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Abstract

This bachelor thesis is about the interactive visualization of complex state diagrams for
optimal developer experience. Various results of existing work will be outlined and
then applied in the practical part. Different interaction methods in connection with
statecharts are examined and evaluated. This includes the use of the motion parallax
effect, which tracks the user’s head position to create a better 3D effect. Animations
to better highlight informations of the statechart were also tested. These are among
others an outlining effect and a frames effect which highlight certain relations in the state
diagram and thus make them easier to understand. Also an experiment to visualize the
execution of a statechart was performed and analyzed. The work concludes that there
is probably a great potential in the interactive visualization of complex state diagrams,
but it needs to be further investigated.
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1 Introduction

State diagrams are of great importance for developers. They allow to visualize the
functionality and different states of a system in an understandable way. This contributes
significantly to a better comprehensibility. For this reason, their scope of application
is very wide and covers many areas. For example, state diagrams can be used in the
automotive industry, in telecommunications, in user interface design and in computer
operating systems [Har87]. One example for the broad applicability of state diagrams
is given in [RK91], where they are used in the context of food processing and food
development.

Due to the heavy and versatile use of state diagrams, it is important to optimize
their visualization and the corresponding interaction methods. This ensures that the
developer can get the required information from the state diagram as quickly as possible
and productivity is maximized.

1.1 Research question

In this thesis it it will be investigated whether and which interactive visualizations can
contribute to an optimal developer experience. It will be examined whether animations
as well as interaction methods like the motion parallax effect can contribute to reduce
the cognitive load and improve the immersion. It will also study how best to highlight
the elements that are important to the user to support productivity.

1.2 Outline of the thesis

In the following, related work will be presented and the relevant terminology will be
introduced and explained. In addition, different results from previous studies will
be summarized. These insights are then used in the subsequent implementation part
of the thesis. There a statechart with different interaction methods and animations is
implemented. Also the visualization of the execution of the statechart is developed.
Then the individual features are investigated and evaluated. Finally, the results of the
evaluation are analyzed and an outlook is given.




2 Related work

Interactive visualization of statecharts has not been studied yet much. However, there
have been several studies on UML diagrams. UML class diagrams and statecharts have
many similarities in their visualization and scope. Both diagrams consist of nodes and
edges and have their application in the field of computer science. In addition, both are
static and do not move. Because of these similarities, a transfer of the obtained results
in the study of interactive visualization of UML diagrams to statecharts is perhaps
possible and should be investigated.

In [RGOO], the three-dimensionality in the three-dimensional representation of UML
class diagrams is used to direct the user’s focus to certain elements and areas. Further-
more, animations were used to create a more natural user interaction and visualization,
allowing the user to better understand sudden changes in the image. [TS03] is a similar
approach that uses the interactive three-dimensional representation of UML diagrams
to support the didactic aims of the diagram to make comprehension easier and more
intuitive. However, both studies did not have a well-founded investigation with test
persons and present individual perceptions of the authors.

In [Krul2], different interaction methods for three-dimensional applications were
presented and investigated. It is also emphasized that the interaction with three-
dimensional visualizations is difficult for humans on the computer. This is mainly
due to the fact that many of the cues that help three-dimensional perception are often
missing in three-dimensional applications. For this reason, it is particularly important
that the user interfaces and interaction methods for three-dimensional applications are
optimized as much as possible. The book also explains that interaction methods such
as head tracking can contribute to this.




3 Statecharts

In this work we use the term "statechart" as defined in [Har87]. Thereby a statechart is
a state diagram, which additionally can have levels, an orthogonality and a broadcast
communication. The orthogonality and broadcast communication are not needed for
this work and are explained in the mentioned literature [Har87].

State diagrams are directed graphs consisting of states and transitions. States are
denoted as nodes and are symbolized by rounded rectangles. Transitions are denoted
as arrows with the triggering events and guarding conditions shown next to them.
However state diagrams have disadvantages. For example, if a state diagram should
always reach a certain new state when a specific event is triggered, as many transitions
as states would have to be added. Figure 3.1 shows three nodes "a", "b" and "c". "d" is
the new node that should always be reached when the event "n" is triggered. Therefore,
for every state a new transition has to be added to node "d" with the trigger-event "n".
These many new transitions make a diagram very fast unreadable.

