TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Game Engineering Principles: Fair
Gamespaces for Competitive Multiplayer
Games

Felix Bartossek

0

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Game Engineering Principles: Fair
Gamespaces for Competitive Multiplayer
Games

Game Engineering Prinzipien: Faire
Gamespaces fiir kompetitive
Multiplayer-Spiele

Author: Felix Bartossek
Supervisor: Prof. Gudrun Klinker, Ph.D.
Adyvisor: Daniel Dyrda, M.Sc.

Submission Date: 2022-02-11

0

I confirm that this Bachelor’s Thesis in Informatics: Games Engineering is my own
work and I have documented all sources and material used.

Munich, 2022-02-11 Felix Bartossek

Abstract

Good competitive multiplayer games need to be fair. As fairness is a multifaceted topic,
it is interesting to approach subsections of the whole game and to find aspects that
make the game fair. This work approaches the gamespace specifically, on the search for
general principles of fair gamespaces, applicable to a broad range of games.
Furthermore, this work proposes a formalization, which allows developers to analyze
gamespaces at any point of the development process, and to check whether the pro-
posed principles are fulfilled. To put this way of analysis to the test, we apply it to the
Summoner’s Rift, the most relevant gamespace of the successful Multiplayer Online
Battle Arena "League of Legends".

1ii

Contents

Abstract
1 Introduction

1.1 Related Work e
2 Process

N

21 General Approach L oo L
2.2 Structure of the Formalization
2.3 Measurements e e e e e

3 League of Legends
3.1 StructureoftheGame
3.1.1 The Summoner’sRift
312 Champions
313 PhasesofaGame.
4 Principles
41 Horizontal Balance
4.1.1 Resource ACCESS . . . v v v v i i i e e e e e e e e
412 Paths e
42 Vertical Balance
5 Algorithms
51 Setting UptheRoutes
52 FindingPaths
53 Measuring e
6 Application
6.1 SettingUptheModel
6.2 AnalysingtheRift.
6.3 Evaluation e
7 Conclusion, Discussion, and Future Work

24 ChoosingaGame

20
20
20
21

28
28
29
33

35

v

Contents

List of Figures
List of Algorithms

Bibliography

37

38

39

1 Introduction

There are many reasons to play a game. Some players like the challenge, others want to
relax or to simply escape from their day-to-day-lives. From arcade-high-scores to the
increasing popularity of e-sports, competition has always been an incredibly important
factor: players want to measure their abilities, and show the others who’s the best. This
means, that one of the most important aspect of such competitive games is fairness. As
opposed to gambling, in competitive games there is no point in being the best, when
the own score is simply a result of chance instead of skill, or if the game is obviously
rigged in the own favor - but there also isn’t much incentive to try, if the opponents
have an unfair advantage, and the own victory seems impossible.

Therefore, almost all successful competitive game should aim to be fair, to remain
successful over an extended time [9]. Fairness is a basic, shared value and a core of
playing: An unfair game tends to be less enjoyable for the party at a disadvantage,
ultimately making them lose interest in the game as a whole [14]. There are many
different attempts to define fairness. The classical measure for fairness in games is often
stated as: "a game is a fair game if its game-theoretic value is a draw and both players
have roughly an equal probability on making a mistake" [9, p. 17]. Another common
definition for a fair game is, that the winning ratio for all teams is equal [17]. These
simple definitions become less and less useful, the more complex a game becomes: the
more complicated and intricate a game becomes, the more vectors of fairness can be
considered - while the fairness of a game of "Rock, Paper, Scissors" is decently easy to
measure and describe, the fairness of more advanced games, especially digital games,
remains harder to grasp as a whole. Especially with asymmetric games, the keeping of
balance and therefore fairness becomes harder. It can no longer simply be achieved
by giving each player the same means to achieve their goal, instead it it necessary to
balance the values of each players possibilities against each other.

To create and maintain a truly fair game means to be aware of all the possible vectors of
unfairness, and to balance them. In a video game, this might be the playable characters,
the task, the gamespace and many more things. Creating guidelines for achieving this
kind of overall fairness could be a way to make game engineering simpler.

A gamespace is commonly defined as "the virtual space in which a video game takes
place" [16]. This includes, what may be called a "map" or a "game board", but contains
additional information about the game, instead of just the pure spatial architecture, like

1 Introduction

the locations of resources.

This part of a game is always interesting: It is the playground in which the actual
gameplay takes place, the environment to which all the other rules and limitations
of the game correspond. Having a thoroughly balanced and fair gamespace can be a
solid base for an overall fair game. Therefore, having accompanying guidelines for
the engineering process of a gamespace can help to reduce unexpected sources of
unfairness in the game.

The traditional rule of thumb for fair gamespaces is to keep them symmetric [12].
This relies on the assumption that a symmetric gamespace presents both teams with
exactly equal opportunities, which can be problematic: neither must a fair gamespace
be symmetric [14], nor must a game with a symmetric gamespace be fair (as will be
shown in 6). This assumption should therefore not be the sole deciding factor.

As fairness becomes increasingly difficult to grasp and define the more complicated
a game gets, it can be useful to achieve fairness in select sub-parts of a game, and to
continue from there. Providing a fair gamespace is an important step towards the goal
of an overall fair game.

This work will focus on providing guidelines and principles specifically for the fairness
of gamespaces of competitive multiplayer games.

1.1 Related Work

Analyzing games is a broad field. The specific analysis of gamespaces is a tiny niche
among this bigger cosmos. As the game, that this work will use as an example, is part
of the MOBA! genre, analyses of other MOBA games or games of adjacent genres are
of special interest.

Reddad et al. [12] focus less on fairness (as they follow the common assumption
that balance is simply achieved by symmetry), but propose an interesting way of
determining the quality of a map for the RTS-game? StarCraft 2. Their algorithmic
approach is one that could easily be expanded or adapted to different games.

