
Fakultät für Informatik
Technische Universität München

Bachelors’s Thesis in Informatik: Games Engineering

Gameplay Analysis of Competitive Games to
Support the Game Design Process

Luca Ian Türk





Fakultät für Informatik
Technische Universität München

Bachelors’s Thesis in Informatik: Games Engineering

Gameplay Analysis of Competitive Games to
Support the Game Design Process

Gameplay Analyse von kompetitiven Spielen zur
Unterstützung des Game Design Prozesses

Author: Luca Ian Türk
Supervisor: Prof. Gudrun Johanna Klinker, Ph.D.
Advisors: Daniel Dyrda, M.Sc.
Submission Date: September 15, 2020





Eidesstattliche Erklärung

Ich versichere hiermit, dass ich diese Bachelors’s Thesis selbständig verfasst und nur die
angegebenen Quellen und Hilfsmittel verwendet habe.

I confirm that this bachelors’s thesis is my own work and I have documented all sources
and material used.

Munich, September 15, 2020

LUCA IAN TÜRK

v





Abstract

Competitive gaming is a growing market with nearly 500 million fans worldwide. [32]
With professional gaming on the rise, developers are under increased pressure to create
a fair and balanced gameplay experience.

The goal of this thesis is the creation of analysis tools, which support developers of com-
petitive games during the game design process. Although various genres are represented
in competitive gaming, the focus was laid on first person shooter games, specifically the
Counter Strike series of games. Based on various map design guides, a number of analy-
sis tasks were defined, notably the identification of meeting points and the evaluation of
visibility between map areas.

For this purpose, a general framework for the analysis of game maps and visualization of
analysis data for use in the Unity Editor is implemented. A uniform grid representation
of the walkable map areas, which can be generated for arbitrary maps, forms the basis of
this framework. Additional tools allow the definition of map areas and locations.

Using a Monte Carlo approach, the mutual visibility between map areas is evaluated. The
evaluation is shown to predict possible angles of engagement on the Counter Strike map
de_dust2, as well as reveal possibly unintended sight lines between map areas. Utilizing
the NavMesh and pathfinding components provided by Unity, a distance evaluation tool
was implemented. An evaluation of meeting points for de_dust2 using this tool closely
matched known meeting points for the map.

vii





Contents

Eidesstattliche Erklärung v

Abstract vii

1 Introduction 1

2 Interesting Map Features 3
2.1 First Person Shooters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Counter Strike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Interesting Map Features for Analysis . . . . . . . . . . . . . . . . . . . . . 4
2.3 Main Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Path Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 Visibility Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Grid Mesh Generation 9
3.1 NavMesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Generating the GridMesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Calculating the Optimal Resolution . . . . . . . . . . . . . . . . . . 9
3.2.2 Scanning the NavMesh . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Short Introduction to Mesh Representation for Rendering . . . . . 11
3.2.4 Triangulating the Grid . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.5 Extending to General Levels . . . . . . . . . . . . . . . . . . . . . . 12

3.3 GridMesh Materials and Rendering of the GridMesh . . . . . . . . . . . . 14

4 Designating Map Locations 17
4.1 Map Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Marking Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Visibility 21
5.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Raytracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Area To Area Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.1 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.3 Disadvantages of the Monte Carlo Approach . . . . . . . . . . . . . 26
5.3.4 Further Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Pathfinding 31
6.1 A* Pathfinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Pathfinding on the NavMesh . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Applying A* to the NavMesh . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Pathfinding in Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x Contents

6.4 Single Path Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Two Team Distance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5.1 Calculating Distances and Visualization . . . . . . . . . . . . . . . . 38

7 Processing and Combining Data 43
7.1 Vertex Attributes and Vertex Groups . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Value Range Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Set Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Example Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Related Work 47
8.1 Playtest Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.1.1 Heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.2 Aggregated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Tactical Pathfinding and Decision Making . . . . . . . . . . . . . . . . . . . 48

9 Outlook and Conclusion 51
9.1 Possible Additions to the Tools . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.1.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.1.2 Playtest Data and Player Feedback . . . . . . . . . . . . . . . . . . . 51

9.2 Implications for Tactical Pathfinding . . . . . . . . . . . . . . . . . . . . . . 52
9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



1 Introduction

In July of 2019, an unusual view could be seen in Cologne’s Lanxess-Arena. The hall,
usually hosting the local ice hockey and basketball clubs, is filled to the brim. In place
of hockey goals or basketball hoops, a stage is put up. [39] On it, a row of computers is
backed by giant screens. As a group emerges, people hold out their hands for a chance
to high-five the players. The event is ESL One, a Counter Strike : Global Offensive tour-
nament with a 300.000 $ price pool, featuring eleven teams from around the world.

So called e-sports have been steadily increasing their viewership numbers over the last
decade. In 2020 nearly 500 million people followed such competitions at least occasion-
ally [32], rivaling some of the top ten traditional sports in viewership. [33]

With professional e-sports competitions on the rise, there is an increased need for fairness
in video games.

In traditional sports, fairness is often achieved through symmetry, both in objective and
playing field. Video games on the other hand thrive for variety, often featuring a multi-
tude of maps and asymmetric objectives.

Designing fair maps for such games is not an easy task, and the process is often based on
the intuition of the map designer and extensive play testing. Many gameplay-relevant
facets of a maps design could, however, be evaluated automatically during the map de-
sign process.

In this thesis a general framework for the automatic analysis of game maps will be pro-
posed, and a number of analysis tools relevant to the gameplay of the Counter Strike
series of games will be implemented.

To support designers during the map creation process, the presented tools are integrated
into the editor of Unity Engine, the top game engine in terms of market share with over
50% of games being powered by Unity in 2019. [35]

Figure 1.1: 15.000 fans follow a Counter Strike: Global Offensive tournament in Cologne’s
Lanxess-Arena, photo by Henning Kaiser [23]

1





2 Interesting Map Features

In the following chapter, a number of interesting map features will be presented that form
the basis for the performed analysis.

2.1 First Person Shooters

First person shooters (FPS) are action games played in a first person perspective that
allow players to engage in virtual combat. Engagements between players are usually
fought using guns or other ranged weapons.

The skill in FPS games is derived from the players ability to effectively navigate the vir-
tual world and overcome enemy players in firefights, requiring them to react quicker and
be more accurate than their opponent.

The movement and gunplay are the most important pillars of an FPS games design, and
in fact, many players choose to partake in so called death matches that feature no addi-
tional objectives.

Over the years, a number of common game modes have been introduced that feature
more objectives and increase the tactical complexity of FPS matches. Some examples are
capture the flag (CTF) game modes that require players to steal a flag out of the enemy
teams base or domination style game modes that feature specific map areas which need to
be captured and held by the teams.

2.1.1 Counter Strike

Counter Strike (CS) is a tactical multiplayer shooter series developed by Valve. The first
game of the same name was developed as a modification to Valves successful shooter
Half-Life. A first version was available for play in 1999, with a full release following in
2000 after being acquired by Valve. [8]

Counter Strike models a conflict between terrorist (T) and counter terrorist (CT) factions
taking after real world terror organizations and police forces. In accordance with its
setting, the game features multiple modes such as hostage and bombing scenarios. [8]

While many iterations have since been released, CS stays close to its roots, adding only
minor changes to the formula. Subsequently is has been continuously played compet-
itively since 2001. The most recent iteration Counter Strike: Global Offensive (CS:GO)
was released in 2012. [9]

Maps for the Counter Strike game mode bomb defusal will be used throughout this the-
sis. Additionally the map design principles underlying the implemented tools are based
on this game mode.

3



4 2.2 Interesting Map Features for Analysis

Figure 2.1: Impressions from Counter Strike: Global Offensive. Advance of T side players
and planting of the bomb on the map de_inferno.

Bomb Defusal

In bomb defusal, players of the terrorist side try to plant a bomb at one of two bomb sites
on the map. The counter-terrorist team on the other hand defends the bomb sites and, in
case the bomb is planted, try to defuse it before is blows up on a 40 second timer. [6]

The game mode allows players to make meaningful tactical choices. At the outset of a
round, both teams have to choose which bomb site to attack or defend, or to split up the
team to cover both. If players miscalculate they need to hurry to the other site in a race
against time.

Contrary to most arena shooters common at the time of its inception, Counter Strike
features no respawn mechanic. If players get killed they are out for the rest of the round,
further raising the stakes.

Bomb defusal is currently the only mode played in competitive Counter Strike e-sport
events.[7]

2.2 Interesting Map Features for Analysis

Choke Points

Choke points are the areas where the attacking team will encounter the defending team
and, therefore, where most of the action will take place. According to a guide by Alex
Galuzin, a map designer and video tutorial creator, successful choke point design in CS
depends on multiple principles.

First, it needs to be placed in such a way that it will be reached at almost the same time
by both teams. The defending team should reach the choke point slightly ahead of the
attacking team, such that a defense can be set up. In no circumstance should the attacking
team be able to rush through the choke point while the defending team has not reached
it yet.

The choke point should narrow down the map in order to force a meeting of the teams,
while the attacking team should be afforded some options, for example by providing
multiple access points. Defenders should then be able to view all entrances from a single
viewpoint located on the choke point.

Lastly the sum of choke points on any given map should facilitate different play styles,



2.2 Interesting Map Features for Analysis 5

Figure 2.2: A defenders perspective of choke point banana on the map de_inferno from
Counter Strike: Global Offensive

such as sniping, close quarter combat or stealth. [16]

One example of such a choke point on map de_inferno from Counter Strike: Global Of-
fensive can be seen in figure 2.2. The area named banana due to its curved shape visibly
narrows down the map, resembling a tight alleyway. Both the defending and attacking
team are provided with cover, in the form of barrels and other objects, as well as nooks
in the alleyway.

Meeting Points

Meeting points are then the the areas where players of the opposing teams can first meet,
given that they are advancing as fast as possible.

Rotation Time

Rotation time in Counter Strike refers to the time needed to get from one bomb site to the
other. If CT players set up their defense at the wrong bomb site, they need to be able to
get the other site before the 40 second timer runs out. Additionally some leeway should
be given, such that the defense set up be the T team can be overwhelmed. A community
map design guide published on the steam forums suggest a shortest rotation time in the
range of 10 to 15 seconds. [14]

Visibility

Visibility, or a sightline, exists between two points on the map if players located at these
points are able to see, and subsequently engage, each other. The area visible to a player is
then also an area controlled by that player, similar to chess pieces controlling the squares
they can take on.



