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Abstract

This thesis provides an overview of the low-level CPU architecture of modern computer
systems with regard to the memory subsystem. The correct handling of memory can
greatly improve the performance of graphical real-time applications. For this reason, the
functionality of CPU caches is explained in detail. This explanation serves as a basis for
practices that can improve performance. In addition, optimization strategies for memory
allocations are presented in the form of various custom allocators. The importance
of these efforts is continuously supported by implementations and performance tests.
These performance tests show that optimizing a program’s source code towards good
memory management and efficient cache usage can yield performance increases of
multiple orders of magnitude. To ease memory management, modern C++ features are
introduced that can assist in object lifecycle handling. Finally, an outlook on future C++
language features and suggestions for future work is given.
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1 Introductrion

The global market for graphical real-time applications continues to grow. In 2015, video
game sales in the US alone reached 16.5 billion1 U.S. dollars [Zat17]. But video games are
not the only applications that feature real-time graphics. David Michael, an independent
video game developer, defines serious games as "games that do not have entertainment,
enjoyment, or fun as their primary purpose" [Mic06]. Michael states that this does
not necessarily mean that serious games are not entertaining, instead "there is another
purpose".

An example for non-entertainment focused video game technology usage can be
seen at the National Aeronautics and Space Administration (NASA). In 2016, Epic
Games provided insight into a collaboration with the NASA [Slo16]. According to
the published Article, the NASA uses Unreal Engine and virtual reality hardware to
build a system that can be used to train astronauts on earth. In combination with
custom hardware built by the NASA, the system assists in the preparation for missions
on the International Space Station (ISS). Other usage examples of game technology
outside of gaming include scientific visualization [FHW08], movie production [Pim18]
or self-driving vehicle research [Dos+17].

Real-time rendering of complex environments or huge data sets is a computationally
heavy task. The geometry of a 3D scene can exceed several million triangles, each of
which has to be processed every frame at 30+ frames per second. Textures, lighting
and shadow calculations, physics simulations as well as animations demand additional
computational power. For a long time these high performance requirements could only
be satisfied by stationary computers, either in the form of game consoles or desktop
computers. Virtual reality increases these requirements even further because scenes have
to be rendered at 60 to 90 frames per second [GD18; OCD18]. Rendering at 90 frames
per second means that a new frame needs to be drawn every 11.1ms. If the 11.1ms target
is missed, the resulting inconsistency and latency can have discomforting effects on the
user. Therefore not a single frame may exceed this limit [GD18].

In the attempt to make virtual reality approachable to the average consumer, com-
panies push towards standalone VR headsets. These headsets typically run on mobile
hardware that is very similar to the hardware that can be found in modern smartphones.
This hardware got a lot faster in recent years [HZR16], but it is still far slower than a
desktop computer. To compensate for that limitation, it is necessary to optimize every
part of an application. In video games this often means decreasing texture resolution
and geometric complexity. In addition to these artist driven optimizations the source

1short scale billion (109)
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code needs to be optimized as well. Making unconstrained use of a modern CPU2

can be complicated. The CPU is the core of a modern computer system and interfaces
with every other component or subsystem. A difficulty with using the CPU to its full
potential is the fact that it is typically faster than the subsystems it interfaces with. As a
result it is required to instruct the processor in a way, that obviates waiting for other
components. The CPU cannot continue to process data when it has to wait for the data
to be delivered by the memory subsystem. The performance gap between the CPU
and the memory subsystem grew for years and continues to grow. Today, it is more
important than ever to focus on good memory usage.

2Central Processing Unit
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Language Disclaimer

The topics that are covered in this thesis (especially those in chapter 2 and chapter 3)
are not standardized. The technology explained exists in many different variations. In
this thesis we want to cover what is typically found in mainstream, consumer oriented
hardware. Therefore loose language like typically or usually is used throughout this
thesis. Absolute statements are not possible in most cases which is why these qualifiers
are needed.
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2 Overview Memory

The data that is required by a computer program has to be stored somewhere in RAM
(Random Access Memory). In the earlier days of computing, addressing memory
was a limiting factor which lead to the so-called memory segmentation. In 1978 Intel
introduced memory segmentation on the Intel 8086 as a way of addressing more than
64KB of memory [90]. The problem was, that the Intel 8086 is a 16-bit processor
and therefore used 16 bit memory addresses. 216 (65, 53610) maps directly to 64KB
of byte-addressable memory. Memory segmentation splits the memory in different
segments. Memory addresses then do not refer to single bytes but to a larger block of
memory identified by its offset to the segments base location. The offset is measured
in “number of blocks”. This concept allowed the Intel 8086 to address one megabyte
of memory [90]. While the x86-64 architecture dropped the concept of segmentation
almost completely the concepts of different memory locations are still widely used by
modern programming languages.

2.1 Stack and Heap

Today the memory for a program is split into five different segments: Text, BSS, Stack,
Heap and Data. The Text segment is where the program’s actual code (the instructions)
is stored. The BSS segment (from Block Started by Symbol) holds global and static
variables that are not explicitly initialized in the source code. The Data segment holds
global and static variables which have explicit initialization. The Stack contains data
variables as well as additional information relevant for code execution. The Heap is
reserved for additional memory a program can request during runtime.

This chapter provides an introduction to the Stack and the Heap. The other segments
are omitted because they do not provide huge optimization potential.

2.1.1 Stack

As already mentioned, the stack contains not only application data but also data relevant
to program execution. The exact usage of the stack is defined by a so-called calling
convention. The calling convention determines where e.g. function parameter values
are stored. Calling conventions differ between programming languages and compilers
which is why there is no single correct explanation. The following describes how the
stack is used in 32-bit x86 C [Fer+06].

When a function is called, the parameters of the function are pushed onto the stack
first. Then the return address is pushed onto the stack. This is needed to return to the

5



2.1 Overview Memory - Stack and Heap Stack

1 int foo(int a, int b, int c)
2 {
3 int x = a + b;
4 int y = b + c;
5
6 int z = x + y;
7
8 return z;
9 }

10
11 int main()
12 {
13 return foo(11, 22, 33);
14 }

high address

c

b

a

return address

saved ebp

x

y

z

low address

+ 16

+ 12

+ 8

+ 4

- 4

- 8

- 12

EBP

ESPEBP

EBP

EBP

EBP

EBP

EBP

EBP

EBP

Listing 2.1: C++ source code snippet. Figure 2.1: Stack right before the return
statement in line 8 of Listing 2.1 is exe-
cuted.
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2.1 Overview Memory - Stack and Heap Stack

correct position in the program after executing the newly called function. The space
after the return address is used to store local variables. Figure 2.1 illustrates this with
the code sample from listing 2.1. Note that the stack shown in fig. 2.1 represents a stack
of intels x86 architecture. Unlike the mental model that most people have in mind, this
stack grows from high to low memory addresses.

EBP is a CPU register that is called frame pointer or base pointer. ESP is another CPU
register that is used as the stack pointer. This pointer always points to the lowest stack
element. The range between EBP and ESP is called the current stack frame. If an x86
program is compiled, the compiler defines the stack locations for function parameters
and local variables relative to EBP. This enables access to these variables because the
compiler can generate the required access instructions based on the assumption that
EBP never changes. In this example the parameters int a, int b and int c, which are
passed to the function foo, are placed on the stack in the range [EBP + 16] to [EBP + 8].
The return address is stored below that (at [EBP + 4]). At [EBP + 0] x86 stores an
additional address. This is a saved EBP which is the EBP address that was valid before
foo was called. The EBP gets restored to this address when foo returns. Everything
below EBP is used for the local variables int x, int y and int z ([EBP - 4] to [EBP - 12]).
Note that the stack addresses colored in green ([EPB + 16] to [EBP + 4]) are filled by
the caller, while the red addresses ([EPB + 0] to [EBP - 12]) are filled by the callee. The
return value of foo is not stored on the stack because it would be impossible to access
after foo returns and EBP changes. Instead, the return value is stored in a special CPU
register called EAX.

Some other values, that are not explained here can be are part of the stack as well. In
x86, some CPU registers are defined as caller-saved and some are defined as callee-saved.
If values that are stored in these registers are still required after a subroutine call, the
caller or the callee is responsible for pushing these values onto the stack. The register
values can then be restored when the subroutine returns.

The memory that is required to store the stack is provided by the operating system
(OS) at program startup. If multiple threads are started during the execution of a
program, the OS will allocate additional memory to allow each thread to have its own
stack. Depending on the operating system the stack size varies. As an example: The
default stack size of the test machine is 8MB1. If more stack space is required than
the stack can provide, the program crashes due to a stack overflow. After a function
finishes, the data is not freed. In C++ the destructors for local variables are called, but
the memory itself remains untouched. Instead, ESP is set to EBP and EBP is set to
the value it is pointing to. Adjusting ESP afterwards to revert the addition of function
parameters is the callers responsibility.

The following limitations can be derived from these basic properties:

• The memory footprint / size of variables on the stack has to be known at compile
time to generate the access instructions.

1The test machine is running x64 Ubuntu 16.04. The stack size was determined using the command
ulimit -a.
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2.2 Overview Memory - Allocations

• Data on the stack does not need to be allocated.

• Data on the stack is only valid in the current function and subroutines called from
the current function.

– Returning pointers or references to local variables is undefined behavior.

• The amount of memory the stack can provide is limited.

To circumvent these limitations programs can request additional memory. This
additional memory comes from a memory region called Heap.

2.1.2 Heap

The Heap is a large memory pool that is managed by the operating system. If an
application requires additional memory, this memory can be requested from the
OS. If the application does not require the requested memory anymore, it can be
returned. In C this is done using void* malloc(size_t size) to request memory and
void free(void* ptr) to return it. In C++ both malloc and free are still available but
usage is discouraged. Instead, the newer facilities new T() and delete T were used
which correctly handle object oriented code by calling constructors and destructors. In
modern C++, new and delete are not invoked directly anymore. They are now wrapped
in more modern facilities using smart pointers [Sut14]. More details can be found
in section 6.3.1 (Smart Pointers). malloc returns a void* that points to the start of a free
memory region of the requested size. new T() returns a T* to the newly allocated object
with its constructor already called. If the returned pointer is lost, the acquired memory
cannot be returned to the operating system and is therefore unusable until the program
exits. This is called a memory leak.

From a memory point of view all of these facilities are often the same because new
and delete typically call a form of malloc or free internally. The GCC standard library
libstdc++ calls malloc from new [Fre18] which is why we assume that new and malloc
perform equal from a resource acquisition standpoint (i.e. ignoring the constructor call
issued by new). Therefore, new and malloc are used interchangeably from now on.

2.2 Allocations

The process of obtaining memory from the operating systems Heap is called allocation.
Allocations are executed by an allocator. In a C++ program the default allocator is
implemented by the C++ standard library that is typically included as part of the
compiler. This default allocator is used if the user does not override or overload it.

Allocation is not a simple task, especially with the performance requirements of
modern software. Because of that, allocations are often a performance bottleneck
without developers recognizing it. Since we assume that new and malloc perform equal,
the following section highlights some problems with using malloc.