Wau et al. [17] take a broader approach to the MOBA genre as a whole, and try to find
distinct aspects of fairness in different games. Their approach strongly relies on data
from professional tournaments, which potentially doesn’t coincide with the experiences
of most players, but can nonetheless be expanded to have a broader perspective.

!Multiplayer Online Battle Arena, a popular genre of competitive online multiplayer game; the gameplay
and structure described in 3.1 are typical for the genre
ZReal Time Strategy, the genre from which MOBAs developed [7]

2 Process

2.1 General Approach

To analyze entirely different gamespaces, it is necessary to have a common abstraction
for all of them. The visible surface, the aesthetics, are mostly irrelevant to this analysis.
We need the functional gamespace [14]: the topology of the gamespace (rather than the
exact geometry and graphics), enriched with data about resources and the importance of
certain areas. Therefore, this paper will first propose a way of formalizing gamespaces,
and then establish common principles of fairness, that can be measured and checked
within the formalization. While it would certainly be possible to automatize the creation
of such a model, creating the model by hand, with insights into the actual game, is
likely to give better, more accurate results. This can be done along with the creation of
the gamespace, to immediately incorporate the same creative thoughts that led to the
inception of certain parts of the gamespace into the model as well. Finally, to create a
tirst such formalization, a pivot-gamespace was selected, that was already fair in many
aspects, and could be tested on.

The goal of this process is to have a formalization that develops along with the
gamespace. Changes in the structure of the gamespace are reflected in the model,
and checked for consistency with the proposed principles. This does not only work
for the first construction of the gamespace, but can be especially interesting during the
process of extending and adjusting an existing gamespace, as it prevents new decisions
from destroying an established balance.

2.2 Structure of the Formalization

The functional gamespace mainly represents the topology of the actual gamespace,
preserving distances and connections between distinct points within the space. As
such, a graph is the obvious choice for a model [14]. Nodes of the graph represent
locations within the gamespace, that are interconnected and can be navigated through.
As the gamespace of most competitive multiplayer games is continuous, this leaves
further questions - how big is a node, how are distances between nodes treated, how is
it assured that every location within the gamespace is clearly assigned to a node?

2 Process

There are a few aspects such a graph needs to accommodate: The structure of the graph
should allow for every point within the gamespace to be clearly associated with one
specific node. Nodes should be meaningful in the context of the game - there is no
point in having several nodes that have no distinguishing factors at all. Finally, nodes
should be clearly connected to or disjoint from other nodes, without ambiguous cases.
For these reasons the model uses an approach, that is similar to a Voronoi partition [1]:
nodes are defined by a center point and their neighbours, creating borders exactly
between the centers. Therefore, any given point within the gamespace belongs to the
node to which center it is closest. The node centers should be placed carefully and
by somebody with deep understanding of the game in its entirety and the gamespace
especially, ideally a designer, as the placement of the nodes can indeed vastly improve
the overall quality of the model.
Connecting these nodes to a graph can be handled in different ways. Simply having
labeled edges that describe the distance between the centers of two neighbored nodes
would certainly make the construction process simpler, but lead to great inaccuracies,
depending on the direction of transition through a node. Instead, nodes contain a
lookup-table of connections via this node. This way, there is no single distance through
a node, but a set of distances depending on the direction. Constructing this lookup-
table for every node is an essential part of the formalization, and ensures a better result
for the measuring of distances between nodes.

This is visualized in figure 2.2: Storing the direct connections between A and B, B and

Node Route
+ title: String + a: Node
+ center: Vector3 + via: Node
+ routes: List<Route> + b: Node
+ tags: bool[] + cost: int
+ value: float + length: double

- path: Vector3]]
+ distance: double

+ metric: double

+ predecessor: Node

+ lookup(a: Node, b: Node): double + calculate()
+ getTo(a: Node, b: Node): Route + end(n: Node): double

Figure 2.1: Classes for the representation of a node and a route

2 Process

C and B and D would result in long, inaccurate distances when looking up a path (e.g.
A-B-C). If, instead, the paths across node B are stored (visualized as magenta lines),
looking up the paths will result in more accurate distances. On a bigger scale, this
means that every node contributes only the cost of traversing this node in the given
direction (i.e. the part of the stored path that lies within the blue Voronoi-borders) to
the cost of a longer path (as visualized in figure 2.3). This results in paths that present a
lower limit for the actual path, as each route through a node takes the shortest possible
way through the node in the desired direction. This leads to what appears as "jumps"
in the longer path: the routes through neighbouring nodes don’t necessarily connect,
as each route is calculated independently, with the goal of taking the shortest way for
this part of the path.

The way these structures are represented can be seen in figure 2.1. The representation
of a node contains the described components, plus additional variables that are used
for pathfinding. Routes provide both the path through the respective node, as well as
the ends of the route in the adjacent nodes, which are relevant for the beginning and
end of a longer path. For further details, see chapter 5.

2.3 Measurements

Once a model is established and set up, measuring various distances and connections is
simple. The formalization makes use of a modified version of the A* algorithm [10], that
takes into account the special representation of distances. Once set up for a gamespace
during development, desired criteria and principles can be set up as test-cases, that are
automatically recomputed as the gamespace is changed. This is further supported by
added tags in the nodes, to mark special locations like buffs and objectives. This gives
the model further options to accurately measure aspects that indicate fairness.

2.4 Choosing a Game

To work on a suitable representation, it was helpful to use a initial gamespace as a base.
In order to further ease the process, this gamespace needed to be well-tested, already
relatively fair and not too overly complex. Also, it needed to be from a game of which
the author of this paper had appropriate game knowledge, to fully understand the
context for the gamespace.

