context 50

like actions and events. For example, in figure 4.1, a method of the game environment
can be called in the "ReportLeaderAboutCamp"-state. This method then plays a cutscene
based on the "VarTreasureFound"-variable. In the first version the player reports about
the treasure stash, while in the other version the player reports about his escape. After the
cutscenes have been played, the variable "ReportFinished" can be set to true in the game
environment method, which then fulfills the condition in the statechart and activates the
transition to the state "PickUpEquipment". So, there can be a bilateral exchange between
the statechart and the game environment. As with actions and events, however, the pro-
totype only gives vague reference to these interfaces and does not call concrete methods
or interact in any other specific way with concrete elements of the game environment.

4.2 Interaction of Statechart with Game Environment in the Prototype-Context 51

Figure 4.1: Statechart-Prototype

4.2 Interaction of Statechart with Game Environment in the Prototype-Context 52

4.3 Setting of the Prototype 53

4.3 Setting of the Prototype

Now that all the technical conditions have been clarified, the next sections will focus on
the concrete content of the prototype. First, we will take a closer look at the setting.

The game is set in a medieval fantasy environment, in which the player is immersed as
a knight. Armed with sword, lance or bow, the knight experiences many adventures,
such as the attack of a dragon or the raid of a bandit camp with mercenaries. The player
can always choose between no armor, light armor and heavy armor. Also, in quests,
different paths lead to the goal. Often, tasks can be accomplished with a loud, conflict-
ridden crowbar-strategy or with the help of a quiet stealth-approach. Outside of quests,
the open world can be explored on foot or on horseback. Thereby, the player can visit
some interesting locations, such as the castle where the knight lives or the mercenary
fortress. In the appendix, a table (appendix 2) can be found contrasting the base states of
the knight and corresponding images of the paper-prototype.

4.4 Quests and Interrupts

The story is structured in such a way that first an introduction and a tutorial must be
gone through before the player is released into the open world, as can be seen in figure
4.2. In the same figure it can also be observed that in the open world state, quests and
interrupts are started based on the player’s position. For example, when the player meets
the mercenaries in their fortress, the "Mercenary"-quest can be accepted, in which a ban-
dit hideout is to be robbed. If the player enters the lookout-tower, a dragon is sighted
and the "Dragon Attack"-interrupt begins. However, in the case of the interrupt, there is
also the "DragonSighted"-event, which must occur in addition to the player entering the
observation tower. This is because without the event, the interrupt would be triggered
every time the player is in the open world – so not in a quest or interrupt – and enters the
tower. Unlike quests, interrupts cannot be rejected and played later, but start right away
regardless of decisions and the current situation of the player. Therefore, the existence
of this event prevents the interrupt from being triggered accidentally at an inappropriate
time and offers the game environment the possibility to co-determine when the interrupt
should take place. For example, the game environment can control that the player is
only able to trigger the "Dragon Attack"-interrupt after a certain event or quest, for in-
stance, when the knight has learned to shoot from an archer in an "archery"-quest. This
gate-event also prevents the player from retriggering the interrupt after it has already
been completed. Beside or instead of an event behind which the interrupt is locked, a
condition like whether it is day or night may exist.

4.4 Quests and Interrupts 54

Figure 4.2: Cutout from Figure 1: TriggeringQuestInterrupt

The above section has already mentioned the biggest difference between interrupt and
quest. As said Interrupts occur suddenly and cannot be rejected. This stems from the fact
that an interrupt is an exciting, unpredictable event that interrupts the storyline, but also
provides increased excitement and better immersion, since it cannot be postponed and
the player usually must react quickly to the event. So, a certain suddenness is combined
with time pressure. Quests, on the other hand, are tasks that the player gets in different
places and from different non-playable characters, for example the mercenaries. Unlike
interrupts, quests can be started at the desired time. If the player activates the quest
unintentionally, for example by accidentally getting close to the mercenaries, he has the
possibility to reject it first, and then return later to start the task.

Besides the time when quests or interrupts are started, they also differ in the respawn-
process after death. Quests require the player to restart the entire task, while interrup-
tions allow re-entry at a certain point. This difference results from the fact that, unlike
quests, interrupts cannot simply be repeated, as the desired surprise effect and time pres-
sure would then be lost. This would make the game experience far less immersive. How-
ever, if the player is thrown directly back into the action, as before death, the immersion
can be maintained, since the same emotions, such as time pressure and stress, are imme-
diately perceived again. The immersion is also preserved by the fact that the player is just
knocked out and does not die in the interrupt. So, being knocked out can be thematized
in the story in the form of cutscenes or tasks that have changed compared to the first time
or simply by the plot that has continued, for example, that the dragon has raged even
more in the castle during the protagonist’s fainting in the "Dragon Attack"-Interrupt. If
the player would die in the interrupt and respawn instead of just get knocked out, this
could not be referred to in the story, because then a logical break in the storyworld would
be created, since the protagonist does not have unnatural abilities. So, in the thematiza-
tion of "dying" within the storyline lies another difference between interrupts and quests,
since in a quest however, reference is never made to the previous failed attempt. There-
fore, in a quest the protagonist can actually die and is not just knocked out, since, when

4.5 Story of the Prototype 55

this occurs, the part of the story must be repeated, and the failure does not simply flow
into the storyline as is the case with interrupts.

To conclude the quest and interrupt section, it should be mentioned that the interrupt and
quest implemented in the prototype are only examples and can be extended by further
quests and interrupts. For example, a quest in which the tower is rebuilt or an interrupt
in which the castle must be defended from an attack by an enemy army is conceivable.