This problem is solved by making all affected states children of a superstate, which
then has a transition to this new state. This creates different levels in the diagram. The
superstate then lies on a lower level than its child-states. Figure 3.2 shows again the
nodes "a", "b", "¢" and the new node "d". Additional there is the node "s", the new
parent-state of "a", "b" and "c". As can be seen it now only requires one new transition
to "d". The resulting parent-child relationships are an essential part of the statechart
and therefore of great importance for the developer.

This work uses for the investigations a statechart from [Har87], which is part of a

statechart presenting an electric wristwatch. It can be seen in Figure 3.3.




3 Statecharts

Figure 3.1: Diagram without depth. Figure 3.2: Statechart with depth.

Figure 3.3: Used statechart for this
work.




4 Ways to improve the developer
experience through interactive
animations

In this section, the benefits of animations will be explored to ascertain if they could
be helpful in this project as well. Animations are defined as a series of varying im-
ages presented dynamically according to user actions in ways that help the user to perceive a
continuous change over time and develop a more appropriate mental model of the task [Gon96].

4.0.1 Advantages of animations

Research shows that sudden visual changes in the user interface of an application can
interrupt the user’s task workflow and force a reorientation [CU93]. This takes time and
causes uneasiness. Animations can be used to avoid this negative effect. By providing
the necessary cues, the animation can help the user to understand what happened,
what is happening and what will happen. As a result, the flow is no longer interrupted
and the user’s effectiveness and sense of well-being are increased.

Compared to static images, animations also have the advantage of interactivity [FH95].
This is also a result of [TMB02]. By enabling the user to start, stop and replay the
animation, reinspecting and focusing on specific parts get easier. Also zooming, alter-
native perspectives, close-ups and control of speed enforce the understanding process
by helping to overcome the difficulties of perception and comprehension.

Another advantage of animations is that they can be helpful not only in isolated cases,
but in very many areas. In [BS90] many of these areas are analysed to understand
what benefit animations have in different situations. When an animation is used as
feedback, it can provide current information about the status of a system. Thereby
it can communicate the user if the process is active or how close it is to completion.
Animations can be used as demonstration and increase the information’s content of
symbols or other elements. They can be used as identification to help to identify the
application when it starts. In doing so it can give the user a small overview about what
the application is used for. As mentioned before, they can be used as transitions and
orient the user when switching from one process to another. Other use-case areas are
using an animation as choice, as explanation, as history or as guidance.




4 Ways to improve the developer experience through interactive animations

[CU93] also highlights that employing animations lead to a more pleasant and comfort-
able interface. To this result comes [Dra+11] too, which states that animations improve
the aesthetics of a user-interface and help the users to understand the underlying data.
Additionally [BB99] states that animations can also improve the user’s task performance,
because users maintain better object constancy.

In some cases, the learning process can also be accelerated with animations [TMB02].
This was the case in study [Lar+96], for example, in which animated and static diagrams
of the heart and blood vessels were compared. Also in [PG92], where students were
supposed to learn the troubleshooting of an electronic circuit, performance improve-
ments were measured with animated graphics.

It becomes clear how versatile animations can be used and how many different benefits
they can have for the user.

4.0.2 Effective animations

In the past, various criteria for effective animations have been developed. One source
suggests that effective animations must satisfy two high-level principles [HR07]: The
"Congruence Principle" and the "Apprehension Principle”. The "Congruence Principle"
states that the structure and content of the external and internal representation should
match. The "Apprehension principle" states that the external representation should be
comprehensible to the user.

Another research declares that an effective animation has to be smooth, simple, interac-
tive and be adapted to the user’s mental model of the task [Gon96]. Furthermore it
states that the user should be able to manipulate different segments of the animation in
a parallel order. The existing computer and task knowledge of the users should also be
taken into consideration.

