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Category: Research

Figure 1: Overview of the proposed approach: a) The user surrounds the object on a small set of images from different perspectives.
b) The algorithm computes an intersection. c) The volume is shown as a voxel grid.

ABSTRACT

The process of scanning objects and creating digital copies of them
gains increasing attention in the modern industry. But even though
scanning itself is often automated, it is still necessary to define the
volume which should be scanned manually. This poses various
challenges in the environment of an industrial plant. A potentially
hazardous environment with multifaceted structures requires a user
with maybe no experience in 3D scanning to segment a volume
accurately, which should then be comprehensible to the scanner.
At least for this specific use case, common approaches to volume
segmentation/selection fail to meet all necessary requirements for
safety, efficiency, and functionality. Therefore, we developed an
own algorithm, which segments the intended volume by intersecting
the projection of user-drawn outlines on a small number of photos
of the target object using augmented reality. Our implementation
can successfully approximate various sizes of target volumes and
delivers an appropriately detailed voxel structure. The pen-based
input is easy and intuitive to use and requires the user to perform
simple and clear tasks, while our algorithm takes the data, calcu-
lates the volume, and augments it into the scene. This gives visual
feedback and shows flaws in prior annotations, which can then be
resolved on the spot. Because of being designed around our use case,
the application fulfills all requirements derived from the scenario.
It delivers promising results and could be a simple, yet effective
solution for our and similar problems.

Index Terms: Scenario-based design; Touch screens; Mixed /
augmented reality

1 INTRODUCTION

Modern industrial facilities are characterized by constant change and
development, not only in terms of goals and organization but also in
their physical setting. Therefore, CAD models of industrial factories
and plants can quickly become outdated. Concurrently, since com-
panies are often distributed over extensive areas, responsible experts
need to assess information about the facility remotely. This requires
an up-to-date data basis.

In digital twins, a common first step to achieve an up-to-date data
basis is to reconstruct the 3D shape of on-site machinery. This makes
the required information available remotely with, depending on the
scanning frequency, relatively current data. Moreover, scanning and
segmenting scenes is a key part of enabling augmented reality (AR)
navigation and guidance, which can be used to support workers
on-site and improve the working process.

To perform the scanning of complex and huge machines or scenes
two approaches exist. One is to capture the entire scene in a single
scanning session and re-scan the entire scene on a regular basis.
Alternatively, after an initial global scan, workers can scan small
parts of the scene on demand and integrate them in the global scan
whenever necessary. This paper discusses the iterative scanning
approach henceforth.

For optical scene reconstruction, many approaches regarding scan-
ning technology (i.e. active and passive sensors) and the performing
actors (e.g. drones, robots or humans) exist. For all of these ap-
proaches, it is vital to have a human indicating which volume has
to be scanned. Based on this volume, paths can be planned for
autonomous scanning agents and visual feedback can be provided
for humans. Therefore, the user needs to be able to select a volume
in the scene which surrounds the intended object of interest. An
interface is necessary which allows the spatial outlining of a volume
and operates in the coordinate system of the real world. This inter-
face has to be convenient to use, so that the worker performing the
task does not have to be an expert in either 3D scanning or volume
segmentation.

This research attempts to find a suitable interaction method for
the use case of segmenting a volume for 3D reconstruction. After
discussing a variety of existing mixed reality interaction examples
in chapter 2, we describe the industrial requirements for volume seg-
mentation in large facilities in chapter 3. In chapter 4, we illustrate
our developed interaction method as well as possible limitations
and future work. This is followed by a discussion of whether the
approach fits the requirements in chapter 5.

2 RELATED WORK

The field of 3D selection finds itself in various interactive scenarios.
It ranges from selecting a single distinct object to selecting a subset
of various objects to, as in the use case of digitally segmenting the
space of a real world object, the selection of an area or volume. For
selecting single, previously known objects in 3D space, Cashion and
LaViola [1] propose an algorithm which selects an object based on
a spotlight cursor. The spotlight’s size increases with cursor speed
and selects the nearest object to the camera within the spotlight cone.
To correctly select any targets, this approach, however, needs prior
information about the location of objects available.