4.5 Story of the Prototype

Whereas in the previous section quests and interrupts were mainly examined formally,
we will now focus on their storyline. Figure 4 in the appendix shows for every step of
the story a comparison of the active states and transitions of the statechart with images
of the paper prototype to illustrate the example story flow described in the following in
text form. The complete statechart behind this story can be found in figure 4.1. Since the
player experiences the world through the knight, the following will narrate the player’s
tasks and actions through the eyes of the knight. So, when it is said that the knight is
trying to hit the dragon with the catapult, it means that the player, acting through the
knight, is shooting at the dragon with the catapult.

As already mentioned, the player first goes through an introduction and a tutorial in the
personal room in the castle. Once this is completed, the knight can leave the room and
move freely in the open world. Thereby, the equipment and the mode of moving around
can be freely chosen.

When the knight enters the observation tower, the interrupt "DragonAttack" is triggered
as already explained above. In the for this necessary "DragonSighted"-event, a guard
alerts the knight about an approaching dragon. This could be implemented in the game
by a cutscene. Now, the knight must hurry to the armory to get equipped for the up-
coming attack. The weapon selection determines, which squad the knight will join. If he
chooses a bow, he will take position with the rest of the archers on the lookout-tower and
if he chooses another weapon or even no weapon, he will help the catapult-crew on the
catapult-tower. In figure 4, the knight decides to use a lance as a weapon, so he sets off
for the catapult-tower. Once he has climbed the tower, he must prepare the ammunition.
As soon as the dragon reaches the castle, the knight tries to shoot it with the catapult. If
this takes more than five minutes, the dragon destroys the other tower. So, if the player
is an archer, the catapult-tower is destroyed and if the player is in the catapult-crew, the
lookout-tower is brought down. The tower is then not only destroyed in the interrupt,
but also after completion of the interrupt in the open world and can no longer be entered
by the player. The interrupt will only end when the dragon is killed. If this is achieved,
the knight will be released back into the open world after a sprawling feast. If the knight
is knocked out in the quest - that is, if he dies - he wakes up unarmed in his bed. Since
the attack is still ongoing, the knight takes out his weapon and armor from the armory
and gets to the tower corresponding to his equipment. Once he has reached it, however,
this time there is no need to prepare ammunition or wait for the dragon to arrive, but
he immediately returns to the battle with the dragon. This is technically achieved by a
variable in a condition, which is set to true on respawn. If the other tower was already
destroyed before the respawn, this is also the case after the respawn. Accordingly, an
equipment selection option in the armory would then also be omitted. If the lookout
tower is destroyed, the player can no longer choose the bow, since the tower from which

4.5 Story of the Prototype 56

the archers shoot has been destroyed, and if, on the other hand, the catapult tower is
destroyed, the player must choose the bow, since the catapult has been destroyed. But
if no tower has been destroyed before death, this happens after five minutes of combat
after the respawn. Here again, a variable in a condition ensures that the tower cannot be
destroyed twice by mistake.

Now that the dragon is defeated, the knight can move freely through the open world
again. If one of the two towers was destroyed in the attack, it can no longer be entered,
which is achieved by a condition on the entry transition. The destroyed tower is also a
good example of an element that creates a dynamic world. What happens in a quest or
interrupt has far-reaching effects on game elements and story progression. For example,
now a quest, which can only be played when a tower has been destroyed in the interrupt
and in which the player must convince craftsmen to help rebuild this tower, would be
conceivable.

One quest implemented in the prototype is the "Mercenary"-quest. This quest is started
when the knight approaches the mercenary fortress. In the fortress, the knight meets the
leader of the mercenaries, who tells about a bandit hideout and stolen gold coins. But
to steal back the coins, they need the knight’s help. At this point, it is up to the player
to accept or decline the offer, and then come back later to play the quest. In this context,
the new statechart feature "ExtendedHistory" described in section 3.5 "New Statechart
Features and Pattern" could be used, so that the player is not welcomed twice with the
same cutscene by the leader of the mercenaries but is asked if he has changed his mind
now. For reasons of clarity and reduction, however, the author has decided not to use this
feature in this case, since it has already been demonstrated in section 3.5 "New Statechart
Features and Pattern" using an example game situation and would therefore not offer
much added value in this context.

If the knight decides to help the mercenaries, he sets out to spy on the bandit camp and
locate the treasure stash. Once sighted, the knight sneaks back to the mercenary camp to
report to the leader. However, if the knight makes too much noise or enters the field of
vision of a guard, the bandits will take notice of him. It should also be noted that heavy
armor is more susceptible to cause noise than light armor or none. However, this is dif-
ficult to model in a statechart since we only check the "TooLoud"-condition. In the game
environment, the caused noise level can be calculated every tick in the game loop, differ-
entiated by armor and movement speed. If the noise level is too high or the character is in
the field of view of a guard, either the condition "TooLoud" or "WithinSightOfAGuard" is
set to "true", and the knight is detected. If he kills the guard within three seconds, his un-
masking will not be noticed, and he can continue sneaking. But when this fails, the guard
sounds the alarm, alerting the other bandits to the intruder. For the knight, the only op-
tion is to flee, because the fight option requires an event in the "Strategy"-component,
which does not occur in this situation, but will only play a role later during the raid.
There, if the player opts for the silent strategy and is discovered, he cannot flee but must
fight. But back to the escape after the knight was discovered scouting the bandit hideout:
The escape is more likely to succeed if the knight has left his horse nearby, as riding is
faster than escaping on foot. However, this cannot be directly modeled in the statechart
– just like the different noise levels of armor when sneaking –, since an escape without a
horse should not be one hundred percent unsuccessful in advance. A horse should only
increase the chances of escape. Therefore, the condition whether the knight is on foot or
on horseback cannot be the only aspect that determines whether the escape is successful,
but also factors such as where he rides or runs, how saddle-firm he is or whether he is a