Principles of cartoon animation can help too [CU93]. The work emphasizes the princi-
ples solidity, exaggeration and reinforcement. Solidity means that the animated objects
should be solid and should move as if they are real things. They should be animated as
if they have mass and are susceptible to inertia. To convey the animation’s message
even more effective, it should not just mimic reality, but exaggerate dramatically. That is
why the second principle is called exaggeration. Reinforcement means that the illusion
of reality should be amplified to keep the user’s attention. This can also be done by
animations that are not very noticeable and are only perceived subconsciously.
[HRO7] declares ten rules of design considerations for animations:

1. Maintain valid data graphics during transitions
2. Use consistent semantic-syntactic mappings

3. Respect semantic correspondence




4 Ways to improve the developer experience through interactive animations

4. Avoid ambiguity
5. Group similar transitions
6. Minimize occlusion
7. Maximize predictability
8. Use simple transitions
9. Use staging for complex transitions
10. Make transitions as long as needed, but no longer

[Grel8] also points out that attention must also be paid to the transitions between
several animations in order to avoid a jarring and unpolished appearance.
All these rules and suggestions are taken into account in the practical part.

4.0.3 Afterglow effects

Most animations like the "Slow In Slow Out" animation force the user to wait until it
is finished [Bau+06]. Even when the animation time is short, this can delay the user’s
task and lead to a disturbance of the flow. This issue can be solved with so called
phosphor transitions. This type of animations shows immediately the outcome of the
user’s action, but also explains the change in retrospective by using a diagrammatic
depiction. It focuses the user’s attention on the objects that have changed but allows to
continue the work instantly. One good phosphor transition is the afterglow effect called
"speed lines style". It is used when an element moves promptly from one to another
position on the screen. Instead of moving the element slowly to the target location so
that the user can track it well, it changes its position abruptly to the target. But a tail
lasting several seconds indicates that the element has been moved there from its origin.
In this way, the user can easily follow the action without having to wait.




5 Depth cues for better depth perception

One very important part of statecharts is the parent-child relationship between nodes
[Har87]. This relation is illustrated by the parent node being placed behind the child
node. Thus it lies on a deeper level than the child node. For an optimal developer
experience it is important to recognize the different levels and the depth of the nodes
easily to understand the statechart fast and correctly. This section examines whether
using depth cues can help to amplify the user’s depth perception and consequently
improve the developers flow.

5.0.1 Types of depth cues

In [Pfa02] depth cues are categorized in several groups. Two-dimensional sources of
information that can be interpreted as three-dimensional are called "pictorial depth
cues". All perspective-based cues are part of this category. These include shadows and
occlusion, the effect that nearer objects can overlap objects that are farther away. Also
the relative size between objects with different distances to the user is a corresponding
depth cue. The distance to the horizon can also illustrate depth. Other pictorial depth
cues are shading the object so that it looks three-dimensional, coloring closer objects
other than objects that are far away and the relative brightness and letting far objects
slowly disappear in the atmosphere. Also focusing can create a sense of depth. Partially
perspective based cues like using objects that have a familiar size to the user, or using
the texture gradient as effect also belong to this group. Combining many of these
pictorial depth cues can already create a strong sense of three-dimensionality.
Another category is "depth from motion". These cues provide information about the
location, the velocity, the acceleration and the direction of the movement of the viewer
or the object. These cues contain kinetic occlusion, the change of the amount one object
overlaps another, and motion parallax, which will be surveyed later. Also motion
perspective, that points move in space according to the laws of linear perspective, and
familiar speed, that an element has a velocity that is familiar to the user (e.g. a walking
person), are two depth cues of this category.

The category "oculomotor depth cues" includes convergence and accomodation. Con-
vergence involves the rotation of the user’s eyes. Accomodation is the eye focus at a
specific distance.




5 Depth cues for better depth perception

The last category for depth cues is the "binocular depth perception” and is not needed
for this work. It can be looked up at [Pfa02].

5.0.2 Motion parallax

Motion parallax is an effect that has been studied experimentally since about 1867
[Von25]. A good description provided Helmholtz:

In walking along, the objects that are at rest by the wayside [...] appear to glide
past us in our field of view [...]. More distant objects do the same way, only more
slowly [...]. Evidently, under these circumstances, the apparent angular velocities
of objects in the field of view will be inversely proportional to their real distances
away; and consequently, safe conclusions can be drawn as to the real distance of the
body from its apparent angular velocity. Moreover, in this case there is a relative
displacement of objects at different distances with respect to each other. [Von25]

He also emphasized that motion parallax is a very important and effective depth cue.

