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Abstract

Tracking is an important task in Augmented Reality and, variety of
sensory data is used to achieve this. To extract more information about the
scene, object or situation, these sensory data should be understood better
in a sense, which is called Sensor Fusion. This field is well established
since it has been studied for decades. Except one study, to the writer’s
knowledge, all studies use an analytical approach for solution. In this
study, a fully automated deep learning architecture to fuse multiple-IMU
data(acceleration and angular velocity) to get position and orientation is
designed and evaluated.

1 Introduction

1.1 Motivation

Tracking is one of the key tasks in Augmented Reality(AR) and it means to
determine the pose of an object, i.e. its position and orientation with respect to
some coordinate system in real time. It is a major challenge for AR applications
and has to be as precise, accurate and robust as possible in order to create
the illusion that the virtual content is a part of the real world. An accurate
tracking system is required for AR system because even a small tracking error
may cause a noticeable misalignment between virtual and real objects.

There are different approaches to tracking, and hybrid tracking is one of
them. Hybrid tracking techniques combine various sensor data into a merged
data stream in order to enhance the quality of tracking data using a sensor
fusion. Sensor fusion is combination of sensory data or data derived from
sensory data such that the resulting information is in some sense better than
the case where these sources were used individually. While it provides with
better data, the fusion of multiple sensors increases the complexity of the
tracking process because of complex manipulation or processing of data.

Tracking can be provided by a variety of sensors such as mechanical, optical
and acoustic. Inertial measurement unit (IMU) is one of the mechanical sensors.
IMU is an electronic device used for detection of the current object orientation.
Usually it measures the acceleration and, angular velocity. Based on inertial
principles, acceleration and angular velocity are measured always relative to
inertial space. Such sensors mainly consist of at least two different types of
sub-sensors, an accelerometer measuring linear acceleration and, a gyroscope
measuring orientation and angular velocity.

1.2 Goals

In this project, we will be developing a sensor fusion Deep Learning model
which fuses multiple IMUs using Deep Learning techniques. The fusion
of 3 IMU data (which consists of acceleration and angular velocity) will be
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experimented, i.e. whether it can describe the motion of the body mass or not.
The main goal of this project is to obtain changes in position and orientation
data using multiple IMUs, reliably. It is very well known that acceleration
values read from an IMU is highly unstable and some misalignment between
axes could exist. As the quality of them decrease, one needs to be more careful
when using the information from those. By using Deep Learning, we aim to
get a stable and reliable transformation in position and orientation, without
any calibration, sensor registration and, error correction or modeling.

1.3 Structure of the document

In Section 2, basic topics about Machine Learning and Deep Learning will be
introduced. Section 3 explains our project setup and the problem definition.
Section 4 contains the previous work that has been done in this field and 6
contains our implementation and model details. Section 7 shows briefly shows
the results from the experiments and Section 8 is conclusion.

2 Basic Knowledge

2.1 Sensor Fusion

Sensor Fusion is the combining of sensory data or data derived from sensory
data such that the resulting information is in some sense better than would be
possible when these sources were used individually, [1]. It is an important field
where it has a lot of use cases in everyday life applications like smartwatches,
phones and, Virtual Reality headsets. It has been studied for a long time, and
there are very well known analytical solutions to it. Kalman Filter, Extended
Kalman Filter, Bayesian Inference, Dempster-Shafer algorithm, Moving Horizon
Estimation [9] are the most important ones of them.

2.2 Machine Learning

Machine learning is a paradigm that may refer to learning from past experience
(which in this case is previous data) to improve future performance, and the
sole focus of this field is automatic learning methods, [3]. Ultimate goal of this
area is to make accurate predictions after the learning phase, so that various
decision would be made by algorithms/models.

2.2.1 Artificial Neural Networks

While Machine learning consists of mostly task-specific methods, its sub-field
Artificial Neural Networks(ANN) has ability to work on data representations/
features by extracting characteristics of the input. ANN was, in a sense,
inspired from biological neurons. The architecture of ANN usually consists of
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grouped units whose outputs are connected to the ones in other, which carries
information/data from one to another and, this groups are called as layers.
As illustrated in Figure 1, the first(left most) layer is input layer, the last(right
most) layer is output layer and, the layers other than those are called as hidden
layers. This simple layer type is called as Dense or Fully Connected layers.
Each unit at each layer is multiplied with corresponding weights and, all the
input values for a unit in the next layer are summed. Then the resulting value
is put in a nonlinear function, i.e. tanh, ReLU, sigmoid, which are called as
activation functions and the activation function gives the network the ability to
learn nonlinear features, otherwise the output of whole network would have
been formulated by a matrix multiplication, which is a linear operation. The
output value of activation function is the output of the unit and the whole
process is repeated for the next layers until the output layer.

Figure 1: Artificial Neural Network illustration. Image from: [4]

2.2.2 Deep Learning

As the prices of the processor devices fall and capabilities of the GPUs increase,
the number of hidden layers are increased a lot, and the resulting networks are
called as Deep Neural Network(DNN), see Figure 2. As the experiments con-
firmed, deep architectures yield a better performance than the shallower ones,
until a point. Also, supervised, semi-supervise and unsupervised learning is
possible in Deep Learning.

• Supervised learning is learning by knowing both input, and its corre-
sponding output. That is, all the input data has a known label.

• Unsupervised learning is learning from only the input data without any
corresponding output, so the data set is not labeled.
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• Semi-supervised learning is learning with partially labeled data, which
could be thought of a mixture of supervised and unsupervised data.

Figure 2: Deep Neural Network illustration. Image from: [5]

2.2.2.1 Convolutional Neural Networks

A convolutional neural networks are basically DNNs and they are used mostly
to recognize/extract features from the input data. A general structure of them
could be seen in Figure 3.a. The important idea behind it is the convolution
operation with kernel, which is applied by looping over the input data and
multiplying the input with corresponding kernel values, which is illustrated
in Figure 3.b. While it is mostly used on images, it has been used on other
data types, like IMUs. By applying a number of convolutions in each layer
and concatenating multiple layers, more abstract and high level features are
extracted from the input, see Figure 4, which is then easier to be classified or
processed by DNN.
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Figure 4: Convolutional Neural Network feature extraction illustration

(a) Convolutional Neural Network
illustration. Source: [6]

(b) Convolution with a Kernel ex-
ample. Source: [7]

Figure 3

2.2.2.2 Recurrent Neural Networks

As the standard artificial neural networks only learn from the currently pre-
sented data, there is a need for the notion of time or sequence to learn, and
it is met by the Recurrent Neural Networks(RNN). Basically, this structure
provides the neural network with a memory from the previous inputs. There
are different cell types of RNNs, some of which are:

• Basic Recurrent Unit

• Long Short-Term Memory
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• Gated Recurrent Unit

Figure 5: Unrolled RNN unit . Source: [8]

2.2.2.2.1 Basic Recurrent Unit A simple recursive unit could be seen in
Figure 5. Since the state of the unit in time step t is an input to the unit itself
in time step t + 1, the unit could be illustrated by unrolling it, on the right.
However, later it is found that that simple structure is not able to extract long
term dependencies(in terms of time or sequence).