4.5 Story of the Prototype 57

fast runner, or also if he is lightly or heavily equipped play a role. Evidently, this requires
a lot of calculations and the evaluation of many aspects in the game environment, which
then transmits the result of the escape to the statechart in the form of the conditions "Es-
caped" or "CaughtUp". However, if one would only include a transition in the statechart,
checking whether the knight is on horseback or on foot, all other factors except the loco-
motion factor would be disregarded. But back to the storyline. If the knight is caught,
he is imprisoned by the bandits. Thereupon, the mercenaries attack the bandits’ hideout
and free the knight. As a result, the player no longer has the choice of opting for the quiet
strategy but is drawn directly into the loud solution approach. In the loud strategy, the
mercenaries and the knight try to capture the treasure directly without sneaking up qui-
etly, looking for the open fight where they must take on all the bandits. Once all of them
are dead, the treasure can be captured, and the quest is over. However, if the knight is not
caught by the bandits after being discovered, there are two ways the story can develop.
First, as is often done in video games, everything could be reset to the situation before
the knight was discovered. This means that the guards would patrol around again, as if
no incident had ever happened, and the player would try once more to steer his knight
through the hideout unnoticed. However, on the story level this approach is irrational
and would violate immersion. Why would guards, who have just pursued and lost an in-
truder, go back to day-to-day business? A logical step is to increase the number of guards
and make it impossible for another unnoticed intrusion. In this prototype, the increased
vigilance is used as a logical justification why scouting again after a successful escape is
no longer an option for the knight and he returns to the mercenaries instead. In the mer-
cenary fortress, he reports to the leader about his escape and the knowledge gained until
then. After that, the knight equips himself and thus chooses the strategy he wants to use.
This is implemented by a Boolean variable set by the game environment. If he chooses
the heavy armor and sword or lance, the plan, as described above, is to attack the bandits
in an open battle and fight his way to the treasure. If he chooses the light armor or no
armor and the bow, he thus chooses the quiet strategy. The execution of this strategy
is shown in figure 4. First, the knight sneaks up to the bandit guards to take them out
quietly. The same applies as before when scouting. If the knight is noticed by a guard, he
must kill him within three seconds, otherwise the guard will sound the alarm, which will
result in a change of strategy to the loud one, where the mercenaries must kill all the ban-
dits to get to the treasure. Technically, being spotted in this situation is nothing different
than being spotted when scouting earlier in the quest, except that a different way out is
chosen. As described above, now the knight does not try to flee but goes over to the loud
strategy where the mercenaries openly attack the bandits. To prevent the player after
he was discovered from escaping as in the spy-phase, a series of actions and events are
executed. The "Alarm"-action in the "Strategy"-component triggers the "Alarm"-event in
the "Storyspace"-component, which in turn activates the "Fight"-action in the same com-
ponent. Then, this "Fight"-action triggers the "Fight"-event in the "Strategy"-component,
which ensures that the player does not flee, but that the "RealIdentity" state is reached
immediately, thus ending the sneaking. This is just a technical trick that is necessary to
be able to use the general "Strategy"-component in all sneak-situations, since it includes
both basic natural behaviors in the face of danger – escape and attack – to get out of the
situation after being spotted. Also, the escape- and the attack-option are both required
to make sure that the component is always tailored to the current situation, so that the
logic of the storyline is maintained. From the story level, it is more logical if an open
fight is not possible when spying and an escape is not possible when raiding, because
both would not be effective in the respective situation and would lead to unwanted side

4.5 Story of the Prototype 58

effects, such as being caught and imprisoned while raiding. These, in turn, could lead
to bugs, such as being captured during the raid but then not being freed because the
raid is already in progress. In figure 4.3 are both paths for the raid-situation and the
spy-situation illustrated.

Figure 4.3: Cutout from Figure 4.1: Different paths in the “Strategy”-component for the
spy-part and the raid-part of the “Storyspace” after being spotted.

But back to the story. Once the knight has successfully eliminated the guards, if he has
not succeeded in doing so while spying, the search for the treasure begins. At any time,
however, the mercenaries must be on the lookout for newly emerging bandits, as the
troop can be discovered at any time. When the treasure is finally found, the knight’s last
task is to steal it with the mercenaries and bring it to the mercenary fortress. There, a
gleeful feast is celebrated, and the quest is successfully completed. The prototype could
now be extended in such a way that the knight has gained the goodwill of the mercenaries
by successfully completing this quest, which means that they will now rush to his aid in
dangerous situations, or he will receive further quests from them.

To conclude the story chapter, let us mention what happens when the knight dies in the
quest. If this is the case, the quest must be restarted from the beginning. This provides
an additional difficulty. However, since the game should not be frustrating, the knight
wakes up unequipped in the closest point to the starting point of the quest, so that he
does not have to travel a long way. In the case of the "Mercenary"-quest, the knight would
respawn in a bed in the mercenary fortress. On the story level, respawning and starting
from the beginning does not really make sense. However, this is a common practice in
video games to solve the problem of dying. By treating the failed attempts on the story
level as if they never happened, it allows to tell a stringent story where there is no need
to create supernatural characters that come back to life. Another widely used approach is

4.6 Parallel Components in the Prototype 59

to explain that the player does not die but is just knocked out as mentioned in the "Quest
and Interrupt"-section 4.4. This also prevents the player from needing supernatural abil-
ities. This approach, which is also employed in the "Grand Theft Auto" game series [32],
is not only used in the prototype for "dying" in interrupts but is also applied when the
knight "dies" in the open world. If he is knocked out in the castle, he will wake up in the
bed in his personal room and if he is knocked out outside the castle he will spawn in a
bed in the mercenary fortress. Both times he is unequipped, which means that he is on
foot, without weapon and armor. On the story level, this can be justified by the fact that
people find the unconscious knight and carry him to the nearest bed.