8



2.2 Overview Memory - Allocations Problems with malloc

1 // Single allocation to store 5000 POINTERS to Particles
2 std::vector<Particle*> particles(5000);
3
4 for (int i = 0; i < 5000; i++)
5 {
6 // One additional allocation per Particle
7 particles.push_back(new Particle());
8 }

Listing 2.2: Example of malloc overuse

2.2.1 Problems with malloc

malloc is a system call as well as a general purpose facility. This means it has to be
able to handle concurrently incoming requests of arbitrary size. It needs to be able to
allocate memory blocks of a few bytes as well as memory blocks of several gigabytes. In
fact, malloc takes a size_t as its parameter for the allocation size in bytes. On a 64-bit
system this equals 264 bytes (≈ 18 Exabytes).

The required versatility does not come for free. malloc is fast but the constraints
and requirements slow it down. High performance implementations of malloc can
preallocate memory or handle differently sized requests with different allocation schemes
to speed up the allocation, but this only helps to speed up some specific allocations. A
general purpose allocator can never guarantee optimal performance for every possible
request. Because of that calls to malloc should be kept as rare as possible.

Listing 2.2 shows an example of bad malloc use. In this snippet, malloc is called for
every single one of the 5000 particles. In listing 2.3 a simple change reduces the malloc
call count by 5000. This is achieved by not calling new for every Particle. Instead, a local
variable is copied from the stack to the vector’s pre-allocated memory. The memory
required for all particles is allocated in line 1.

Comparing the execution time of listing 2.2 and listing 2.3 shows the overhead malloc
introduces (see fig. 2.2). By simply changing the allocation pattern this programs
execution time could be reduced by a factor of 2.66. Not all allocation problems can be
solved by just altering a few lines of code. In section 6.1 another approach is shown
using custom allocators.

9



2.2 Overview Memory - Allocations Problems with malloc

1 // Single allocation to store 5000 actual PARTICLES
2 std::vector<Particle> particles(5000);
3
4 for (int i = 0; i < 5000; i++)
5 {
6 // No additional allocation required
7 particles.push_back(Particle());
8 }

Listing 2.3: One way to fix the massive amount of allocations is to move the allocation
out of tight loops.

Naive

Optimized

7.67 · 105

2.89 · 105
CPU cycle count

Figure 2.2: Execution times of listing 2.2 and listing 2.3
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3 CPU Architecture

Modern CPUs are much faster compared to processors from 1985. In 1985 the CPU core
frequency was similar to the frequency of the memory bus [Dre07]. This means that
accessing main memory was only slightly slower than accessing a CPU register. Memory
accesses therefore did not have to be optimized. In the years after, CPUs became faster.
In particular, the clock frequency was increased rapidly by chip manufacturers. DRAM1

manufacturers were unable to keep pace with this rapid development. Although it was
possible to build very fast memory cells (known as SRAM 2), the production of these
was (and still is today) much more expensive than DRAM. The reason for that is the
structure of SRAM compared to DRAM. An SRAM cell requires four to six transistors
while a DRAM cell only requires a single one [Dre07]. Because of that it is uneconomical
to replace the entire DRAM of a PC with SRAM cells. As a result memory accesses got
slower compared to CPU cycles, which can have a negative effect on performance. If the
data a process needs cannot be delivered fast enough to the CPU, the CPU has to wait
and spend time idle. Since the problem could not be solved by memory manufacturers,
the chip manufacturers introduced the concept of the memory hierarchy: Instead of
replacing the entire main memory with fast SRAM, they include small SRAM memory
regions directly into the CPU and try to handle as many memory requests as possible
from those. These regions are called caches.

3.1 CPU Caches

A CPU cache is a hardware cache that aims to reduce the time it takes to access data
from main memory. This is done by placing caches between the CPU and the main
memory. If data is requested from main memory which is not already cached (a cache
miss) it has to be loaded into the cache. If the data is required a second time it can
be read from the fast cache instead of waiting for DRAM (a cache hit). Caches are not
standardized and therefore differ between CPUs. Throughout this section the Intel Core
i7-6700k is used as an example. The i7-6700k has three levels of cache. Details are listed
in table 3.1

1Dynamic Random Access Memory - The type of memory that is used for main memory in modern
computer systems.

2Static Random Access Memory

11



3.1 CPU Architecture - CPU Caches

figures/cpu_memory_perf_gap.pdf

Figure 3.1: Performance comparison between CPU, DRAM, SRAM and Disk /
SSD [BO10]. Notice that CPU cycle time matched DRAM and SRAM access latency in
1985.

Cache L1 data L1 instruction L2 L3
Size 4 x 32 KB 4 x 32 KB 4 x 256 KB 8 MB
Associativity 8-way 4-way 4-way 16-way
Inclusivity - exclusive inclusive
Latency 4 cycles 12 cycles 42 cycles

Table 3.1: Cache levels of the Intel Core i7-6700k

12



3.1 CPU Architecture - CPU Caches Data vs. Instructions

Core

Hardware

Thread

Hardware

Thread

L1D D1I

L2

Core

Hardware

Thread

Hardware

Thread

L1D D1I

L2

L3

Main Memory

Figure 3.2: Cache hierarchy of the Intel Core i7-6700k. Note that only two of the four
cores are shown here.

3.1.1 Data vs. Instructions

Table 3.1 shows two different level 1 caches: L1 data (short L1d) and L1 instruction
(short L1i). L1i is a dedicated level 1 cache that stores a program’s instructions. Since a
program often flows linearly, a CPU can accurately predict which instructions (which in
this case can be seen as plain data) will be required in the future. Because of that the
instructions can be loaded into the fast instruction cache ahead of time to remove the
DRAM access latency (in many cases) completely. If the CPU had to wait for instructions
to be delivered from main memory it would stall until the instructions are available.
This is known as starvation. L1i is not part of this thesis, it is only mentioned for the
sake of completeness. Nonetheless, programmers can optimize instruction cache usage.
The interested reader is encouraged to inform themself about branch (miss-)prediction.

L1d on the other hand is a level 1 cache dedicated to data. Data in this case means
anything that is not an instruction, like a program’s variables. Note that the distinction
between data and instruction caches is typically made only on the lowest cache level.
Higher cache levels drop that distinction and provide a common place for both data and
instructions.

The rest of this thesis will focus on data caches since optimizing for data cache usage
can yield huge increases in application performance.

13



3.1 CPU Architecture - CPU Caches Cache Line

3.1.2 Inclusive / Exclusive

Cache levels can be either inclusive or exclusive. An inclusive cache contains all the
information stored in one of the lower level caches [Dre07]. In the case of the i7-6700k
the level 3 cache is inclusive. It holds all the data available in L1d, L1i or L2. If data is
requested from main memory, it is stored in the corresponding level 1 cache for direct
use. In addition to this, the data is also loaded into the larger inclusive level 3 cache. If
this data is evicted from L1 (because other data requires this space), DRAM memory
access could still be avoided because the data may be present in the level 3 cache.

Exclusive caches behave the opposite way: The i7-6700k’s level 2 cache is exclusive.
Accordingly, it does not store the information that is in the level 1 caches. If memory is
required from main memory, it is only stored in levels 1 and 3, as already mentioned.
Only when the data is evicted from L1, it is written to L2. This is the only way of filling
the level 2 cache in this case. When the data is needed in L1 again, it is moved from L2
to L1 [Dre07].

3.1.3 Associativity

Data loaded from main memory into the cache is identified by its main memory
address. But there is a problem with this approach: The very large address space of
the main memory must be projected to a few positions in the respective cache level.
It is unavoidable that several addresses of the main memory are mapped to the same
position in the cache. If that happens, a collision occurs, existing data is overwritten
and thus evicted from the cache (level). To avoid the probability of a collision, modern
CPUs can switch to alternative cache positions in the event of a collision. If the CPU
can switch to any other position in the cache, the cache is called fully associative. The
opposite (no other position in the cache can be used) is called direct mapped. If one of N
different cache positions can be used for any given main memory address, the cache is
N-way associative [Dre07].

Chip manufacturers have to decide how high the associativity can be. A higher
associativity reduces collisions and therefore avoids that data gets evicted from cache
erroneously. However, in case of a high associativity many positions in the cache must
be checked to see if a certain memory address’ data already exists in the cache. This
increases cache access latency [Dre07].

3.1.4 Cache Line

Processors do not manage the cache at maximum granularity. If a 32 bit value is
requested from main memory, not only the required 4 bytes are actually loaded into the
cache. Instead, a full cache line is read. A cache line holds a continuous, fixed size memory
range and every main memory address maps directly to one cache line. Since caches are
not standardized the cache line size varies from architecture to architecture. In most
consumer oriented CPU architectures the cache line size is 64 bytes (512 bit) [ZVN03].
From now on we assume a cache line size of 64 bytes.

14



3.1 CPU Architecture - CPU Caches Cache Eviction

Knowing of the existence of cache lines and how they behave is critical for optimizing
code. A worst case example that arises from cache lines is only requiring a single byte
from a memory location where the adjacent data is irrelevant. Even though a single byte
of information would be sufficient, 64 bytes are loaded from main memory if the cache
line that is needed for the requested memory address is not cached yet. 63 bytes of the
loaded 64 bytes are not used. That means 98.4% of the loaded data is wasted and only
clogs the memory bus. Figure 3.3 visualizes this problem.

Byte

Cache Line

Figure 3.3: Visualization: Each square represents one byte of a 64 byte cache line. If only
a single byte is required, 63 bytes are unnecessary load on the memory bus.

3.1.5 Cache Eviction

The term cache eviction was already mentioned in previous sections. Just like anything
related to CPU caches, the eviction policies differ between CPU architectures. Generally
speaking, cache eviction refers to the process of removing a cache line from a CPU
cache or cache layer. As described in section 3.1.3 (Associativity) this is often necessary
when new data is loaded into the cache. Which of the N cache lines of an N-way
associative CPU cache gets selected for eviction is dependent on the cache eviction (or
cache replacement) policy. Because the replacement policy directly influences cache
efficiency, CPU manufacturers developed complex algorithms and heuristics to select the
cache lines. Detailed knowledge of the cache eviction policies is typically not something
that helps with optimizing code. Therefore they are not part of this thesis.

3.1.6 Coherency

Sorin et al. define cache coherency as:

Coherence seeks to make the caches of a shared-memory system as func-
tionally invisible as the caches in a single-core system. Correct coherence
ensures that a programmer cannot determine whether and where a system
has caches by analyzing the results of loads and stores. [SHW11]

What this means is that caches operate fully invisible to programmers. Cache co-
herency therefore allows programmers to write code without having to know that caches
even exist. While this might have performance implications, it is guaranteed that every
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memory access behaves exactly as if the data was not cached in the first place. This
includes the synchronization between multiple caches which might have copies of the
data from the same main memory location.

Coherency in multi-core processors

The coherency definition provided above includes an important piece of information.
Caches shall behave “as the caches in a single-core system” [SHW11] even if they operate
as part of a shared-memory system. In fig. 3.2 it is clearly visible that in case of the Core
i7-6700k multiple cores have distinct level 1 and level 2 caches. Therefore a single cache
line can be stored in multiple caches which are physically located in different CPU cores.
This is not a problem as long as the data in that cache line is only read. As soon as one of
the cores writes data to that cache line, the CPU has to ensure that the other cores do not
read from their version of the cache line since the data is now outdated. This is achieved
by marking the cache line dirty in the CPU cache of the writing core and invalid in all
other cores [Mey14]. The dirty flagged cache line then has to be written main memory,
allow the other caches to load the correct data. CPUs can use use higher level shared
caches or other dedicated implementations to speed up this process [SHW11].