But several studies came to the conclusion that motion parallax may not be as effective
as presumed [RG79]. However these studies all had in common that they either
investigated only externally produced parallax situations, where the user did not move,
or used a stimulus array consisting of just a few objects.
[RG79] studied the advantages of motion parallax when the user itself moves. It
states that motion parallax can be an effective cue to better perceive the shape and
depth of three-dimensional objects. Even in the absence of all other depth cues, it can
give the user enough information to understand the scene structure. It also indicates
that parallax motion is more effective when it is a self-produced motion and not an
externally generated parallax condition. It supports the idea that motion parallax
can be used as an accurate, quantitative source for depth perception. It is also very
interesting, that in his study larger amplitudes of relative movement did not produce
larger amounts of perceived depth. Even small movements were sufficient to let the
user recognize the three-dimensional shapes.




6 Implementation

The project is implemented in C# using the game-engine Unity (version 2021.1.1f).
Unity enables us to visualize and animate three-dimensional objects efficiently.

The different visualizations, effects, and interaction methods have been recorded. These
videos are available under the following QR code (Figure 6.1).

Figure 6.1: QR code with the link to the
videos.

6.1 Statechart visualization

The statechart is generated from a manually prepared scene consisting of boxes, which
represent nodes, and spheres, which mark the positions of the arrows origins and
targets. This can be seen at Figure 6.2. Figure 6.3 shows the good-looking statechart,
created by the program. It interprets the elements in the preparation and adds the
additional objects into the scene. The arrows always stick to their origin and their target
nodes and thus can be stretched by repositioning the nodes.

When the user clicks on a state, the statechart moves, so that the clicked state is then
centrally located on the screen.

The statechart structure that is used for this thesis is from [Har87] and is part of a
statechart simulating a watch.

6.1.1 Statechart depth variants

At the beginning three different types of depth structures were implemented and tested.
Thus, it was possible to investigate which depth layer variant is the most suitable for

10



6 Implementation

Figure 6.2: Preparation of statechart.

display

Figure 6.3: Created statechart by the program.
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6 Implementation

statecharts.

In the first variant, the parent states were always lower than the child states. The
individual layers always had the same distance to the layer below. In addition, the
nodes were as thick as the layers were spaced apart. This resulted in a pyramid-like
structure, where the child node was always directly sitting on top of the parent node.
This can be seen in Figure 6.4.

The second variant differed from the previous one in that the nodes were thinner. As
can be seen in Figure 6.5, this made it look like the child nodes were floating above the
respective parent nodes.

The third type of depth structure had an inverse depth of the layers. This way, the child
states were always lower than the parent states. The parent states had holes where
the child states were, so that they still could be seen. In addition, walls connected the
sides of the child states with the holes of the parent states. The result is an inverse
pyramid-like statechart, which can be seen in Figure 6.6.

Figure 6.4: Pyramid-like statechart. Figure 6.5: Statechart with floating
states.

6.2 Implemented depth cues

Since the parent child relationship plays an important role, several features have been
implemented and tested to make this relationship clearer. All the optional features
can be activated and deactivated individually in a menu. The menu can be reached by
clicking the settings button in the top left corner. It can be seen in Figure 6.7.

12
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Figure 6.6: Inverse pyramid-like state-
chart.

Settings
Fog effect

Blur effect

Depth controller

ing effect

@ Face Tracking Horizontal

Figure 6.7: Settings menu.

6.2.1 Motion parallax

One important depth cue is the motion parallax. When the user moves their head, the
view-position moves in the state-chart scene equivalently. In Unity the view-position
is symbolized by a camera. To obtain the position of the user’s head relative to the
monitor, a connected video camera is required, which is placed on top of the monitor
and points at the user. Using the software called OpenCV, the program then recognizes
the user’s face in the transmitted live image. This allows the head position to be
calculated.

Normally, the viewer’s head is always placed centrally in front of the screen. In
Unity, by default, this means that also the camera is always centrally located above the
projection plane. However, since the user’s head moves, the viewer’s position is now
no longer centered in front of the screen. In Unity, this has the consequence that the

13



6 Implementation

camera also must be moved relative to the projection plane. Therefore the camera’s
tield of view has to be recalculated for every movement of the user. This is shown in
Figure 6.8 and Figure 6.9. Figure 6.10 and Figure 6.11 show the resulting rendered
images.