4.6 Parallel Components in the Prototype

As already shown by the stealth feature, orthogonality is essential for the implementation
of game stories by statecharts. Basically, it can be said that for each core element of a game
a parallel component exists as representation in the statechart. This is also the case in a
"Unity 3D" project, where there is a separate "C#"-script for each core feature. On the
one hand, the parallel components represent different levels of the game, for example, as
in the prototype, the "Storyspace" level, the "Worldspace" level and, on the other hand,
orthogonal components also manage different elements, such as states and equipment of
the player in "Player" or core features, such as the stealth feature in "Strategy".

All components depend on each other and interact in numerous ways. This can be seen
for example in figure 4.1 in the "Worldspace"-component, where the private room can
only be left after the "Tutorial" state has been left in the "Storyspace"-component or in
the "Storyspace" where the next step of the story after “SpyOnTheBanditCamp” depends
on the active state in the component "Strategy". Another example of an interaction of
different components by a condition is whether the towers in the "Worldspace" can be
entered. Here it depends on a Boolean variable set in the "Storyspace" and not on an
active state of another component, because in contrast to the examples with the tuto-
rial only in the own room or the continuation of the story based on the active state of
the "Strategy"-component, in the "Storyspace"-component, it is not lingered in a state
when the tower is not enterable. The storyline continues while the tower is still de-
stroyed. Therefore, the accessibility of the towers is stored in variables. Also, condi-
tions between components can make areas and features accessible only in certain situa-
tions. For example, in figure 4.1, the player can only venture into the bandits’ hideout
if he is in the "Mercenary"-quest. This can prevent the player from accidentally encoun-
tering the bandits beforehand and interacting with them in a way that makes the later
quest impossible or at least implausible. As the numerous examples show, dependencies
between parallel components are represented either by Boolean variables or by the "in
<parallelComponentName>.<stateName>"-condition.

However, parallel components can interact not only due to conditions, but actions and
events of different components can also provide interaction of orthogonal components.
A good example for interaction of actions, which in turn trigger events in different com-
ponents, is given in the previous section and in figure 4.3 by the situation in which one
was spotted while sneaking in the silent strategy of the raid. However, the exact interac-
tion has already been discussed in detail in the previous section, so we will not go into
more detail here.

Outsourcing core mechanics and core features into parallel components leads to low cou-

4.6 Parallel Components in the Prototype 60

pling and high cohesion, which is always desirable in software engineering for reasons of
reusability, better maintainability, and extendibility [33]. Coupling describes the strength
of the interconnection of one module to another module [33]. At the desired low cou-
pling, little interaction takes place between different modules of a software project [33].
Cohesion, on the other hand, specifies the level of exchange within a module [33]. When
talking about high cohesion, there is a high level of exchange within each module [33].
However, as we have seen in the examples above, the prototype has many dependencies
and interactions between the different parallel components, so that, strictly, one cannot
speak of low coupling in this example. Nevertheless, the advantages of high cohesion
remain.

Due to the parallel subsystems of a game, when a global event occurs, reactions to it take
place in many distributed locations. This can be seen very well during respawn. Here,
every component reacts in the form of a transition, usually to the default state of the
component. This is visualized in figure 4.4. To make the knight lie unequipped in the
nearest bed, the respawn element in the "Player"-component must reset the settings of
the knight via the default-entries in the "Alive"-state. Likewise, in the “Worldspace” the
knight must be moved to the nearest bed depending on its death point via direct transi-
tion and his behavior must be transferred to "RealIdentity" in the "Strategy"-component.
In the "Storyspace" the state to be reached depends on the state in which one was at the
time of death. If one was in the open world, one is also in this world after respawning,
therefore the self-transition was renounced here. It is also possible to provide for change
at another point by, for example, setting a variable during the respawn, as it is the case in
the prototype in "DragonAttack".

Figure 4.4: Illustration of all distributed respawn elements.

Even if the parallel components mean additional work for global events, as we have just
seen, there is a great advantage in this approach. As shown in figure 4.5 using an exam-
ple situation from the "Mercenary"-quest, the simple use of colors makes it possible to see
immediately which states the game is in. So, for each part of the game, which is repre-
sented in the statechart, the concrete progress can be determined. Thus, in figure 4.5, it is
very easy to determine that the knight is spying on the bandit hideout on foot with sword

4.7 History Entries and Final States 61

and light armor as part of the "Mercenary"-quest and has not yet been discovered. This
advantage could be used in a framework tool for statecharts in game engines. During de-
bugging, the developer could immediately see which states are currently active and thus
quickly and easily determine where the statechart is in the wrong state and thus know in
which section of the game system the error must lie.

Figure 4.5: Example scenario to show the simplicity of seeing immediately which states
the game is in due to colored statecharts.