A scenario highlighting this functionality is described in chapter 7 (Multithreading).
For now the fact that coherency is guaranteed on hardware level is sufficient.

3.1.7 Prefetching

In section 3.1.1 (Data vs. Instructions) it was stated that CPUs can predictively load
instructions into the instruction cache because instructions are typically laid out linearly
in memory. Similar functionality is desirable for data caches as well, because it can
shrink (or even remove) the effective DRAM access latency. To do this, the CPU tries to
predict which data will be required in the near future and load this data into the data
cache. This is called prefetching and is executed and instructed by the hardware itself.
Neither the operating system nor application code instruct the CPU to prefetch a certain
memory address. In some edge cases manual prefetching might be beneficial which is
why CPU manufacturers provide libraries to do so.

Since predicting memory accesses is impossible in many cases, CPUs typically use a
very simple approach for prefetching and rely on the programmer to access memory
accordingly. If the CPU detects that accessed memory addresses follow a very simple,
reoccurring pattern, it can assume that the pattern continues. This information can then
be used as a basis for prediction. Details on how this knowledge can be transferred into
cache efficient code are given throughout this thesis.

3.1.8 Performance measurements

Table 3.1 already showed the access latency for the Core i7-6700k. We therefore already
know that a L1 cache hit is about 10.5 times as fast as a L3 cache hit. Mike Acton, princi-
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template<size_t Pad>
struct Node
{

Node* next;
size_t pad[Pad];

}

Listing 3.1: Nodes of a linked list used to measure cache effects.

ple programmer at Unity Technologies and former Engine Director at InsomniacGames,
measures efficiency and game performance in “last level cache misses per frame” [Act14].
To complete the picture we need a full performance comparison including DRAM access
latency.

We repeated the measurement process described by Ulrich Drepper in “What Every
Programmer Should Know About Memory” [Dre07]. These measurements were orig-
inally made in 2007. The new measurements therefore serve two purposes: First, to
measure cache effects on a real system and validate the caches effects on performance.
Second, to test if the caches behave similarly (in theory they should behave the same) as
in 2007.

All measurements are performed by creating a singly linked list which is built using
the Node data structure in listing 3.1. The list is then traversed multiple times using
only the Node* next pointer even if the nodes are laid out linearly in memory. Because
the lists are traversed multiple times we expect them to stay in the lowest cache they can
physically fit in. This is not a real world scenario. Normally a list is iterated only once
with other work happening before and after. What this test targets is the measurement
and visualization of cache effects. The result we are looking for is the time it takes to
access a single Node in this context. This equals the amount of CPU cycles per next
pointer dereference. Since we want to compare the cache efficiency of linked lists with
different Node paddings, we fix the size of the linked list. The size is called working set
size. A linked list with a working set size of 2N bytes contains 2N/sizeo f (Node) nodes.
Each node’s size, on a 64-bit operating system, equals (8 ∗ Pad) + 8 bytes. A node with
a padding of 7 (that is (8 ∗ 7) + 8 = 64 byte) is exactly the size of a single cache line.

Two different list memory layouts are tested to isolate and visualize potential op-
timization by the hardware prefetcher. If the hardware prefetcher can speed up the
list traversal, we should see that effect best if the list nodes are laid out linearly in
memory. The next pointer dereference is a simple and therefore predictable memory
access pattern in that case. To isolate this speedup, we compare these results with access
times measured when the elements are aligned randomly by shuffling the list elements
before the first traversal. The different layouts are illustrated in fig. 3.4. All test runs
are executed on a system with an Intel Core i7-6700k running at 4.5Ghz and 32Gb of
DDR4-2666 memory.
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Linear / Sequential

Random

Figure 3.4: Memory layouts used for testing
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Figure 3.5: Traversing the linearly laid out linked list.

Linear Traversal

Figure 3.5 shows the performance test results of traversing the linear linked list for
various different Node paddings. The results for a working set size of 210 can be
ignored. Since our test program has to share the CPU cache with the rest of the system,
the working set is too small to filter out any noise introduced by system background
processes. This is especially true when nodes with high padding values are tested
because in that case, the total number of nodes in the list is very small.

What is immediately noticeable are the three steps at about 215, 218 and 223. Those
steps are easily explained: The cache sizes of L1d, L2 and L3 on the test system are 32KB
(215 byte), 256KB (218 byte) and 8MB (223 byte) respectively. We would expect to see a
sharp edge in the graph but instead the edges are smoothed. In a perfect measurement
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Figure 3.6: Traversing the randomly laid out linked list.

these edges would be sharper, but background processes of the operating system as well
as the hardware prefetcher do not allow a perfect, isolated benchmark.

Random Traversal

Figure 3.6 shows the benchmark results of traversing the same linked list after shuffling
the list elements physically in memory. It is immediately clear that this random access
performs worse than the linear access. The differences between node paddings are gone
completely, all test cases perform about equal.

Discussion

So why do we see these big performance differences? One might suspect that the
performance differences are fully introduced by the prefetcher because of the predictabil-
ity that comes with the linear memory accesses. To test this suspicion the same tests
were repeated with the hardware prefetcher turned off.3 Figure 3.7 and fig. 3.8 show
the results of linear and random access respectively. While the prefetcher seemingly
managed to decrease access latency (especially with working set sizes larger than the
Level 3 cache) huge differences remain. In particular, lists with small node padding
perform way better when traversed linearly even with the hardware prefetcher disabled.
The reason for the far better performance when accessing the linearly laid out linked list
is cache line usage. Section 3.1.4 already showed this effect briefly. In the case of zero
padding (and therefore sizeof(Node) == 8)4 a cache line can hold 64/8 = 8 Nodes.
That means for every cache miss, there are 7 cache hits immediately after each miss,
because the following 7 nodes were already loaded on the same cache line. The same
scenario when accessing nodes in the random list is different. If a cache miss occurs

3The hardware prefetcher on some Intel CPUs can be controlled using a Model-specific register
(MSR) [Vis14].

4On the 64-bit test system
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Figure 3.7: Traversing the linear laid out linked list with the hardware prefetcher
disabled.
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Figure 3.8: Traversing the randomly laid out linked list with the hardware prefetcher
disabled.

and the cache line is loaded into the cache, the probability that the same cache line is
accessed again right away is tiny. The larger the working set, the higher the probability
that a cache line is either not yet in cache or the cache line is already evicted because
other cache lines had to be loaded. The key point for the big performance differences
is therefore the cache line usage, also called locality. This suspicion has been proven
by logging cache hits and misses using Valgrind5. For details, see table 3.2. The linear
linked list and its memory access pattern is called cache friendly. How the concept of
cache friendliness and locality can be converted to actual code can be seen in section 5.1.1
(Cache Friendliness) and section 6.2.1 (AoS / SoA).

5“Valgrind is an instrumentation framework for building dynamic analysis tools. Cachegrind [one of
callgrinds standard tools] is a cache and branch-prediction profiler.”[VAL]
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Type Pad Total reads L1d miss L2d miss L1 miss rate L2 miss rate

Linear

0 805 305 897 100 663 315 100 663 315 0.125 0.125
7 100 663 273 100 663 253 100 663 253 0.999 0.999

15 50 331 657 50 331 637 50 331 637 0.999 0.999
31 25 165 829 25 165 829 25 165 829 1 1
63 12 582 925 12 582 904 12 582 904 0.999 0.999

Random

0 805 305 877 805 089 322 780 475 513 0.999 0.969
7 100 663 253 100 663 253 100 663 253 1 1

15 50 331 637 50 331 637 50 331 637 1 1
31 25 165 829 25 165 829 25 165 829 1 1
63 12 582 925 12 582 925 12 582 925 1 1

Table 3.2: The recorded cache misses for the different test cases with disabled hardware
prefetcher. We can clearly see that in the case of linear traversal with 0 Node padding
there are exactly seven cache hits for every miss (1/8 = 0.125). From padding 7 upwards
the node requires at least one full cache line. Without the prefetcher every access is a
cache miss then.

3.1.9 Case Study: Matrix Multiplication

In this section the explanations and information given throughout this chapter shall be
evaluated. Since the examples given so far were synthetic benchmarks, this section will
focus on a real world problem: Matrix multiplication. The result c of the multiplication
of two matrices a and b is defined as:

cij =
m

∑
k=1

aik · bkj (3.1)

The value of cij equals the sum of multiplying the entries of the ith row of matrix A and
the jth column of matrix B. As a result matrix multiplications require N3 multiplications
for N × N matrices. The computational complexity of the naive approach therefore is
O(n3). The fastest known algorithm achieves O(n2.373) [Le 14].

Since the naive way for matrix multiplication involves traversing a matrix in column
major order, the cache efficiency of this operation is low. Not only is a column major
traversal required, it is required multiple times for the same columns. When multiplying
two matrices A and B, every column of B needs to be traversed once for every row
of matrix A. The distance in memory between the elements of a column equals the
width of the matrix. A similar case could be seen in the previous performance test. A
cache miss for every read during the traversal is expected if the matrix exceeds trivial
dimensions. An implementation of this naive approach can be seen in listing 3.2.

Since cache hits are extremely fast compared to cache misses, an algorithm with a
higher computational complexity but better cache efficiency could be faster than the
naive approach. To check this, the following test was executed: When multiplying the
two matrices A and B, B is transposed to get BT before the multiplication. This allows
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3.1 CPU Architecture - CPU Caches Case Study: Matrix Multiplication

1 Matrix multiply(const Matrix& a, const Matrix& b)
2 {
3 Matrix result = Matrix(b.get_width(), a.get_height());
4
5 for (int x = 0; x < result.get_width(); x++)
6 for (int y = 0; y < result.get_height(); y++)
7 for (int i = 0; i < a.get_width(); i++)
8 result.at(x, y) += a.at(i, y) * b.at(x, i);
9

10 return result;
11 }

Listing 3.2: Naive implementation of matrix multiplication.

row major traversal on B and therefore has a higher chance of cache hits and prefetcher
optimizations. An implementation can be found in listing 3.3.

From a pure theoretical standpoint this solution should actually perform worse
than the naive approach. In addition to the multiplication (O(n3)) a matrix needs
to be transposed (O(n2)). The final complexity therefore is O(n3 + n2). Besides that,
additional memory for the transposed matrix is required. In reality the cache efficiency
prevails. Figure 3.9 shows the results of multiplying matrices of different sizes using
both the naive and the improved algorithm.