2.2.2.2.2 Long Short-Term Memory Long Short-Term Memory (LSTM),
is the solution for extracting long term dependencies in the data, [16] [17]. As
seen in Figure 6, one LSTM unit could be unrolled and it has a complex gating
structure, input, forget and output gates, they constitute the cell state, and it
can store information for a long period. LSTMs contain memory blocks, not
neurons as in ANNs, but they have the internal layer structure. These gates
are all connected to the weights, as in the ANN units, they are learned during
training. The basic use of them is to decide on how to learn from the new
data, how (much) to forget from the already learned information and how to
calculate the output, respectively.

Figure 6: Unrolled LSTM. Source: [8]
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3 Project Setup and Problem Definition

In our experiments, there will be a cube on which 3 IMUs and one visual target
are attached to, where the visual target is tracked by visual tracker [23]. The
constructed cube could be seen in Figure 7.

Figure 7: The cube used in the experiments. It has 3 IMUs attached onto it,
and a visual target.

Acceleration data from one of the IMUs is a vector, which will be referred
as a, and angular velocity is also a vector, which will be referred as ω and they
could be defined as follows:

a =

ax
ay
az

 ω =

ωx
ωy
ωz

 (1)

where subscripts show the axis of the respective measurement. Also, data
acquired from one IMU is M , and defined as:

M =

[
a

ω

]
(2)

Since there will be multiple IMUs to be fused, M1,M2, ...,Mk will be referring
to the respective sensor device data. The pose vector could be defined as P :

P =

[
U
W

]
U =

Posx
Posy
Posz

 W =


q1
q2
q3
q4

 (3)
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where the U is the position vector and the W is the orientation quaternion
values. At the end, the purpose is to get final pose Pf , using a few seconds
data of multiple IMU data M1,M2, ...,Mk and the initial position Pi. Later the
network will be extended to get both final pose Pf and IMU data Mf . The
data for P will be obtained from the visual tracker. Because we will have both
the input and the correct output(label), the type of learning will be supervised
in our experiments. All predictions of Pf will be predicted using the function
f :

Pf = f (Pi, (M1,M2, ...,Mk)× Nseconds) (4)

From Machine Learning perspective, the goal is to predict Pf using the input
Pi, (M1,M2, ...,Mk)×Nseconds

4 State of The Art

There are many sensor fusion algorithms in the literature as mentioned in 2.1,
and Kalman Filter is a very important one. Kalman filter, as first presented in
study [10], is a well-established method for the linear systems. However, this
linearity restriction is not practical, and Extended Kalman Filter is a nonlinear
solution, which achieves it by approximating a nonlinear function using Taylor
series. Bayesian Inference is another well-established analytical method, which
is based on statistical inference, [11]. Dempster-Shafer reasoning has also
inference mechanisms and, sensor fusion using Dempster-Shafer has been
studied by Huadong Wu et al. in [12]. Also, there are other analytical fusion
methods [14].

Machine Learning and, ANNs are able learn from data without being
explicitly programmed. The contribution of this paper is to fuse multiple IMU
data to get the pose of the object which represents the motion of the body mass.
In [15], Ahuja et al. try to improve precision of IMU using Machine Learning,
however, the experiment is very restricted such that only normal walking on a
treadmill is learned using Support Vector Regression. In [18], Kyritsis et al. also
incorporated machine learning, namely Support Vector Machines and LSTM
cells, however the features to be extracted are decided manually. Another point
is that IMUs data is fused in order to classify application specific movements.

In terms of using Deep Learning techniques, a similar study is [19]. In this
study, tracking consists of mainly two parts, one of them is inertial tracking
and the other is visual tracking. Visual tracking uses natural features of objects
to estimate camera pose, and inertial tracking is achieved via a deep network,
which consists of 1 LSTM layer and following 3 DNN layers, again to estimate
camera pose. While visual approach is used mostly and is accurate, its accuracy
decreases as the movement of camera distorts the image quality. In those cases,
an error detection system does not allow the visual tracker’s result to pass to
the next component, which is a Kalman filter. Kalman filter is used to fuse the
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output of visual and inertial trackers and provide a smoothed output. Even
though the experimental setup and components look similar, in this experiment
fusion is still done via a Kalman filter, and LSTMs are used for camera pose
tracking.

In our study, multiple, non-registered, rigidly attached IMUs will be fused
to get the change in the pose of a fixed point around the object(in our case it
is the visual target), using Deep Learning techniques. In the previous study,
the IMU data is used only to assist the tracking, however, it is the main device
to track the object in our case. Another, and the most, important difference is
that all the process is learned by the neural network, unlike the other where
the Kalman Filter and error detection components should be created manually
and carefully. Because of the nature of the data we are using, acceleration and
angular velocity, the exact location of the object can not be determined, but any
position tracker device, i.e. a camera, could be added to the neural network
easily.

5 Data Collection

In order to test and train the model, the data collection should be done first, and
in our case this part was the most challenging and hard one. The best condition
of data to be collected would be that all the IMU’s and visual component start
recording the data at the same time and all frequencies are equal to each other.
The target frequency in this project is 50 Hz. Since all the electronic components
used in this project are of different brands, each of them has a different API,
so one should learn and implement them all to collect data. Following, the
software components are explained.

5.1 Individual IMU APIs

5.1.1 Xsens MTi Sensor

One of the IMU components is from Xsens MT 1S-Dev [20]. To be able to fetch
the data from the device using a custom code, one needs to include XsensDe-
viceApi.dll to code environment with some supplementary XDA source files
for C++ wrapper, to be able to use it in a C++ project.

5.1.2 InertialSense IMU

Next IMU sensor is µIMU Development Kit from InertialSense [21]. This device
is one of the high quality sensors used in this project. Although it is able to
reach 1000 Hz, we cannot use it since not all other devices are able to do so.
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5.1.3 VectorNav

Another IMU is from VectorNav [22], VN-100 Development Board. Maxi-
mum gyroscope frequency 256 Hz, and it is already placed onto a controller
board. To use interact with the device, one should include "vn/sensors.h".
After writing the desired asynchronous output frequency using the function
writeAsyncDataOutputFrequency, the asynchronous data could be read with a
constant frequency.