Given these criteria, the Summoner’s Rift from League of Legends was a fitting choice.
It has been in use (although with many modifications over time) for well over a decade
now, and as League is among the most-played online multiplayer games, it has been
extensively tested and refined, with a lot of attention to the balance. This does not

2 Process

BX

Figure 2.2: Three nodes (red crosses mark the centers, blue lines mark the borders,
magenta lines mark the paths stored in node B, grey lines mark direct paths
between node-pairs) around a narrow crossing

mean the Summoner’s Rift is perfectly fair - but it is fair enough to be a suitable base
for this project.

2 Process

Figure 2.3: A longer path: Only the contributions of each node are shown, the route to
traverse the respective node from its predecessor to its successor. Simplified
example from the Summoner’s Rift (see section 3.1)

3 League of Legends

League of Legends (LoL) is a MOBA developed by Riot Games, released in 2009.
Inspired by the success of DotA!, LoL pioneered the "game as a service"-approach, and
is continuously being extended, improved and balanced [2]. LoL is free to play, earning
its revenue via the in-game sale of cosmetics. More than a decade after its initial release,
the game has secured its place as one of the most played online multiplayer games,
and the second-most watched e-sports game in the world [3]. Due to the great strategic
depth and diverse gameplay, LoL is rather difficult to pick up, but once a player gets a
grasp of the game, they often keep playing over a long time [2].

3.1 Structure of the Game

The following sections are based on the official how-to-play of LoL [15] and the personal
experience of the author of this paper.

3.1.1 The Summoner’s Rift

While League of Legends has various different game modes and according gamespaces,
there is only one with competitive relevance, which will be the focus of this analysis:
the Summoner’s Rift. On the Summoner’s Rift, two teams of five players (the blue team,
which has their base in the lower left corner of the Rift, and the red team which has
their base in the upper right corner of the Rift) compete against each other to conquer
and destroy the opposing team’s nexus. The Rift consists of the two bases, connected
by three lanes (toplane, midlane, botlane), and the jungle between them.

A base contains the fountain, the nexus, three inhibitors and five turrets.

The fountain is the spawn-point? of the players. This is the only place where players
can buy items to upgrade their stats, and is only admissible for players of the own
team - entering the enemy’s fountain means to take enormous damage, to prevent
spawnkilling®. Standing in the own fountain allows the player to rapidly regenerate

Ishort for "Defense of the Ancients", a popular Warcraft 3 mod that largely shaped the MOBA genre [7]
2
The location in which players first appear in the beginning of a game, and reappear after they died.
3the act of killing a player immediately after they respawn, preventing them from taking any defensive
actions

3 League of Legends

Figure 3.1: The minimap of LoL, as it appears to a player on the blue team.

health and other player-specific resources like mana.

The nexus is a massive structure that presents the main objective of the game. The
destruction of a nexus immediately ends the game, marking the team that did it as
the winners. On the minimap (Figure 3.1), the nexus is represented as a circle with
four rectangular protrusions and a tiny square in the middle, colored in the respective
team’s color.

Inhibitors are smaller structures, resembling the nexus. Destroying an inhibitor is
essential to progress further into the enemy’s base, and allows the own team to spawn
super minions. On the minimap (Figure 3.1), the inhibitors are represented as circles
with a tiny rectangle in the middle, colored in the respective team’s color.

Turrets (also called towers) are structures that defend a certain area around them.
Each turret shoots beams of energy that deal increasing damage with the amount of
consecutive shots. Turrets will attack any enemy unit that enters their range, but only
one at a time. An enemy champion, who attacks an allied champion within the range
of a tower will immediately get focused by the tower, until they leave its range. To
attack any enemy structure (i.e. turrets, inhibitors, the nexus), the structures before it

3 League of Legends

need to be destroyed*.

Between the bases lie the lanes. Each lane has a neutral middle ground, the rest of
the lanes is protected by turrets (two turrets per lane per team). In each base spawn
minions (NPC® entities that align with a team, push the lane®, and can be killed by
opposing players for gold and experience). There are different kinds of minions (melee-,
caster-, cannon-, and super-minions) that appear in different quantities and intervals,
and deal different amounts of damage, have different amounts of HP and are worth
different amounts of gold and experience.

Between the lanes lies the jungle, a landscape of twisted, narrow paths and occasional
clearings (called camps) where neutral monsters can be slain for gold, experience, and
in some cases either individual or team-buffs. On the minimap (Figure 3.1), buff-camps
are represented by a tiny, orange animal-head. Regular camps that don’t give buffs
are represented by orange diamonds. The most important of these objectives are the
Dragon ("drake") and Baron Nashor ("baron"). Both spawn in the pits in the river,
the baron between top- and midlane, the drake between bot- and midlane. Both have
unique bulffs for the team that claims them, and develop over the course of the game:

The Baron only spawns after 20 minutes, before that, his pit is occupied by the rift
herald, a neutral objective that allows the player who claims it to greatly damage a
turret. After that, the Baron spawns. It gives all living members of the team that claims
it a buff that empowers minions in their proximity and gives them a quicker recall’.
On the minimap (Figure 3.1), the baron is represented by a purple icon.

Each Drake, on the other hand, has an element. The elemental drakes give the team
that claims them a unique buff, depending on said element. The first three drakes are
of different elements, afterwards there are only drakes of the same element as the third
one, and the entire Summoner’s Rift changes according to that element. Once one team
has claimed four drakes, they gain an additional buff (the drake soul), and no more
elemental drakes spawn - instead, there are only Elder Dragons from now on, who give
the team the temporary passive ability to execute low-health enemies. The dragon is
the most important jungle objective in the current meta, to a point where gaining the

4for example: To attack the nexus, the two turrets in front of it (the nexus-turrets) need to be destroyed.
To attack the nexus-turrets, at least one inhibitor needs to be destroyed. To attack an inhibitor, the turret
in front of it (the inhibitor-turret) needs to be destroyed. To attack an inhibitor-turret, the lane turret in
front of it (the tier 2 - turret) needs to be destroyed. Finally, to attack a tier2-turret, the tierl-turret on
the same lane (the turret closest to the neutral ground) needs to be destroyed.