In order for face recognition to work well, it is important that the user is sitting in a
well-lit room and that there is a strong contrast between the person and the background
color. Furthermore, only one face should be in the camera’s field of view at a time and
not several. To optimize the user experience and avoid false head height detection, the
user can decide which head movements should be considered in the processing. It is
possible to choose between taking all head movements into account, taking only the
horizontal head movement into account or taking only the vertical head movement into

account.

projection plane

projection plane

Figure 6.8: Camera’s field of view at Figure 6.9: Camera’s field of view after
the beginning. the user moved.

6.2.2 Depth controller

Another implemented feature is the depth controller. It enables the user to change the
distance between the layers. This can be done by adjusting a slider shown at the bottom
of the screen. When the slider is moved to the right the distance between the layers
increases. This can be seen in Figure 6.12 and Figure 6.13.

6.2.3 Fog

Fog lets far objects slowly disappear. This feature was also implemented in the project.
If it is activated, the lower layers slowly disappear in gray fog. Figure 6.14 shows the
state-chart when the fog is disabled, Figure 6.15 when it is activated.

14
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Figure 6.10: View at the beginning. Figure 6.11: View after the user moved
their head.

Figure 6.12: Minimal depth between Figure 6.13: Maximal depth between
layers. layers.

6.2.4 Blur effect

Furthermore, a blur effect was implemented. When the user hovers with the mouse
cursor over a node, all nodes that are on lower layers than this node get blurred. All
nodes that are on the same layer or on a higher layer stay sharp. This effect can be
seen in Figure 6.16 and Figure 6.17. It is realized using Unity post-processing. The
transitions between two blur states are smooth and look like a real camera is refocusing
on the respective layer.

15
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Figure 6.14: State-chart with fog dis- Figure 6.15: State-chart ~ with  fog
abled. enalbed.

Figure 6.16: Blur effect when the user Figure 6.17: Blur effect when the user
hovers over a node in the hovers over a node in the
highest layer. middle layer.

6.2.5 Other depth cues

Many depth cues like shadows, occlusion and the relative size of objects are auto-
matically provided by Unity. Other by default enabled pictorial depth cues that are
given by Unity are shading the objects three-dimensional and the relative brightness of
scene-elements.

16
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6.3 Animations

6.3.1 Outlining effect

The outlining effect highlights which statechart-node the user has clicked, and which
nodes are children of the clicked node. When the user presses a node, it briefly gets a
little bigger and then quickly gets smaller again until it returns to its initial size. During
this animation, which lasts about a second, a red frame appears around the node and
its child nodes. This frame continuously adapts to the user’s perspective, so that it
is always visible which node group is currently highlighted. The inner parts of the
selected node and its child nodes also turn slightly red. The frame and the red coloring
remain until the user clicks on something else. Figure 6.18 and Figure 6.19 show the
outlining effect after the state "on" or the state "run" was pressed. In the second figure,
the user’s head is moved and thus the perspective is changed. This shows how the
frame also includes the child states.

Figure 6.18: Outlining effect after state Figure 6.19: Outlining effect after state
"on" was pressed. "run" was pressed and the
user’s head is moved.

6.3.2 Frames effect

Another implemented effect is the frames effect. When the user presses a node, for all
parent nodes of the selected node a frame is generated. These frames have always
the same size like the respective parent node. Two types of frames were examined in
the process. For both variants when the frames are generated, they initially have the
same position as their corresponding parent state. Then they quickly move upwards
to the same height as the selected node, so that after the animation all frames are at

17
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the same height. However, while in one variant the frames always remain thin and
tinally float above their parent states, in the second variant the frames become larger in
depth so that they always still touch their parent state. The first variant can be seen in
Figure 6.20 and Figure 6.21. The second variant is shown in Figure 6.22 and Figure 6.23.
The frames remain until the user clicks on something else.

Figure 6.20: Thin frames effect after state Figure 6.21: Thin frames effect after state
"on" was pressed. "run" was pressed and the
user’s head is moved.

display /d b,

reg

Figure 6.22: Thick frames effect after Figure 6.23: Thick frames effect after
state "on" was pressed. state "run" was pressed
and the user’s head is

moved.