5.2 UbiTrack

Since we are using 3 different IMU sensors and 1 visual tracking from ART [23],
we need an application to orchestrate all of these components. UbiTrack [24]
is a solution for this, with some components already implemented. ART
component is one of the implemented ones, so it could be used directly.
However, for each IMU, an individual component has been written. According
to the structure of the UbiTrack, one component should have a start, stop and
startCapturing functions. For each IMU:

• The start function should be initiating the required port, connection to
the IMU (device, in a general sense) and variables. At the end of this
function, the startCapturing function is called using a different thread.
That thread keeps running the while loop in there. This is an important
point in the architecture since all the devices asynchronously.

• After terminating the parallel thread created by the start function, the
stop function should be terminating connection to the device, removing
garbage pointers and setting some required parameters.

• startCapturing should have a while loop to keep fetching data from the
device and doing the required work with it.

The code for the components could be found in the attachment. These com-
ponents for the pre-training data collection. In order to do a demo, live data
needed and another component was written for that. It receives live data from
all the IMUs, to predict the current location, and visual tracker, which is just
for initiation and testing. After predicting the pose, the real and predicted
location and pose is displayed in a simple representative visualization.
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5.3 trackman

(a) Pre-training data collection data flow graph, screenshot
from trackman

(b) Live demo data flow graph, screenshot from trackman

Figure 8: Data Flow Graphs

trackman [24] is a graphical planning and analysis tool used together with
UbiTrack. In this project, data flow specification of spatial relation graph has
been done using trackman. For two different applications, two different data
flow graph has been created, one for pre-training data collection application,
and the other is for live demo. In the Figure 8 data flow graphs, and in Figure
9 spatial relation graphs can be seen.
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(a) Pre-training data collection spatial relationship graph, screenshot from trackman

(b) Live demo spatial relationship graph, screenshot from trackman

Figure 9: Spatial Relationship Graphs

Before collecting the data, the individual IMU software have been investi-
gated and learned. Then, the components have been written according to the
structure expected by the UbiTrack. Collected data from an IMU is written to
two separate files, one of them is for acceleration, and the other is for angular
velocity data, for each IMU. The acceleration files has the following format:

...

timestamp1 acc1x acc1y acc1z

timestamp2 acc2x acc2y acc2z

...

Each row corresponds to consecutive measurements and each row contains
a local timestamp and acceleration data in 3 dimensions, separated by space.
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Local timestamp means that the timestamp were read using the internal library
functions of each IMU except the VectorNav. For that one, the timestamp is
generated within from its UbiTrack component.

The same logic follows in the angular velocity data file. The format for that
is:

...

timestamp1 gyro1x gyro1y gyro1z

timestamp2 gyro2x gyro2y gyro2z

...

For in gyroiu, i is an identifier of a measurement and u is the axis of the
measured angular velocity.

Another component is ART component, which we use it directly. The
output format of ART visual tracker:

...

timestamp1 quat1a quat1b quat1c quat1d pos1x pos1y pos1z

timestamp2 quat2a quat2b quat2c quat2d pos2x pos2y pos2z

...

Orientation is provided in the form of quaternions and the quat is its abbrevia-
tion, and position is abbreviated as pos.

5.4 Recordings

After getting all of components and data flow graphs(DFG files) ready, the
data collection has started. In the created setup, each IMU is connected to the
computer via a USB cable, and the visual tracker is via network. In order for
visual tracker to work, the records should be taken in a very specific area, where
the ART camera and the devices are setup. Also, with the cables connected
to the computer, the area of the experiments is not larger than a small room.
The records were taken for 4 days, each day approximately 2 hours long. Each
day a random starting point and a sequence moves have been realized. During
the second day, there had been some occlusions of the visual target, so at some
points the visual tracker did not work. After the further investigations it has
been understood that the target data (data from visual tracker) is misaligned
with features data(data from IMUs). As will be mentioned later, misaligned
data is a problem, and in this case it happened randomly, therefore the data
from the second day is not used in the training process.
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5.5 Issues

Data collection part is the most challenging part of this project. In order to feed
the NN, a consistent size for the arrays is needed. This could be, for example,
equal frequencies for the IMUs, so that at each time step an equal number of
input data is provided, which is what we are trying to achieve in this project.
However, the IMUs are of different brands and it took a lot of time to figure
out how to put them in the same frequency, 50 Hz. And not all of them have
the same dynamics in the code, for the case of Xsens and VectorNav we were
able to specify an output frequency, but for InertialSense one needs to set the
interval time between two measurements.

The problem resides even after putting the devices into the seemingly same
frequency. Before starting the actual recordings, some small experiments about
the consistency of the output data in terms of number of data points have been
conducted. After collecting data for 10 minutes, the number of data points
have been compared for each device. There were always some difference in
the number of data points varying from 10 - 70, between all the devices. When
these numbers are checked for the actual records used in the training, they
are acceptable but not perfect. For the problematic recording, second day, the
average number of difference in the number of data points of visual tracker
with IMUs is 9500. This is possibly resulted from that visual tracker does not
write any data to the record file in the case that it cannot detect any targets.
And this has happened randomly during the experiment, which makes it really
hard to recover. For other days’ records, the difference with visual tracker is
around 700 for day 1 out of around 264152 data points, 120 for day 3 out of
around 284281 data points, and 340 for day 4 out of around 231630 data points.
All these numbers are approximate, since the numbers of data points in an
experiment is almost never equal for any IMU or visual tracker. Since this is a
very important key point for this project, in the provided Jupyter Notebook, the
output contains the exact number of data point differences, see Figure 10. As
one might see from these examples, the difference is random for each record.
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Figure 10: Jupyter Notebook output for the difference in the number of data
points

6 Neural Network Design and Implementation

In order to design a working network, firstly the literature has been researched.
Although there are not many examples of this task, one is able to understand
the tools used from other relevant fields. Also, there are other tasks which
consist of using acceleration data in neural networks, from which the nature
of the data could be understood. In this sense, the study [25] has detailed
explanations, where deep convolutional and recurrent networks used to process
sensory data containing acceleration.

In the study [18] by Kritsis et al. , the LSTM layers are used with the IMU
data, in order to extract long term dependencies, however, the features are
extracted manually. Furthermore, Karpathy et al. [27] mentioned that at least
2 layers of LSTM layers would be useful. In order to classify eating gestures,
Tara et al. [26] did benchmark neural network with the CNN, LSTM and ANN
combinations, where the features are extracted by and data frequency variations
are reduced with CNNs. Hence, after reading [18], [26], and [27], a rough
design of the network has been shaped, and it is for sure that convolutional
layers will be used in the network. However, the data at hand is not appropriate
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to use as it is, so a preprocessing is needed.