6 2.3 Main Tasks

Figure 2.3: Example of a pixel angle on the map de_mirage from Counter Strike: Global
Offensive [14]

According to the before mentioned guide, long sightlines should be avoided in Counter
Strike, as an unfair advantage is given to players equipped with sniper rifles. Other
problematic sightlines are tight angles and pixel angles. These are, often unintended,
sightlines between areas that are unintuitive to players and give advantage to those will-
ing to abuse them. An example of such a pixel angle provided in the guide can be seen
in figure 2.3.[14]

2.3 Main Tasks

The main tasks performed by the implemented tools are then the following.

2.3.1 General Framework

The project provides a general framework for the implementation of analysis tools, no-
tably a grid mesh structure that supports the sampling of uniformly distributed possible
player positions and the rendering of analysis data. Additionally, tools are implemented
that allow map designers to designate areas and locations on the map which can be used
in analysis tools.

2.3.2 Path Evaluation

The tools support the evaluation of single paths, as well as the distance from a number
of spawn points to every point of the map. Utilizing these tools, walk distances between
areas can be evaluated to fine tune timing and meeting points can be visualized to verify
choke point placement.



2.3 Main Tasks 7

2.3.3 Visibility Evaluation

The regions visible to players at any map area can be visualized. Uses for this tool are
found in the evaluation of the entry point visibility, as well as the play style supported
on a choke points. Additionally, the tool can be used to identify long or unintended
sightlines between areas.





3 Grid Mesh Generation

This chapter will describe how a uniform grid mesh can be generated on the basis of
the Unity Navigation Mesh (NavMesh). The resulting GridMesh forms the basis for the
following evaluation tools and can render data directly onto the maps surface.

3.1 NavMesh

The NavMesh concept was popularized in video game programming by Greg Nook in
the early 2000s. The method creates a simplified mesh representation of the walkable sur-
face area of a map that can be used to perform pathfinding on a greatly reduced data set
compared to the original level geometry. [31] Unity Engine is shipped with a NavMesh
implementation that supports the generation of NavMeshes in the Editor, as well as a
pathfinding implementation.

3.2 Generating the GridMesh

As evaluations and data visualization should be performed with equal detail across the
map, a uniform grid needs to be formed representing possible player positions on the
map. The NavMesh is a good basis for this mesh, as the walkable area of a map includes
most possible player positions while excluding unnecessary geometry.

Initially the algorithm is described for the single layer case, meaning that the map cannot
feature any vertically overlapping map areas, and is then extended the the general case.

3.2.1 Calculating the Optimal Resolution

To ensure a uniform distance of vertices on the xz plane, the ratio of the grids resolution
needs to match the ratio of the NavMesh’s dimensions on that plane.

dim.x

dim.z
=
width

depth

With:

dim =

|max({vx|v ∈ VN})−min({vx|v ∈ VN})|
|max({vy|v ∈ VN})−min({vy|v ∈ VN})|
|max({vz|v ∈ VN})−min({vz|v ∈ VN})|

 , where VN the NavMesh vertices

The maximum number of vertices per vertical layer n is defined by the user.

With width ∗ depth = n, the resolution can then be calculated:

9



10 3.2 Generating the GridMesh

Input:
V : a two dimensional array of vectors of sizes width and depth
max, min: Vectors of minimum and maximum values of vertex positions in VN

for i ∈ [0, width− 1] do
for j ∈ [0, depth− 1] do

scanhead←

Lerp(minx, maxx, i/(width− 1) )
maxy + c

Lerp(minz, maxz, j/(depth− 1) )

;

ray ← ray(origin = scanhead, direction = down);

if MN .Raycast(ray,out hit) then
current← hit.position;

if NavMesh.SamplePosition(current, out hit) then
V [i, j]← hit.position;

end
end

end
end

Algorithm 1: Scanning the NavMesh.

width = b
√
n ∗ dim.x

dim.z
c

depth = bwidth ∗ dim.z
dim.x

c

3.2.2 Scanning the NavMesh

In a first step, the map positions located at the grid intersections need to be found.

The implemented method follows a 3D scanner analogy. A virtual scan head is moved
across the map surface in equidistant steps and samples the surface positions of the
NavMesh using raycasts.

The used algorithm can be seen in figure 1. The position of the scan head for the current
iteration is calculated via linear interpolation over the minimum and maximum x and z
values of the NavMeshes vertices using the normalized loop indices. Along the y-axis,
the scan head is set to the maximum y value and moved up some constant value c to
make sure no surface is missed by the raycast.

A ray is then projected from the scan heads position downwards. If MN is intersected, a
first estimation of the position is found. Because the NavMesh is highly simplified, the
intersected position might not lie directly on the ground level of the original map. Using
the NavMeshes SamplePosition function at the found position then projects the position
onto the map.

A two-dimensional array of vertex positions is used to simplify the triangulation step
discussed in the next section. In a final conversion step, the two-dimensional indices can
be mapped to one dimension utilizing a dictionary.



3.2 Generating the GridMesh 11

0 1

2 3

0 1

2 3

S
T0

T1

v0 = (0, 0), v1 = (1, 0),
v2 = (0, 1), v3 = (1, 1)

Figure 3.1: Example triangulation of rectangular shape S into triangles T0 and T1

3.2.3 Short Introduction to Mesh Representation for Rendering

The previous step provides a grid of unconnected vertices. To render the mesh, the exist-
ing vertices need to be connected to form simple geometric shapes which can be rendered
on graphics hardware.

Triangles are generally used in game engines, because they form the simplest type of
polygon and always form a plane, which is not true for polygons with higher vertex
count. Furthermore, most available graphics acceleration hardware is designed around
triangle rasterization. [18]

The simplest way of feeding a mesh to the graphics pipeline is in the from of a trian-
gle stream, where every triangle is defined by the three vertices it is formed by, their
order defining the direction the triangle is facing. Whether clockwise (CW) or counter
clockwise (CCW) order is used can generally be decided by the developer. [18] For the
following example CW order will be used.

Figure 3.1 shows the simple rectangular shape S being triangulated into triangles T0 and
T1, such that the surface normal points out of the plane. This is achieved by picking an
arbitrary starting vertex per triangle and listing the vertices in CW order, giving us the
triangle stream T .

T = (

(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)
,

(
1
0

)
)

One disadvantage of this method can be seen here. Vertices shared by multiple triangles
will be included multiple times. Sending duplicate data should be avoided, because
GPU bandwidth is limited, and the transformation and lighting stages of the rendering
pipeline would be repeated as well. Memory is also a consideration, especially given that
often additional per vertex data such as vertex color or UV coordinates will be added. [18]

Indexed triangle lists are one solution to this problem, and are used for the GridMesh.
Instead of defining triangles directly using the vertex data, a triangle list T of indices into
the vertex array V is used.

V = (

(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
1
1

)
)

T = (0, 2, 1, 2, 3, 1)



12 3.2 Generating the GridMesh

Input: T : List of two-dimensional index vectors representing triangles

for i ∈ [0, width− 2] do
for j ∈ [0, depth− 2] do

if
LoS(V [i, j], V [i+ 1, j]) ∧ LoS(V [i, j], V [i, j+ 1]) ∧ LoS(V [i+ 1, j], V [i, j+ 1])
then

T.AddAll((

(
i
j

)
,

(
i

j + 1

)
,

(
i+ 1
j

)
));

end
// Repeat for second triangle

end
end

Algorithm 2: Triangulating the GridMesh.

3.2.4 Triangulating the Grid

Given that the vertices output by the scanning step form a grid, the triangulation will be
similar to the simple example. However, vertices should only be connected in the result-
ing mesh if the positions are also connected by line-of-sight on the NavMesh, meaning
that a directly line can be drawn between them without hitting a NavMesh boundary.
[31]

This ensures that no triangles are formed across un-walkable map areas. The LoS function
in the following pseudo-code implements such a function and returns true only if the
line-of-sight between the provided positions is uninterrupted.

The triangulation algorithm can be seen in algorithm figure 2. At every vertex, safe for
the upper most rows and columns, the two triangles forming the neighboring grid cell
are checked for line-of-sight. All triangles that are connected on the NavMesh are then
added to the triangle index list.

In a clean up step, useless vertices that are not part of any triangle are omitted and the
indices are mapped to one dimension. The resulting vertex and triangle lists can then be
combined into a mesh that can be rendered to display analysis data.

3.2.5 Extending to General Levels

In order to extend the algorithm to account for multiple levels, some adjustments need
to be made.

In the scanning step, additional downward rays are spawned at the intersection forming
a pillar of intersected positions. The result is a jagged two dimensional array of vector
arrays, with all intersected positions in a top to bottom order. Jagged in this case describes
the fact that the depth will vary across the grid according to how many layers are present
at that scan head position.

In the triangulation step, vertices of different levels then need to be connected. It is as-
sumed that a vertex is connected to at most one vertex in every neighboring pillar.

The index of the connected neighbor in such a pillar then needs to be found, if a con-



3.2 Generating the GridMesh 13

Figure 3.2: A Unity NavMesh in blue on the left and the resulting GridMesh shown in
wireframe on the right.

nection exists at all. This functionality is realized in the ConnectedVertex function. If no
connection exists an error value is returned. The triangulation algorithm can be seen in
algorithm figure 3.

An additional dimension is added to the indices in triangle list T that corresponds to the
index of the vertex in it’s pillar. For every vertex in a pillar, the connected vertices are
then evaluated. If a vertex is connected to two neighbors, and these neighbors are also
connected, the resulting triangle is added.

Input:
V : Jagged two dimensional array of vertex arrays representing hits along the vertical
at the scan head position.
T : List of three-dimensional index vectors representing triangles

for i ∈ [0, width− 2] do
for j ∈ [0, depth− 2] do

for w ∈ [0, V [i, j].Length] do
u← ConnectedV ertex(V [i, j][w], V [i, j + 1]);
r ← ConnectedV ertex(V [i, j][w], V [i+ 1, j]);

if u 6= −1 ∧ r 6= −1 ∧ LoS(V [i, j + 1][u], V [i+ 1, j][r]) then

T.AddAll((

 i
w
j

 ,

 i
u

j + 1

 ,

i+ 1
r
j

));

end
end

// Repeat for second Triangle
end

end
Algorithm 3: Triangulating the GridMesh.