5Non-Player Character, any character in a game that is not directly controlled by a player

6"pushing a lane" means to advance on the lane from the own base, attacking and killing enemy units on
the way, and sieging, damaging and eventually destroying enemy structures on the lane.

"Players can recall at any point in the game. This teleports them back into the fountain of their team.
Recalls are interrupted by moving or taking damage during the channeling period, which usually
takes 8 seconds. The baron-buff halves this duration.

10

3 League of Legends

drake soul as a team can mean an almost guaranteed win®. On the minimap (Figure
3.1), the drake is represented by a respective elemental icon, in the depicted case an
orange flame for the infernal drake.

The Rift is centrally symmetric, with only one notable exception: the herald /baron
takes the place of the drake on the other side.

3.1.2 Champions

Before the beginning of a game, each player picks a champion to play as. The amount
of playable champions is steadily increasing - when LoL was first released, there were
only 40 individual champions [2], and by now there are more than 150. Each champion
has unique abilities and stats, with many different playstyles and possible combos.
Each champion can only be selected once per team, and in most game-modes even only
once per game. Champions cannot be changed later in the game.

Killing enemy or neutral units or structures allows players to earn gold and experience.
Gold is spent in the shop, to purchase items that enhance the stats of the played cham-
pions, or give entirely new passive effects. Experience grants the champions level-ups,
which allow the player to improve their champion’s abilities. The maximal level is 18,
at which all abilities reach their maximal strength.

As the teams consist of five players each, the players have to arrange themselves on a
map with fewer lanes than players. Commonly, the lane-assignment is as follows:
One player pushes the toplane. The toplaner usually relies on a solitary playstyle,
putting high effort into farming® and scaling!®. Common champion-choices for the
toplane are tanks'! and bruisers'?. As toplaner, encounters with other players are rare
in the early stages of the game.

One player pushes the midlane. As the midlane lies in the diagonal of the Rift, con-
necting the bases in a straight line, it is the shortest lane. This means, that minions will
reach the neutral ground of the lane faster than anywhere else, allowing for quicker
wave-clear!®. Midlaners commonly employ an aggressive playstyle, choosing assassin-14

8 At this moment, teams that claim the weakest possible soul have a winrate of more than 80%, according

to https://wuw.leagueofgraphs.com/rankings/drakes on 2022-19-01

“killing minions to gain gold and experience

1farming as efficiently as possible during a weaker phase to become strong through better items

Hdefensive champions that often do not deal a lot of damage, but have strong resistances and/or
regenerative abilities, and strive to immobilize enemies to set up opportunities for the own team

12champions that deal a lot of damage at close range and can easily sustain and regenerate a lot of damage

13Minions spawn in waves, with fix delays between each wave. Clearing a wave means to eliminate all
minions of this wave.

4mobile champions that can deal lots of damage in very little time, but can easily be killed themselves

11

https://www.leagueofgraphs.com/rankings/drakes

3 League of Legends

or mage-'> champions. The midlane also allows the player to easily roam!® to other
lanes, helping out players with objectives or in teamfights.

The botlane is usually pushed by two players: while one of them is the primary botlaner,
the other one takes up a supportive role. In most games the botlaner is a strong but
fragile carry'’, often a marksman'® or mage. The support, on the other hand, usually
only gains gold passively, and therefore operates on a scarcer budget. They help their
carry in different ways - as a tank, an enchanter!® or a mage - in the early game, and
roam later to support the entire team.

The final player takes the role of the jungler. They farm gold and experience from the
various neutral monsters in the jungle. The jungler provides their team with vision,
takes bigger, neutral objectives that buff the entire team, and ganks (ganking a lane
means to visit said lane as a jungler, assisting the allies and attacking the enemies) lanes
to put the respective laners at an advantage. There is a wide variety of possible viable
champions for the jungle, but most of them are usually very mobile (e.g. possessing
abilities that allow them to traverse walls), to quickly get from lane to lane.

3.1.3 Phases of a Game

In the beginning of a game, all players spawn in their bases, and buy their starting
items from the shop. They position themselves at crucial positions in the jungle to
either prevent an invade or to start an invade themselves?®. The players then proceed to
their assigned lanes or help the jungler with their first monster. All lanes are now being
pushed by the opposing players, who may engage in short skirmishes, but mainly farm
the minions. In this phase of the game there are few kills, usually only in case of a
gank by the jungler. The first objectives get taken, and gradually even the first turrets.
With the start of the midgame, the strict lane assignments are usually broken. There
are more teamfights. more roams, objectives are often engaged by whole teams. The
first dragons have been taken, and likely the herald too. In the lategame, the baron and
the elder drake become the deciding objectives. The teams fight mostly together, trying
to gain the deciding advantage that will win the game.

15champions that deal a lot of magic damage over some range, but are typically immobile and easy to kill

16quickly move from one lane to another, to assist allied champions or to score quick kills

17 A strong champion that, through the assistance of its allies in the beginning becomes extremely strong

later on.

18champions that deal a lot of physical damage over long distances, but usually don’t have a lot of hp

19a supportive champion that helps their allies by giving them shields or healing, rather than damaging
or immobilizing enemies

Yinvading means to enter the part of the jungle that is closer to the enemy team’s base, to kill a buff
monster or to surprise the enemy jungler

2

12

4 Principles

From the definition of the model and the knowledge of the game itself, it is possible
to derive desired criteria and principles, and to assemble them in a form that allows a
steady checkup during the engineering process. Setting up these principles as a kind
of test-case allows the engineer to check at any point during development, whether the
current iteration of the gamespace still fulfills the previously defined criteria. While
some criteria might present principles that apply to nearly every game, others might
be only desirable for certain types of games, or depend on game-specific variables.
This chapter proposes a broad selection of principles that can be applied in this or a
modified form to various different games. In the following, we will assume that there
are two competing teams in the game. All of the principles are applicable to games
with an arbitrary number of competitors, but they might need to be reworded.