From the test results it is immediately clear that optimizing for cache efficiency can
lead to a faster algorithm, even though the computational complexity is higher. The
cache efficiency optimization decreased the required CPU time significantly. Figure 3.10
shows the achieved speedup. The smallest speedup factor is twice as fast with a factor
of 2.08 and a matrix of size 200× 100. The highest speedup was achieved with a matrix
of size 2000× 1900. In this case the optimized version was 8 times as fast.
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1 Matrix multiply_t(const Matrix& a, const Matrix& b)
2 {
3 Matrix result(b.get_width(), a.get_height());
4 Matrix bT = b.get_transposed(); //transpose b
5
6 for (int x = 0; x < result.get_width(); ++x) {
7 for (int y = 0; y < result.get_height(); ++y) {
8
9 int res = 0; // temporary counter on stack

10 for (int i = 0; i < a.get_width(); ++i) {
11 // row major traversal of both matrices.
12 res += a.at(i, y) * bT.at(i, x);
13 }
14 result.at(x, y) = res;
15 }
16 }
17 return result;
18 }

Listing 3.3: Matrix multiplication with improved cache efficiency by transposing one of
the matrices.
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Figure 3.9: Performance results of multiplying different sized matrices. The result is the
amount of CPU cycles required to multiply two matrices of size N ×M and M× N.

max - 8.07

min - 2.08

avg - 3.29

0 500 1,000 1,500 2,000
0

500

1,000

1,500

2,000

3.00

4.00

5.00

6.00

7.00

8.00

Speedup
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4 Specialties in Graphical Real-time
Applications

Graphical real-time applications / video games have special reoccurring patterns or
restrictions which are not typical for other types of programs. Throughout this chapter
some of these specialities are highlighted. Chapter 5 (Goals) discusses how this is
translated to goals we need to achieve as a result of these specialties and chapter 6
(Solutions) proposes actual solutions including C++ code samples.

4.1 Performance Requirements

As already discussed in the introduction of this thesis, graphical real-time applications
or games have very high performance requirements. The trend towards virtual reality
solutions based on mobile hardware strengthens these requirements even further. The
recommended target framerate for VR applications is 90 frames per second (FPS) [GD18;
OCD18]. When rendering at that framerate every 11.1 milliseconds a new frame has to
be drawn. Based on the built-in display technology missing that limit often means that
the last frame will be displayed for an additional 11.1ms leading to micro stutter because
of inconsistent frame times [Gri+18]. It is therefore critical to ensure that performance
is not an afterthought. Instead, performance has to be considered at all times when
writing code for such systems.

4.2 Common Patterns

Iterating Large Amounts of Elements

Often it is necessary to iterate over many elements for a number of different reasons:
updating game state for all entities, ticking the physics simulation on all physics actors,
rendering all objects including complex effects like real-time shadows, reflections and
lighting. All of those actions operate on many elements and require a different subset of
each elements properties. Some of the mentioned actions even require multiple iterations
themselves. This can be the case when e.g. multi-pass rendering techniques are used.

Rapid Creation and Destruction of Entities

In many cases it is required to create and destroy a lot of objects in a short amount of
time. This pattern can be seen in e.g. particle systems where hundreds of particles get
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4.3 Specialties - Fixed Memory Platforms

spawned and removed continuously. Spawning projectiles in a shooter or visual effects
as a result of gameplay events are additional temporarily created objects. Creation
and destruction typically do not reduce the overall performance or frame rate. Instead,
when many objects get created during a single frame, this frame misses the frame time
target which causes stutter. If the creation of objects is optimized, this stuttering can be
prevented.

4.3 Low / Fixed Memory Platforms

Modern computer systems have complex memory management including virtual mem-
ory. Virtual memory ensures that a larger memory pool (typically the computers hard
drive or solid state drive) can be used as additional memory if the available main
memory is exceeded. This is achieved by handling memory in pages of a certain size
and map a virtual address space to physical memory addresses using page identifiers
and page offsets. While it is not desirable to rely on swapping data onto a swap partition
because it is magnitudes slower to access than DRAM, it ensures that applications do
not crash in the event of running out of main memory. Another advantage of virtual
memory is the ability to allocate multiple non-continuous memory regions which can
then virtually be mapped to a single continuous memory region. If that is the case, an
application can request a continuous memory region of size N even though a continuous
region of that size is not physically available [Por17].

Game consoles often do not support virtual memory because accessing virtual memory
requires a translation of the requested memory address to the real, physical memory
address. This indirection introduces a performance overhead that is not desirable on
game consoles which typically use slower hardware. By dropping virtual memory, it is
mandatory to stay within the console’s memory limits. Requiring a single byte more
than the system can offer causes the application to crash. The difficulty with this is that
memory should not be wasted. In many applications wasted memory comes in the form
of memory fragmentation which can be very problematic on fixed memory platforms
because a “virtually continuous memory region” cannot be created.
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5 Goals

In this chapter we recall the information given in previous sections. This information is
then used to translate the limitations and requirements into objectives to be pursued
during the development of graphical real-time applications.

5.1 High Performance

5.1.1 Cache Friendliness

Section 3.1.8 introduced the concept of cache friendliness. The performance measure-
ment from section 3.1.8 showed the impacts and the importance of an optimized memory
layout when traversing lists. Because traversing lists is one of the reoccuring patterns in
the development of games and other graphical real-time applications it is something we
want to optimize.

Predictable Memory Access Patterns and High Cache Line Usage

The predictability of memory access patterns is very important because it can reduce
DRAM access latency by allowing the CPU hardware prefetcher to load data before it is
requested. An important limitation of that is that it not only requires a linear memory
access pattern but these memory accesses have to be as close to each other as possible.
This was shown by disabling the hardware prefetcher in section 3.1.8 (Performance
measurements). The goal of cache friendliness is therefore not just “predictable memory
access patterns” but “predictable memory access patterns with high cache line usage”. In
many cases this can be difficult to achieve. If only primitive data types like float or int
are used, optimizing cache line usage is easy and automatically achieved when using an
array or a std::vector. But often the data stored in such a container is more complex.
Assumed the Particle structure shown in listing 5.1 is stored in a std::vector, and this
vector is iterated to update all particle’s velocities based on the linear force. The updated
acceleration is then used to update the particles position. The Particle structure follows
a pattern many programmers use when writing code. Member variables are grouped
by logical connections the programmer made up during the creation of the struct. This
method seems logical because it makes reading the struct definition easy. A look at the
struct’s internal memory layout reveals problems with this approach.

Listing 5.2 shows the result of pahole. Pahole is a linux command line utility that
shows “data structure layouts encoded in debugging information formats” [Mel09] and
therefore allows us to easily see how the data of structures and classes is laid out in
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5.1 Goals - High Performance Cache Friendliness

1 {
2 float age = 0;
3 float max_age = 0;
4 bool pending_kill = false;
5
6 Vector3 position{};
7 Vector3 rotation{};
8 Vector3 scale{};
9

10 Vector3 linear_velocity{};
11 Vector3 angular_velocity{};
12
13 Vector3 linear_force{};
14 Vector3 torque{};
15
16 int color = 0;
17 int texture_handle = 0;
18
19 ParticleSystem* parent;
20 void *user_ptr = nullptr;
21 uint64_t flags = 0;
22 };

Listing 5.1: Example struct.
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1 /* offset size */
2 struct Particle {
3 float age; /* 0 4 */
4 float max_age; /* 4 4 */
5 bool pending_kill; /* 8 1 */
6
7 /* XXX 3 bytes hole, try to pack */
8
9 struct Vector3 position; /* 12 12 */

10 struct Vector3 rotation; /* 24 12 */
11 struct Vector3 scale; /* 36 12 */
12 struct Vector3 linear_velocity; /* 48 12 */
13 struct Vector3 angular_velocity; /* 60 12 */
14 /* --- cacheline 1 boundary (64 bytes) was 8 bytes ago --- */
15 struct Vector3 linear_force; /* 72 12 */
16 struct Vector3 torque; /* 84 12 */
17 int color; /* 96 4 */
18 int texture_handle; /* 100 4 */
19 class ParticleSystem * parent; /* 104 8 */
20 void * user_ptr; /* 112 8 */
21 uint64_t flags; /* 120 8 */
22 void Particle(class Particle *);
23
24
25 /* size: 128, cachelines: 2, members: 15 */
26 /* sum members: 125, holes: 1, sum holes: 3 */
27 };

Listing 5.2: Output of pahole running on the example struct from listing 5.1.
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memory. The result shows the problem: When we want to update a particle’s velocity
based on a particle’s linear force we have to access data from two different cache lines.
Another even bigger problem is angular_velocity. The cache line boundary informa-
tion right after the angular_velocity member informs about the cache line boundary
being 8 bytes before the message. This means that the cache line boundary is inside
angular_velocity. To be precise the boundary is exactly between angular_velocity.x
and angular_velocity.y. When only the angular velocity is needed for an algorithm,
two cache lines are loaded of which only 12 bytes are used. The remaining 90.6% are
wasted. Even though the struct gets aligned to the cache line size of 64 bytes to never
occupy more than two cache lines, the cache line usage is suboptimal. The method of
using arrays of structures (AoS) is what is problematic in this case. This is especially
true if only a few data members need to be accessed at a time. A different approach is
shown in section 6.2.1 (AoS / SoA).

Avoiding Virtual Function Calls

In C++ virtual functions are a way of propagating function calls from a base class to an
instance of a derived class. Virtual functions allow the creation of flexible algorithms
because knowing the real type of an object is not mandatory in order to call specialized
functions on it. Driesen and Hölzle explain why virtual function calls can introduce
performance problems: To allow calling a function that overrides a base type’s function,
the system has to know where to find the derived function in memory (dynamic
dispatch). For that reason every class or struct that has virtual functions, has what is
called a vtable. The vtable (short for virtual function table) keeps track of the memory
addresses for virtual functions [DH95]. If a list of objects is iterated where each object
might be of a different derived type that overrides the function that is called for each
object, problems with cache usage arise. The fact that the vtable has to be loaded is
not a big problem, after a few iterations every required type’s vtable will be cached.
Problematic is that the called function’s instructions are scattered in memory without
the program knowing which function will be called next. Therefore, the instructions
for any given function cannot be prefetched [DH95]. Since this is an instruction cache
phenomenon, it is not considered part of this thesis. It is nevertheless mentioned because
the causes are based on the underlying memory model.

5.1.2 Memory Fragmentation

Multiple consecutive allocations and deallocations can lead to memory fragmentation. A
heap of memory is called fragmented when chunks of allocated memory are divided
by small unallocated blocks. Figure 5.1 illustrates this problem. Even though the final
heap shown in fig. 5.1 has 16 byte of free memory available, requesting 16 byte would
fail since allocations always have to be continuous. Allocating 8 byte twice would be
possible, but storing a 16 byte datatype would not. This example is simplified just
to show what memory fragmentation is and how it leads to wasted memory. The
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Figure 5.1: Consecutive allocations and deallocations can lead to memory fragmentation.

same problem occurs on large heaps of multiple gigabytes. On systems with limited
memory (especially if the system is a fixed memory platform) the order of allocations
and deallocations can decide whether an application can run or if it crashes with an
out of memory exception. Rapid creation and destruction of objects in combination
with fixed memory platforms leads directly into the importance of little to no memory
fragmentation. Memory fragmentation can be solved by custom allocators that enforce
certain criteria on allocation and deallocation patterns.

5.1.3 Malloc Call Reduction

In section 2.2.1 it was shown that calling malloc repeatedly can cause performance
problems. These performance problems can only be solved by not calling malloc in the
first place. The solution to this is often to allocate memory ahead of time and work with
a buffer instead. This buffer is then managed by a custom allocator. Section 6.1 shows
different allocators that can solve both memory fragmentation and malloc call reduction
at the same time.