14 3.3 GridMesh Materials and Rendering of the GridMesh

Material

+ name : string
+ shader : string
+ material : material
+ isBaked : boolean

+ Material(name : string, shader : string)
+ Draw ( mesh : GridMesh ) : void
+ Bake( mesh : GridMesh ) : void
+ PreDraw( mesh : GridMesh ) : void
+ Update() : void

ColorMaterial

- colors : Color[]

+ ColorMaterial(name : string)
+ PreDraw( mesh : GridMesh ) : void

DistanceMaterial

+ DistanceMaterial(name : string)
+ Bake( mesh : GridMesh ) : void
+ PreDraw( mesh : GridMesh ) : void

VisibilityMaterial

+ VisibilityMaterial(name : string)
+ Bake( mesh : GridMesh ) : void
+ PreDraw( mesh : GridMesh ) : void
+ Update() : void

Figure 3.3: Class structure of selected GridMesh materials

3.3 GridMesh Materials and Rendering of the GridMesh

Similar to materials applied to standard Unity meshes, GridMesh materials perform the
rendering of the GridMesh in the scene view.

The general structure of the materials can be seen in figure 3.3. In addition to the render-
ing task, GridMesh materials also implement the desired evaluation in the Bake function.

For rendering, the GridMesh vertex and triangle lists are combined into a Unity mesh
object, which can be accessed via the GridMesh Mesh property. The base classes draw
method then sets up the render pass and draws the mesh.

1 public void Draw( GridMesh mesh, float verticalOffset ) {
2 if ( isBaked ) {
3 material.SetPass(0);
4 Graphics.DrawMeshNow( mesh.Mesh, Vector3.zero + verticalOffset *

Vector3.up, Quaternion.identity );
5 }
6 }

Via the shader variable, custom shaders can be supplied using their unique identifier in
the Unity Editor. The Unity material used in rendering is then loaded using this identifier
upon construction or deserialization.

Any additional tasks needed for rendering, such as assigning the vertex color array in
the case of color materials or setting additional shader attributes, are implemented in the
child classes PreDraw function according to the specific need and shader.

In order to prevent z-fighting issues, the mesh is rendered with a slight vertical offset
which is added to the position.

An example rendering of a GridMesh material assigning random vertex colors can be



3.3 GridMesh Materials and Rendering of the GridMesh 15

Figure 3.4: Example rendering of a GridMesh material assigning random color values to
every vertex.

seen in figure 3.4.





4 Designating Map Locations

4.1 Map Areas

A map area is a subdivision of the map. On the GridMesh, areas are represented as a
subset of GridMesh vertices located in the map area.

To use areas in evaluations, they need to be designated by the designer first. One way
to achieve this would be a system where areas can be painted directly onto the mesh,
defining the subset explicitly.

One issue with this approach is the frequent rebaking of the GridMesh. In use by a
map designer, the mesh would be rebaked after every alteration to the maps geometry.
During this process, new vertices will be assigned and all subsets will be invalidated. The
redefinition of all areas after every alteration is inconvenient. At most the altered areas
should be redefined.

Because of this, areas are defined in the form of collider meshes in this project. Whenever
an area is needed by a material the GridMesh vertices located in that collider can then be
evaluated.

To define this mesh, the user is able to set corner points in the scene enclosing the area
and defining a polygon. Using a triangulator available for Unity, a mesh is generated
from this polygon [38], which is extruded up and down to form the collider mesh.

Once an area is selected, a new corner point can be added simply by clicking the de-
sired position in the scene view window. In case a corner has been misplaced, the last
added corner, or all corners, can be cleared. One simple example area with the resulting
grid mesh area can be seen in figure 4.1. The system also supports more complex area
geometries with verticality as can be seen in figure 4.2.

Figure 4.1: Definition of a simple area. Corners are added at the cursor location defining
the collider mesh. Enclosed GridMesh vertices rendered in white in rightmost
picture.

17



18 4.1 Map Areas

Figure 4.2: The system allows the definition of complex areas with verticality.

Figure 4.3: Areas can be selected, added and edited in a custom editor window



4.2 Marking Groups 19

Figure 4.4: Example of a marking group added in the scene view.

4.2 Marking Groups

Marking groups are used to designate locations on the map. One example of their use is
the designation of spawn locations in distance evaluations. Similar to the designation of
areas, markings can be added directly in the scene view.





5 Visibility

This chapter will show how the visibility between areas can be evaluated for a source
area A and target area B.

Given a position x ∈ B on the map and source area A, the visibility of x from A is the
proportion of positions in A from which a player can see another player located at x.

This question is closely related to the illumination of a point by an area light source. Treat-
ing the source area as an area light source with no intensity fall-off, traditional rendering
algorithms can be used to evaluate the visibility at x.

One adjustment needs to be made to account for player geometry. While lighting algo-
rithms usually calculate the lighting on a single surface point, the visibility of a player
model is in fact an integral over the potentially visible surface of the player model.

This projects implementation is simplified in this regard. A player counts as visible, if
the point located above the map surface at a defined player height is illuminated by the
pseudo area light of the source area lifted by the same height.

5.1 Monte Carlo Integration

Monte Carlo integration is a method of estimating the value of an integral by randomly
sampling the function in the integration interval and averaging over the results. [22]

F =

∫ b

a
f(x)dx ≈ (b− a)

1

N − 1

N∑
i=0

f(Xi)

where:
Xi ∈ [a, b], N the number of samples

It is extensively used in computer graphics for tasks such as global illumination [24] or
area lights. [5]

5.2 Raytracing

Raytracing is one of the earliest image rendering techniques, being introduced by Appel
in 1968. The method is based on the simulation of light rays falling into a virtual camera.
[1]

For any point on the virtual image pane, a ray originating at the camera’s origin through
this point can be simulated. This ray is intersected with the scene geometry and the point
p closest to the camera is returned, making a contribution to the image.

As shown by Appel, shadows cast by a point light source can then be evaluated by casting

21



22 5.3 Area To Area Visibility

Figure 5.1: Comparison of hard shadows produced by point light sources and soft shad-
ows with penumbra produced by area light sources (left to right). Rendered
using Blender Cycles.

an additional shadow testing ray from the intersected point p to the light source. If no
geometry is intersected by this ray the point is illuminated, otherwise it lies in shadow.
[1]

This shadow testing is the crucial part for the task of evaluating player visibility. The
target point x is predefined and independent of viewpoint, so the initial camera to scene
intersection can be skipped.

Shadow testing for area light sources was introduced by Cook et al. through the use of
distributed raytracing lending to the Monte Carlo approach. Instead of casting single
rays to a point light source, a number of samples distributed over the area light source
are taken. The proportion of un-intersected rays then yields the illumination of the point.
[5] One example of soft shadows with penumbras, or partial shadows, can be seen in
figure 5.1.

5.3 Area To Area Visibility

On the GridMesh, the area to area visibility for source area A and target area B is then
the visibility evaluation of every target GridMesh vertex b ∈ B from A.

Results of this evaluation are floating points values in the range [0, 1], where vertices
visible from every vertex inAwill be assigned a visibility of 1, while fully hidden vertices
are assigned a visibility of 0.

5.3.1 General Algorithm

The general algorithm used in the visibility evaluation is given in pseudo-code in algo-
rithm figure 4.

The inputs defined by the user are the two areas A and B provided as lists of indices into
the GridMesh MG, the target number of samples N as well as the player height h.



5.3 Area To Area Visibility 23

Input:
A: source area
B: target area
MG: GridMesh
N : number of samples
h: player height

visiblity ← newfloat[MG.Length];
n← min(A.Length,N);
for b ∈ B do

samples← randomly pick n elements from A;
sum← 0;
for s ∈ samples do

origin←MG[b] + h;
target←MG[s] + h;
direction← (target− origin).normalized;
ray ← ray(origin, direction);
if ¬Raycast(ray, ||target− origin||) then

sum← sum+ 1
end

end
visibility[b]← sum/n;

end
Algorithm 4: General algorithm for evaluating visibility from area A to B

As the number of vertices in source area A can be below the target sample size, the actual
sample size n is taken as the minimum of the number of vertices in A and N .

Then for ever vertex in B, n random vertices from A are picked. The algorithm then
iterates over the sampled vertices. In each iteration the player height is added to both the
source and target vertices, and the directional vector between them is calculated. With the
resulting origin and direction vectors the ray is defined and a raycast can be performed.

To avoid counting intersections behind the target, the raycast is limited to the distance
between the target and origin points. If no intersection is found, the sum is incremented.
Once the raycasts have been performed for all sample points, the visibility is calculated
as the sum divided by the number of samples.

Sample Sets

Testing this algorithm shows that the creation of unique sample sets for every target
vertex is expensive. For this reason a number of sample sets are created prior to execution
and used during the calculation.

5.3.2 Example

This and all subsequent examples will be based on the Counter Strike map de_dust2 . The
model used was uploaded to the 3d model sharing site sketchfab by user vrchris and is
equivalent to the map featured in the original Counter: Strike from 2000. [36]



24 5.3 Area To Area Visibility

Figure 5.2: Visibility evaluation from the area marked on the left to the whole map. Visi-
bility shown as a gradient from green, fully visible, to red, barely visible. The
visibility cone from the example is marked in red in the right-most image.
(N = 804)

de_dust2 is one of the most popular maps for the defusal game mode, currently being the
fourth most played map in events covered by HLTV, an e-sports news platform centered
on Counter Strike. [21].

This map is interesting to analyze because it is exceptionally fair, featuring an almost
50/50 win rate with a slight advantage for the T side. In this regard it is the fairest out of
the original roster of maps, and is only rivaled by the recent addition de_overpass released
in a 2013 update. [2]

An evaluation of the visibility from the T side spawn area is pictured in figures 5.2 and 5.3.
A number of visibility cones with varying amounts of visibility can be seen, showing the
visible nearby areas, as well as visible area at the bottom of the map, where the opposing
teams spawn is located.

On feature worth mentioning is the slim visibility cone through a doorway marked in red
which allows T side players clear a view of the connecting area between the two bomb
sites. A in-game view can be seen in figure 5.4, showing the sightline which is only visible
through a tight angle at specific spots. Whether this sightline was originally intended is
unclear, similar spots could, however, be easily missed by a map designer.

The visibility of this area can be used by T side players to scout out where the CT side is
setting up their defense and, given proper equipment, can be used engage the opposing
team early on.

An evaluation of early game engagements taking place in the first 30 second of a round
performed on CSGO HUB [10] can be seen in figure 5.4. The evaluation generated on
CSGO HUB shows that many engagements in the early game take place in the T side
spawn as well as the before mentioned area. Additionally it can be seen that T players
are more likely to survive the engagements, while the results are mixed for CT players.

This shows that the evaluation does yield meaningful results in showing possible angles
of engagement from a given area and can reveal tight angles. It cannot, however, predict
the outcome of these engagements. Furthermore it is questionable, if pixel angles, such as
presented in a previous chapter, could be found by this evaluation. These angles usually
only exists in very specific spot and it is unlikely that such a spot lies on the grid.



