Improving Immersion with Hardware in VR Diving Simulations

Felix Völk 06.07.2023

Final: Bachelor Informatics: Games Engineering Supervisor(s): David Plecher

Introduction / Motivation

- Scuba diving is fascinating but dangerous hobby
- Many people can't experience this
- Equipment is an essential part of diving
- Virtual Reality (VR) technologies can't provide the haptics of this equipment
- This lack of realism might have a bad impact on immersion
- Custom created hardware might elevate the immersion

Problem Description: Issues

- What current diving simulations or games are available now?
- What do they do right to immerse the player?
- Which piece of diving equipment is suitable as a hardware extension?
- How would such a new controller be designed and built?
- How can this new hardware be fitted into an existing simulation or game?
- Does this change result in a more immersed experience?

Existing Solutions / Related Work

- Amphibian: full terrestrial diving simulation, with multitude of sensors, actuators using a VR headset.
 Lessons learned from the project were a huge influence
- 200bar: VR Diving simulation developed by Leonard Keil at TUM
 - Software basis for this thesis
- Virtual Divers International (VDI): Diving serious game for mobile with focus on realistic and educational gameplay

Goals of this Thesis

- Evaluate 200bar as proposed
- Explain buoyancy and pressure in the context of diving
- Select equipment best suited for hardware extension
- Develop and manufacture new hardware to simulate equipment
- Create use case in 200bar that relies on new controller
- Evaluate 200bar with new equipment and use case
- Outline possible future work for the new controller and 200bar

Implementation (Hardware)

- Regulator as base for controller
- Buoyancy control and air consumption to increase immersion
- Components:
 - Real regulator
 - Mass air flow sensor
 - Arduino UNO V3
 microcontroller
 - 3D printed casing

Implementation (200bar)

- New use case
 - "BCD parkour"
 - Reuse of already available level
 - Dive through hoops and measure time
 - New voice over
- Changes of existing elements
 - added sound for inflator
 - Fixed some bugs
 - Removed ability to ascend/descend by direct movement
 - Removed motion detection for swimming

Implementation (Bouyancy Bob)

- New game using prototype
 - Used for development
 - 2D side scrolling
 - Evade fish and dive as far as possible without running out of oxygen
- Showcases the controller easier than VR

Evaluation (User Studies, Test Runs)

- 5 participants
 - Certified divers
 - Age 26-59
- 2 Studies
 - 1. 200bar when thesis started
 - 2. 200bar with new hardware controller and new use case level
 - 30 minutes of play time
- 3 questionnaires
 - Participants/Diving experience
 - Virtual reality sickness (VRSQ)
 - Immersive experience (IEQ)

Evaluation results

- First study:
 - VRSQ: 58.5
 - IEQ: 81.6
 - Main issue: missing objective
- Second study:
 - VRSQ: 47.3
 - IEQ: 97.4
 - Main issue: new controller is too heavy

Discussion / Suggested Future Work

- Software for 200bar:
 - Add fish and other assets
 - Refine controls (posture, movement using stick)
 - Add use cases
- Hardware for 200bar:
 - Any piece of equipment
- Usage of prototype:
 - Training meditation
 - Integration in existing games
 - Sport, stealth or horror games
 - Accessibility for disabled gamers
 - Gathering data on breathing while playing

Conclusion

- Specialized hardware can increase immersion
- Easy disassembly of prototype was beneficial
- Prototype should be refined (lighter, not using a real regulator)
- Extending 200bar was tedious
 - Unity had issues with used packages
 - Used packages could not be updated
 - VR hardware refused to work sometimes