5.2 Ease of Use

Programmers have to keep many things in mind while developing applications. Keeping
things simple should be targeted at all times. Complex code with hard to use APIs can
lead to problems and memory management is no exception to that. Most facilities that
try to counter the complexity of memory management target the avoidance of memory
leaks. In section 6.3 these facilities are explained in detail.
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5.3 Robustness to Code Changes

In 1974 Donald Knuth formalized the famous sentence “premature optimization is the
root of all evil” [Knu74]. Programmers should not spend enormous amounts of time
to optimize code that in most cases is not a performance critical section. In reality this
means that code is optimized later in development once it is proven to be a performance
bottleneck. As a result changes to the code have to be made. We define robustness to
code changes as follows:

Source code is robust to code changes if altering parts of the source code does
not require a lot of additional changes, even if the initial change influences
large portions of a code base.

In practice this means that a data structure or algorithm used for any given part of
an application can easily be swapped with an alternative solution without changing
access syntax or API calls everywhere in the code. If code is not robust to changes,
programmers tend to not try different solutions and instead stick to the first working
one which is often suboptimal when following Knuth’s advice.
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6 Solutions

In this chapter solutions to the mentioned problems are shown and the implementations
that are part of this thesis are explained.

General Information

The sample implementations do not use the C++ standard STL (standard template
library) because of its allocator model. Instead, the implementations are based on the
EASTL (Electronic Arts Standard Template Library) [Ped07]. The EASTL tries to solve
some of the problems of the standard template library. Details why we chose EASTL
instead of the official C++ standard template library can be found in section 8.1.

Another important distinction to what is often considered the correct usage of C++:
In the provided implementations, allocation and construction of objects are not the
same thing and therefore separated. Resource acquisition is initialization (RAII) is often
considered the best way of handling memory and object lifetime. In game development
RAII is in many cases not applied when dealing with memory [Ped07]. Therefore,
the provided allocator implementations do not call constructors or destructors. They
only handle raw memory allocations and deallocations. It is up to the user code to
ensure correct handling of calling construction and destruction facilities manually or to
provide a wrapper that handles these operations automatically. For the manual creation
C++ provides placement new. Placement new allows to call new for a type on already
allocated memory by passing a void* to new. A short code example is given in listing 6.1.

1 void* memory = my_allocator.allocate(sizeof(T));
2 T* my_T = new(memory) T();
3
4 //or combined
5 T* my_T2 = new(my_allocator.allocate(sizeof(T))) T();

Listing 6.1: Construction of an object on preallocated memory is done by using place-
ment new.
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6.1 Custom Allocators

Custom allocators can solve some of the difficulties in memory management, especially
memory fragmentation and frequent malloc calls. In this section different custom
allocators are introduced, each with pros and cons listed. All allocators have one thing
in common: They all accept an allocator that is used as the upstream allocator. That means
that the allocator itself uses another allocator to get the memory it requires. This allows
chaining of different allocators and gives programmers the ability to build hierarchies of
allocators. The root of every allocator chain as well as every allocator’s default upstream
allocator, is an allocator that forwards calls to the operating systems default allocation
facilities. In the provided implementations this allocator is called Malloc_Allocator.
The allocators implement their internal state in a way that allows sharing between
multiple allocator instances. Because of that, different parts of an application can share
a single allocator.
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currently allocated maximum allocated

memory_region_begin current_memory_ptr high_water_mark

Figure 6.1: Illustration of a linear allocator.

6.1.1 Linear Allocator

The linear allocator is the easiest allocator possible. On creation a large continuous
memory region is allocated from the upstream allocator. Its members are:

• size_t memory_region_begin: A pointer that points to the first byte of the mem-
ory region that was allocated using the upstream allocator.

• size_t capacity: The full capacity in byte. capacity byte get allocated from the
upstream allocator on creation.

• size_t current_memory_ptr: Initialized to match memory_region_begin on cre-
ation. Every allocation of N byte increases the current_memory_ptr by N.

• size_t high_water_mark: Used to keep track of the amount of memory allocated
from the linear allocator during its entire lifetime.

Allocation

If an allocation of N bytes is performed using a linear allocator, the following happens:

1. Check if the new allocation ex-
ceeds the capacity.

1.1. If it does, return nullptr.

2. Store current_memory_ptr in lo-
cal variable ptr.

3. Increase current_memory_ptr by
N.

4. Update high_water_mark if re-
quired.

5. Return ptr.

allocate(n)

store current
memory pointer

in ptr

enough
memory?

increase
current memory 

pointer

update high 
water mark

return nullptr

return ptr

2

1

3

4

5

1.1

YES

NO
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Perform additional allocations 4, 5, 6

Free allocations 4, 5, 6 by freeing back to the marker

Figure 6.2: Visualization of the linear allocators marker functionality.

Deallocation

Since an allocation only increases a pointer value, linear allocators do not support
individual deallocations. To free memory, the allocator provides a function reset() that
resets all allocations by setting current_memory_ptr to memory_region_begin.

Special Functionality

To counter the lack of individual deallocations, a special struct named
Linear_Allocator_Marker exists. At any time a Linear_Allocator_Marker can be
requested from the linear allocator by calling get_marker(). This marker is used
to store the current state of the allocator. Later in the code this marker can be
restored by calling free_to_marker(const Linear_Allocator_Marker& marker) with
the previously retrieved marker as parameter. Another helper struct exists which
automatically calls free_to_marker in its destructor. It can be used with a macro
LINEAR_ALLOCATOR_LOCAL_SCOPE(free_allocator). Calling this macro immediatly cre-
ates an instance of the helper struct, retrieves the current marker and reapplies it in
its destructor. This makes it easy to not waste memory if the allocations are only used
within a scope.

Limitations

The limitations of this kind of allocator are clear: Deallocations are not possible which
renders a linear allocator inapplicable in many cases.
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Advantages

While this allocator is very limited, it has huge advantages. Since allocations are
extremely simple and only require a single condition check, they are very fast.

The fact that the allocator does not support individual deallocations enforces simple
allocation and deallocation patterns. Deallocations are only possible when everything
that has been allocated after a marker gets deallocated as well. This ensures that there
are no holes in between allocated memory blocks; Memory cannot be fragmented.

Performance

Allocations of arbitrary size are extremely fast. Since all allocation requests are essentially
the same, the allocation size does not matter. Allocating hundreds of megabytes at once
is exactly as fast as allocating just a few bytes. The results of a performance comparison
between the linear allocator and malloc can be seen in table 6.1.

# Allocations Size per alloc Cycles Linear Allocator L Cycles Malloc M M/L
1000 8 Byte 12 629 73 824 5.85
1000 256 Byte 9395 189 199 20.14
1000 8 KB 9374 3 354 756 357.88
1000 1 MB 9966 4 927 997 494.48

Table 6.1: Performance results of different allocation patterns. The linear allocator
outperforms malloc in all cases.

Possible Usage Scenarios

Often it is required to fill a container like an array or vector to perform a simple
calculation on the elements. The data structure is destroyed immediately after the
calculation. For use cases like this a linear allocator provides a simple facility to reduce
allocations while maintaining the simplicity of a dynamically sized container. Since
individual deallocations are not needed, the full memory region can be cleared in
constant time.

Another use case can be found in example_temporary_allocator.cpp. This example
uses a linear allocator as global temporary storage. Details on how this temporary
usage can be used and the advantages it provides can be found in the comments of the
implementation.

37



6.1 Solutions - Custom Allocators Double Ended Linear Allocator

Temporary Permanent

Figure 6.3: A double ended linear allocator shares a single memory region between two
linear allocators.

allocate
(n, flags)

Temporary?

return ptr

ptr = 
low_allocator.allocate(n)

ptr = 
high_allocator.allocate(n)

YESNO

Figure 6.4: The double ended linear allocator forwards allocation requests to the respec-
tive linear allocator.

6.1.2 Double Ended Linear Allocator

The double ended linear allocator is basically the same as a plain linear allocator. The
only difference is that in a double ended linear allocator two different linear allocators
operate on the same memory region. One grows from the bottom upwards, the other
grows from the top downwards. This allows the distinction between permanent and
temporary allocations.

Allocation

EASTL has a parameter flags on all allocation functions. Part of these flags is the
distinction between temporary allocations (eastl::alloc_flags::MEM_TEMP) and per-
manent allocations (eastl::alloc_flags::MEM_PERM). In the provided implementation,
temporary allocations are redirected towards the allocator that operates on the low mem-
ory region, while permanent allocations are redirected to the allocator that manages the
high memory regions.
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Deallocation

Just like the simple linear allocator, the double ended linear allocator does not support
individual deallocations.

Special Functionality

A reference to each of the underlying linear allocators can be obtained. This allows the
creation of allocation markers and enables usage of the LINEAR_ALLOCATOR_LOCAL_SCOPE
macro. Since the plain linear allocator internally manages the creation and setup of a
double ended linear allocator, allocations do not have to happen on the double ended
linear allocator. If allocate(...) is called on one of the suballocators directly, the
second linear allocator is aware of that. Therefore, the suballocators can be passed to
functions that expect a plain linear allocator without risking the loss of integrity.

Limitations

The limitations are the same as the limitations of a simple linear allocator.

Advantages

The double ended linear allocator inherits the advantages of a simple linear allocator, in
that allocations are very fast. In addition to that, the distinction between temporary and
permanent storage can be used to reduce memory fragmentation on a larger scale. It
allows to keep data longer in a tightly packed linear allocator because rapid allocation /
deallocation sequences can be performed on the temporary suballocator. Compared to
two plain linear allocators, a double ended linear allocator has a flexible memory limit
for both allocators.

Possible Usage Scenarios

A double ended linear allocator can be used as an allocator that is very low in the
allocator hierarchy. The distinction between permanent and temporary memory allows
to pack allocations better, especially when it is available very early in the lifecycle of an
application. During application startup loading operations like decompressing textures
or loading and parsing configuration files are performed. These operations require
temporary memory and result in persistent data. The double ended linear allocator can
pack this persistent data perfectly while leaving the rest of the memory unfragmented.
If a more dynamic allocator is required once the application startup is finished, the
double ended linear allocator can serve as an upstream allocator after the initial startup
sequence.
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6.1.3 Double Buffered Linear Allocator

The double buffered linear allocator (DBLA) is an allocator that wraps around two linear
allocator instances. Contrary to the double ended linear allocator the linear allocators
managed by the double buffered linear allocator do not operate on the same memory
region. Instead, each of the linear allocators allocates its own memory region from
the DBLA’s upstream allocator. One allocator is active at a time with the possibility to
retrieve direct access to the inactive one. The active and the inactive allocators can be
swapped by calling swap().

Allocation

Whenever an allocation is requested, the double buffered allocator selects the currently
active linear allocator and forwards the allocation request to it.

Deallocation

Since this allocator is based on linear allocators, individual deallocations are not sup-
ported.

Special Functionality

In the provided implementation operator linear_allocator&() is implemented. This
operator returns the currently active linear allocator and allows implicit usage of
the DBLA in a linear allocator context. Besides that the DBLA has the member
function swap(). swap() switches the active and the inactive allocator. An optional
bool parameter that defaults to true indicates if the newly activated linear allocator
should be reset. Since direct access to the linear allocators is possible, the usage of
Linear_Allocator_Markers is supported.

Limitations

The double buffered linear allocator inherits the limitation of the linear allocator.

Advantages

The double buffered linear allocator inherits all the advantages of the linear allocator.
Additionally it is possible to preserve memory without losing the ability of handling
allocation requests.