Also, in a further step, a new statechart feature could be developed that simplifies the im-
plementation of dependencies between parallel components. It can already be stated in
the relatively small prototype-statechart that many dependencies between components
quickly arise, which can be only implemented by "in <stateName>"-conditions using the
conventional Harel features. But if we now imagine an extension of the prototype by
another ten parallel components, like a night-day component or fight-mechanics, it is ob-
vious that the further necessary dependencies get out of hand quickly. Developers would
also benefit from a tool provided by the framework that visually displays dependencies.
As you can see, more statechart features and framework extensions are conceivable.

4.7 History Entries and Final States

To conclude the chapter on the prototype, we will briefly discuss the use of history entries
and final states in the prototype. In each parallel component, the default state leads to
a history entry. The history entries have nothing to do with the respawn process, as the
first thought might be, but ensure that if the large state "Game" should be left, the same
situation before the exit can be recovered. This can be used for example for a menu or
pause function or to provide a "safe and reload game"-feature when the program is shut
down and restarted.

Three final states occur in the prototype’s statechart. The two "Victory" final states repre-
sent the end of the quest or the interrupt. If these are reached, the quest or the interrupt

4.8 Results of the Prototype 62

was successfully completed and the state open world becomes active again, which means
that the player moves freely in the open world again. The third final state "PlayerDead",
on the other hand, is never consciously used as a final state in the current prototype.
However, on the logical level it makes sense to see the death of the player as a final state,
which can be left again by respawning. "PlayerDead" can also be seen as the final state
for the entire game, i.e., the "Game"-state. For example, you could easily remove the
respawn feature and end the game with the death of the player. So, the death of the
player would be the bad counterpart to the victory, by completing all quests or at least
the main storyline.

4.8 Results of the Prototype

In this section, the paper prototype was successfully used to demonstrate that state-
charts can manage concrete game scenarios and successfully implement storylines and
storytelling-mechanics in games. At the beginning, the advantages of a paper prototype
were identified, which lie particularly in its simplicity and cheapness. Subsequently, it
was explained that the prototype-statechart is only meant to serve as an abstract illus-
tration that interacts with the game environment, but the exact interaction will not be
discussed. After the fantasy-medieval setting around a knight as the game character was
set up, the major story parts interrupt and quest were compared, whereby it was de-
termined that they differ primarily in the suddenness and inevitability of the Interrupt.
Following, a run-through of an example quest and an example interrupt proved that sto-
rylines and game scenarios can also be implemented in statecharts in practice. This was
supported by the comparison of the paper prototype, which represents the game scenar-
ios with "Playmobil" figures in the form of pictures, and the flow of the storyline in the
statechart. Finally, the peculiarity of splitting all core elements of a game into parallel
components were discussed. This splitting then satisfies the important principles of soft-
ware development: Low coupling and high cohesion. Whereby it had to be restricted that
in the prototype the parallel components are strongly dependent, since often conditions
of transitions are bound to the fact that a certain state is active in a parallel component or
because actions trigger events in orthogonal components. This leads to the fact that low
coupling is not completely given in this prototype. Nevertheless, with the splitting of all
core elements of a game into parallel components, it is easy to see immediately for each
part of the game in which state or situation it is. This was identified as a great advantage
especially for debugging, which is also conceivable in future statechart frameworks in
game engines.

5 Outlook

The next step would be to implement the paper-prototype in a proper game-prototype.
For this, a games engine like "Unity 3D" could be used. However, one would first have
to find or program a framework that allows statecharts-handling in "Unity 3D". Another
option without a framework would be to hardcode the statechart scenarios in the game,
which would be less time consuming

At this point, it should also be recalled that a new feature is needed to better display
and add dependencies between parallel components, as identified in the prototype. Not
only a more efficient feature for modeling dependencies between orthogonal components
should be developed, but also in possible frameworks it is necessary to provide a tool that
allows developers to immediately identify dependencies, since dependencies quickly get
out of hand.

Furthermore, in the section 3.4.4 "Completion Event Handling with Exits", it was argued
that unlimited event propagation is not useful when propagating the broadcasted EXIT-
events. However, there are some use cases, where unlimited event propagation could
be needed in context with statecharts. The caught event could be modified in the exit
receiver when transmitted to the next receiver. This could be used, for example, to add
a counter, which counts the number of receivers it traverses or the time until the next
receiver catches the event. Moreover, a condition or the event itself can be changed, for
instance, to prevent uncontrolled errors. If an error event is caught, it could be modified
to only communicate to the outside that an error has occurred in this module, but due to
this modification, the whole system can be kept from crashing. Furthermore, the side ef-
fects in the state entered only shortly until the next-outer receiver catches the broadcasted
event could be used consciously. For example, the shortly visited state could perform ac-
tions that change variables or trigger events in other states.

Lastly, exits and final states can be extended to clean up the component that is to be ex-
ited. So, for example in these states, un-subscriptions or error-handling in the sense of
concealment of the exception can be done. In this context, concealment of the exception
means that one announces to the outside only that in this component an error has oc-
curred and thus the exception is caught and not the entire system has to terminate, since,
if possible, one always wants to avoid that the system comes to a standstill in an error
state. This management of errors allows the system to continue running despite a com-
ponent, in which an uncontrolled error has occurred. In addition to the message that an
error has occurred in the component, a list can be passed on to the outside world in which
it is possible to trace, where the unhandled exception is thrown in the faulty component.