While all of these principles are designed to support fairness and balance, there are
two different kinds of principles that further different aspects of balance: The first kind
attempts to create balance between the two opposing teams (4.1), and the second one
keeps the balance between different players and roles (4.2), to prevent certain roles
from overpowering everyone else in the game.

4.1 Horizontal Balance

We define horizontal balance as the balance between both teams. Neither team should
be, from the beginning of the game, in a significantly advantageous position [14]. The
simplified map from figure 4.1 will serve as an example for some of the following
principles. Cyan lines represent defense-lines for team B, magenta lines represent
defense-lines for team A. The labeled circles represent the bases for the teams, the
smaller circles represent resources.

We propose the following principles with regard to horizontal balance:

4.1.1 Resource Access

The access to resources within the game should be equal. This does not have to be
perfectly symmetrical - while symmetry certainly makes balance easier to ensure, it is

13

4 Principles

Figure 4.1: This simplified map of an arbitrary MOBA is symmetric. It will serve as an
example for some of the following principles.

not the only way to achieve it [14]. Resources appear in various forms across different
games. They are goods available to players, usually after completing a task (like killing
an NPC or claiming a control point), and often without necessarily interacting with an
enemy player. These may include, but are not limited to: experience and gold (often
gained by slaying neutral or enemy NPCs, e.g. creeps in DotA 2 [4]), healing (often
provided in fixed locations, e.g. health packs in "Overwatch" [6]) or buffs (often gained
by slaying a particularly tough NPC, e.g. the drake in LoL, see 3.1).

Every team should have equal opportunities to access resources. These resources
may be distributed asymmetrically, of course. To properly measure resource access,
resources - or more precisely the locations of said resources - can be marked with a tag
for quicker analysis and a relative value of the resource. Said values can and should be
changed throughout the testing process, depending on the resource’s impact on the
actual gameplay [14]. Now, the distances from bases to resources for each combination
of team and resource can be measured. We propose an access rating a for both teams
as a suitable measurement:

value(r)
distance(r, t)

a(t) =

reresources

Checking, whether this value is equal1 for both teams is trivial.

lor equivalent with a chosen margin; depending on the placement of the nodes the model can bring a

14

4 Principles

Figure 4.2: Given equal values for all resources, team A has a better access rating.

To push this facet of fairness further: Every team should have equal opportunities
to claim multiple resources one after another. Depending on the structure of the
gamespace, both teams can have equally long distances to various resources from their
bases, but the distance between the resources can produce great imbalance (figure 4.3).
Measuring this requires further calculations: it is necessary to accumulate the shortest
paths that connect multiple resources for both teams.

Another approach to fairness in regard to resource access is the priority on a resource
the teams have. A team has higher priority on a resource, if the path from this team’s
base to the resource is shorter than the other team’s. Again, the value of a resource
should be took into consideration: Both teams should have priority on resources of
equal value.

The availability of resources can be examined in greater detail. Most resources are not
available permanently, but often have a cooldown, and some resources require a certain
time to claim them; this can be included in the analysis of their availability.

4.1.2 Paths

Within a larger gamespace, there are more locations of interest than just resources.
Neutral spaces will be the most common points of conflict in the early stages of a game,

certain deviation with it

15

4 Principles

Figure 4.3: Given equal values for all resources, both teams have an equal access rating,
and yet team A is at a great advantage to accumulate multiple resources in
limited time.

and their locations are important. Detecting crossings? and bottlenecks® can greatly
help the understanding of the gamespace.

Neutral territory should, in the beginning of the game, be equally far away from all
teams’ bases. In gamespaces without defensive entities (like turrets in LoL, see 3.1),
this will often be established naturally, as the middle* between the bases is the first
point where players of both teams will collide, if they start moving out at the same
time. In gamespaces with specifically established defensive lines, this is of greater
importance: the team with the shorter way to the neutral space will have a defensive
advantage for the first encounter, but after that they can be pushed back to their base
more quickly. Neutral spaces can be measured easily - defensive lines can be marked
on the nodes as a tag, and the space between the last defensive line of one team, and
the first of another is neutral space.

The most common crossroads should lie in neutral territory. If the most central, most
frequently crossed point of a gamespace lies within the space inherently dominated

ZPlaces in the gamespace in which many paths intersect

3Places in the gamespace that are frequently used but are narrow and allow for little evasive maneuvers

“Not necessarily the actual middle of the gamespace, but the point to which the traveling distance is
equally far from both bases.

16

4 Principles

Figure 4.4: The neutral area in this example is closer to the base of team B, putting
them at a disadvantage.

by one team, the balance of the gamespace is certainly disturbed. Finding important
crossings is not complicated, but possibly expensive: By calculating all possible paths
(and, for better accuracy, optionally weighing them with the value of their end nodes),
and counting the appearances of each node, the most important crossings can be found.

Furthermore, no base should be locked behind bottlenecks. Having a base that
is only accessible through bottlenecks makes it easy to trap all players of a team in
their base’. This corresponds to a second principle: Spawntrapping® should not be
possible. Doing so would make the game effectively unplayable for the trapped team,
which enables the other team to harass them indefinitely. This behaviour is often
considered bad manners (behavior that serves no purpose other than ruining the fun
for other players), and should be prevented entirely.

Another important part of many gamespaces are paths that connect points of con-
frontation (e.g. neutral spaces) with other points of confrontation and objectives. These
paths are often used to create situations in which one team gains numerical superiority
to surprise their opponents (often called "gank", see chapter 3). While these paths

5There are exceptions to this, although they are rare, e.g. a hypothetical base that is only accessible
through bottlenecks, but in a star-like manner with more exits than players, making it nevertheless
impossible to lock down.