6.1 Data Preprocessing

As mentioned in 5.5, configuring all devices to the same frequency is not
enough to get equal number of data points from each device. In order to use
the convolutional layers, we need some consistency in data. But as seen, the
number of data points varies for each device and for each run, see Figure 10.
The aim here is to get exactly same number of data points from each device
to be able to put them in a matrix, so that convolutional layer could be fed
with it. A simple solution would be to determine the minimum number got
from a device, and cut the excessive ones. But not only the shape of the data
is important, also the data points in the same index should be measurements
of the same time, or at least approximately the same time. There are 3 simple
approaches to remove excess data from each sensor and make the data as
synchronized as possible. Here how it proceeds,

1. determine the minimum number of data points among IMUs and visual
tracker data, say sizemin.

2. For each sensor X whose size is not equal to sizemin, remove
sizemin − sizeX = di f fX points from sensor X.

First approach is to remove points from the beginning, i.e. remove first di f fX
points from X, simple illustration could be seen in Figure 11. This could elimi-
nate the problems if the threads started by the UbiTrack have time differences.
Random data visualization after this approach is applied could be seen in 14.a.
As seen in the graph, it does not work, since there is a clear shift among the
IMUs.

Figure 11: Remove from the beginning, data preprocessing approach illustra-
tion

Second approach is to remove data uniformly. For sensor X, whose size is
sizeX, and data point indices are 0, 1, 2...sizeX − 1, remove di f fX data points
with equally spaced indices, starting from 0 to sizeX − 1, simple illustration is
in Figure 12. A random data visualization after applying this could be seen in
14.b. This approach could have solved the problems of unequal frequencies,
since three different sensors used this is a possible case. From the illustration,
it could be deduced that this approach works better than the first approach,
removing from the beginning.
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Figure 12: Remove uniformly, data preprocessing approach illustration

Third, the last, approach is to remove from the end. Simple illustration
could be seen in Figure 13 Random data visualization is in 14.c. From further
investigations, it is realized that removing from the end yields better results
than the second approach.

Figure 13: Remove from the end, data preprocessing approach illustration

Even though for the data which is in the beginning of the record they
perform almost the same, from the synchronization point of view, in the end
of the record, the third approach is better. Hence, the sensors are providing
the data around similar frequencies, and they mostly start around the same
time, however, when stopping the record, some of them take more time to do
it, which is what could be understood from this set of data.
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(a) Excess data is removed from the be-
ginning and as seen the data is not syn-
chronized at all.

(b) Uniformly removed data. As seen it
is better than removing from the begin-
ning.

(c) Uniformly removed data. As seen it is better
than removing from the beginning.

Figure 14: Data preprocessing random visualizations. The main goals here are
to make the sensor data arrays’ lengths equal to each other and to make them
as synchronous as possible.

Later, it is found that InertialSense angular velocity values have a very
different range than the other sensors’ values. Then angular velocity values are
scaled with 60, to get very close ranges with other IMUs. Before and after the
scaling could be seen in Figure 15.
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(a) Before scaling InertialSense angular
velocity values.

(b) After scaling InertialSense angular
velocity values.

Figure 15: InertialSense angular velocity scaling

Also a summary of the all the data at hand could be seen in Figure 16.

Figure 16: Overall Data Summary

Before finding this miss-scaled data, initial 19 networks were already trained.
Because of this, initial 19 model versions are useless, since the decisions are
made based on only the InertialSense angular velocity data.

After getting all the data into the same size, we need to reshape the data
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to get it ready for the training and testing. Our training procedure will be
based on the time series estimation, since we have a time based data it would
make sense. For each of the training points, there should be one initial position
and orientation, IMU data from the initial position’s time to target position’s
data time, and target position and orientation.In summary, predicting the
target position and orientation from the initial position and orientation using a
number of IMU data, and this is implemented as sliding window approach.

In our case, the window size is 4 seconds of data, considering that the
frequency of the devices is 50 Hz, the number of data points in a window is
200, each data point containing 18 values, 6 sensory data(3 acceleration and 3
angular velocity) for 3 different IMU. Due to the scarcity of the data, data reuse
is needed, so when sliding the window it is slid for 4/20 seconds = 200/20
data points = 10 data points(stride), hence each data point is used for 20 times,
in different windows. In the Jupyter Notebook, this is done with the function
named create_train_data.

6.2 Neural Network Design

In this section, the design choices will be done and justified. In order to
compare different configurations, an initial network is created at the beginning.
The first input of the neural network is in the size of 200x18, where 200
corresponds to 4 seconds of IMU data, for 3 IMU devices where each of them
gives 3 acceleration and 3 angular velocity values, which makes 18 for each
data point. This input is fed into convolutional part of the network, there are 4
convolutional layers and each of them has size of 64, with kernel size of 12. It
should be noted that the convolutional layers here are not 2 dimensional, they
are 1 dimensional convolutions since the all the data at hand is 1 dimensional,
which is time, unlike the images which have 2 dimensions(excluding color
channels). 4 layers of convolutions are followed by 2 LSTM layers, whose sizes
are 128. At this point, the second input of the network, which is initial position(
of size 1x7, 3 for position, 4 for orientation with quaternion), is concatenated
with the LSTM’s output. With this, it is expected that using the feature data
and the initial position, the network will be predicting the final position and
orientation. After concatenation, there are 3 dense layers whose size are 128,
128 and 7, respectively. At the end size 7 is mandatory because the final
position and orientation data consists of 7 values. Another point is the initial
regularization technique. It is chosen as batch normalization at the beginning,
with the learning rate of 10−5. A visualization of the initial neural network
could be seen in Figure 17.
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Figure 17: Initial Neural Network. Note that after each and every layer, a
batch normalization layer then the activation function comes. For LSTM layers,
activation function is hyperbolic tangent function, and for all the others, it is
Rectified Linear Unit(ReLU).

Also the activation functions of all layers are ReLU (Rectified Linear Unit),
except the LSTM layers which is tanh (hyperbolic tangent). The optimizer
used is Adam, [29], which is the most common optimizer. There also other
optimization algorithms like Momentum, RMSProp, Adagrad, Adadelta and
Adamax [34].The default batch size is 128. As the size of batch is increased,
the training time decreases but smaller batch sizes could lead to better models.
To balance it, the size 128 is chosen. Also, 85% of the data is used as training
and 15% as validation data.