Possible Usage Scenarios

A possible use case for a double buffered linear allocator is the creation of a render
command queue. The game thread can fill a queue by allocating from the double
buffered linear allocator. At the end of the frame the two allocators are swapped. Now
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the render thread can work on the queued render commands while the game thread can
continue to queue up new render commands for the next frame.
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6.1.4 Free List Allocator

Contrary to all the other allocators shown so far the free list allocator can handle
allocations and deallocations in arbitrary order. The free list allocator therefore is a
general purpose allocator. To allow allocations and deallocations in random order the
free list allocator allocates additional memory for all allocation requests to store a header
that keeps track of allocation details. Free blocks of memory have a header that store
how large the free block is as well as a pointer to the next free block. This pointer
chains free memory regions to form a linked list of free memory blocks called the free
list. Listing 6.2 shows these headers.

Allocation

For free list allocators two different allocation strategies are possible. The First Fit
strategy traverses the free list until a free memory block that is large enough to handle
the allocation request is encountered. The Best Fit strategy always traverses the full list
and selects the smallest memory block possible. While first fit is faster in most cases,
best fit can reduce memory fragmentation. Small allocation requests fill up small free
blocks first, leaving large free memory regions available for future (possibly larger)
requests. The strategies are variations of the same allocation algorithm:

First the block that is used for the allocation is selected depending on the strategy.
While iterating the free list during block selection both the current free header and
the previous free header are stored for later use. The required allocation size can be
different for different free blocks. This is a result of a potentially requested alignment.
Depending on the address of a free memory region more or less padding needs to be
inserted before the header of the allocation. If no block is large enough for the allocation
nullptr is returned. Otherwise it is checked if the selected block needs to be split.
When the selected block is too small for another allocation after splitting, the current
allocation gets changed to fill the entire memory block. If the selected block is large
enough, a new free block gets inserted behind the memory needed for the allocation.
At this point the free list nodes get updated by relinking changed nodes. Finally, an
allocated_header gets inserted and the pointer to right after this header gets returned.

Header

Header

Header

Node
Node

Node

HEAD nullptr
padding

Figure 6.5: A free list allocator keeps a linked list of free memory blocks. The list is
stored in the memory region managed by the allocator and therefore does not require
additional memory.
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1 struct allocated_header
2 {
3 size_t allocated_size_excluding_header = 0;
4 size_t padding = 0;
5 };
6
7 struct free_header
8 {
9 size_t free_memory_including_header = 0;

10 free_header* next_free = nullptr;
11 };

Listing 6.2: The headers used by the free list allocator. Constructors omitted for brevity.

Deallocation

On deallocation, the free list is iterated until the memory address of the current free
header is larger than the value of the pointer to the memory that gets deallocated
(size_t address). Current and previous free headers are stored for later use. The
address of the header that precedes the memory that gets deallocated is calculated
using:

size_t header_address = address - sizeof(allocated_header)

Now, the allocated_header can be accessed to get the padding information.
header_address - padding is the address of the begin of the to be freed memory
region and is the place where a new free_header has to be inserted. In the end adjacent
free memory blocks are merged into a single big free block. This process is called
coalescing.

Special Functionality

The free list allocator does not have any special functionality.

Limitations

As a general purpose allocator the free list allocator does not have significant limitations
in functionality. A problem of the free list allocator is the usage of a linked list.
Section 5.1.1 (Cache Friendliness) explained the importance of predictable memory
access patterns. Traversing a linked list is not predictable and therefore has a high cache
miss rate. Because of that a free list allocator can be slower than malloc.
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Advantages

The huge advantage of a free list allocator is that it can be used as a general purpose
allocator. By not introducing any limitations this allocator is versatile and usable in
many cases.

Performance

While testing the performance of the free list allocator it became clear that the results
are not as clear as the results of the linear allocator. The required linked list traversals
alter the allocators performance based on allocation and deallocation patterns. To test
the influence of the linked list the following scenarios were tested:

• Allocation only

• Allocation with ordered deallocation (First In First Out)

• Allocation with randomized deallocation order

All of these tests were repeated for 1000, 2000, 3000 and 4000 allocations. The results of
the test with 2000 allocations are shown in fig. 6.6. The full test has shown a decreasing
performance of the free list allocator when more allocations are handled. This is expected
behavior because the internal linked list of allocated blocks grows proportional to the
number of (not yet freed) allocations.

Possible Usage Scenarios

A general purpose allocator can naturally be used for everything. In practice the free
list allocator is best used in cases where differently sized allocations are required but
the total amount of allocations stays small. Additionally, allocations and deallocations
should not be made in performance critical situations because the required time cannot
be predicted accurately. These limitations make the free list allocator a convenient
upstream allocator that is used as a base for specialized allocators.
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Figure 6.6: Performance comparison between malloc and the free list allocator. Different
operations were tested to isolate potential worst case scenarios.
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6.1.5 Pool Allocator

Whenever large amounts of similar sized objects are rapidly constructed and destructed
a pool allocator can speed up that process. Similar to the free list allocator a pool
allocator holds a linked list that internally connects free blocks of memory. What makes
the pool allocator more performant than the free list allocator is the restriction to a single
possible allocation size that cannot change once the allocator is initialized.

Internally the pool allocator only stores a single pointer to the first element of the
linked list of free memory blocks (HEAD)

Allocation

Allocation requests are an easy operation. If HEAD is nullptr an allocation is not possible
and nullptr is returned. If HEAD is non-null it is stored in a temporary variable ptr.
HEAD is then replaced by the linked list node that follows HEAD (this can be nullptr).
Finally ptr is returned.

Deallocation

Since the order of nodes does not matter a new node can be inserted anywhere. To
make deallocations fast the node is simply added before the HEAD node. This is achieved
by first creating a new node at the memory location that is passed to the deallocate
function. Its next pointer is initialized to HEAD. Finally HEAD is replaced with the newly
created node.

Special Functionality

The pool allocator does not have any special functionality.

Limitations

The limitation of a pool allocator is obvious. Every allocation request for the entire
lifetime of a pool allocator can only be of a single size. If a smaller allocation is requested,
memory is wasted. If a bigger allocation is requested, the allocation cannot be handled.

Node

HEAD

nullptr

allocated allocated
Node

Node allocated
Node allocated

N N N N N N N N

Figure 6.7: Pool allocator visualization.
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Allocator Cycles
Pool 187642
Malloc 942902

Table 6.2: Performance comparison between the pool allcoator and malloc.

Another limitation is that a pool allocator only manages raw memory. For objects it
is required to construct these objects in the allocated memory using placement new. If
objects have expensive construction or destruction requirements the fast allocation and
deallocation of the required memory is insignificant. These requirements include e.g.
(un-)registering objects at rendering, physics or entity management subsystems. To
avoid the repeated execution of expensive construction and destruction code, an object
pool can be used. Refer to section 6.2.2 for details.

Advantages

The pool allocator has multiple advantages. Firstly the allocator never suffers from
memory fragmentation. By definition every unallocated block of memory will always
be large enough to fit another allocation. Another advantage is performance: Since
the allocator introduces limitations on allocation and deallocation patterns, it can take
shortcuts in the allocation and deallocation algorithms. Therefore, a pool allocator has
an extremely low overhead and is very fast.

Performance

To test the performance of the pool allocator, the following allocation / deallocation
pattern was executed with an allocation size of 256 Byte:

1. 2000 allocations

2. 1000 deallocations (randomly selected)

3. 1000 allocations

4. 2000 deallocations (in random order)

The benchmark shows that the pool allocator is about 5 times as fast as malloc. The
exact results are listed in table 6.2.

Possible Usage Scenarios

Chapter 4 (Specialties in Graphical Real-time Applications) included the rapid creation
and destruction of similar objects in the common patterns of graphical real-time ap-
plications. Individual particles of particle systems or projectiles in shooter games can
benefit from the performance advantages. The limitations of the pool allocator are not
that severe in these cases, since the objects are typically of the exact same size.
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6.2 Data Structures

The custom allocators introduced throughout this chapter so far can only solve frag-
mentation and malloc call problems. Section 5.1.1 (Cache Friendliness) introduced the
importance of cache friendly code in the form of locality. The example that was part
of the explanation of cache friendliness had the problem that a single object occupied
multiple cache lines. If only a small amount of the data members of such an object are
required to perform a given task cache usage is suboptimal. This issue can be solved by
restructuring the data from the ground up.

6.2.1 AoS / SoA

The differentiation between AoS and SoA is relevant if multiple elements of the same
type are stored together in a container that manages contiguous memory. Such containers
are simple arrays or (in the case of C++) typically std::vector. Intel defines AoS and
SoA in its architecture optimization reference manual [18a].

Array of structures (AoS) is a layout where instances of structs or classes are stored
directly in the container. Structure of arrays (SoA) inverses this concept. Instead of
storing instances of a struct in a container, the struct itself contains a container for every
member. Listing 6.3 and listing 6.4 clarify this concept using a short code example. A
visualization of the memory layout is shown in fig. 6.8.

AoS is the object oriented way of handling multiple elements of the same type while SoA
is the data oriented option. Most programmers choose AoS for its simplicity and intuitive,
logical encapsulation that is a direct result of the object oriented design philosophy. As
shown in section 5.1.1 (Cache Friendliness) this can be problematic because of potentially
inefficient cache line usage. The benchmarks in section 3.1.8 show that this problem gets
worse when the structs are bigger than just a few data members. SoA ensures efficient
cache line usage when iterating over a small amount of data members. In theory the
iteration should be faster since close to all member accesses can be done with level 1 to
level 2 cache speed.

Performance Measurement

To validate this suspicion a small test program is used. This program implements
the Particle struct from listing 5.1. For the test, 5000 instances are kept in both SoA
and AoS containers. Then each particles linear_velocity is updated based on its
linear_force. The updated linear_velocity is then used to update its position.
Performance numbers can be found in fig. 6.9.

SoA Container Implementation

For easy usage as well as the ability to switch between SoA and AoS a container that
hides the underlying memory layout with a zero overhead abstraction is required.
To be as robust to code changes as possible, the access syntax to the elements of
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struct some_struct
{

float a;
int b;
bool c;

}

// later in code
std::vector<some_struct> aos;

// increment each structs 'b'
for (int i = 0; i < aos.size; ++i)
{

s[i].b++;
}

Listing 6.3: Simple array of structures
(AoS) example.

struct some_struct
{

std::vector<float> a;
std::vector<int> b;
std::vector<bool> c;

}

// later in code
some_struct soa;

// increment each structs 'b'
for (int i = 0; i < soa.b.size(); ++i)
{

soa.b[i]++;
}

Listing 6.4: The same example as structure
of arrays (SoA).

a b c a b c a b c a b c a b c

a b ca b ca b ca b ca b c cba

a b c

Figure 6.8: The different memory layout for SoA and AoS. Top is the AoS layout from
listing 6.3. Bottom is the SoA layout from listing 6.4. The arrows indicate which memory
locations are semantically equal. Note that the containers for a, b and c in the SoA
layout are not necessarily adjacent.
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Figure 6.9: Performance of SoA and AoS memory layouts when only part of a structure
is required during an iteration.

this container should not be different for the different memory layouts. At best, the
interface to the data oriented container mimics object oriented practices. The library
LibFlatArray provides such an implementation [And18]. Since the complexity of such
an implementation is enormous, a perfect zero-overhead implementation is not included
in the code samples of this thesis. Instead, the reader is encouraged to study the
implementation of LibFlatArray.