5.3 Area To Area Visibility 25

Figure 5.3: Data from figure 5.2 in grayscale for better visibility of gradients. White areas
are fully visible, black areas are not visible. (N = 804)



26 5.3 Area To Area Visibility

(a) (b)

Figure 5.4: (a) The view from the T spawn area through the doorway in-game and (b)
visualization of early engagements in the first 30 seconds of a round, show-
ing successful engagements by T players from the spawn area (generated on
GSGO HUB [10])

5.3.3 Disadvantages of the Monte Carlo Approach

While it can be shown that the estimator 〈FN 〉 tends toward the true solution F for N →
∞, the error can be large if an insufficient N is chosen.

The standard deviation of the estimator is proportional to the inverse root of N , meaning
that N needs to be quadrupled to half the expected error. [22]

σ(〈FN 〉) ∝ 1√
N

As can be seen in figure 5.5, this can lead to extensive noise in the rendered result. Ren-
dering the visibility at the maximal sample size 804 possible for the area gives a clear
gradient of visibility values.

A rendering using a single sample set at 256 samples on the other hand shows clear
scanlines, while a rendering at the same sample size using 50 sample sets appears very
noisy.

This is a known issue of Monte Carlo raytracing and recent advancements made in the
form of neural network driven denoising algorithms allow for a reduction of the sample
size while keeping visual fidelity. [29]

The naive algorithm can, however, still be optimized to allow for overall higher sample
sizes while still keeping acceptable performance.



5.3 Area To Area Visibility 27

Figure 5.5: Comparison of noise at different sample sizes N . On the top N = 804. On the
bottom N = 256, with one sample set on the left and 50 sample sets on the
right



28 5.3 Area To Area Visibility

5.3.4 Further Optimizations

Batched Raycasts

One advantage of the Monte Carlo method is the independence of each random experi-
ment or, in the case of raytracing, the independence of each cast ray. Therefore the ray-
casting can be parallelized.

Unity features RaycastBatches which, given a number of rays predefined in RaycastCom-
mands, perform the raycasting asynchronously and parallel between frames. [13]

Due to this evaluation between frames, the algorithm cannot be implemented as linearly
as seen before. Instead, the commands are dispatched in one frame and read in the next.
The batched algorithm can be seen in algorithm figure 5

Here the Schedule function sets up the rays for all source vertices passed as a sample
set. Each scheduled job then performs the raycast needed for the visibility evaluation of
one target vertex. A varying number of jobs can be used to schedule the evaluation of
multiple vertices per frame.

Results are made available in the results array when the job is completed. The sets of
available and used job handles are managed through two stacks. A vertex stack is used
to save which vertices are evaluated by the active jobs.

In addition to a performance increase, another advantage of this approach is editor re-
sponsiveness. For a small amount of jobs, the raycasting can be performed in the back-
ground with little to no decrease in responsiveness. By increasing the number of jobs the
user can trade editor responsiveness for overall faster rendering times.

Adaptive Sampling

Adaptive sampling is a way of reducing the number of shadow testing rays needed to be
cast into the scene, using knowledge from prior cast rays.

The concept was introduced for area light sources by Kok et al. [25] and also has applica-
tions in recent real time raytracing.[4]

As can be seen in figure 5.5, the error in the penumbra region of the visibility rendered at
a low sample size is high, while the results for fully visible and fully hidden regions do
not differ.

This is not a coincidence. Given a vertex with no visibility of the target area, no amount
of additional cast rays will make a difference to the outcome, which will always be zero.
The same is true for fully visible vertices, albeit the result will always be one.

Adaptive sampling tries to identify these vertices early and excludes them from further
testing.

In practice, two sampling sizes M and N with M < N are defined. Then in a first stage
the visibility of all target vertices is evaluated using M samples. If a vertex is found
to be fully shadowed or visible according to these M samples, the vertex will not be
considered in the second stage, where for every vertex now confirmed in the penumbra
N −M additional rays are sent to meet the target sampling size.

While penumbra vertices can be confirmed, the method cannot confirm with absolute
certainty that a vertex excluded in the first stage is not in fact in the penumbra. Therefore



5.3 Area To Area Visibility 29

Input:
A,B, MG,n,visibility: see algorithm 4,
current: current vertex as index into B,
sampleSets: array of sample sets of lenght n from A,
jobs: array of RaycastBatch job handles,
results: array of results from jobs,
availableJobs: Stack of available job handles as index into jobs,
usedJobs: Stack of used job handles as index into jobs,
vertexStack: Stack of vertex index corresponding to jobs in usedJobs

// Scheduling Jobs
while availableJobs.Count 6= 0 do

jobIndex← availableJobs.Pop();
usedJobs.Push(jobIndex);
vertexStack.Push(current);

jobs[jobIndex]←
Schedule(MG[B[current]], sampleSets[current%sampleSets.Length], jobIndex);

current← current+ 1;
end

// Evaluating Jobs
while usedJobs.Count 6= 0 ∧ jobs[usedJobs.Peek()].IsComplete do

index← usedJobs.Pop();
sum← 0;
for Raycast ∈ results[index] do

if no intersection found then
sum← sum+ 1;

end
end
visibility[B[vertexStack.Pop()]] = sum/n

end
Algorithm 5: Batched Algorithm for evaluating visibility from area A to B



30 5.3 Area To Area Visibility

M Rendertime Cast Rays Max Absolute Error Variance MSE
512 67.3 s 40048640 - - -
128 57.6 s 28435712 0.02 0.33× 10−7 0.34× 10−7

32 41.1 s 24782144 0.12 0.13× 10−6 0.13× 10−6

8 35.3 s 19682912 0.29 0.33× 10−3 0.33× 10−3

Table 5.1: Errors and Performance of Adaptive Sampling for different M values. Errors
compared to baseline M = 512. Images with ascending M values from left to
right.

the value M should be sufficiently large to minimize errors.

A comparison of the performance as well as results of this adaptive approach can be seen
in figure 5.1, compared to a baseline of N = 2048 and M = 512.

The rendering with M = 8 shows some problems, with penumbra regions classified as
fully visible in the bottom left and as fully hidden in the bottom right. The visibility cone
to a separated area on the top right is not included.

At M = 32, the visual error is already small, although some regions in bottom left are
misclassified as fully visible. At M = 128, both the visual and measured error is negligi-
ble, while the speedup at this point is small but still significant.

The speedups which can be reached with this approach are also dependent on the eval-
uated area. If most regions of the map are hidden, the speedup will be significant. If, on
the other hand, all regions of the map lie in the penumbra, no speedup will be achieved
with added overhead.



6 Pathfinding

6.1 A* Pathfinding

A* is an algorithm for calculating shortest paths between nodes of a graph. It has been in-
troduced by Hart el al. [19] in 1968, extending an earlier algorithm by Dijkstra. [12] While
both Dijkstra’s algorithm and A* calculate shortest paths, A* also does so optimally.

Given a graph G = (V,E) with nodes V and edges E, Dijkstra’s algorithm finds the
shortest path between start node s ∈ V and target node t ∈ V .

Beginning at the start node the graph is explored according to the distance to start node s.
A set of open nodes up for exploration is kept for this purpose, with s being included ini-
tially. At every step of the iteration the node q with the minimal distance to s is removed
from the set and added to a closed set.

Then for every neighbor p from the set of neighbors Γ(q) of q, the distance to the start
node is calculated as

g(p) = g(q) + d(q, p)

where d(q, p) is the distance between q and p, usually the weight of the connecting edge.
Finally if p is unexplored or the calculated distance is smaller then when it was closed, it
is added to the open set. The process then repeats until t is found or no more nodes can
be explored.

A* adds a heuristic function h, which is used to estimate the distance of the expanded
node p to target node t. This function h accounts for the fact that information about the
environment can be used to choose nodes which are more likely to be part of a shortest
path.

Given the task of finding a shortest path from Munich to Berlin, it can be assume that such
a path will not take a detour to the south. Even if Graz in Austria is closer to Munich than
Leipzig, the latter will get us closer to the goal.

Then instead of choosing nodes according to calculated distance g(p) the function

f(p) = g(p) + h(p)

is used.

In the real world example, the linear distance between the location and the target city can
be used. Then in every iteration, the node minimizing the distance to the start and end
nodes is explored.

A* is guaranteed to find the shortest path if the heuristic h is admissible, meaning that the
heuristic never overestimates the cost of reaching the goal. [30]

h(x) = 0 is one example of an admissible heuristic, where A* is equivalent to Dijkstra’s
algorithm. The linear distance used in the real world example is another example of an

31



32 6.1 A* Pathfinding

Input:
open: priority queue of open nodes,
closed: list of closed nodes,
predecessors: dictionary of predecessors of nodes,
s: starting node,
t: target node

open.Insert(s, 0);
while open is not empty do

q ← open.DeleteMin();
if q = t then

closed.Insert(q);
break;

end
for p ∈ Γ(q) do

f(p)← g(p) + h(p);
if ¬closed.Includes(p) or f(p) less now then when closed then

predecessors[p]← q;
open.Insert(p, f(p));

end
end

end

Algorithm 6: A* algorithm using a priority queue

admissible heuristic. [19]

Implementation using Priority Queues

A* and Dijkstra’s algorithm are usually implemented using priority queues. A priority
queue is a data structure that allows the insertion of items with a key or priority. The
item with the minimum priority can then be retrieved via the DeleteMin method.

One implementation of A* using such a queue can be seen in algorithm figure 6. Initially
the starting node s is inserted into the queue. Nodes which are expanded are then in-
serted into the queue using their f value as the priority. Then calling DeleteMin in the
next iteration returns the node with minimal value.

The algorithm terminates either if t is found or no more nodes remain in the open queue,
in which case no path exists. The optimal path can than be retrieved by backtracking
through the predecessors starting from t.

Given a implementation of the priority queue using Fibonacci heaps, Dijkstra’s algo-
rithms runs in O(m + n log n) time where n is the number of nodes and m the number
of edges in the graph. [15] The savings achieved by A* are then dependent on the used
heuristic. [30]



6.2 Pathfinding on the NavMesh 33

Figure 6.1: Paths are calculated between triangle midpoints and subsequently simplified.
[31]

Figure 6.2: Smoothing with funneling finds the shortest path through a set of NavMesh
faces. [11]

6.2 Pathfinding on the NavMesh

In this thesis all pathfinding is performed on the NavMesh structure which, in essence,
provides a simplified mesh of the game world. So how can the presented algorithms for
calculating shortest paths on graphs be applied to this mesh?