6.2.1 Loss Function

The task done with the neural network could be defined as regression, by
supervised learning. In order for the network to learn some information from
the data, first it should have definition of what is good and what is bad to
learn, what to learn and what not to. This is the use of the loss functions. In
our case there are two common possible options, one of them is Mean Absolute
Error(MAE) and the other is Mean Square Error(MSE). Formula of each is as
follows:

MAE = 1/n
N

∑
i=1
|yj − ŷj|

MSE = 1/n
N

∑
i=1

(yj − ŷj)
2

where yj is the label(correct value/output), and ŷj is the predicted value/output.
Each of them has some advantageous and disadvantageous properties. Starting
with MAE, it is more robust to outliers, since there is no square operation in
it. In case of an outlier, all the unsigned distances from the label is averaged.
However this is not the case for the MSE. In case of an outlier, with the square
operation the loss gets very high, and the optimization is done using the loss
that is unreasonably shifted by one point, at the expense of all other common
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points. On the other hand, MSE’s gradient is higher for larger values, and
lower for the losses which are closer to 0. But MAE’s gradient is same for
either high or low values. Hence the with MAE the network will be learning
always at the same speed, which would increase the training time.

At the end, the choice depends on the data at hand. As could be seen
in the data summary Figure 16 , there are not extreme outliers. After trying
MAE and MSE in some models, it was seen that MSE actually results to better
predictions than MAE. Therefore, using MSE would be a better choice in this
project, so that the nice gradient properties of the MSE will be utilized and
better predictions are obtained.

6.2.2 Convolutional Layers

At each step, we have 4 seconds of acceleration and angular velocity data from
3 IMUs, which is raw data with a lot of noise, as input. First, the variations
should be reduced, using convolutional layers. This would also provide us with
extracting high-level features from the raw data, as mentioned in studies [25]
and [26]. As we have higher and more abstract features it is easier for recurrent
and dense/fully connected layers to use those features. Just to decide on the
number of convolutional layers and their size, there are several number of
configurations to try. Utilizing the experience in the literature, the number of
layers will be either 3 or 4. The experiment results for these 2 configurations
could be found in Table 1, and the loss graphs in Figure 18.

# of Convolutional Layers Best loss
3 0.0360
4 0.0377

Table 1: Number of Convolutional Layers Comparison, after Training for 30
Epochs
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(a) Loss graph for 3 Convolutional Lay-
ers

(b) Loss graph for 4 Convolutional Lay-
ers

Figure 18

As seen in loss table, 3 layers has a smaller loss, so it performs (slightly)
better than 4 layers. Also, 3 layers structures loss mostly start from around
0.4, although 4 layers has never started with a loss smaller than 0.6. From the
complexity point of view, 3 layers structure would have a smaller runtime,
since there is one layer missing, and there are less parameters to learn. At the
end, 3 layers structure is adopted, for all these convincing reasons.

Another important parameter for convolutional layers is the size of the
layer. As the size gets bigger, it will be able to represent more features in it,
which will be used in the next layers. As the main purpose of the CNNs is
to extract useful features for the later layers, a larger size would possibly be
leading to better predictions. After several experiments, the loss graph and
table for the most important ones could be find in Figure 19 and Table 2.

Convolutional Layer Size Best Loss Time For 100 Predictions
64 0.0360 6.78 secs
128 0.0346 7.30 secs
256 0.0491 9.89 secs
512 0.0350 12.88 secs

Table 2: Convolutional Layers’ Size Comparison, after Training for 30 Epochs.
Rightmost column is for the elapsed time for the 100 predictions in a CPU
environment, whose unit is in seconds.

For these parameter, sizes of 128 and 512 are the main competing configura-
tions. Multiple aspects of each should be considered carefully for this current
project. First of all, the best losses from 30 epochs of training are almost equal
to each other. Even though the size 128 configuration did start from a far worse
starting point, it managed to finish training with a better loss.
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(a) Loss graph for Convolutional Layer
size 64

(b) Loss graph for Convolutional Layer
size 128

(c) Loss graph for Convolutional Layer
size 256

(d) Loss graph for Convolutional Layer
size 512

Figure 19

On the other hand, size 512 starts converging to its limit faster than 128,
which makes it very fast to train. This can be seen in the Figure, after 10.th
epoch the validation loss of size 512 starts to fluctuate, but size 128 keeps
steadily decreasing. However, it comes with a con. As this application is
based on real-time data, the output, ideally, should be produced as fast as
possible. The time required for making 100 predictions for size 512 is 12.88
seconds, which almost doubles the time for size 128, 7.30 seconds. Since the
difference between the best losses is not large enough to consider, for mostly
the complexity reasons, the size is chosen as 128, so the size of 3 convolutional
layers will be 128.

The last important parameter for the convolutional layers is the kernel size.
Kernel size will be determining the receptive area of the kernel. As the kernel
size gets bigger, its receptive area would be larger. As presented in the very
popular convolutional neural networks i.e. [30], [31], the kernel sizes are mostly
chosen as small for example 3x3, 5x5 or 7x7. In our experiments, kernel sizes
of 4, 10, 12, 16 and 20 are tried. The loss graphs of them is in Figure 20 and the
losses after 30 epochs is in Table 3.
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(a) Loss graph for kernel size 4 (b) Loss graph for kernel size 10

(c) Loss graph for kernel size 12 (d) Loss graph for kernel size 16

(e) Loss graph for kernel size 20

Figure 20

As prediction times are very close to each other, here the most important
metric is the loss. The best candidates are the kernel size 12 and 20. For kernel
size, the number of parameters to learn is 12x12x128 for each convolutional
layer, but for kernel size 20 it is 20x20x128, and there are multiple layers. To
keep the number of parameters as low as possible, kernel size 12 is chosen.
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Kernel Size Best Loss Time For 100 Predictions
4 0.0375 7.66 secs
10 0.0380 6.74 secs
12 0.0346 6.52 secs
16 0.0373 6.41 secs
20 0.0354 6.42 secs

Table 3: Kernel size comparison for Convolutional Layers, after Training for 30
Epochs. Rightmost column is for the elapsed time for the 100 predictions, its
units is in seconds and the code was run on CPUs.

6.2.3 Recurrent(LSTM) Layers

LSTM layers are presented in the network to utilize the temporal feature of the
data,so that the network would have a notion of time. In the network, they
are placed after the last convolutional layer, therefore they will be operating
on high level data, the output of the CNN network. To obtain the best of its
performance, there are some hyperparameters to be tuned. As in Convolutional
layers, the size of each LSTM layer is important. As the number increases
there will be more features to be learned, in theory, but also the prediction and
training time increases. The experiments are run on 4 different sizes, which
are 32, 64, 128, and 256. The table for the best losses after 30 epochs is in Table
4, and the loss graphs are in Figure 21.