6.2.2 Object Pools

As shown in section 6.1.5 (Pool Allocator) a pool allocator can speed up allocation and
deallocation of equally sized memory blocks. If this memory is then used for objects
with expensive construction and destruction requirements the performant resource
allocation is insignificant. This can be solved by constructing an object once and
reusing it afterwards without deconstruction in between uses. Instead of a de- and
a following reconstruction, the object is notified when it enters or leaves the pool. It
is expected to enter a disabled state while waiting in the pool for future use. Objects
are considered to be free during that time. The implementation provided as part of
this thesis targets highly efficient object pooling with as little overhead as possible. To
achieve that without sacrificing ease of use the pool provides two different ways of
notifying objects when they enter or exit the pool. Which notifiers are used can be
specified by Object_Notifier_Rules. By default all notifiers are enabled. Objects that
are acquired from a pool are wrapped in a unique_ptr with a deleter, that returns
objects automatically when they are not used anymore.

The first of the two available notifier options is passing function objects for entering
and exiting the pool. These functions have the signature void (T*) where T is the
type of the Objects managed by the pool. By modifying the objects that are passed to
these functions on entering and exiting the pool, user code can perform the required
changes to the objects to transition to and from the disabled state. Since the functions
are stored as eastl::function<void(T*)> they can be set using lambdas. The type that
is managed by the object pool therefore does not have to be modified or prepared in any
way.

The second available notifier option requires some preparation of the type
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that is managed by the pool. The functions void on_exit_free_list() and
void on_enter_free_list() need to be implemented by the type. Note that these
functions are not virtual. Instead, the object pool uses a C++ feature called Substitution
Failure Is Not an Error (in short SFINAE). SFINAE allows i.a. the compile-time detection of
member functions. Using SFINAE, the object pool can check whether the managed type
implements these functions and depending on the result conditionally include direct
(i.e. statically dispatched) calls to these functions. Conditional compilation is enabled by
constexpr if. The SFINAE implementation provides a zero overhead callback.

6.3 Ease of Use

6.3.1 Smart Pointers

When dealing with memory three important things have to be considered at all times:

1. If memory is allocated it has to be returned to the allocator.

2. If the pointer to the memory is lost the allocated memory can never be returned.

3. If two copies of the same pointer exist in different locations A and B and the
memory is returned (deallocated) in A, the pointer in B:

a) must not be dereferenced anymore.

b) must never be returned (deallocated).

With Heap allocated memory it can be difficult to ensure these rules. The question
that unifies all these difficulties is about ownership: Who owns a resource (in this case
memory) at every given point in time? How can ownership be transferred? How can
other parts of a program be informed that a certain resource is not available anymore,
and how can these other parts prevent returning a resource if they still require it?

As a solution to these problems the C++ standard provides so called smart pointers.
This section explains the different types of smart pointers and how they assist in
answering the ownership question. This is only a brief overview. Smart pointers provide
additional functionality that assits in creating and managing smart pointers. This
additional functionality is not part of this thesis.

Unique Pointer

The C++ standard defines a unique pointer as:

A unique pointer is an object that owns another object and manages that
other object through a pointer. More precisely, a unique pointer is an object
u that stores a pointer to a second object p and will dispose of p when u is
itself destroyed [. . . ]. In this context, u is said to own p. [ISO12]
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This means that by using a unique pointer (std::unique_ptr) the lifetime of one
resource can be bound to that of another resource. The standard further defines that “u
can, upon request, transfer ownership to another unique pointer u2.” What makes a
unique_ptr interesting for ownership management, are the restrictions that apply to a
unique_ptr:

Each object of a type U [. . . ] has the strict ownership semantics, specified
above, of a unique pointer. In partial satisfaction of these semantics, each such
U is MoveConstructible and MoveAssignable, but is not CopyConstructible
nor CopyAssignable. [ISO12]

As a result a unique_ptr cannot be copied, it can only tranfer ownership using C++
move semantics. This prevents that two pointers to the same resource exist multiple
times. Ownership is clearly defined. If a unique_ptr u is destroyed, the pointer that is
owned by u is deleted using the deleter associated with u. This deleter can be changed
which allows custom behavior when a unique_ptr is destroyed.

Constructing a unique_ptr is done by using the function make_unique<T>(...). This
function forwards all parameters to the constructor of T and ensures that the object is
guaranteed to be lifecycle managed.

Obviously a unique_ptr is not always applicable. In many cases pointers to a resource
are required in multiple locations. This shared ownership is managed by a shared
pointer.

Shared Pointer

shared_ptrimplements semantics of shared ownership; the last remaining
owner of the pointer is responsible for destroying the object, or otherwise
releasing the resources associated with the stored pointer. [ISO12]

A shared_ptr is a reference counted pointer. This is achieved by allocating additional
memory for a control block. The control block of a shared_ptr stores the number of
shared_pointers that refer to the same object. Whenever a shared_ptr is copied (either by
copy construction or copy assignment) a reference count is incremented. If a shared_ptr
is destroyed the reference count is decremented. All operations on the reference count
are atomic [ISO12]. When a shared_ptr is destroyed and detects that the reference count
will be 0 after decrementing it, the resource is deleted using the deleter.

The shared_ptr allows shared ownership of resources with clear rules on how the
resource gets freed. At the same time shared_ptr forces the underlying resource to
persist until the last instance of a shared_ptr gets destroyed. A shared_ptr is an active
participant in a resources lifecycle. It is created using the function make_shared<T>(...).
EASTL allows to specify a special allocator that is used for the control block. A problem
with shared_ptr is, that simple lifecycle observation is not possible. To observe a
resources lifecycle another type of shared pointer can be used: The weak pointer.
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shared_ptr<T> A

weak_ptr<T> W control_block

T* p
control_block

shared_ptr<T> B
T* p

control_block

control_block
shared_ref_count = 2
weak_ref_count   = 1

T* p

Figure 6.10: Diagram of the structure of shared and weak pointers. This is a simplified
visualization. Implementation details differ because the C++ standard only defines
behavior and API.

Weak Pointer

The weak_ptr class template stores a weak reference to an object that is
already managed by a shared_ptr. To access the object, a weak_ptr can be
converted to a shared_ptr using the member function lock. [ISO12]

A weak_ptr passively participates in a resources lifecycle that is managed using
shared pointers. The weak_ptr can access the same control block as shared pointers
without incrementing the shared pointer reference count. This means that shared
pointers can operate normally, with weak pointers observing the resource lifecycle. A
weak_ptr therefore can check if a resource is save to access before attempting an access
operation. If the shared pointer reference count in the control block is 0 the resource is
considered expired and access is unsafe. If the shared pointer reference count is non-zero
accessing the resource is considered safe. To ensure that the resource is not deleted while
accessing it through a weak_ptr, a shared_ptr has to be obtained beforehand using
weak_ptr.lock(). This shared_ptr then ensures that access is safe until it is destroyed.

The control block stores an additional reference counter that counts weak pointer
references. This is required since the memory that was allocated for the control block
itself needs to be able to outlive every shared_ptr that points to it. Weak pointers
might still access it after the last shared_ptr was destroyed. The last smart pointer
(shared_ptr or weak_ptr) that gets destroyed is responsible for deleting the control
block itself. Figure 6.10 visualizes the logical connections between smart pointers and
the reference block as derived from the C++ standard. This is only meant as a logical
reference. Implementation details may differ.
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The Cost of Smart Pointers

Smart Pointers provide a clear solution to lifetime and ownership problems but there
are some drawbacks:

1. shared_ptr points to a control block that is potentially allocated at a different
location on the Heap (probably causing cache efficiency problems).

2. unique_ptr stores an additional pointer for the deleter, doubling the required
memory for the unique_ptr itself.

3. Large chains of unique_ptr can exceed the stack because of recursing deleter
calls [Sut16].

Evaluating these performance implications is not part of this thesis. However, since
smart pointers are an important part of modern C++ programming they need to be
evaluated in the context of graphical applications in the future.

6.3.2 Garbage Collection

Garbage collection is a form of automatic memory management. When programming in
a garbage collected environment, a garbage collector tracks memory accesses / references
and automatically frees memory regions that are no longer needed by the program.
Prominent examples for garbage collected programming languages are Java and C#. In
graphical applications garbage collection is often not a desired memory management
solution because of its performance implications. For example: Java uses a "Stop
the World" approach to garbage collection [ORC]. "Stop the World" means that all
application threads are stopped as long as the garbage collector is running. If a target
frame time of 16ms (or 11.1ms in VR) is required, unpredictable interruptions are not
tolerable.

Another approach to garbage collection is implemented in Epics Unreal Engine
4 [EPI18]. In Unreal Engine a custom garbage collector is implemented on top of
C++ using a custom C++ preprocessor. With implementing a custom solution the
developers have better control over garbage collection events and can therefore minimize
the performance impact.

Being able to rely on a garbage collector is convenient and offloads a huge amount
of responsibility and complexity off of programmers. However the implementation of
a garbage collector itself is very complex, and tweaking garbage collector settings for
maximum performance can be difficult. Even with a garbage collector in place, memory
allocations need to be reduced. While a memory leak is not possible the amount of
“garbage” needs to be as small as possible to reduce the number of collection events.
This means programmers do still have to keep memory in mind. The benefits of a
garbage collector therefore are debatable.

54



6.3 Solutions - Ease of Use Memory Defragmentation
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Figure 6.11: Defragmenting memory by relocating allocated blocks of memory.

6.3.3 Memory Defragmentation

Memory fragmentation can be a huge problem as shown insection 5.1.2. To solve
fragmentation, the memory can be defragmented. Defragmentation describes shifting
allocated memory blocks to lower memory regions. This in turn moves unallocated
memory blocks to higher memory regions. If this process is repeated continuously, all
allocated blocks will be in a continuous memory region eventually. As a result only a
single, big memory region is free - the memory is not fragmented.

The advantages of degramenting memory are clear: If memory can never be frag-
mented the use of restricting allocators like a linear allocator is not required just because
it reduces framentation. Instead, the allocator can be chosen depending on other
requirements like simplicity.

But this advantage comes at a cost. Relocating allocated memory regions can be
problematic. If a pointer points to an address in a memory region it points to something
else if the region gets relocated. To circumvent this problem pointers that are aware of
relocatable allocations need to be used. The relocations then have to be propagated to
these special pointers. According to Jason Gregory, all engines developed by Naughtly
Dog have support for memory defragmentation [Gre09]. With respect to the fact that
some games developed by Electronic Arts have consumed system memory almost
completely and would fail to run without fragmentation countermeasures [Ped07],
memory defragmentation is an important consideration.
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7 Multithreading

When it comes to high preformance applications one way of optimizing execution
speed is multithreading. Multithreading allows the spreading of tasks across multiple
physical CPU cores or hardware threads. This enables parallel execution and therefore
significant performance improvements. A well known difficulty when dealing with
multiple threads are so called races or race conditions. A race condition describes a
problem that occurs when an algorithms result is bound to a specific thread execution
order. Since the scheduling of threads is typically offloaded to the operating system,
a specific execution order and execution time cannot be guaranteed. Data races can
happen when multiple threads access the same data while one of the threads is writing
to that data. Even incrementing an integer can be a problem because it consists of three
distinct operations:

1. Load the value into a register

2. Add 1 to the value in the register

3. Write the value from the register back to memory

If a thread increments a variable, while another thread is incrementing the same variable
and is between steps 1 and 3, the final result will be wrong. The second incrementation
loads the value before the result of the first incrementation is written to memory.
The variable effectively got incremented only once. If an algorithm does not protect
such critical code paths by using thread-safe facilities like mutexes or semaphores the
algorithm is subject to race conditions. How custom allocators or the provided data
structures can be altered to be thread-safe is not part of this thesis since it does not differ
from ordinary multithreaded programming.