18
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6.3.3 Statechart execution

Also the execution of the statechart was implemented. In this project, executing a
statechart means that a start state and an input sequence are given. Then, starting
from the start state, the input is read step by step and thus new states are reached.
The execution is over when the input sequence has been read completely. In this
investigation, the execution sequence is always the same and cannot be changed by the
user.

The user can choose between two types of statechart executions. In one type, the
states and the transitions are animated one by one. In the other, the transition happens
immediately, and therefore the animation of the next state and the respective transition
are played simultaneously. The second reflects the system execution more realistically.
When the statechart execution is activated in the menu, an "Execute” button appears in
the middle of the bottom of the screen, which can be seen in Figure 6.24. By pressing
this button, other buttons become visible and the execution of the statechart starts.
This is shown in Figure 6.25. With the new buttons the execution can be paused,
fast-forwarded or rewound.

At the beginning the camera moves over the start state, so that the start state is central
on the screen. Figure 6.26 shows how then the start state briefly becomes larger and
smaller again, and at the same time turns red. After that the start state changes back to
its original color. This animation lasts about one second. As soon as it has reached the
original color again, the first input is read and the matching arrow slowly starts with
the same animation. This can be seen in Figure 6.27. Also the camera moves above the
arrow. When the arrow has finished the animation starts at the state where the arrow
leads to. After that the next input is read and so on. When the execution is finished, it
can be restarted by clicking the "Execute" button again.

Figure 6.28 shows how the statechart looks when the transitions do not consume any
time and their animations are played simultaneously with those of the states.

19
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Figure 6.24: View before execute was Figure 6.25: User interface with addi-
pressed. tional buttons, after exe-
cute was pressed.

Figure 6.26: Highlighted state during Figure 6.27: Highlighted arrow during
the execution. the execution.

20
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Figure 6.28: Execution with zero time
between transitions.

21



7 Results

The following results are personal assessments of the author and his supervisor.

7.1 Statechart visualization

The pyramid-shaped statechart (Figure 6.4) made the depth of each level clearly visible.
The three-dimensional shape of the statechart was well recognizable and understand-
able. The fact that the child states were directly on top of the parent states made the
parent-child relationship lucid. However, the deep frames of the states made the overall
picture confusing. Important elements such as the letters next to connections no longer
stood out strongly, as the constellation appeared a bit cluttered.

The statechart variant with floating states (Figure 6.5), on the other hand, was very
intelligible. Individual letters were directly and good visible. The entire image looked
very tidy. The three-dimensionality was also directly noticeable here. This was mainly
due to the shadow, which made it clear that the child states were floating above the
parent states. This also clarified the parent-child relationships, since the shadow of the
child state was always visible on the parent state.

The inverse pyramid-like statechart variant (Figure 6.6) was very different from the
previous variants. The three-dimensional structure was recognizable, but was not as
obvious as the previously discussed variants. In addition, the shadows made the image
confusing due to their large area. The texts of the connections and the names of the
states were often partially in the shadows, which made reading difficult. Without the
shadows, however, the three-dimensionality was hard to perceive. Nevertheless, the
parent-child relationship was very clearly recognizable because the children were lying
in their parents” holes.

Comparing the three variants, the floating state variant is the best way to display
statecharts.

22



7 Results

7.2 Motion parallax

The motion parallax effect significantly enhances depth perception. Even small uncon-
scious movements of the head make the three-dimensional structure clear. In this way,
parent child connections in particular become easily recognizable. The effect creates
a pleasant, natural feeling of responsiveness. The motion parallax effect is particularly
good when the head is centered in front of the screen and makes small movements
from there. If the head is too far to the side, the distortion of the image is so strong that
the comprehensibility of the statechart suffers. Therefore, this function is especially
useful when the user does not move much in the room but is sitting or standing firmly
in place.

Since the face detection does not always recognize the position of the head correctly,
sometimes jerky faults can occur in which the camera does not move exactly like the
head in the scene. To minimize these inconveniences, it is better in some cases to use
only the horizontal head position in the program, as this reduces the frequency of
errors. Since vertical head movement is unnatural when sitting and looking at the
desktop screen, this limitation of camera movement is hardly noticeable. However, if
the user is in a different work environment where head movements take place in all
directions, the height of the head position should also be taken into account. For this
reason, it is good to give the user the option of which head movements should be taken
into account and which should not.