LSTM Layer Size Best Loss
32 0.0352
64 0.0355
128 0.0354
256 0.0381

Table 4: LSTM Size Comparison, after Training for 30 Epochs.

As in the convolutional layers’ size, the largest size tried starts fluctuating
after around epoch 10, which means it is getting closer to its limits, for the
current learning rate, which is 10−5. Other 3 yields almost the same best loss,
hence, the simplest solution is the size of 32.
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(a) Loss graph for LSTM size 32 (b) Loss graph for LSTM size 64

(c) Loss graph for LSTM size 128 (d) Loss graph for LSTM size 256

Figure 21

Second and the last important hyperparameter for the LSTM layers is the
number of them. In the study [27], it is mentioned that at least 2 layers of
recurrent units would be beneficial. For this reason, the depth of 2 and 3 are
tried. The loss graphs is in Figure 22 and the best losses are in Table 5.

Number of LSTM Layers Best Loss
2 0.0352
3 0.0355

Table 5: Number of LSTM Layers Comparison, after Training for 30 Epochs.
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Graphs are almost identical, they start around same values and end nearly
the same. To keep the structure simple, 2 LSTM layers are chosen, which also
yields similar loss and behaviour as 3 layers.

(a) Loss graph for 2 LSTM Layers (b) Loss graph for 3 LSTM Layers

Figure 22: Number of LSTM Layers Comparison, after Training for 30 Epochs.

6.2.4 Dense (Fully Connected) Layers

After learning high level features and getting the temporal features from the
data, now the last set of layers are dense or fully connected layers. Like the
others, here the size and the number of them are important. However, in
this layer there is an important limitation on the last layer. As the main goal
is to predict the position and the orientation of the target, and the last layer
is the output of the network, the label data(which consists of position and
orientation) and the output should be of the same size. In the output of the
visual tracker, the position is represented with 3 points, which are X, Y and Z
position, and orientation is represented with 4 points, which corresponds to
the quaternion of the object. Hence, the output layer should be of size 7.

During the training phase, the output of the layer(predicted output) and
the label of the current input(correct output) will be compared to each other,
and the network will be learning from these mistakes. First the number of
layers are decided. The loss graphs are in Figure 23 and the best losses are in
Table 6. The validation loss for 1 dense layer starts from a very low point, but
it does not improve a lot. From the best losses, it is clear that 3 layers yield the
best loss.
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(a) Loss graph for 1 Dense Layer (b) Loss graph for 2 Dense Layers

(c) Loss graph for 3 Dense Layers

Figure 23: Number of Dense Layers Comparison, after Training for 30 Epochs.

The second hyperparameter for dense layers is the size of them. As the
size increases, it would possibly be able to learn different features and map
them into better results. On the other hand, more hidden units could make
the network train very slowly, since more parameters will be presented. This
dense layers are placed after the last LSTM layer, and the convention 128-64-7
means that there are 3 dense layers, the one after the last LSTM has size 128,
and then 64 sized layer comes and then 7 sized.

Number of Dense Layers Best Loss
1 0.0511
2 0.0428
3 0.0390

Table 6: Number of Dense Layers Comparison, after Training for 30 Epochs.

The loss graphs are in Figure 24 and the best losses are in the Table 7. In
this part the decision is comparably easier to make, as the size increases the
network learned more, so the size of 1024-1024-7 is chosen.
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(a) Loss graph for
Dense layer sizes 128-64-7

(b) Loss graph for
Dense layer sizes 256-128-7

(c) Loss graph for
Dense layer sizes 256-256-7

(d) Loss graph for
Dense layer sizes 512-512-7

(e) Loss graph for
Dense layer sizes 1024-1024-7

Figure 24: Comparison for Dense layer sizes, after training for 30 Epochs
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Dense Layer Sizes Best Loss
128-64-7 0.0390
256-128-7 0.0313
256-256-7 0.0298
512-512-7 0.0257
1024-1024-7 0.0250

Table 7: Kernel size comparison for Convolutional Layers, after training for 30
Epochs. Rightmost column is for the elapsed time for the 100 predictions, its
units is in seconds and the code was run on CPUs.

6.2.5 Regularization Techniques

As the size or the depth of the neural networks grow, they are able to learn
more. This learning is done on a dataset which is already at hand, however,
the main goal is to perform good on a new data, i.e. classify the new object
correctly or as in our case predict the new location and orientation as correct
as possible. Hence, as the network learns better, there is risk of learning the
training data too much, so that when a new data is presented it cannot perform
good. This issue is a common one, and it is called overfitting. To overcome
this, there are techniques, mainly called as regularization techniques. Until
this part of the experiments, batch normalization(BN) is used after each single
layer, except the output layer. Ioffe et al. [32] introduced batch normalization, it
is suggested that the BN layer is used after the layer and before the activation
function, which is the practice used in our network. Experiments are also done
with dropout regularization, but the behaviour of the network changes a lot in
this case. Note that, in case of dropout, the general order is as follows:
Layer→ Activation→ Dropout, unlike batch normalization. Thanks to the BN
layers, data normalization is not needed, because it is already done after each
layer, which is one of the merits of BN.

In the experiment where dropout is applied, the network did not learn
anything at first, with a best loss around 108. After the input data is normalized,
even though the learning behaviour is not a regular one, the loss of 0.0183 is
achieved, which could be seen in Figure 25.b. This is the best loss until this
point, and it is achieved with only one trial using dropout. At this point, it
is obvious that this loss jumps are caused by the learning rate, which will be
discussed in the next parts. After small adjustment to the learning rate, which
is 10−4, the dropout loss values behaved normally, with best loss of 0.0164. The
loss graphs of dropout and batch normalization are in Figure 25 and the best
losses are in Table 8.
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(a) Loss graph for Batch Normalization
Regularization

(b) Loss graph for Dropout with Learn-
ing Rate of 10−3

(c) Loss graph for Dropout with Learn-
ing Rate of 10−4

Figure 25: Regularization Technique Comparison with different learning rates

However, in this point, one could not decide that dropout is better for
this application, since the learning rate is adjusted for it, but not for batch
normalization. Therefore, in the next part, where learning rate is discussed,
the experiments will be done for both of them.

Regularization Technique Best Loss
Batch Normalization 0.0250
Dropout with learning rate 10−3 0.0183
Dropout with learning rate 10−4 0.0164

Table 8: Regularization Technique Comparison, after Training for 30 Epochs.

6.2.6 Learning Rate

For most, if not all, of the neural networks, learning rate is one of the most
important hyperparameters. It could be described as the size of the step to take
after each batch, with other words, how much to learn, how much to update
the weights of the network after each batch. The learning with neural network
is almost always a non-convex optimization, so the target function has a lot
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of local minimum and it could be varying a lot in small ranges. Hence, when
the learning is set to a large number, the loss value would be behaving very
unsteadily. When it is set to a small number, it would be learning very slowly,
where the training takes a huge amount of time, without even knowing that
that minima is a good one.