63

6 Conclusion

As already summarized at the end of the prototype section, statecharts can be success-
fully used as environment for representing dynamic storytelling in games. Namely, it
is possible to express storytelling elements through the features of statecharts, which
can be seen in the mapping table Table 3.3, the several example-figures of statecharts,
and the prototype. However, some disadvantages of using statecharts for representing
game-stories were also identified. The representation of game scenarios quickly becomes
complex and sprawling due to the many dependencies between the parallel components
of the system. Furthermore, there is a risk that an event flow diagram is modeled instead
of a statechart, because when developing the statechart, the first thing one has in mind is
the sequence of events in the storyline. However, it can be helpful to first model the sto-
ryline as an event flow diagram consciously and only after that develop the statechart of
the system with all its subsystems in orthogonal components. Another problem of stat-
echarts is the lack of uniform syntax, as became visible when looking at the implemen-
tation of features in editors during the definition of exits and final states. An additional
fundamental problem of statecharts is the ambiguous semantic, as already described by
Harel, which also appeared in the section 3.4.2 "Completion Event Handling with Fi-
nal States" when selecting the transition to be traversed in the case of several matching
transitions [14]. Nevertheless, the use of statecharts to represent dynamic storytelling is
worthwhile, since there are many positive aspects that dominate the negative ones. Stat-
echarts provide a structured overview and a visualization of the hierarchical structure
that reveals logic gaps in the story as soon as they are created. Furthermore, interactive
elements and the interaction of the story with game-mechanics and with the game itself
can be implemented very well by statecharts using actions, activities, or trigger events,
since statecharts were originally developed for reactive technical embedded systems [4].
In addition, parallel storylines can hardly be modeled as well with anything else as with
statecharts. Even in text form, concurrent situations are harder to describe. Also, the ex-
isting statechart-feature-canon can be extended very easily by further features, which can
be important for story representation. Apart from that, many features out of the existing
statechart-feature-canon can be directly used to represent storytelling elements, as the
section 3.6“Mapping Storytelling Elements onto Statechart Features” has demonstrated.

64

List of Figures

2.1 Cutout of overview of decision-path of the game "Detroit: Become Hu-
man" (Source: [5]) . 2

2.2 Example game scenario from "Fungus" in "Unity 3D" (Source: [6]) 3

3.1 OR state and AND state . 6
3.2 Situation from left is shown on the right side with the help of a parametrized

state (Source: [14], Fig. 38, 39) . 7
3.3 Overlapping states (Source: [14], Fig. 41) 7
3.4 Comparison of situation with conditional entrance and without (Source:

[14], Fig. 33) . 8
3.5 Shallow history and deep history . 9
3.6 Different transition-types . 11
3.7 Transition hubs (Source: [14], Fig. 17) . 12
3.8 Application of actions and activities . 13
3.9 Abstraction to black-box-view . 14
3.10 Refinement to white-box-view . 14
3.11 Unclustering (Source: [14], Fig.36) . 15
3.12 Final state and finished-signal of "QT Core - The State Machine Frame-

work" (Source: [21]) . 16
3.13 Exit point of „UML Diagrams – State Machine Diagrams” (Source: [22]) . 16
3.14 Named exit state - notation: #<exitStateName» of "YAKINDU Statechart

Tools" (Source: [23]) . 17
3.15 Final state with "in <componentName>.final"-condition 18
3.16 Multiple final states with "in <componentName>.final"-condition 19
3.17 Multiple final states with "in <componentName>.finalAll"-condition . . . 19
3.18 Final state with multiple "in <componentName>.final"-conditions 20
3.19 Multiple final states with multiple "in <componentName>.final"-conditions 20
3.20 Melted exit and exit receiver on single level with an EXIT flag and a leaving

transition in implicit exit state . 22
3.21 Orthogonal component with multiple exits melted with one receiver with

EXIT flag . 23
3.22 Orthogonal component with multiple exits melted with one receiver with

EXITALL flag . 23
3.23 Exit and exit receiver . 24
3.24 Multiple exits and one exit receiver . 24
3.25 One exit and multiple exit receiver . 25
3.26 Melted exit and exit receiver and not melted exit and exit receiver 25
3.27 Multiple exit receivers - example for unlimited event propagation 27
3.28 Generic feeder states compound example 29
3.29 "Blacksmith"-quest with the introduction being realized via feeder states

compound . 30
3.30 Extended history situation but with only Harel features 31

65

List of Figures 66

3.31 Example situation extended history entrance 32
3.32 Example situation extended history entrance with two parallel quests . . . 33
3.33 Example situation extended colored history entrance 34
3.34 "BuildingAHouse"-quest with "DragonAttack"-interrupt - returning to un-

changed building site . 45
3.35 "BuildingAHouse"-quest with "DragonAttack"-interrupt - returning to changed

building site . 45
3.36 Dialog pattern - example for parametrized state and activity executing a

game mechanics method . 46
3.37 Parallel storylines - two parallel storylines interacting with each other . . 47

4.1 Statechart-Prototype . 51
4.2 Cutout from Figure 1: TriggeringQuestInterrupt 54
4.3 Cutout from Figure 4.1: Different paths in the “Strategy”-component for

the spy-part and the raid-part of the “Storyspace” after being spotted. . . 58
4.4 Illustration of all distributed respawn elements. 60
4.5 Example scenario to show the simplicity of seeing immediately which states

the game is in due to colored statecharts. 61

List of Tables

3.1 Comparison of final states and exits . 28
3.2 Comparison of extended history, extended colored history and Harel stat-

echart features . 35
3.3 Mapping of storytelling elements onto statechart features with gamestory

examples . 44

67

Bibliography

[1] B.Pfeifer, Die drei ??? Kids und du: Rocky Beach steht kopf. Franckh-Kosmos Verlags-
GmbH & Co.KG, 2009.