It is also important to note that the processing of the monitor camera image requires
a lot of computing power. Therefore, the responsiveness can be disturbed on weaker
devices. In addition, the necessity that it must be bright for the camera detection is a
limitation.

In summary, the motion parallax effect can be a good tool to improve depth perception
and by this help to understand the structure of the statechart. However, it should be
considered how, where and when the user normally uses the application.

7.3 Depth controller

The depth controller provides a good opportunity for the user to customize the statechart
to best suit the individual preferences. The interface is intuitive and easy to use.

When the slider is set to the lowest level, the child states are only very slightly above
their parent states (Figure 6.12). As a result, the depth and thus the three-dimensionality
of the statechart is lost. The shadows are also barely visible, which leads to a loss
of depth perception. Also the motion parallax effect is hardly perceptible. All these
factors contribute to the fact that the statechart appears almost two-dimensional, and
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consequently the parent child relationships are no longer so clearly recognizable.
When the slider is moved to the maximum depth, the distance between the individual
layers is very large (Figure 6.13). As a result, the three-dimensionality of the statechart
quickly becomes apparent. In combination with the motion parallax, however, it can
happen that if the user moves their head too much to the side, the parent states are no
longer completely visible on the screen due to the slanted perspective. This can lead to
a loss of information.

If the slider is in the middle range, the three-dimensional perception is always given
and the statechart fits well into the image. This creates a pleasant user experience
and all information can be displayed well. For this reason, the middle setting of the
controller seems best for use.

It is good, but not absolutely necessary, that the user can control the depth between the
layers. It can help to adapt the operation and visualization of the statechart optimally
to the individual user.

7.4 Fog

Another effective feature is the fog. When this is activated, lower levels are slightly
darkened (Figure 6.15). This greatly helps depth perception. Thus, the distances
between the child and parent states become even more noticeable. The fog is usually
only noticed subconsciously. It is also helpful that arrows whose start and end states are
on different layers get a grayish color gradient in the depth. This makes their position
and orientation in space clearer. Furthermore, the depth controller can also be used to
change the fog intensity at the same time. If the controller is set to a large distance, the
fog effect is also particularly strong. If the distance between the layers is set to very
low, the fog effect has little effect on the image.

7.5 Blur effect

The blur effect offers the possibility to focus on certain layers in the scene. This can be
helpful if only some nodes are of interest to the user at that moment. It also makes it
clear which other nodes are on the same level as the selected node. Another advantage
of this effect is that the relevant information is lucidly visible, but the states that are
not important at the moment can still be seen blurred in the background. This way,
the user always has an overview of the context and knows their position in the scene.
Like in Figure 6.16, arrows with one end on the focused level and the other end on a
lower level are still very sharp in the higher area and then slowly become blurred in
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the lower area. This again contributes to a better understanding of the orientation of
the arrows in space. Furthermore, this allows that it is still clear which arrows end or
begin at the focused nodes.

However, if the mouse is moved over the statechart a lot, the constant refocusing of the
camera can be perceived as disturbing. For this reason, it is important to be able to
turn this feature off, or to provide the option to focus only on the particular layer when
the user actively clicks on a node.

7.6 Outlining effect

With the outlining effect, one or more states can be highlighted. This has the advantage
that the user is immediately given feedback for having just clicked on a state. In
addition, it is also clear which state was clicked. Another good aspect is that it indicates
which states are the child states of the clicked state by coloring them. This is especially
important if the user is looking at the screen at an angle and the child states are not or
only partially displayed above the parent states due to the parallax effect. In this case,
the red frame provides a good indication that the child states belong to the examined
state group (see Figure 6.19).

It is important to consider, however, that the user’s focus is drawn to this frame by the
animation of the outlining effect when it is activated. This could interrupt the user’s
flow while concentrating on another task. It can also be disturbing when the state was
only clicked to move the camera position there. In addition, the increase in the amount
of information could make the overall image confusing and thus detract from the user
experience.