6.2.1 Applying A* to the NavMesh

On simple approach is presented by Snook, where the triangle midpoints of the NavMesh
are treated as nodes in the graph, while graph edges exist between midpoints of trian-
gles sharing an edge in the mesh. [31] Similarly edge midpoints or the actual NavMesh
vertices can be used as nodes for pathfinding. [11]

Then, given a start and end point on the mesh, a path can be calculated. It is assumed that
points lying in the same triangle can be traversed linearly, allowing paths to be evaluated
between points that are not triangle midpoints.

As can be seen in figure 6.1 a path generated with this method can look unnaturally
edged.

One simplification resulting in more natural looking paths is achieved by always con-
necting the furthest path node for which line-of-sight exists on the NavMesh, skipping
intermediate path nodes. [31]

Another method is presented by Cui et al. [11]. First the path is calculated as a set of
NavMesh faces connecting the start and end points, for example through the use of face
midpoints as seen before. In a smoothing step a shortest path is then found for this set of
faces through the use of a funneling algorithm as can be seen in figure 6.2.



34 6.3 Pathfinding in Unity

Figure 6.3: NavMesh Bake settings in Unity3D

Figure 6.4: NavMeshes generated in Unity at agent width 0.125 left and 0.25 middle and
right. Rightmost showcases off mesh links.

6.3 Pathfinding in Unity

NavMesh Bake Setting

In Unity a NavMesh can be baked directly in the editor for any scene. For the generation
all static object present in the scene are taken into consideration. In the baking settings
pictured in figure 6.3 the radius and height of the traversing agents can be set. Addi-
tionally the maximum slope angle as well as the step height that can be traversed are
specified.

These settings have a direct influence on the baked mesh, which is, for example, shrunk
according to the agent radius. A path that is too tight is then disconnected in the resulting
mesh.

The drop height and jump distance settings are used to generate links at NavMesh bound-
aries. NavMesh agents can then jump across gaps and drop from heights.

The results of these settings can be seen in figure 6.4. At a small agent radius the two
platforms are connected by the bridge structure, at larger radii, however, the connection
no longer exists as is visible by the disconnected NavMesh in blue. With jumping distance
set accordingly however off mesh links are generated connecting the platforms.

Calculating Paths in Script

Paths between two vertices can then be calculated with the NavMesh.CalculatedPath func-
tion. In addition to the basic pathfinding functionality, Unity also supports the definition



6.4 Single Path Tool 35

Figure 6.5: Using the single paths tool, paths can be evaluated directly in the scene view.

of areas with varying costs. Using an area mask certain areas can be excluded from the
calculation.

1 NavMeshPath path = new NavMeshPath();
2 NavMesh.CalculatePath ( vectorA, vectorB, NavMesh.AllAreas, path);

The NavMeshPath object then includes an array of corner points of the calculated path.
The path length can be calculated by summing up the distances between these corner
points. In addition status information is included, such as whether only a partial path
was found.

6.4 Single Path Tool

During level creation a designer might want to quickly check distances between two
positions on the map. Exposing the underlying pathfinding components to the designer
can therefore be valuable.

One such example would be the rotation time between bomb areas in CS. Players need
to be able to get from one bomb area to the other before the bomb goes of an a 40 second
timer.

The tool implemented borrows much from the earlier area definition tool. The level de-
signer is able to place markings in the scene view. Paths are then calculated pairwise
between these markings.

Results of this tool can be seen in figure 6.5. Here the red and white markings are placed
by the user, while green pegs signify corners in the path. The last marking located at
the cursor is updated in real time, allowing quick evaluation of multiple paths from a
common starting point.

The path is then displayed directly in the scene, and the length of the path as well as the
time needed for traversal given a set player speed are shown.

The placement of multiple markings allows designer to evaluate alternative paths. One
example is the rotation time from bomb site B to A on de_dust2 seen in figure 6.7.

In the example, the shortest path through the CT Spawn and CT Mid areas comes out at



36 6.5 Two Team Distance Evaluation

Figure 6.6: Initially a path drawing tool was shipped with Counter Strike: Global Offen-
sive. [14]

13 seconds in rotation time. The overlayed visibility information shows, however, that
a player approaching on this shortest path will be visible to enemy players located near
site A for the majority of the way.

Players might therefore choose to take the alternative path through tunnels and mid,
which is longer at 21 seconds, but allows players to remain undetected.

According to a forum post, most Counter Strike maps feature a shortest rotation time of
15 seconds, with de_dust2 being closer to 16 seconds. [27]

This discrepancy in timing could be due to the fact that player speed is not in fact con-
stant. In the specific example, a jump on the last stretch of the rotation leads to a loss of
momentum that is not captured by the evaluation. The relative comparison, however, is
still valuable.

Another example for the use of this tool would be a quick and dirty evaluation of meeting
points from the initial spawn areas. A comparable path drawing tool included in Counter
Strike: Global Offensive is recommended for this purpose in a community map design
guide. [14]

The tool included in CS:GO allows map designer to draw paths in a map view. The length
of the path and the time needed for traversal are then displayed. In contrast to the tool
implemented in this project, it does not feature any pathfinding component, leaving the
task of estimating the shortest path to the designer. Additionally the tool seems to eval-
uate the length of the drawn line in the two dimensional plane without taking elevation
into account.

In any case, a tool better fit for determining meeting points than any single path evalua-
tion tool will be presented in the next section.

6.5 Two Team Distance Evaluation

The tool presented in this section, evaluates the distance to the spawn points of two
teams for the entire map. The map areas reachable for the teams can then be visualized



6.5 Two Team Distance Evaluation 37

(a) Shortest path from bombsite B to A. 13 seconds at 15 units per second.

(b) Longer path avoiding visibility by enemy. 21 seconds at 15 units per second.

Figure 6.7: Placement of intermediate markings allows designers to evaluate suboptimal
paths. Visibility from bombsite A and adjacent junction overlayed.



38 6.5 Two Team Distance Evaluation

Input:
B: set of blue team spawn positions
R: set of red team spawn positions
MG: GridMesh

colors← newColor[MG.Length];
redDist← new float[MG.Length];
blueDist← new float[MG.Length];

for i ∈ [0,MG.Length− 1] do
for v ∈ R do

if CalculatePath(v,MG[i], path) then
redDist[i]← min(redDist[i], path.Length);

end
end
for v ∈ B do

if CalculatePath(v,MG[i], path) then
blueDist[i]← min(blueDist[i], path.Length);

end
end

end
maxDist← max(max(redDist),max(blueDist));
for i ∈ [0, colors.Length− 1] do

colors[i] = RGBA(redDist[i]/maxDist, 0, blueDist[i]/maxDist, 0);
end

Algorithm 7: Algorithm for evaluating distance from spawn for two teams

in a flooding animation, allowing map designers to see where meeting points are located
and fine tune timing.

6.5.1 Calculating Distances and Visualization

Given the sets of spawn points for the two teams, here called red and blue team, the
distance to spawn can be evaluated for every point on the GridMesh. The algorithm can
be seen in algorithm figure 7.

The distances are calculated at every GridMesh vertex as the minimal distance to any one
of the spawn points of a team evaluated using the NavMesh.CalculatePath function.

For rendering, these distances are then passed to the shader in the red and blue compo-
nent of the vertex color. As colors in Unity are structures of RGBA color components in
the range [0, 1], the distance at a vertex is normalized to the maximum distance.[34] The
maximum distance is then passed to the shader as an additional attribute.

In the shaders fragment function the regions with distances below a certain threshold can
be rendered selectively. First the distance is reconstructed using the normalized distance
values and the maximum distance.

1 // i : the input struct for the fragment shader stage
2 float red = i.color.r * _maxDistance;
3 float blue = i.color.b * _maxDistance;



6.5 Two Team Distance Evaluation 39

A contribution is made to the fragments color if the distance is below the specified thresh-
old and smaller than the distance to the opposing teams spawn. This allows the visual-
ization of meeting points, with clear lines forming wherever the distances are equal. Al-
ternatively colors can be overlapped. This allows designers to evaluate distances beyond
the meeting points.

1 if ( red < _threshold &&
2 i.color.r != 0.0f &&
3 ( _Overlap || red < blue ))
4 {
5 outColor += float4(1,0,0,0.5);
6 }

The results of an overlapping and meeting point visualization for the example of de_dust2
can be seen in figures 6.8 and 6.9.

In the latter, markings sourced from a community map design guide show meeting points
and choke points on de_dust2 . The meeting points evaluated by the tool closely match
those outlined in the guide.

Meeting Areas

Alternatively meeting points can be visualized as areas. A point is then in the meeting
area if the difference in the distances for both teams are below the specified threshold.

1 if ( (red - blue) < _threshold &&
2 (blue - red) < _threshold &&
3 red != 0.0f && blue != 0.0f )
4 {
5 outCol = float4 (0, 1, 0, 0.5);
6 }

The results of such a visualization can be seen in figure 6.10.



40 6.5 Two Team Distance Evaluation

Figure 6.8: Visualizing distances from the spawn points for two teams with overlap. Left
to right, top to bottom: 1 s, 3 s, 6 s, 8 s after spawn



6.5 Two Team Distance Evaluation 41

Figure 6.9: Visualizing distances without overlap reveals the meeting points. Additional
marks show meeting points in yellow and choke points in red according to a
community created level design guide published on the steam forums. [14]

Figure 6.10: Visualizing meeting points as areas. (threshold = 25 units)





7 Processing and Combining Data

7.1 Vertex Attributes and Vertex Groups

The results generated up to this point can be put into two groups.

First, area representation on the GridMesh was discussed, which are subsets of GridMesh
vertices. The second explored in the visibility and navigation chapters are per vertex
attributes, which assign some floating point value to every vertex in the GridMesh.

In order to further process and combine data, a primitive database is set up, to make data
globally available instead of just displaying data through the material. The data saved in
the database can be seen in figure 7.1. In addition to floating point attributes and vertex
groups which lie on the GridMesh, markings in the scene, which are used in the distance
evaluation, are saved as off-grid groups of vertices.

Furthermore the class implements getters and setters for access, as well as GUI functions
which allow the selection of attributes and groups in materials.

Any material can than simply write data to this database and access data written by other
materials.

7.2 Value Range Material

The value range material is used to transform floating point vertex attributes into vertex
groups. For this purpose only those vertices are selected for the group, whose value lies
within the specified range.

The visibility evaluation, for example, assigns some value [0, 1] to each vertex in the
GridMesh. To generate a group of all visible vertices, the vertices for which this value
is greater than zero are selected.