[2] Sony Computer Entertainment Europe, “Detroit: Become human,” 2018,
Retrieved on 15.07.2021. [Online]. Available: https://www.quanticdream.com/en/
detroit-become-human

[3] ——, “Until dawn,” 2015, Retrieved on 15.07.2021. [Online]. Available: https:
//www.playstation.com/en-us/games/until-dawn/

[4] H. Züllighoven, “Object-oriented construction handbook. dpunkt. verlag,” 2005.

[5] PowerPyx, “Detroit become human full walkthrough – all chapters,” 2018,
Retrieved on 15.07.2021. [Online]. Available: https://www.powerpyx.com/
detroit-become-human-full-walkthrough-all-chapters/

[6] S. Halliwell, “What is a flowchart?” 2019, Retrieved on 15.07.2021. [Online].
Available: https://github.com/snozbot/fungus/wiki/flowcharts

[7] M. Cavazza, F. Charles, and S. Mead, “Character-based interactive storytelling,”
IEEE Intelligent systems, vol. 17, no. 4, pp. 17–24, 2002.

[8] M. Merabti, and A. El Rhalibi, Y. Shen, J. Daniel, A. Melendez, and M. Price, “In-
teractive storytelling: Approaches and techniques to achieve dynamic stories,” in
Transactions on Edutainment I. Springer, 2008, pp. 118–134.

[9] J. Brusk, and T. Lager, “Developing natural language enabled games in (extended)
scxml,” in Proceedings from the international symposium on intelligence techniques in com-
puter games and simulations (Pre-GAMEON-ASIA and Pre-ASTEC), Shiga, Japan, March,
2007, pp. 1–3.

[10] J. Brusk, T. Lager, A. Hjalmarsson, and P. Wik, “Deal: dialogue management in scxml
for believable game characters,” in Proceedings of the 2007 conference on Future Play,
2007, pp. 137–144.

[11] A. Leclerc von Bonin, “Dynamic storytelling at internet briefing in zürich,”
2015, Retrieved on 15.07.2021. [Online]. Available: https://www.dizmo.com/
dynamic-storytelling/

[12] B. Ip, “Narrative structures in computer and video games: Part 1: Context,
definitions, and initial findings,” Games and Culture, vol. 6, no. 2, pp. 103–134, 2011.
[Online]. Available: https://doi.org/10.1177/1555412010364982

[13] I. Donald, and H. Austin, “Playing with the dead: transmedia narratives and the
walking dead games,” in Handbook of Research on Transmedia Storytelling and Narrative
Strategies. IGI Global, 2019, pp. 50–71.

[14] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of computer
programming, vol. 8, no. 3, pp. 231–274, 1987.

[15] Visual Paradigm, “Online state machine diagram tool,” 2021, Retrieved

68

https://www.quanticdream.com/en/detroit-become-human
https://www.quanticdream.com/en/detroit-become-human
https://www.playstation.com/en-us/games/until-dawn/
https://www.playstation.com/en-us/games/until-dawn/
https://www.powerpyx.com/detroit-become-human-full-walkthrough-all-chapters/
https://www.powerpyx.com/detroit-become-human-full-walkthrough-all-chapters/
https://github.com/snozbot/fungus/wiki/flowcharts
https://www.dizmo.com/dynamic-storytelling/
https://www.dizmo.com/dynamic-storytelling/
https://doi.org/10.1177/1555412010364982

Bibliography 69

on 15.07.2021. [Online]. Available: https://online.visual-paradigm.com/de/
diagrams/features/state-machine-diagram-software/#

[16] E. Mogensen, “Welcome to the world of statecharts,” Retrieved on 15.07.2021.
[Online]. Available: https://statecharts.dev/

[17] ——, “Full list of glossary terms,” Retrieved on 15.07.2021. [Online]. Available:
https://statecharts.dev/glossary/

[18] B. Douglass, Design patterns for embedded systems in C: an embedded software engineering
toolkit. Elsevier, 2010, pp. 26–27.

[19] Rational Software Corporation, “Concepts: Events and signals,” 2002, Re-
trieved on 15.07.2021. [Online]. Available: https://sceweb.uhcl.edu/helm/
RationalUnifiedProcess/process/workflow/ana_desi/co_event.htm

[20] K. Stenzel, and H. Seebach, “Softwaretechnik - kapitel
11: Zustandsdiagramme,” Retrieved on 15.07.2021. [Online]. Avail-
able: https://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/teaching/
fruehere_semester/ws1112/softwaretechnik/unterlagen/Kapitel11-Update.pdf

[21] The Qt Company Ltd., “The state machine framework,” 2021, Retrieved on
15.07.2021. [Online]. Available: https://doc.qt.io/qt-5/statemachine-api.html

[22] K. Fakhroutdinov, “State machine diagrams,” 2020, Retrieved on 15.07.2021. [On-
line]. Available: https://www.uml-diagrams.org/state-machine-diagrams.html

[23] J. Dicks, “Advanced state machine modeling with entry, exit and final
states,” Retrieved on 15.07.2021. [Online]. Available: https://blogs.itemis.com/en/
advanced-state-machine-modeling-with-entry-exit-final-states

[24] YAKINDU Statechart Tools, “Documentation: Statechart el-
ements,” 2021, Retrieved on 15.07.2021. [Online]. Avail-
able: https://www.itemis.com/en/yakindu/state-machine/documentation/
user-guide/sclang_graphical_elements#sclang_exit_points