®Trapping players at their spawnpoint, often in combination with spawnkilling

17

4 Principles

Figure 4.5: The most important crossing is moved closer to the base of team B, creating
an imbalance.

are interesting for vertical balance (section 4.2) as well, the length and availability of
gank-paths should be balanced for all teams. If players of one team have the possibil-
ity to freely move between two places of interest, while the players of the other team
are constrained to their positions or need to take significantly longer paths, the more
mobile team is at an advantage. This is also important for the amount of such paths: if
one team has multiple different angles for a gank while the other team is limited to just
one, the team with more options certainly has an advantage. To balance gank-paths,
the places of interest can again be weighed by their importance (just like resources can
be balanced by their values): Teams might be at an advantage for different places of
interest, as long as their values even out.

Another important factor in regard to gank-paths are the objectives along the path. If
one team has the possibility to easily take an objective along the way of a frequent
gank path, while the other team can’t, a player from the first team gains more utility
from taking that path. Therefore, the access to objectives along common gank-path
should be balanced. The objectives along a path can be easily measured by checking
neighboring nodes for the relevant tags. This, again, should be weighed with the
respective value of the resource.

18

4 Principles

4.2 Vertical Balance

We define vertical balance as the balance within a team, that allows players to feel like
they have roughly the same level of impact on the game like their peers. In terms of the
gamespace, this mainly means to keep the balance between players who stay in motion
between objectives and combat situations and players who mainly stay in fixed spaces.
We propose the following principles with regard to vertical balance:

As an important step towards this goal, players should not be able to claim two
resources at once. This limits the speed at which mobile players proceed across the
gamespace, and prevents excessive gain of resources in limited time. As resources
usually have a set radius in which they can be claimed, this can be measured by making
sure none of these radii intersect.

Another possible way to keep mobile players from having too much impact can be to
set constraints for the length of gank-paths. Gank-paths should have a set minimal
length in relation to the path from the bases to the neutral space. This is relevant
only for the neutral space in the beginning of the game - as the game progresses and the
neutral area shifts, this constraint may be broken. Finding a suitable relation between
the two paths is task that relies on more than just the gamespace alone, since different
games might have different requirements in this regard.

19

5 Algorithms

5.1 Setting Up the Routes

The routes, which are stored in each nodes’ lookup-table, provide the basis for the
entire model. These traversals always connect two nodes (a and b) via a third node in
which the route is stored. The algorithm for calculating these routes works as follows
(Algorithm 1):

At first, the exact path between node a and node b is calculated. This is done using
the pathfinding algorithm of the game engine (Unity NavMesh etc). Here, the node
placement is quite important: if the computed path doesn’t actually cross the middle
node, the node placement and connections aren’t ideal and should be changed. Once
the whole path is calculated, it needs to be trimmed. Having the entire path isn’t very
useful for later pathfinding - the relevant distance is the distance across the middle
node, outside of the boundaries of the start- and end-node. The other parts of the
route are only relevant for the beginning and end of a longer path, and can be stored
separately.

Trimming the path is done as follows: At first, all the vertices of the path that lie within
node a are culled. Then, the intersection point of the route and the border between the
nodes is added. It will serve as the new starting point of the route. Now the vertices
within the middle node are added, with another intersection point at the end, marking
the end of the middle node. Once this route is assembled, its length can be easily
calculated by summing up the distances between the vertices in order. The border
between two nodes is the normal of the direct connecting line, in the exact middle
between the node centers. In the presented case, the border function assumes both
nodes to have the same y-coordinate. This may vary for different gamespaces and
needs to be adapted for each case.

5.2 Finding Paths

Once the individual routes are set up, the model is ready to have various kinds of
measurements run on it. Many of these require the model to provide pathfinding. To

20

5 Algorithms

efficiently find paths within the model, the A* algorithm [10] can be adapted to work
on this kind of graph. This works largely as usual (Algorithm 2):

In the beginning, all nodes receive their starting parameters, which include an infinite
distance, the added metric for quicker pathfinding (in this case, simply the euclidean
distance between the center of the node and the center of the goal) and an empty
predecessor. In the beginning, the start-node is evaluated. It is the only node that is
evaluated differently from all others, as it has no predecessor - there can’t yet be a route
through it, but there has to be a route from it. In this case, the algorithm looks up the
distances from the border of the start node to the centers of the adjacent nodes. In a
second step it would be possible to collect routes via the adjacent nodes to the start
node, which would require a different kind of route-lookup. The found nodes have
their distance and predecessor set. Now, the star-node is removed from the unexplored
set, and the usual algorithm begins.

The node with the shortest sum of distance and metric is chosen to be explored, and its
neighbours have their distances set. The important change from the usual algorithm is,
that the predecessor plays a role in the length of the paths. Therefore, each distance
can only be set with the respective predecessor.

In the end, this algorithm returns the path rather than the distance, as it is relevant
for various measurements. The distance is easily looked up from the path by adding
up the costs of the individual routes of which the path is composed, and adding the
respective ends of the first and last routes.

5.3 Measuring

To check the principles proposed in chapter 4, we need algorithms to measure the
different properties of the gamespace. While some of these principles can be checked
very generically, some require a stronger adaption to a specific game. This section will
present some of the more broadly applicable algorithms, designed to work with the
previous functions.

For the following algorithms we will need a set of nodes that contain resources, as
well as the bases of both teams. These sets can be easily deduced from the set of all
nodes by filtering it for the according tags. These sets can be computed outside of the
measuring functions and stored for efficiency.

To calculate the access - ratings for a team (algorithm 3), the distances!' from the
respective base to all resources in the game are weighed with the value of the resources.
This can be done for both teams, and the ratings can be compared (with a reasonable

! Actual travel-distances, calculated using the lookup and A* algorithms.

21

5 Algorithms

threshold).