Similarly the material can be used to select all vertices within a specified distance from
the spawn. Once this data is available in vertex group form, it can be reused in other
materials. As areas and vertex groups are equivalent on the GridMesh, the resulting
group of reachable vertices can be fed into the visibility evaluation, yielding all areas

SmartSceneDB

+ areas : List<Area>
+ floatVertexAttributes : Dictionary<string, float[]>
+ gridVertexGroups : Dictionary<string, int[]>
+ offGridVertexGroups : Dictionary<string, Vector3>

Figure 7.1: Class Structure of database

43



44 7.3 Set Algebra

Figure 7.2: Two areas and their union, intersection and symmetric difference evaluated
by the set algebra material.

Figure 7.3: Reusing distance evaluation in the visibility evaluation using the value range
material to find areas visible to CT team 7 seconds after spawn.

visible at a certain time from the round start.

7.3 Set Algebra

The set algebra material allows the combination of vertex groups using known operations
of set algebra, allowing users to find the union ∪, intersection ∩ or symmetric difference
4 of any two vertex groups. An example can be seen in figure 7.2.

7.4 Example Usage

An example of the possible usages can be seen in figures 7.3 and 7.4. The goal of this
evaluation is to find areas, at which T players can be attacked within seven seconds after
spawn.

First the vertices reachable by the opposing CT team are evaluated using the distance and
value range materials, which are then used to evaluate the areas visible to the CT team
using the visibility material.

After applying the value range material to both the visibility values and the T team dis-
tance, the sets of positions visible to the CT team and positions reachable by the T team
are intersected, revealing the sought-after areas.



7.4 Example Usage 45

Figure 7.4: Map regions, where T players can be attacked 7 seconds into the round. 7.3





8 Related Work

8.1 Playtest Data Visualization

One area not touched upon in this thesis is the visualization and analysis of playtest data,
or data collected during actual play.

8.1.1 Heatmaps

Heatmaps are commonly used to visualize different event data. Common examples are
kill and death maps, visualizing the location of players at the time of these events. One
example of such a classic heatmap can be seen in figure 8.2a visualizing positions of
players while killing an enemy on de_dust2 during a 2018 e-sports event. [20]

8.1.2 Aggregated Data

Paths taken by players are another example of interesting playtest data. A naive approach
of visualizing paths individually will lead to visual clutter even on small data sets, as can
be seen in figure 8.1.

Wallner et al. used a spacial decomposition of the game world based on player movement
in order to visualize both aggregated paths as well as events.

Paths between neighboring cells can then be aggregated and visualized as lines connect-
ing these cells, with the thickness of these lines showing the frequency at which that path
is taken. The color of the underlying cell, as well as overlayed icons can be used to show
additional values and event frequency. [37]

Although not utilized to visualize paths, an aggregated visualization of engagements on
de_dust2 can be seen in figure 8.2b. Here instead of a classic heatmap visualizing events
in a continuous plane, the map is divided into a hexagonal grid.

Within it’s grid cell, the data point is then scaled according to frequency of engagements
taking place at that position while the color encodes if an engagement is more likely won

Figure 8.1: Visualization of aggregated trajectory data using a player movement based
spatial decomposition by Wallner et al. [37]

47



48 8.2 Tactical Pathfinding and Decision Making

(a) (b)

Figure 8.2: (a) Heatmap of killer locations during an e-sport event [20] and (b) Aggre-
gated visualization of engagements using a hexagonal grid generated on
CSGO HUB [10]

or lost. [10]

8.2 Tactical Pathfinding and Decision Making

Data structures similar to those developed in this thesis are also used in the task of tactical
pathfinding. As could be seen in the navigation chapter, the shortest path might not
always be the most optimal from a gameplay standpoint.

Tactical pathfinding then tries to incorporate gameplay relevant information into the
pathfinding algorithms. In a 2018 paper by Makarov et al. Kill-Death (K/D) statistics
as well as visibility are evaluated for cells of a Voronoi-based NavMesh and utilized dur-
ing pathfinding.[26]

At each Voronoi face Vi the K/D statistic Pi can be calculated based on the amount of kills
Ki and deaths Di at this position

Pi =
Di +B

Di +Ki + 2B

where B is the sensitivity to new events. This value then indicates the probability of being
killed instead of killing an enemy while at this position.[26]

The penalty for traversing between Vi and Vj , which can be used in the A* algorithm, is
given by:

Penalty(i, j) = V ∗ ||Si − Sj || ∗ (Pi + Pj)

V is the importance of that tactical property, and S{i,j} the location of the voronoi faces.
The use of both K/D and visibility information has shown a 12% increase in win rate



8.2 Tactical Pathfinding and Decision Making 49

(a) (b)

Figure 8.3: (a) aggregated visibility on NavMesh for tactical pathfinding by Makarov et
al. [26] and (b) influence of an agent on a influence map [28]

compared to basic AI without additional tactical information. [26]

Opposed to the static information provided by such statistics and the analysis performed
in this thesis, influence maps can be used to modify information and subsequent agent
behavior at run time.

Given a grid representation of the game world, agents can assert influence over nearby
cells, representing a variety of concepts such as attack distance, reachable cells in a given
time frame or simply agent location.

The influences of all agents are then accumulated in the influence map. This accumu-
lated information can be used for tactical decision making, such as choosing appropriate
locations for area of effect attacks. [28]





9 Outlook and Conclusion

9.1 Possible Additions to the Tools

9.1.1 Constraints

One natural extension of the implemented tools would be constraints. This builds on the
idea, that important map features such as areas and available pathways will be defined
early on, similar to the sketch seen in 9.1.

Therefore, the general structure of the map is given, and the designer has already decided
where spawn points, meeting point and choke points should be located, and how they are
connected. Constraints can then be defined early on, to be used in automated constraint
satisfaction tests during the actual building phase of level design.

These constraints can be implemented on top of the already implemented design tools.

Lets suppose an area is marked with a meeting point constraint. Then, after applying the
two team distance evaluation on the map, whether an actual meeting point is located in
the area can be checked.

Similarly, pairwise visibility constraint between areas can be defined during the layout
phase, and checked after every iteration of the building phase.

GUI

Ideally a GUI should be composed that matches tools and practices common to level
designers, and makes definition of constraints as seamless as possible.

Lets suppose map areas are represented as nodes in a graph, then a constraint could be
defined between areas simply by selecting the appropriate evaluation tool and connect-
ing the area nodes where a constraint should exists.

A level designer could then start the level design process by mirroring his design sketch
in the software, defining visibility constraints and intended paths between areas. Then
the only additional work needed to be done for basic constraints is the definition of areas
in each iteration.

9.1.2 Playtest Data and Player Feedback

As could be seen in the related work section, playtest data can give valuable insight about
how a map is played in practice.

Many issues in a maps design cannot be captured by the evaluation tools implemented.
One example of this can be seen in figure 9.2, where the placement and color of win-
dows on a scenic building made it difficult for players to make out enemies against the
background, leading to a adjustment of the windows placement. [3]

51



52 9.2 Implications for Tactical Pathfinding

Figure 9.1: A sketch as it could be used in the early stages of designing a map, taken from
World of Level Design. [17]

A system for logging and displaying playtesting data can be implemented on top of the
implemented tools. As a simple example, the positions of kills and deaths could be read
into the system as marking groups. A new GridMesh material can then be implemented
that shows heatmaps for these events directly in the Unity Editor.

Although changes were implemented based on user feedback in the before mentioned
example, these tools could be used to verify a map change has the intended effect. In this
case the number of kills observed at the changed location should decrease, as an unfair
advantage has been removed.

9.2 Implications for Tactical Pathfinding

As was shown by Makarov et al., the inclusion of visibility and K/D maps in pathfinding
tasks can lead to good result. While a combined usage of both visibility and K/D infor-
mation lead to a 12% win rate compared to a basic AI, the use of only visibility reduced
that win rate increase to 3%. [26]

The visibility information available to the AI was aggregated visibility, or the visibility
to all other Voronoi faces. For games which define clear spawn points and feature no
respawn mechanic during the match, a temporal component can be added to the visibility
function.

Lets suppose a map is fully traversable by teams red and blue, then there exists a minimal
time tf at which all map regions are discoverable by both teams. Then using the tools
implemented in this thesis, the visibility V{red,blue}(t, P ) of any team at time t ∈ [0, tf ] and
location P can be sampled.

For every face Fi on the NavMesh and team T ∈ {red, blue} the visibility values of
GridMesh vertices which lie on that face can be averaged.

VTi(t) = avg( {VT (t, Pj), Pj ∈MG ∧ Pj lies on Fi } )

Then analogous to the penalty calculated by Makarov et al., we can define the time-
dependent penalty



9.3 Conclusion 53

Figure 9.2: Adjustment of window placement to increase player contrast in Counter
Strike: Global Offensive. [3]

PenaltyT (i, j, t) = V ∗ ||Si − Sj || ∗ (VT ′
i
(t) + VT ′

j
(t+

||Si − Sj ||
speed

))

where speed is the defined player speed, and T ′ is the team opposing T .

It should be mentioned here, that the above penalty function is only valid for Voronoi
based NavMeshes similar to the one applied in the source paper. Per definition the
distance traveled in either face when traversing between source points of neighboring
voronoi faces is equal. This is not necessarily true for general NavMeshes, and the visibil-
ity values would need to be weighted in accordance to the proportional distance traveled
in that face.

In practice this time-dependent visibility function VTi(t) can be calculated at editor time
for a number of sample times ts ∈ [0, tf ] and interpolated during run time. For all t > tf
the visibility function then degenerates to the aggregated visibility.

Whether such a time dependent penalty function would improve win rates beyond the
3% increase seen in the aggregated case would be interesting.

9.3 Conclusion

The goal set for this thesis was the creation of analysis tools, that support developers of
competitive games during the game design process. With the general framework pro-
vided by the GridMesh, a common basis for such analysis tools was created, and the
implemented tools showed promising results for the identification of meeting points and
sightlines on Counter Strike maps.

Further research can be made in the use of generated analysis data for game artificial in-



54 9.3 Conclusion

telligence, both for tactical pathfinding and decision making tasks. Additionally, neural
networks could be trained on data generated from selected maps. Whether a maps fair-
ness, or other attributes, can be predicted by the generated analysis data would be one
interesting question.

Competitive games of other genres also provide opportunities for further research, re-
quiring analysis tools based on entirely different map design principles and gameplay
systems.

Finally, whether the implemented tools would be accepted and deemed valuable by ex-
perienced map designers remains an open question.