[25] R. Klute, R. Beckmann, S. Wendler, T. Kutz, R. Herrmann, A. Mülder, and Tangele,
“Statechart language reference,” 2019, Retrieved on 15.07.2021. [Online]. Available:
https://github.com/Yakindu/statecharts/blob/master/plugins/org.yakindu.sct.
doc.user/src/user-guide/statechart_language.textile#sclang_parentfirstexecution

[26] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. Burnett, J. Carter, S.
McGlashan, T. Lager, M. Helbing, R. Hosn, T. Raman, K. Reifenrath, N.
Rosenthal, J. Roxendal, “State chart xml (scxml): State machine notation
for control abstraction,” 2015, Retrieved on 15.07.2021. [Online]. Available:
https://www.w3.org/TR/scxml/#AlgorithmforSCXMLInterpretation

[27] S. Yacoub, and A. Ammar, “A pattern language of statecharts,” in Proc. Fifth Annual
Conf. on the Pattern Languages of Program (PLoP’98), 1998, pp. 98–29.

[28] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Understanding
javascript event-based interactions,” in Proceedings of the 36th International Conference
on Software Engineering, 2014, pp. 367–377.

[29] S. Brown, “Paper prototypes and beyond,” Visible Language, vol. 43, no. 2, p. 198,
2009.

[30] B. Buxton, “Sketching user experience: Getting the right design and the design
right,” São Francisco: Morgan-Kaufmann, 2007.

https://online.visual-paradigm.com/de/diagrams/features/state-machine-diagram-software/#
https://online.visual-paradigm.com/de/diagrams/features/state-machine-diagram-software/#
https://statecharts.dev/
https://statecharts.dev/glossary/
https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/process/workflow/ana_desi/co_event.htm
https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/process/workflow/ana_desi/co_event.htm
https://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/teaching/fruehere_semester/ws1112/softwaretechnik/unterlagen/Kapitel11-Update.pdf
https://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/teaching/fruehere_semester/ws1112/softwaretechnik/unterlagen/Kapitel11-Update.pdf
https://doc.qt.io/qt-5/statemachine-api.html
https://www.uml-diagrams.org/state-machine-diagrams.html
https://blogs.itemis.com/en/advanced-state-machine-modeling-with-entry-exit-final-states
https://blogs.itemis.com/en/advanced-state-machine-modeling-with-entry-exit-final-states
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements#sclang_exit_points
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements#sclang_exit_points
https://github.com/Yakindu/statecharts/blob/master/plugins/org.yakindu.sct.doc.user/src/user-guide/statechart_language.textile#sclang_parentfirstexecution
https://github.com/Yakindu/statecharts/blob/master/plugins/org.yakindu.sct.doc.user/src/user-guide/statechart_language.textile#sclang_parentfirstexecution
https://www.w3.org/TR/scxml/#AlgorithmforSCXMLInterpretation

Bibliography 70

[31] M. Ahmad, “Educational games as software through the lens of designing process,”
in Handbook of Research on Modern Educational Technologies, Applications, and Manage-
ment. IGI Global, 2021, pp. 179–197.

[32] GTA Wiki, “Wasted,” Retrieved on 15.07.2021. [Online]. Available: https:
//gta.fandom.com/wiki/Wasted

[33] S. Yadav, S. Sikka, and U. Shrivastava, “A review of object-oriented coupling and co-
hesion metrics,” International Journal of Computer Science Trends and Technology, vol. 2,
no. 5, pp. 45–55, 2014.

https://gta.fandom.com/wiki/Wasted
https://gta.fandom.com/wiki/Wasted

Appendix

71

1 Base States of the Knight 72

1 Base States of the Knight

Paper-Prototype Description Statechart

 Unarmed,
unarmored,

on foot

 With
sword,

unarmord,
on foot

 With Bow,
unarmored,

on foot

 With lance,
unarmored,

on foot

 Unarmed,
with heavy
armor, on

foot

 Unarmed,
with light
armor, on

foot

 Unarmed,
unarmored,

on horse

 Dead

2 Paper-Prototype 77

2 Paper-Prototype

Storyline – Interrupt:

Respawn - Interrupt:

Storyline – Quest:

Respawn – Quest:

	Abstract
	Acknowledgements
	1 Introduction
	2 Related Work
	3 Storytelling and Statecharts
	3.1 Storytelling
	3.1.1 Dynamic Storytelling
	3.1.2 Story Elements

	3.2 Definition of Statecharts
	3.3 Selected Statechart Features
	3.3.1 State-Types
	3.3.2 Event-Types
	3.3.3 Transition-Types
	3.3.4 Actions and Activities
	3.3.5 Refinement and Abstraction
	3.3.6 Abstract Concepts

	3.4 Final States and Exits
	3.4.1 Definition Final States
	3.4.2 Completion Event Handling with Final States
	3.4.3 Definition Exits, Exit Receivers and Implicit Exit States
	3.4.4 Completion Event Handling with Exits
	3.4.5 Differences between Final State and Exit
	3.4.6 Reasons for Leaving-Option of Final States and Implicit Exit States

	3.5 New Statechart Features and Pattern
	3.6 Mapping Storytelling Elements onto Statechart Features

	4 Prototype
	4.1 Advantages of a Paper-Prototype
	4.2 Interaction of Statechart with Game Environment in the Prototype-Context
	4.3 Setting of the Prototype
	4.4 Quests and Interrupts
	4.5 Story of the Prototype
	4.6 Parallel Components in the Prototype
	4.7 History Entries and Final States
	4.8 Results of the Prototype

	5 Outlook
	6 Conclusion
	Appendix
	1 Base States of the Knight
	2 Paper-Prototype