Comparing the priorities both teams hold (algorithm 4) happens similarly. For each
resource, the distance to both bases is measured. The team that holds priority on a
resource gets the value of the resource added to their priority rating. The algorithm
returns a tuple with the priority ratings for both teams. Should there be more than two
teams, this algorithm needs to be adapted.

Algorithm 5 allows to calculate, how many routes between two sets of nodes cross
every node. This has a multitude of applications, finding crossings between various
subsets of nodes can help the engineering process, and one of these applications is
finding the most important crossing(s) of the gamespace. To do that, the input for the
function can either be two times the set of all nodes or, later on during the engineering
process, with more knowledge of the game, two sets of all nodes, with some nodes
appearing multiple times, weighed with their importance. The function returns a
dictionary of all nodes, associated with the number of routes that cross them.

The resources along a path can be measured using algorithm 6. This can be used to
evaluate gank-paths? for different teams. The algorithm collects resources in nodes that
are traversed by the path and in nodes that lie adjacent to the path, and returns the
set of resources. This can be evaluated for the amount or value of the resources. In
this example it is assumed that the information whether a node contains a resource is
stored in tags[0] of the node. Should this not be the case, or should there be multiple
tags for resources, this needs to be adapted.

2These paths can either be calculated or obtained from gameplay tests.

22

5 Algorithms

Algorithm 1 Calculation algorithm for individual routes

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

1
2
3
4
5:
6:
7
8
9

: function CALCULATE
tempPath <— PATHFINDING(this.a, this.b)
this.path <— TRIMPATH(tempPath, this.a, this.via, this.b)
this.length <— PATHLENGTH(this.path)

end function

: function TRIMPATH(p, a, b)
path < ||
i+ 0
while Dist(p|i],a) < Dist(via,a) A D1st(pli],a) < Dist(pl[i],b) do
i+ i+1
end while
borderline <~ BORDER(a, via)
borderPoint <— LINEINTERSECT(borderline, (p[i — 1], (p[i] — p[i —1])))
path.APPEND (borderPoint)
while Drst(p[i],b) < Dist(via,b) do
path.APPEND (p[i])
i+ i+1
end while
borderline <— BORDER(b, via)
borderPoint <— LINEINTERSECT(borderline, (p[i — 1], (p[i] — p[i —1])))
path.APPEND (borderPoint)
return path
end function

25:

26:
27:
28:
29:
30:
31:
32:

function PATHLENGTH(path)
length < 0
for i <— 0, path.length — 1 do
length < length + Dist(pathli], path[i + 1])
end for
return length
end function

33:

34:
35:
36:
37
38:
39:
40:

function BORDER(a, b)
normal < (—(b.center.z — a.center.z), a.center.y, b.center.x — a.center.x)
normal NORMALIZE
center < ((a.center.x — b.center.x),a.center.y, (a.center.z — b.center.z)) x 0.5
point < (a.center + center) — normal
return (point, normal)

end function

23

5 Algorithms

Algorithm 2 A* Algorithm, adapted to work with the node representation

1: function ASTAR(start, goal, nodes)
2 for all node in nodes do
3 node.distance <— oo
4 node.predecessor <— null
5: node.metric <— Dist(node, goal) > euclidean distance between centers
6 end for
7 start.distance < 0
8 for all route in start.routes do
9: route.a.distance < route.END(route.a)
10: route.a.predecessor <— start
11: route.b.distance <+ route.END(route.b)
12: route.b.predecessor < start
13: end for
14: nodes < nodes\start
15: current < null
16: while nodes # @ do
17: current < null
18: for all node in nodes do
19: if current = null then
20: current <— node
21: else if next.distance + next.metric > node.distance + node.metric then
22: current < node
23: end if
24: end for
25: nodes < nodes\current
26: if current = goal then
27: break
28: end if
29: for all route in current.routes do
30: other < null
31: if route.a = current.predecessor then
32: other < route.a
33: else if route.b = current.predecessor then
34: other < route.b
35: else
36: continue
37: end if

24

5 Algorithms

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:

if other.distance > current.distance + route.length then
other.distance < ex.distance + route.length
other.predecessor <— current
end if
end for
end while
path <]
path.ADDFRONT (current)
while current.predecessor # null do
path.ADDFRONT (current.predecessor)
current < current.predecessor
end while
return path

51: end function

52:

> A* returns a path rather than the distance, which can be obtained via Lookup

53: function Lookur(path)

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

1)

74:

| < path.length
if | =1 then

return 0
else if | = 2 then

directPath <— PATHFINDING(path[0], path[1])

return PATHLENGTH (directPath)
end if
distance < 0
fori+ 0, —2do

step < path[i + 1].Lookup(stopsli], stops[i + 2])

if step > 0 then

distance <— distance + step
else
return —1
> There is no connection between the nodes, this is an erroneous state!

end if
end for
> The result does not yet contain the distance within the start- and goal-nodes.
distance < distance + path[1].GETTo(path|0], path[2]).END(path|0])
distance < distance + path[l — 2].GeTrTo(path[l — 1], path[l — 3]).END(path[l —

return distance

75: end function

25

5 Algorithms

Algorithm 3 Algorithm to look up the access rating for one team

1: function AccEess(base, resources)

2 rating < 0

3 for all res in resources do

4: rating < (res.value - LookuP(ASTAR(base, res))) + rating
5 end for

6 return rating

7: end function

Algorithm 4 Algorithm to assess the priority both teams hold

function PrioriTY(basel, base2, resources)
priol <0
prio2 < 0
for all res in resources do
d1 < Looxur(ASTAR(basel, res))
d2 < Looxur(ASTAR(base2, res))
if d1 > d2 then
priol < priol 4 res.value
else if 42 > d1 then
prio2 <— prio2 + res.value
end if
end for
return (priol, prio2)
end function