List of Figures

1.1 15.000 fans follow a Counter Strike: Global Offensive tournament in Cologne’s
Lanxess-Arena, photo by Henning Kaiser [23] . . . . . . . . . . . . . . . . 1

2.1 Impressions from Counter Strike: Global Offensive. Advance of T side
players and planting of the bomb on the map de_inferno. . . . . . . . . . . 4

2.2 A defenders perspective of choke point banana on the map de_inferno from
Counter Strike: Global Offensive . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Example of a pixel angle on the map de_mirage from Counter Strike: Global
Offensive [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Example triangulation of rectangular shape S into triangles T0 and T1 . . . 11
3.2 A Unity NavMesh in blue on the left and the resulting GridMesh shown

in wireframe on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Class structure of selected GridMesh materials . . . . . . . . . . . . . . . . 14
3.4 Example rendering of a GridMesh material assigning random color values

to every vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Definition of a simple area. Corners are added at the cursor location defin-
ing the collider mesh. Enclosed GridMesh vertices rendered in white in
rightmost picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 The system allows the definition of complex areas with verticality. . . . . . 18
4.3 Areas can be selected, added and edited in a custom editor window . . . . 18
4.4 Example of a marking group added in the scene view. . . . . . . . . . . . . 19

5.1 Comparison of hard shadows produced by point light sources and soft
shadows with penumbra produced by area light sources (left to right).
Rendered using Blender Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Visibility evaluation from the area marked on the left to the whole map.
Visibility shown as a gradient from green, fully visible, to red, barely visi-
ble. The visibility cone from the example is marked in red in the right-most
image. (N = 804) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Data from figure 5.2 in grayscale for better visibility of gradients. White
areas are fully visible, black areas are not visible. (N = 804) . . . . . . . . . 25

5.4 (a) The view from the T spawn area through the doorway in-game and (b)
visualization of early engagements in the first 30 seconds of a round, show-
ing successful engagements by T players from the spawn area (generated
on GSGO HUB [10]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5 Comparison of noise at different sample sizes N . On the top N = 804. On
the bottom N = 256, with one sample set on the left and 50 sample sets on
the right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Paths are calculated between triangle midpoints and subsequently simpli-
fied. [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

55



56 List of Figures

6.2 Smoothing with funneling finds the shortest path through a set of NavMesh
faces. [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3 NavMesh Bake settings in Unity3D . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 NavMeshes generated in Unity at agent width 0.125 left and 0.25 middle

and right. Rightmost showcases off mesh links. . . . . . . . . . . . . . . . . 34
6.5 Using the single paths tool, paths can be evaluated directly in the scene view. 35
6.6 Initially a path drawing tool was shipped with Counter Strike: Global Of-

fensive. [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.7 Placement of intermediate markings allows designers to evaluate subopti-

mal paths. Visibility from bombsite A and adjacent junction overlayed. . . 37
6.8 Visualizing distances from the spawn points for two teams with overlap.

Left to right, top to bottom: 1 s, 3 s, 6 s, 8 s after spawn . . . . . . . . . . . 40
6.9 Visualizing distances without overlap reveals the meeting points. Addi-

tional marks show meeting points in yellow and choke points in red ac-
cording to a community created level design guide published on the steam
forums. [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.10 Visualizing meeting points as areas. (threshold = 25 units) . . . . . . . . . 41

7.1 Class Structure of database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Two areas and their union, intersection and symmetric difference evalu-

ated by the set algebra material. . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 Reusing distance evaluation in the visibility evaluation using the value

range material to find areas visible to CT team 7 seconds after spawn. . . . 44
7.4 Map regions, where T players can be attacked 7 seconds into the round. 7.3 45

8.1 Visualization of aggregated trajectory data using a player movement based
spatial decomposition by Wallner et al. [37] . . . . . . . . . . . . . . . . . . 47

8.2 (a) Heatmap of killer locations during an e-sport event [20] and (b) Aggre-
gated visualization of engagements using a hexagonal grid generated on
CSGO HUB [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.3 (a) aggregated visibility on NavMesh for tactical pathfinding by Makarov
et al. [26] and (b) influence of an agent on a influence map [28] . . . . . . . 49

9.1 A sketch as it could be used in the early stages of designing a map, taken
from World of Level Design. [17] . . . . . . . . . . . . . . . . . . . . . . . . 52

9.2 Adjustment of window placement to increase player contrast in Counter
Strike: Global Offensive. [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



List of Tables

5.1 Errors and Performance of Adaptive Sampling for different M values. Er-
rors compared to baseline M = 512. Images with ascending M values
from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

57





Bibliography

[1] Arthur Appel. Some techniques for shading machine renderings of solids. In Pro-
ceedings of the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68
(Spring), page 37–45, New York, NY, USA, 1968. Association for Computing Ma-
chinery.

[2] Counter-Strike: Global Offensive » Map Data. https://blog.
counter-strike.net/index.php/map-data-01/, 2014. Accessed: 2020,
September 8 [Archive].

[3] Counter-Strike: Global Offensive » Enemy Spotted. https://blog.
counter-strike.net/index.php/2020/06/30428/, 2020. Accessed:
2020, September 12 [Archive].

[4] Jakub Boksansky, Michael Wimmer, and Jiri Bittner. Ray Traced Shadows: Maintaining
Real-Time Frame Rates, pages 159–182. Apress, Berkeley, CA, 2019.

[5] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. SIG-
GRAPH Comput. Graph., 18(3):137–145, January 1984.

[6] Bomb Defusal | Counter-Strike Wiki | Fandom. https://counterstrike.
fandom.com/wiki/Bomb_Defusal, 2020. Accessed: 2020, May 9 [Archive].

[7] Competitive | Counter-Strike Wiki | Fandom. https://counterstrike.
fandom.com/wiki/Competitive, 2020. Accessed: 2020, May 9 [Archive].

[8] Counter-Strike | Counter-Strike Wiki | Fandom. https://counterstrike.
fandom.com/wiki/Counter-Strike, 2020. Accessed: 2020, May 9 [Archive].

[9] Counter-Strike: Global Offensive | Counter-Strike Wiki | Fandom.
https://counterstrike.fandom.com/wiki/Counter-Strike:
_Global_Offensive, 2020. Accessed: 2020, May 9 [Archive].

[10] CSGO HUB. https://www.csgohub.com/match/map-analysis/
detailed?map-name=de_dust2&past_months=1&round_stage=early,
middle,late&rank_group=global&map_layer=0&team=2,3&economy=
pistol,eco,full_buy, 2020. Accessed: 2020, September 6 [Archive].

[11] Xiao Yan Cui and Hao Shi. An overview of pathfinding in navigation mesh. 2012.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269–271, December 1959.

[13] Unity3D Documentation. Unity - Scripting API: RaycastCommand. https://
docs.unity3d.com/ScriptReference/RaycastCommand.html. Accessed:
2020, August 31 [Archive].

[14] Exodus. Steam Community :: Guide :: The dos and don’ts of CS:GO level de-
sign [Summer 2019 overhaul]. https://steamcommunity.com/sharedfiles/
filedetails/?id=1110438811, 2019. Accessed: 2020, May 11 [Archive].

[15] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in

59

https://blog.counter-strike.net/index.php/map-data-01/
https://blog.counter-strike.net/index.php/map-data-01/
https://web.archive.org/web/202098166**/https://blog.counter-strike.net/index.php/map-data-01/
https://blog.counter-strike.net/index.php/2020/06/30428/
https://blog.counter-strike.net/index.php/2020/06/30428/
https://web.archive.org/web/20209121323**/https://blog.counter-strike.net/index.php/2020/06/30428/
https://counterstrike.fandom.com/wiki/Bomb_Defusal
https://counterstrike.fandom.com/wiki/Bomb_Defusal
https://web.archive.org/web/2020591447**/https://counterstrike.fandom.com/wiki/Bomb_Defusal
https://counterstrike.fandom.com/wiki/Competitive
https://counterstrike.fandom.com/wiki/Competitive
https://web.archive.org/web/2020591448**/https://counterstrike.fandom.com/wiki/Competitive
https://counterstrike.fandom.com/wiki/Counter-Strike
https://counterstrike.fandom.com/wiki/Counter-Strike
https://web.archive.org/web/2020591449**/https://counterstrike.fandom.com/wiki/Counter-Strike
https://counterstrike.fandom.com/wiki/Counter-Strike:_Global_Offensive
https://counterstrike.fandom.com/wiki/Counter-Strike:_Global_Offensive
https://web.archive.org/web/2020591449**/https://counterstrike.fandom.com/wiki/Counter-Strike:_Global_Offensive
https://www.csgohub.com/match/map-analysis/detailed?map-name=de_dust2&past_months=1&round_stage=early,middle,late&rank_group=global&map_layer=0&team=2,3&economy=pistol,eco,full_buy
https://www.csgohub.com/match/map-analysis/detailed?map-name=de_dust2&past_months=1&round_stage=early,middle,late&rank_group=global&map_layer=0&team=2,3&economy=pistol,eco,full_buy
https://www.csgohub.com/match/map-analysis/detailed?map-name=de_dust2&past_months=1&round_stage=early,middle,late&rank_group=global&map_layer=0&team=2,3&economy=pistol,eco,full_buy
https://www.csgohub.com/match/map-analysis/detailed?map-name=de_dust2&past_months=1&round_stage=early,middle,late&rank_group=global&map_layer=0&team=2,3&economy=pistol,eco,full_buy
https://web.archive.org/web/2020961153**/https://www.csgohub.com/match/map-analysis/detailed?map-name=de_dust2&past_months=1&round_stage=early,middle,late&rank_group=global&map_layer=0&team=2,3&economy=pistol,eco,full_buy
https://docs.unity3d.com/ScriptReference/RaycastCommand.html
https://docs.unity3d.com/ScriptReference/RaycastCommand.html
https://web.archive.org/web/2020831108**/https://docs.unity3d.com/ScriptReference/RaycastCommand.html
https://steamcommunity.com/sharedfiles/filedetails/?id=1110438811
https://steamcommunity.com/sharedfiles/filedetails/?id=1110438811
https://web.archive.org/web/20205111532**/https://steamcommunity.com/sharedfiles/filedetails/?id=1110438811


60 Bibliography

improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–
615, 1987.

[16] Alex Galuzin. CS:GO 6 Principles of Choke Point Level Design. https:
//www.worldofleveldesign.com/categories/csgo-tutorials/
csgo-principles-choke-point-level-design.php, 2013. Accessed:
2020, May 12 [Archive].