(a) Loss graph for Dropout with Learn-
ing Rate of 10−4

(b) Loss graph for Dropout with Learn-
ing Rate of 3× 10−4

(c) Loss graph for Dropout with Learn-
ing Rate of 2× 10−4

(d) Loss graph for Dropout with Learn-
ing Rate of 5× 10−4

Figure 26: Learning Rate Comparison for Dropout

The loss graphs and the best losses could be found in Figures 26 and 27,
and in Table 9, for the learning rate experiments.
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(a) Loss graph for Batch Normalization
with Learning Rate of 10−5

(b) Loss graph for Batch Normalization
with Learning Rate of 10−4

(c) Loss graph for Batch Normalization
with Learning Rate of 7× 10−5

(d) Loss graph for Batch Normalization
with Learning Rate of 5× 10−5

(e) Loss graph for Batch Normalization
with Learning Rate of 3× 10−5

Figure 27: Learning Rate Comparison for Batch Normalization

From the figures and the table, it is clear that Dropout starts training with
a lower loss than the batch normalization approach in almost all experiments.
Also, the final loss reached in dropout approach with learning rate 3× 10−4

is the best loss until this experiment. Based on these convincing results of
dropout regularization, it will be used in the further models, instead of batch
normalization.
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Regularization Technique Learning Rate Best Loss
Dropout 10−4 0.0164
Dropout 3× 10−4 0.0162
Dropout 2× 10−4 0.0212
Dropout 5× 10−4 0.0168
Batch Normalization 5× 10−4 0.0250
Batch Normalization 10−4 0.0219
Batch Normalization 7× 10−5 0.0219
Batch Normalization 5× 10−5 0.0250
Batch Normalization 3× 10−5 0.0234

Table 9: Regularization Technique Comparison

The final neural network model illustration could be find in Figure 28.

Figure 28: Final Neural Network architecture. Note that after each and every
layer, first the corresponding activation function and then a dropout layer
comes. For LSTM layers, the activation function is hyperbolic tangent function,
and for all the others, it is Rectified Linear Unit(ReLU). These activations are
followed by dropout layers.

Additionally, TensorBoard visualization of the final neural network is in
Figure 29. TensorBoard is a suite of visualization tools for the TensorFlow
applications [33].
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Figure 29: TensorBoard visualization of the final neural network

6.3 Implementation

The neural network implementation is done in Jupyter Notebook environment
[35] using Keras Library [36].

It is observed that use of GPU instead of a CPU saves from long training
time. While using a Dual-Core Intel i5-4210 CPU needs 5 minutes and 45
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seconds for an epoch to train, Nvidia GeForce GTX 1080 needs only 55 seconds.
So, the use of a GPU is highly encouraged.

6.4 Issues

UbiTrack creates different threads to read the data from each component/de-
vice, which means the time difference between very first data points of each
IMU and visual tracker varies randomly. In Data Preprocessing 6.1, the main
approach was to overlap the data from different sources onto each other, so
that the peaks and bottoms would be at the same indices of the array. With
each recording, the time difference will be changing, and possibly the data in
same indices would be corresponding to different time for each device, even
after preprocessing. However, the important point here is the difference in
indices of the corresponding peaks and bottoms. Since the data is in discrete
steps, the exact time difference is not the point of focus, but the difference
in the number of indices is. In order to get better predictions, the number of
recording sessions should be high so that the network learns as many indices
difference between peaks and bottoms as possible, assuming that there will be
a worst case scenario, i.e. maximum index difference is 100.

7 Results

Test data is extracted from last 5 minutes of each day’s recording. Since we
have 3 recordings (actually 4, but the second day cannot be used), in total we
have 15 minutes of test data. The tests are conducted 1 minute each. To predict
the next pose, last 4 seconds of IMU and label pose data is needed. Hence,
when extracting the test data, 5 minutes + 4seconds data extracted, in order to
get 5 minutes prediction. For each minute, starting from the first 4 seconds of
IMU and pose data, the prediction is done, and the array keeping the initial
pose data is appended with the prediction. Since the prediction in a step will
be used as initial pose 4 seconds later, this structure is required.

The errors reported in this section are Mean Absolute Error(MAE), which
is explained in 6.2.1. The reason is that MAE could be interpreted easier and
the units of the position errors remains as meters.

The errors from each minute of each recording for the quaternions could
be found in Table 10.
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Day Number Minute MAE Q1 MAE Q2 MAE Q3 MAE Q4
1 1 0.29794178 0.47889321 0.54221289 0.19367892
1 2 0.2873525 0.39352458 0.38461821 0.19109086
1 3 0.30603866 0.37098453 0.25118557 0.10952405
1 4 0.28429213 0.40921022 0.33418614 0.19673632
1 5 0.24749812 0.52618677 0.32894294 0.13705228
3 1 0.24387641 0.52349242 0.49723168 0.11318289
3 2 0.20949533 0.50537554 0.5669253 0.13772507
3 3 0.18332603 0.64131045 0.69083356 0.15293999
3 4 0.20553715 0.44577435 0.56609571 0.16589802
3 5 0.27263279 0.469891 0.59259838 0.2110102
4 1 0.28712006 0.19753273 0.28266957 0.16927738
4 2 0.04945909 0.09094302 0.07779159 0.12041667
4 3 0.07588424 0.13071892 0.15345349 0.12953166
4 4 0.08677928 0.16520313 0.29060942 0.11231395
4 5 0.12565777 0.11478203 0.23180115 0.11637267

Table 10: Resulting Quaternion MAEs for the model which trained with all 3
days’ data.

Again for the quaternions, the mean MAEs in the quaternion values could
be seen in 11. The MAEs of different minutes within each day are averaged
and the table shows the results. From the table it is understood that the model
performs better on the data of day 4.th.

Day Number Mean MAE Q1 Mean MAE Q2 Mean MAE Q3 Mean MAE Q4
1 0.28462464 0.43575986 0.36822915 0.16561649
3 0.22297354 0.51716875 0.58273693 0.15615124
4 0.12498009 0.13983596 0.20726504 0.12958247

Table 11: Resulting Quaternion Mean MAEs for the model which trained with
all 3 days’ data.