Similarly, Go’Then’Tag [17] needs the entire data points being
known beforehand. This algorithm intends to group the points
into nodes according to their relation between each other, and then
iteratively subdivide those nodes. For this, the authors originally

1



Online Submission ID: 1129

used an octree generation algorithm, which meant that the user first
chooses between very large subsets and then refines the selection.
This algorithm could be adapted to our use case by initializing
the selectable objects as spatial voxels and then subdividing them
iteratively. In theory, selecting and combining such voxel structures
would allow arbitrary volumes.

As point clouds imply very similar selection methods compared
to volumes, an algorithm by Dubois and Hamelin [2], called Worm
Selector, could be adapted almost directly to our use case. It de-
scribes creating a mesh by iteratively extending a tube-like volume.
Combining multiple of such worm meshes would also allow for
arbitrary volumes to be selected. However, it requires the user to
define an appropriate drawing plane in the scene to draw the contour
on, which then extends the existing mesh.

Placing and rotating this drawing plane itself relates to another
volume selection technique, which attempts to manipulate a volume
to fit the desired target object. In practice, this could involve moving
a bounding box in such a way that it eventually contains the area of
interest. For this selection technique, it is necessary to find suitable
algorithms to manipulate a 3D object in terms of the canonical
manipulation tasks [5, Sec. 7.2.1] translation, rotation, and scaling.
A considerable amount of research has been conducted on how
to solve those tasks [3, 6, 8, 11, 13]. Those techniques deliver a
limited approximation of the initial volume and are using multi-
touch interaction metaphors [6, 11].

The previously mentioned algorithms operate with interaction
techniques in 3d space. However, already since decades there is the
approach “shape from silhouette” (e.g. [16]). This approach attempt
to find the 2d silhouette of an object in multiple images and calculate
the 3d shape of this object. Most of the used algorithms intend to
work without or with minimal user interaction. In grabcut-alike
segmentations, for example, the user gives stroke-based indications
of background and foreground areas in an image [10]. Probabilis-
tic approaches [4] allow for stable segmentation path refinements
on parallel graphics cards, resulting in precise reconstructions for
objects that are focused on the images and a sufficient distinction
between foreground and background coloration.

3 REQUIREMENTS

Our use case originates in a real-life setting with a concrete situa-
tional scenario: The user should be able to create a virtual 3D volume
enclosing a real machine part within an industrial facility. From this,
we can derive the following requirements for our application:

Visual guidance The user cannot be expected to know what
type of input supports or obstructs a successful 3D reconstruction.
Therefore, it is necessary to provide frequent visual feedback to the
user, as this gives an estimate of which perspectives are expedient for
taking photos and which ones are not. In general, visual feedback
can strongly improve the quality of the resulting reconstruction
when faced with a use case similar to ours [12]. This visual feedback
can be achieved by adding a virtual overlay, similar to the drawn
annotations introduced by Mohr, Mori, Langlotz, et al. [7]. The
placement of this virtual overlay is the key scenario for our approach.

Speed The user’s time in the facility is usually limited. Ei-
ther due to economic reasons, for example, because the machinery
needs to be stopped during that time, or because of the potentially
hazardous environment and the avoidance of unnecessary risk for
the user. Because of that, the application has to allow quick, yet
reasonably accurate interaction. This means that the time required
in direct proximity to the machinery should be reduced and tasks
which can be done off-site can be delayed.

Spatial limitation The user’s health must not be put at risk with
the application’s interaction method. This presupposes the reduction
of unnecessary movement and prolonged time spent in dangerous
positions or locations. For example, the device’s position should

not be used for continuous object manipulation [6, 8, 13], as the user
might have to concentrate too much on the result being displayed on
the screen than the surroundings.