7.7 Frames effect

The frames effect emphasizes in which context the selected state is located. The frames
highlight which states are the parent states of the selected state and where they are
located. The short animation when generating the frames makes it easy to see which
parent state they belong to. This feature is also useful in connection with the motion
parallax effect. Since the generated frames are at the same height as the selected state,
they do not shift in relation to the state when the user moves their head. This makes it
easier to locate the parent states at deeper levels and to understand the shape of the
statechart.

The two different frame variants (thin/thick) have different advantages. In the variant
with the thin frames, more of the lower states are less occluded(Figure 6.21). This is
particularly advantageous when the user looks at the statechart at an angle with the
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motion parallax. In this case, the variant with the thick frames would cover large parts
of the lower states, which could entail considerable loss of information. If, however, the
perspective is not moved much and is mainly central, it is easier to recognize which
parent state the individual frames belong to, since they are still touching their respective
states.

With this effect, it should again be considered that the frames could lead to an overload
of information for some users and thus even worsen the user experience.

7.8 Statechart execution

The statechart execution provides an understandable visualization to execute a state-
chart. The fact that the three buttons "pause"”, "rewind" and "forward" only become
visible after the user presses "execute" is an advantage. This way, at the beginning, the
user is not overwhelmed by an unnecessarily large number of buttons. It also makes it
clear that these three buttons relate to the execution of the statechart.

During the execution of the statechart the active elements are highlighted and change
their size. This pleasantly directs the user’s focus to them. It also helps that all anima-
tion components are changed smoothly and not abruptly. Keeping the camera moving
to the highlighted state or transition ensures that the area of interest is always well in
view, while still allowing the user to maintain a good orientation in the space. By not
starting the animation of the next step until the current animation is over, the execution
order of the statechart remains clear. Even small details, such as the fact that when a
state grows larger, the adjacent arrows move with it and thus always remain with their
ends exactly at the edge of the state, are not directly perceived, but improve the user
experience.

The choice between the two execution options is important to satisfy the different user
needs. The execution variant, in which the transition to another state does not take any
time, reflects the realistic execution. The other variant, in which the state transition
is animated individually, takes longer to execute, but at the same time becomes more
comprehensible. It depends on the user’s preferences whether the realism or the exact
comprehension is more important.

7.9 Combining effects

Some correlations and relationships have already been described in the evaluations. In
the following, the advantages and disadvantages of the combination of various effects
will be examined.

When all effects are activated and the user presses a state, several animations are
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executed at the same time. First, the selected state and its child states turn red and get
a red frame. Secondly, the frames of the parent states are generated and move to the
height of the selected state. In addition, the camera moves to the state and focuses on
this level. The result is shown in Figure 7.2. When the blur effect is deactivated it looks
like in Figure 7.1. This amount of simultaneous information is difficult to understand
for users who are not familiar with these effects. However, if the user already knows
the effects well, a quick understanding is possible. It should also be noted that often
the user’s goal is not to understand all the information, but to pay attention to the
effects that provide the information that is just needed. This is well possible with some
knowledge about the visualization types.

Figure 7.1: Motion parallax effect, outlin- Figure 7.2: Blur effect, motion parallax
ing effect and frames effect ac- effect, outlining effect and
tivated at the same time. frames effect activated at the

same time.
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8 Conclusion

Considering the results, it can be seen that the interactive visualization of statecharts
probably has great potential. Interaction methods such as the motion parallax effect
can be used to make the three-dimensionality of the statechart more perceptible. In
addition, effects such as the outlining effect and the frames effect can direct the user’s
focus to certain areas and thus, for example, emphasize the parent-child relationship
of states. Also the blur effect can contribute to this. It is interesting to note that all the
interaction methods and animations studied are useful in many cases, but not in all.
This depends mainly on the needs of the user. For example, whether the parent-child
relationships are important to recognize at the moment, or whether the user only wants
to get a quick overview of the entire statechart. In order to meet these individual
requirements, the option of switching the effects on and off separately in a menu is a
very good solution. This functionality is also important for beginners, so that they can
tirst get used to the effects.

To confirm these theories scientifically, further research is needed. For example, the
system usability scale described in [Bro+96] could be used. This could serve as a robust
and reliable evaluation tool to verify the advantages of the individual effects. It would
also have the benefit of testing effectiveness, efficiency and satisfaction at the same
time.
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