Another problem that can be caused by multithreaded execution in combination with
CPU caches is the so called false sharing. False sharing causes performance problems and
severe thread scalability issues. The following section explains false sharing in detail
and shows how it can be prevented. It is based on the article “Eliminate False Sharing”
by Herb Sutter that was published in 2009.

7.1 False Sharing

First, recall the following paragraph from section 3.1.6 (Coherency in multi-core processors).

A single cache line can be stored in multiple caches which are physically
located in different CPU cores. As soon as one of the cores writes data to that
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7.1 Multithreading - False Sharing

1 int result[P];
2 // Each of P parallel workers processes 1/P-th
3 // of the data; the p-th worker records its
4 // partial count in result[p]
5 for( int p = 0; p < P; ++p )
6 pool.run( [&,p] {
7 result[p] = 0;
8 int chunkSize = DIM/P + 1;
9 int myStart = p * chunkSize;

10 int myEnd = min( myStart+chunkSize, DIM );
11 for( int i = myStart; i < myEnd; ++i )
12 for( int j = 0; j < DIM; ++j )
13 if( matrix[i*DIM + j] % 2 != 0 )
14 ++result[p];
15 } );
16 // Wait for the parallel work to complete
17 pool.join();
18 // Finally, do the sequential "reduction" step
19 // to combine the results
20 odds = 0;
21 for( int p = 0; p < P; ++p )
22 odds += result[p];

Listing 7.1: Pseudocode example given by Herb Sutter in [Sut09]
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Figure 7.1: Speedup of the code from listing 7.1 with an increasing number of
threads [Sut09]. The test system has a 24-core CPU.
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cache line the CPU has to ensure that the other cores do not read from their
version of the cache line since the data is now outdated. This is achieved by
marking the cache line dirty in the CPU cache of the writing core and invalid
in all other cores [Mey14].

A simple example is used to illustrate what false sharing is and where it comes from:
Suppose the amount of odd numbers in a matrix of size DIM×DIM need to be counted.
Instead of traversing the full matrix single threaded, multiple worker threads are started
to speed up the process. Each thread counts the elements of a predetermined part of the
matrix. A potential implementation can be seen in listing 7.1.

Instead of having a single variable that gets incremented by all threads, each thread
has its own slot in the array int result[P] (line 1) - no data is accessed by multiple
threads simultaneously. To get the final result all threads have to finish their calculation
before the interim results are summed up. Locking a mutex every time a shared counter
is incremented is not required. Since mutex locking and unlocking has performance
implications this algorithm is expected to be faster while maintaining the effective race
condition prevention. In reality this algorithms has severe performance and scalability
issues as can be seen in fig. 7.1. With 2 to 15 threads the multithreaded execution
performs worse than a single thread. The maximum speedup with up to 25 threads is at
about 1.4 times the single threaded performance. This unexpectedly bad performance is
the result of false sharing.

The problematic part in the implementation example is where the temporary result
of each executing thread is stored. In line 1 an array int result[P] is created that has
a slot for every worker thread to store its counter. This counter is initialized in line 7
and incremented in line 14. Since this is done by every worker thread, multiple threads
have a copy of one of the cache lines where int result[P] is stored. When a thread
increments its counter in line 14 this cache line is marked invalid for all other threads.
As soon as another worker wants to increment its counter, the cache line has to be loaded
again because it is marked invalid. The now following increment invalidates the cache
line once again for every other thread. This repeats until all worker threads are done. A
single 64 byte cache line can fit 64/4 = 16 slots of the result array. The probability that
two workers have their counters on the same cache line (and therefore invalidate each
others cached value) is very high. This behavior destroys the benefits of the CPU cache.
The threads share a single cache line to ensure coherency even though it is not required
in this case.

To prevent false sharing, it is required to spread out the counter variables in memory.
Listing 7.2 shows how the example can be fixed. The required change is simple: Every
thread now has a local variable (line 8) as a counter. These variables are stored on the
threads stack. Because of that, multiple counter variables no longer happen to be on the
same cache line. The result array still exists and still has to be accessed, in line 16 the
local counter is written to the array. This can introduce false sharing, but since it only
happens once per worker thread its performance impact is negligible. Figure 7.2 shows
that the algorithm now scales perfectly linear with the number of threads.
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7.1 Multithreading - False Sharing

1 int result[P];
2
3 // Each of P parallel workers processes 1/P-th
4 // of the data; the p-th worker records its
5 // partial count in result[p]
6 for( int p = 0; p < P; ++p )
7 pool.run( [&,p] {
8 int count = 0;
9 int chunkSize = DIM/P + 1;

10 int myStart = p * chunkSize;
11 int myEnd = min( myStart+chunkSize, DIM );
12 for( int i = myStart; i < myEnd; ++i )
13 for( int j = 0; j < DIM; ++j )
14 if( matrix[i*DIM + j] % 2 != 0 )
15 ++count;
16 result[p] = count;
17 } );
18 // etc. as before

Listing 7.2: Pseudocode example solution given by Herb Sutter in [Sut09]
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Figure 7.2: Speedup of the code from listing 7.2 with an increasing number of
threads [Sut09]. The test system has a 24-core CPU. Performance scales perfectly
with thread count.
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8 Observations

8.1 Problems with C++

8.1.1 Template Overuse

The C++ template system is a powerful language feature the enables compile time
programming. It allows compile time polymorphism using templated functions and
types or type introspection using template specializations. In practice the existance of a
template often requires other parts of a programs source code to be templated as well.
For example:

Given a function that requires a vector of floats as parameter. The functions declaration
could look like this:

void foo(const eastl::vector<float>& vec);

Somewhere in the program a float vector is created, but for performance rea-
sons the vector is backed by a linear allocator. The vector’s type therefore is
eastl::vector<float, Linear_Allocator>. Since the types do not match, this vec-
tor cannot be passed to foo. To allow passing this vector to foo, its signature has to
change:

template<typename Allocator_Type>
void foo(const eastl::vector<float, Allocator_type>& vec);

Now foo is a function template even though it can never change vec (since vec is
declared const) and therefore never invokes any calls to the allocator. This is just a small
example to illustrate the problem: If part of a system makes heavy use of templates
that go beyond simple type information on containers, the rest of the system often is
forced to propagate the use of templates outwards. This can only be circumvented
by using run-time polymorphism in the form of virtual functions. The problem with
virtual functions is that they are not as efficient as compile time polymorphism as
shown in section 5.1.1 (Avoiding Virtual Function Calls). Templates do not have that
run time overhead but slow down compilation speed, increase source code complexity
and increase the size of the final executable.

8.1.2 Allocator Model

The allocator model that was (and still is) used in C++ is suboptimal for various
reasons [Ped07]. Even though it was changed numerous times [18b], the suboptimal
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allocator model remained in place for compatibility reasons. Up until C++17 the allocator
model of the C++ STL (std::allocator) was fully type based. This means that it was
impossible to pass an existing allocator to a container. Instead, only the allocator type
was passed as a template argument and the container constructed its own instance of
that type. Using type based allocators as if they were instance based requires usage of type
tags to make the allocator itself a template. With type tags it is possible to treat different
allocator template instantiations as one instance. This however leads to the problem of
template overuse and complicates the usage of custom allocators tremendously.

The C++17 standard changes the allocator model again. Instead of an incremental
change C++17 reworks everything that surrounds memory allocation by introducing
the new namespace std::pmr. Pmr stands for “polymorphic memory resource” and
is the new way of managing memory allocations. In std::pmr the role of the allocator
is changed to only being a handle to a memory resource. The actual allocation is then
performed in the so called polymorphic_memory_resource. As of writing none of the
large compiler developers provide an implementation of the std::pmr namespace.

For that reason all implementations that are part of this thesis are based on the EASTL.
In the EASTL allocators are instance based. Passing an allocator to e.g. a vector is
supported and used throughout the examples given.

8.1.3 Limited Memory Layout Options

C++ is a powerful language that is capable of almost anything with enough patience
and the willingness to implement complex, templated code. An example for that is
the SoA / AoS container implementation that encapsulates and hides the underlying
memory layout. This implementation was not provided as part of this thesis, instead it
was referred to the existing LibFlatArray library [And18]. This library requires highly
complex template specializations for every struct that is used in its context. To make
usage easy these specializations are hidden behind simple macro invocations. The fact
that the main macro that generates the code for the required template specializations
emits more than 800 lines of code shows the complexity involved. For cache efficiency
it would be beneficial if the C++ compiler would provide the ability to use primitive
arrays and STL containers with an SoA memory layout. Jonathan Blow showcases such
a feature as part of a new programming language in his talk “Data-Oriented Demo:
SOA, composition” [Blo15] and shows that this abstraction can be done on a compiler
level.
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9 Conclusion and Future Work

This thesis provided an overview of the CPU architecture of modern computer systems
and derived rules that assist in writing efficient code in response to that. Sample
implementations that were used for performance tests and as illustrations of the concepts
shown are provided. While implementing these samples and researching advanced C++
language features it became more and more clear that there is no universal solution to
memory management. Providing custom allocators cannot solve all allocation related
problems single handed. Providing specialized data structures cannot guarantee efficient
cache usage. Making heavy use of smart pointers does not solve but assist in lifetime
management of resources. The importance of optimizing towards good memory usage
and cache friendliness was shown by various performance tests. These tests showed
huge performance improvements.

Having developers dedicated to memory management on a team is not sufficient.
These developers can only provide some generic facilities like common allocator types
or object pools. To achieve the performance improvements that were shown throughout
this thesis, everyone on the team has to optimize towards the presented metrics. Every
developer needs to know about the memory subsystem and caches, and every developer
needs to be aware of the implications of inefficient cache usage and Heap allocations.
In the end, every developer needs to be able to evaluate memory management and
cache efficiency for any given algorithm. Memory management is in many cases not
something that can be optimized after an initial draft of a system. In most cases, memory
management should be treated as a first class citizen when writing software. This is
especially true if the targeted hardware is not as powerful as a top of the line, high end
PC.

The history of DRAM shows that the issues of slow main memory will continue
to exist. With this thesis as a basis it is therefore important to continue researching
the discussed topics. The std::pmr namespace might be able to solve some of the
issues by reducing the number of template functions and complexity. As soon as full
implementations of this important C++17 feature are available they need to be evaluated
with regard to performance as well as ease of use. Guidelines for smart pointer usage
in the context of high performance applications are required and their performance
implications need to be evaluated in detail.

Every update to the C++ standard continues to loosen the bond that forces every
developer to know the details of CPU caches and the memory subsystem. In the future
it might be possible to hide the underlying memory model behind an abstraction layer
without sacrificing performance. Until then, it is important for every programmer to
understand the details of memory management and the memory subsystem to ensure
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