Complex three-dimensional setups Many existing ap-
proaches to comparable use cases are not designed for application
in industrial fields. In particular, they often assume the object of
interest to be lying on a table or similar plane surfaces with a clear
view and no occlusions. For industrial use cases, we have to expect
objects to be installed with complex machinery around it (to under-
stand the complexity, see for example [9, Fig. 9]). The object might
be partially hidden behind other parts of the scene, which cannot
be removed. In all those cases, the user should be able to mark the
object easily, regardless of its location with respect to the scene.

Pen-based input During maintenance and repair tasks, the user
might have dirty hands or be required to wear gloves, among other
protective garments. Therefore, the situation demands a pen-based
interaction technique. This adds further restrictions to potential
interactions, ruling out possible multi-touch interaction techniques.

4 APPROACH

General concept For the use case, we developed an interaction
technique in which we photograph the scene from multiple angles
and mark the area of interest in each photo (see 1.a). With the
device saving its relative location with respect to the scene, the
projected markings create volumes that can be intersected with each
other (see 1.b). This approach is inspired by Szeliski’s visual hull
carving algorithm [16]. We have adopted the voxel grid as well as
the octree as they simplify and accelerate the intersection process.
Naturally, the proposed algorithm is different in terms of how the
silhouette is acquired, and does not differentiate between voxels
completely within or completely out of the volume. In our version,
the resulting volume is then augmented into the scene. The user can
decide whether or not to refine the volume by repeating the process
(see 1.c). Ideally, a volume is created that approximates the original
object and can then be used as input to a scanner to scan the object.

Technical realization We used a voxel grid to represent the
potential scanning volume of the scene. The device’s location is
measured during usage by tracking a stationary marker within the
scene. The location and orientation are stored together with each
image taken and the potential marking added. Photos can also be
saved without a marking added to them and then edited later-on. The
intersection process takes a collection of images with known position
and orientation, and a user-created marker. When the intersection
process is started, the voxels are being projected onto each image
plane based on the known camera projection matrix and the stored
device position. It is then tested against the area defined by the added
marking. If all 8 projected corners of a voxel are within all marked
areas of each photo, they are considered as part of the volume. If
all 8 projected corners are outside all areas, the voxel is considered
outside the volume and discarded. The remaining voxels, here called
border voxel, are subdivided and the process is repeated with the
newly created voxels. The subdivisions end when a certain number
of iterations is reached or when the number of border voxels grows
above a certain threshold. The latter exit condition automatically
adapts the level of detail to the size of the voxel structure. Large
structures reach the border voxel limit quicker and are therefore not
subdivided as often as small structures. This creates more precise
small volumes and coarse large volumes in order to reduce the
required amount of computation for big volumes. This approach
shares some similarities with the algorithm Go’Then’Tag [17] and
can even be interpreted as a variation of it. Essentially, we start
with an evenly distributed, infinite point cloud and start with very
coarse subsets. Different to Go’Then’Tag, it is then not the user who
iteratively selects the relevant subsets, but our intersection algorithm.
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Figure 2: User-system interaction flowchart of the proposed approach

We basically automated the process based on the user’s markings
given in the images.

Application in the use case At the very beginning, the user
is presented with the AR view, which consists of the live camera
feed of the device and a small array of buttons. Once the marker is
recognized, which is indicated by an aligned grid augmented into
the scene, the user tries to get a good view of the object of interest.
Via a corresponding button, the camera takes a photo for the user to
review (see figure 2.I).

At this point, the user is in the drawing view, sees the taken
photo, and can add a shape which outlines the object of interest in
the image to it (see figure 2.II.a and 1.a). This marking is optional
at this point and can be skipped. Unless the image is blurred or
otherwise flawed, it can be saved and the user can continue with a
new perspective. This process can be repeated several times. For
example, three images might be created and stored that way.