[17] Alex Galuzin. CS:GO How to Design Gameplay Map Layouts (Complete In-
Depth Guide). https://www.worldofleveldesign.com/categories/
csgo-tutorials/csgo-how-to-design-gameplay-map-layouts.php,
2013. Accessed: 2020, May 12 [Archive].

[18] Jason Gregory. Game Engine Architecture, Second Edition. A. K. Peters, Ltd., USA, 2nd
edition, 2014.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[20] CS:GO Statistics database | HLTV.org. https://www.hltv.org/stats/maps/
map/31/Dust2?showKills=true&showDeaths=false&sides=COUNTER_
TERRORIST&sides=TERRORIST&firstKillsOnly=false&allowEmpty=
true&showKillDataset=true&showDeathDataset=false&event=3885,
2018. Accessed: 2020, September 6 [Archive].

[21] HLTV. CS:GO Statistics database | HLTV.org. https://www.hltv.org/stats/
maps, 2020. Accessed: 2020, September 8 [Archive].

[22] Wojciech Jarosz. Efficient Monte Carlo Methods for Light Transport in Scattering Media.
PhD thesis, UC San Diego, September 2008.

[23] Henning Kaiser. ESL One Cologne 2018 dpa innovation. https:
//innovation.dpa.com/2018/08/28/keine-angst-vor-e-sport/
esl-one-cologne-2018/, 2018. Accessed: 2020, September 11 [Archive].

[24] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150,
August 1986.

[25] Arjan J. F. Kok and Frederik W. Jansen. Adaptive sampling of area light sources in
ray tracing including diffuse interreflection. Computer Graphics Forum, 11(3):289–298,
1992.

[26] Ilya Makarov, Pavel Polyakov, and Roman Karpichev. Voronoi-based path planning
based on visibility and kill/death ratio tactical component. In AIST (Supplement),
pages 129–140, 2018.

[27] [CSGO] Good map rotation times - 3D - Mapcore. https://www.mapcore.org/
topic/18489-csgo-good-map-rotation-times/, 2015. Accessed: 2020,
September 10 [Archive].

[28] Dave Mark. Modular tactical influence maps. Game AI Pro 360: Guide to Tactics and
Strategy, pages 103–124, 2019.

[29] Kaloian Petkov, Daphne Yu, and Helene Houle. Rendering of 4d ultrasound data
with denoised monte carlo path tracing. In ACM SIGGRAPH 2020 Posters, SIG-
GRAPH ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[30] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-principles-choke-point-level-design.php
https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-principles-choke-point-level-design.php
https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-principles-choke-point-level-design.php
https://web.archive.org/web/2020512836**/https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-principles-choke-point-level-design.php
https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-how-to-design-gameplay-map-layouts.php
https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-how-to-design-gameplay-map-layouts.php
https://web.archive.org/web/2020512857**/https://www.worldofleveldesign.com/categories/csgo-tutorials/csgo-how-to-design-gameplay-map-layouts.php
https://www.hltv.org/stats/maps/map/31/Dust2?showKills=true&showDeaths=false&sides=COUNTER_TERRORIST&sides=TERRORIST&firstKillsOnly=false&allowEmpty=true&showKillDataset=true&showDeathDataset=false&event=3885
https://www.hltv.org/stats/maps/map/31/Dust2?showKills=true&showDeaths=false&sides=COUNTER_TERRORIST&sides=TERRORIST&firstKillsOnly=false&allowEmpty=true&showKillDataset=true&showDeathDataset=false&event=3885
https://www.hltv.org/stats/maps/map/31/Dust2?showKills=true&showDeaths=false&sides=COUNTER_TERRORIST&sides=TERRORIST&firstKillsOnly=false&allowEmpty=true&showKillDataset=true&showDeathDataset=false&event=3885
https://www.hltv.org/stats/maps/map/31/Dust2?showKills=true&showDeaths=false&sides=COUNTER_TERRORIST&sides=TERRORIST&firstKillsOnly=false&allowEmpty=true&showKillDataset=true&showDeathDataset=false&event=3885
https://web.archive.org/web/202096122**/https://www.hltv.org/stats/maps/map/31/Dust2?showKills=true&showDeaths=false&sides=COUNTER_TERRORIST&sides=TERRORIST&firstKillsOnly=false&allowEmpty=true&showKillDataset=true&showDeathDataset=false&event=3885
https://www.hltv.org/stats/maps
https://www.hltv.org/stats/maps
https://web.archive.org/web/2020981633**/https://www.hltv.org/stats/maps
https://innovation.dpa.com/2018/08/28/keine-angst-vor-e-sport/esl-one-cologne-2018/
https://innovation.dpa.com/2018/08/28/keine-angst-vor-e-sport/esl-one-cologne-2018/
https://innovation.dpa.com/2018/08/28/keine-angst-vor-e-sport/esl-one-cologne-2018/
https://web.archive.org/web/20209102359**/https://innovation.dpa.com/2018/08/28/keine-angst-vor-e-sport/esl-one-cologne-2018/
https://www.mapcore.org/topic/18489-csgo-good-map-rotation-times/
https://www.mapcore.org/topic/18489-csgo-good-map-rotation-times/
https://web.archive.org/web/20209101244**/https://www.mapcore.org/topic/18489-csgo-good-map-rotation-times/


Bibliography 61

Hall Press, USA, 3rd edition, 2009.

[31] Greg Snook. Simplified 3d movement and pathfinding using navigation meshes.
In Mark DeLoura, editor, Game Programming Gems, pages 288–304. Charles River
Media, 2000.

[32] statista. • Global eSports viewership by viewer type 2022 |
Statista. https://www.statista.com/statistics/490480/
global-esports-audience-size-viewer-type/, 2020. Accessed: 2020,
September 13 [Archive].

[33] statista. • Sport viewership | Statista. https://www.statista.com/
statistics/786734/sport-video-viewers-in-the-us-by-league/,
2020. Accessed: 2020, September 13 [Archive].

[34] Unity. Unity - Scripting API: Color. https://docs.unity3d.com/
ScriptReference/Color.html. Accessed: 2020, September 12 [Archive].

[35] Unity. Wondering what Unity is? Find out who we are, where we’ve been and
where we’re going | Unity. https://unity.com/our-company. Accessed: 2020,
September 13.

[36] vrchris. de_dust2 model by vrchris Sketchfab. https://sketchfab.com/
3d-models/de-dust2-cs-map-056008d59eb849a29c0ab6884c0c3d87,
2017. Accessed: 2020, September 8 [Archive].

[37] Günter Wallner, Nour Halabi, and Pejman Mirza-Babaei. Aggregated visualization
of playtesting data. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, pages 1–12, 2019.

[38] Triangulator - Unity Community Wiki. http://wiki.unity3d.com/index.
php/Triangulator. Accessed: 2020, September 11 [Archive].

[39] wikipedia. Lanxess Arena - Wikipedia. https://en.wikipedia.org/wiki/
Lanxess_Arena, 2020. Accessed: 2020, September 14 [Archive].

https://www.statista.com/statistics/490480/global-esports-audience-size-viewer-type/
https://www.statista.com/statistics/490480/global-esports-audience-size-viewer-type/
https://web.archive.org/web/2020913030**/https://www.statista.com/statistics/490480/global-esports-audience-size-viewer-type/
https://www.statista.com/statistics/786734/sport-video-viewers-in-the-us-by-league/
https://www.statista.com/statistics/786734/sport-video-viewers-in-the-us-by-league/
https://web.archive.org/web/2020913037**/https://www.statista.com/statistics/786734/sport-video-viewers-in-the-us-by-league/
https://docs.unity3d.com/ScriptReference/Color.html
https://docs.unity3d.com/ScriptReference/Color.html
https://web.archive.org/web/20209121853**/https://docs.unity3d.com/ScriptReference/Color.html
https://unity.com/our-company
https://sketchfab.com/3d-models/de-dust2-cs-map-056008d59eb849a29c0ab6884c0c3d87
https://sketchfab.com/3d-models/de-dust2-cs-map-056008d59eb849a29c0ab6884c0c3d87
https://web.archive.org/web/2020981611**/https://sketchfab.com/3d-models/de-dust2-cs-map-056008d59eb849a29c0ab6884c0c3d87
http://wiki.unity3d.com/index.php/Triangulator
http://wiki.unity3d.com/index.php/Triangulator
https://web.archive.org/web/20209111448**/http://wiki.unity3d.com/index.php/Triangulator
https://en.wikipedia.org/wiki/Lanxess_Arena
https://en.wikipedia.org/wiki/Lanxess_Arena
https://web.archive.org/web/2020914754**/https://en.wikipedia.org/wiki/Lanxess_Arena

	Eidesstattliche Erklärung
	Abstract
	1 Introduction
	2 Interesting Map Features
	2.1 First Person Shooters
	2.1.1 Counter Strike

	2.2 Interesting Map Features for Analysis
	2.3 Main Tasks
	2.3.1 General Framework
	2.3.2 Path Evaluation
	2.3.3 Visibility Evaluation


	3 Grid Mesh Generation
	3.1 NavMesh
	3.2 Generating the GridMesh
	3.2.1 Calculating the Optimal Resolution
	3.2.2 Scanning the NavMesh
	3.2.3 Short Introduction to Mesh Representation for Rendering
	3.2.4 Triangulating the Grid
	3.2.5 Extending to General Levels

	3.3 GridMesh Materials and Rendering of the GridMesh

	4 Designating Map Locations
	4.1 Map Areas
	4.2 Marking Groups

	5 Visibility
	5.1 Monte Carlo Integration
	5.2 Raytracing
	5.3 Area To Area Visibility
	5.3.1 General Algorithm
	5.3.2 Example
	5.3.3 Disadvantages of the Monte Carlo Approach
	5.3.4 Further Optimizations


	6 Pathfinding
	6.1 A* Pathfinding
	6.2 Pathfinding on the NavMesh
	6.2.1 Applying A* to the NavMesh

	6.3 Pathfinding in Unity
	6.4 Single Path Tool
	6.5 Two Team Distance Evaluation
	6.5.1 Calculating Distances and Visualization


	7 Processing and Combining Data
	7.1 Vertex Attributes and Vertex Groups
	7.2 Value Range Material
	7.3 Set Algebra
	7.4 Example Usage

	8 Related Work
	8.1 Playtest Data Visualization
	8.1.1 Heatmaps
	8.1.2 Aggregated Data

	8.2 Tactical Pathfinding and Decision Making

	9 Outlook and Conclusion
	9.1 Possible Additions to the Tools
	9.1.1 Constraints
	9.1.2 Playtest Data and Player Feedback

	9.2 Implications for Tactical Pathfinding
	9.3 Conclusion