For the position, the MAEs could be found in the Table 12, whose unit is in
meters.
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Day Number Minute MAE Pos X MAE Pos Y MAE Pos Z
1 1 0.32185077 0.15752132 0.23592007
1 2 0.28327383 0.24320988 0.31408761
1 3 0.24034231 0.23204857 0.12944006
1 4 0.24209581 0.309488 0.13441538
1 5 0.23375713 0.15902535 0.0941516
3 1 0.32754326 0.07016635 0.06509805
3 2 0.21243546 0.16394965 0.05395144
3 3 0.21078694 0.27622665 0.10120114
3 4 0.30472198 0.38552358 0.17318112
3 5 0.26710652 0.1913575 0.15403332
4 1 0.12406341 0.25592646 0.09433397
4 2 0.08380599 0.07703061 0.11561494
4 3 0.09488921 0.16916791 0.15405664
4 4 0.13741003 0.14958843 0.12189978
4 5 0.14202988 0.17626911 0.20952724

Table 12: Resulting Position MAEs for the model which trained with all 3 days’
data.

The mean MAEs within each day for the position is in the Table 13. Again
the best results achieved is from the 4.th day.

Day Number MAE Pos X MAE Pos Y MAE Pos Z
1 0.26426397 0.22025862 0.18160295
3 0.26451883 0.21744475 0.10949301
4 0.1164397 0.1655965 0.13908651

Table 13: Resulting Position mean MAEs for the model which trained with all
3 days’ data.

As mentioned earlier, these tests are conducted with the data which was cut
from the very end of 3 different recordings, and the model was trained with
the data from 3 recordings. Also, the time differences among corresponding
points from different devices for these recordings are not the same. Because of
that, the model trained with the all of the records could perform worse than
the model trained with one record.

To keep the training time lower, the data of the 4.th day is used during
optimization of the neural network, since it showed the best synchronization
characteristics. So, the 51 models trained during the Neural Network Design
6.2 could be tested to see whether using only one recording could increase the
performance. In the Figure 30, the mean MAEs for the model trained only with
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the data from the 4.th day could be seen.

Figure 30: Mean MAEs for 51 Models Trained during 6.2 with only data from
4.th day. Note that the results for 5 minutes are averaged. Also, the model
version 50 is a broken model so that no results are reported for it.

As seen in the figure, the last model versions, after x performs better than
the others with similar errors on all values. Last 10 models’ MAEs of the
models in the Figure 30 could be seen in the Tables 14 and 15, for quaternion
and position values respectively.

Model Version MAE Q1 MAE Q2 MAE Q3 MAE Q4
62 0.14670297 0.20862615 0.72316642 0.12104922
63 0.07110358 0.13804635 0.18741067 0.09184004
64 0.11609026 0.11990964 0.13175562 0.10754768
65 0.08787334 0.12019154 0.15088795 0.09916175
66 0.26344772 0.12373371 0.17127091 0.21317618
67 0.09184921 0.12029804 0.14330653 0.09236645
68 0.08327096 0.17375036 0.19002712 0.12064425
69 0.08117492 0.17640153 0.18214565 0.10823182
70 0.11860842 0.14467068 0.13587602 0.13903005
71 0.10679877 0.16292754 0.19231899 0.11601716

Table 14: The Resulting Orientation MAEs for last 10 models in Figure 30.

When these are compared to the Tables 11 and 13, which was trained with
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data from all 3 recordings, the results of the model version 63, 65 and 67 are
better. But these models still cannot be used by the applications which require
high precision.

Model Version MAE Pos X MAE Pos Y MAE Pos Z
62 0.35449908 0.6874614 0.57736013
63 0.13229496 0.07595908 0.11826766
64 0.13009894 0.14485299 0.12379959
65 0.128669 0.10346915 0.12150998
66 0.11655888 0.31892743 0.14724584
67 0.12067505 0.0926576 0.13685473
68 0.16926609 0.12972437 0.14515569
69 0.15441113 0.10283495 0.13028951
70 0.13893357 0.1244476 0.14626394
71 0.14059806 0.12183204 0.13331454

Table 15: The Resulting Position MAEs for last 10 models in Figure 30.

The transition from 3 days’ data to only 1 day’s yielded a better result,
which means transition from a more varying synchronization characteristics
to less varying one helped the network at least a little. From this point,
fully synchronous data could be tested to see whether it would improve the
performance or not. With the fully synchronous data, the complexity of the
network could be reduced, because the data would be of higher quality and
the neural network does not need to deal with solving the synchronization
characteristics of the data. So, with a simpler network, i.e. smaller layer size
and/or less number of hidden layers, the same performance could be reached.

8 Conclusion

In this project, the main object was to determine the change in the pose using
only the acceleration and orientation data from multiple IMUs. In this way, the
IMUs will be fused to reach the target. Using neural networks would save us
from sensor registration, calibration, error modelling, and coordinate system
conversion.

To achieve this, first a comprehensive literature review is done. Although
there are a lot of studies on sensor fusion, almost all of the approaches are
analytical ones, where a number of manual work is required. Then the data is
inspected for suitability for neural networks. It is found that the data is poorly
synchronized, and to overcome it different preprocessing techniques are tested.
Later, various configurations of neural networks have been tried, in order to
fuse the sensory data more successfully. Here, it should be noted that there
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are countless number of configurations for the neural network, where only a
subset of it is tested. Even though the model configurations from this research
cannot be used in the applications with high precision requirements, there is a
strong possibility that the task would be achieved with neural networks using
different network configurations and better synchronized data. Also, it should
be noted that with this application, simple devices like IMUs would possibly
have the potential of tracking, without the need for expensive visual tracking
etc. setup.

At this point, it is important to know the nature of the task. There is no
direct measurement of the position and the orientation, because the input data
used is only acceleration and angular velocity. Therefore, the network will be
predicting on top of its previous predictions, which means, at each step, error
in the prediction will be accumulated for later use. To get a good output at a
specific time, the network’s error in the previous times should be very low, to
avoid the error accumulation. As the time for the prediction gets longer, the
final error will be higher. This would affect the application area of this solution,
too. An example use case for this is to use the network as a backup in an
application with visual or GPS tracking systems. In the case of non-reachable
visual or GPS tracking, this application could be used for a small period of
time.

From the experiments in this study, it is highly recommended for the data
to be synchronized in the future studies. Also, there are still a lot of neural
network configurations which needs to be experimented. For example, instead
of having a window size of 4 seconds, narrower window sizes could be tried,
along with different strides after each window(currently the stride is 10 data
points). Maybe, a network without any window, which means a window size
of 1 data points, hence, without any convolutional layers could perform better.
Also, the initial pose is fed to the network after LSTM layers in the current
design, but feeding the initial pose before the first LSTM layer is another
possibility that could be investigated.

Another interesting point would be the comparison with analytical methods,
using the same data from the same setup, so that the improvement of neural
network usage could be better grasped.
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