Once the user deems the number of different perspectives suffi-
cient, the gallery view can be opened (see figure 2.III.a). The gallery
displays all stored images and the user is supposed to review all
taken photos. For example, photos taken from very similar angles
might be deleted (see figure 2.III.b). For photos with faulty or miss-
ing markings (see figure 2.III.c) the marking can be added and edited
by pressing the edit button (see figure 2.III.d). Similar to the drawing
view from the moment of taking the photo, the user can now add the
marking retroactively to the image (see figure 2.II.b).

Once all images have been reviewed and edited or deleted, the
intersection process can be started (see figure 2.IV.a). After the
calculations are finished, the user returns to the AR view and can
see the resulted volume in the scene. At this point, the volume can
be visually compared to the real object of interest. Should there be
parts of the augmented volume which do not contain any relevant
element of the real object, they can be photographed and corrected
with another added marking (see figure 2.IV.b and 3). This iteration

can be repeated multiple times until the created volume fits the target
well enough.

Limitations Several improvements are possible for the proposed
implementation. For one, the algorithm could estimate a potential
area to initialize the voxel grid automatically. The application re-
quires a predefined area in which the initial coarse voxel grid is
sampled and tested against the outlines. As of right now, this area’s
dimensions have to be defined with respect to the marker anchor by
the user. A possible solution would be to calculate the approximated
area filled by the intersection of all outlines explicitly. This would
then require at least two images from an appropriately different
angle to start the calculation process (see figure 4).

Another improvement could be to visualize the voxel structure in
a better way. Right now, the voxels along the border of the area are
visualized with semi-transparent cubes. This leads to occlusions, as
several voxels can align with each other from certain viewing angles
and are thus rendered on top of each other. With enough voxels in a
line, the background cannot be seen anymore. To avoid this, only
those sides of the voxel facing out should be rendered.

Furthermore, it can be hard for the user to realize that a tracking
error has taken place. If, for example, the AR software calculates the
device’s position with a slight shift, parts of the target area might be
removed, which the user intended to include. Naturally, it is difficult
for the program itself to detect such errors. A possible solution
in this case might be to provide additional information about the
mesh creation to the user: Recalculating the intersected area after
each newly added outline might be helpful to see which outline and
corresponding photo cause wrong behavior. However, this would
require a much faster calculation. Otherwise, this causes disruptive
pauses after each drawing action. Another possibility would be to
log for each border voxel for which annotated photo it was registered
as a border voxel. This would allow the user to see for voxels, which
would normally be expected to be inside the structure, by which
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Figure 3: In this image, it is clear to see that the first silhouette
marking(s) did not create a well-fitting volume (green voxel cloud)
around the object of interest (metal pipe). By adding another image
with a drawn outline (blue shape) which excludes the unwanted
upper half of the volume, this can be corrected. At this point, another
intersection calculation can be started, and the new marking will be
incorporated together with the prior photos.

photo outline they got intersected (see figure 6). This intersection
must then be the same, which caused the voxels next to the false
border voxel to be outside the intersected outline frustum.

5 DISCUSSION

In order to visualize the segmentation process for the user, we display
the resulting voxel structure directly over the target object in AR.
This gives a direct estimate of how well the selected volume fits
the desired form. Because the user can easily add corrections based
on this visualization, it offers a direct guidance during the process.
With the refinements being intuitive by cutting unwanted parts off
(see figure 3), it suits user with and without a background in 3D
reconstructions.

Due to our use case involving potentially hazardous machinery
and environment, the short duration required to perform the cor-
responding task was an important requirement. To address this,
our approach allows the user to separate tasks that require on-site
presence from others. The user can enter the area with the object
of interest, quickly take an arbitrary number of pictures, and then
leave the area to perform the remaining tasks. The annotation on the
images outlining the target object and the selection of valid images
can be done at any point, as well as the final intersection step. Only
to verify the result and to perhaps take additional photos, the site
needs to be reentered.

Another safety hazard was the space the user requires while per-
forming the on-site tasks. In our approach, we cannot limit this
space in order to achieve an accurate result, as the algorithm requires
different perspectives from which photos of the scene are taken. Yet,
we can give the user more control over the spatial movement com-
pared to, for example, with a device-based manipulation approach.
There, the user might move to the side in order to manipulate an
object in the scene indirectly. Hence, the user has to concentrate
on two different motions: the movement of the object and the own
movement. With our approach, the user just has to concentrate on
their own movement. Technically, the device is not even necessary
to move in order to find a good angle for a photo, as the camera will

Figure 4: A possible improvement to our algorithm would be the au-
tomatic initialization of the voxel grid area by taking the intersected
area of the projected outlines into account, here simplified to a 2D
visualization.

Figure 5: Due to the visualization with semi-transparent cubes,
many voxels rendered on top of each other can cause occlusions
in the scene. Even though we omit rendering voxels inside the
structure, the voxels which lie on the border of the marked area
might align impractically (see the yellow-circled area). In such a
case, the underlying, real-life structure might not be visible to the
user anymore. As a workaround, we introduced a setting which can
change the transparency of the rendered voxel cubes.
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Figure 6: If the camera position is stored falsely (e.g., due to a wrong
calculation in the AR software), the entire outline frustum shifts.
This might cause the wrong voxels to be cut off, without the user
knowing which one of the marked images caused this. A way to
report this is to store for each border voxel which outline marking(s)
intersected it. The user could then select a voxel, which should not
be a border voxel, but an inner voxel, and see which image marking
caused the surrounding part to be cut off.

capture the same view as the user has.
Apart from this, our proposed interaction does not require the

object of interest to lie on a table or similar surface. Instead, it can
highlight areas in any potential constellation. The only requirement
for our application is a known point of reference in the scene, such
as a marker. Because while the assumption that the object of interest
lies on a table might be valid in many scenarios, we cannot expect
this to be the case in our use case. Many parts of the machinery the
user might want to capture can be integrated in complex industrial
systems and be located anywhere in the 3D space. Our approach
handles those cases equally well compared to objects on a ground
plane and fulfills the corresponding requirement.

Similar use cases to ours have so far resulted in other research fo-
cusing strongly on 3D object manipulation techniques [3, 5, 6, 8, 13].
In our use case, this might be realized by prompting the user to
move a virtual cuboid to enclose the object of interest. However, this
would require the user to manipulate multiple parameters iteratively,
which correspond to 3D translation, rotation, and scaling. We regard
this approach to be less intuitive, especially for users who are inex-
perienced in the field of 3D object reconstruction or 3D software
applications. However, our method has not been tested with the
concerned workers yet, so this theory still requires further investiga-
tion and evaluation. But especially with regard to the requirements,
which restrict the available input methods to pen-based ones, our
approach fits the particular use case at hand very well. Our algorithm
never requires more input than received from a single touchpoint,
what makes it applicable for the usage with a simple touch-capable
pen.

Another advantage of our approach is the easily achieved com-
plexity of the resulting voxel structure, which can consist of a sim-
ple shape without holes. This enables it to be used as the sparse
grid for explicit volumetric scene synthesis [14]. Furthermore,
COLMAP [15] and similar 3D reconstruction pipelines often of-
fer functionalities to shrink down the reconstructed area by adding
binary masks for the input images. In our case, this binary mask can
be derived from a projection of the resulting voxel structure back
onto the view plane of the single photos.

In summary, we believe our prototype to deliver a three-
dimensional marking, which, for our use case, is appropriately accu-
rate and easy to create for the user. The pen-based input makes it ap-

plicable in the intended scenario and allows a decent amount of pre-
cision, while our interaction technique avoids any problems caused
by the unavailability of multi-touch input. It successfully calculates
and tracks the outlined area and shows it as a semi-transparent mesh
as a visual overlay. This gives the user the possibility to see faulty
parts of the result, which can then be corrected.
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