26

5 Algorithms

Algorithm 5 Algorithm to find important crossroads

function CrossroaDs(nodesA, nodesB)
dictionary < {}
for all 2 in nodesA do
for all b in nodesB do
path < ASTAR(a,b)
for all node in path do
if dictionary.CONTAINSKEY(node) then
dictionary[node| <— dictionary[node] + 1
else
dictionary[node] = 1
end if
end for
end for
end for
return dictionary
end function

Algorithm 6 Algorithm to accumulate the resources along a path

function RESOURCECOUNTER(path)
resources < {}
for all node in path do
if node.tags[0] A node ¢ resources then
resources <— resources U node
end if
for all route in node.routes do
if route.a.tags[0] A route.a ¢ resources then
resources <— resources U route.a
end if
if route.b.tags[0] A route.b ¢ resources then
resources <— resources U route.b
end if
end for
end for
return resources
end function

27

6 Application

6.1 Setting Up the Model

With the formalization and principles in place, it is possible to examine a first gamespace.
As previously discussed in section 2.4, the Summoner’s Rift is an ideal example to test
the model on. While obtaining a proper 3d-model of the rift is harder than expected, it
is not impossible: although Riot Games doesn’t provide the model itself, they provide
the mini-map, which properly shows the rift. An approximate model of the rift can be
obtained by extruding the walls from the mini-map into 3D (see figure 6.2). While this
is not perfectly accurate, it is suitable for a first analysis.

The placement of the different nodes went through multiple stages, with different
outcomes (e.g. figure 6.1). The goal was to have as little redundant nodes as possible!
while still maintaining a high accuracy for the distance calculations.

Finally, the model is set up in Unity. All code is written in C#. The centers of nodes
are represented by sphere-GameObjects (see figure 6.3). Each node received a script
for the node properties. A separate GameObject, the handler, is set up to take care of
the main graph functionality: the handler receives a list of connections?, looks up the
according nodes, calculates the routes and node-borders, and stores the distances in
the according nodes.

The final model of the rift has a lot more nodes than the early attempts, to increase
the precision. To further support the analysis of the rift in the specific context of LoL,
off-mesh-links through many of the walls were added: Many champions have mobility
spells that allow them to move through walls of a certain size, and every player has
the option to equip the summoner spell® "flash". This makes traversing certain walls
of the Rift an important and frequent part of the gameplay of LoL, that should be

n this case a node is considered redundant, if there is another node adjacent to it, which has the same
properties - the same other nodes are reachable from it, they have identical tags

2The connections are passed as triples of node-names: from-via-to. While an automation of this process
is possible, this was not the focus of this work.

3Summoner spells are active abilities, independent of the champion’s abilities. Every player can pick
two summoner spells from a pool of different spells with effects like healing, weakening enemies,
teleporting or many more

4flash allows the player to instantaneously teleport a short distance. Despite its rather long cooldown,
flash is the most popular summoner spell in the game

28

6 Application

Figure 6.1: An early attempt to distinguish locations for nodes in the jungle

accommodated in the analysis.

The nodes also received tags to further the understanding of the gamespace. The
possible tags are: "within the influence of a turret", "contains a jungle camp", "contains
a buff camp" and "contains a major buff" (i.e. drake or baron). In a further, in depth,

analysis of the game a tag for brushes® could be useful.

6.2 Analysing the Rift

With the formalization in place, we can check whether the rift fulfills the principles
defined in 4.
For the principles surrounding resource access, the individual values of the resources

5Brushes are spaces in the rift with tall grass. Brushes hide units on the inside from enemies on the
outside.

29

6 Application

Figure 6.3: The model of the Summoner’s Rift with spheres as node centers

30

6 Application

Figure 6.4: The model of the Summoner’s Rift, with borders between adjacent nodes

are important. The normal camps are worth less than buff camps, buff camps are worth
less than the herald /baron, and the herald/baron is worth less than the drake. These
weightings usually change within a game and over the course of different patches, but
have proven overall rather consistent for the past two years®. Due to the otherwise
almost exact symmetry of the rift, the difference in value of the dragon and the baron
is quite decisive: Had both of these big objectives the same value, both teams would
have equal access and priority on resources.

Simply through the imbalance created by the difference in value of the dragon and
the baron, the rift puts the red team at an advantage. The red team has priority on
resources of a higher value, a better access score and the possibility to claim resources
of higher value in less time than the blue team.

This still doesn’t mean that it is impossible for the blue team to claim the dragon (or

%Since the big rework of the drakes in 2019 [8], they have consistently been the most important objective
in the game, establishing this order of relevance.

31

6 Application

Figure 6.5: finding crossroads: unweighted on the left, weighted with estimated node
importance on the right (red nodes are used more often)

the red team to claim the herald /baron); it just makes it harder for them to safely enter
the area around it, and to safely fight it. Even if the red team already started fighting it,
a player of the blue team may enter the area surprisingly through the wall, by using a
mobility spell. The structure of the rift presents merely an advantage in entering the
area, not a guarantee to claim the objective.

The central symmetry of the Rift assures a few other properties: the neutral space
lies in the middle of the gamespace, equally far away from both bases. Also, as the
algorithm for finding crossroads (algorithm 5) confirms (visualized in figure 6.5), the
most important crossroad in the rift is exactly in the middle, in the neutral space of the
midlane.

Another side effect of this symmetry lies in the mirrored layout of bot- and toplane.
The additional gank-path through the tri-bush (labeled as B-Tri and B-2 in figure 6.1)
puts the team to whose base it is closer (the red team on the toplane, the blue team
on the botlane) at a disadvantage: If a player of said team fights in the middle of the
lane, enemies have an additional way to get behind them. This, again, is a case in
which the symmetry of the map does not necessarily produce balance. The importance
of the drake has led to an increased focus on the botlane, since having a stronger
botlaner than the opponent makes it easy to claim drakes (due to the close proximity).

32

6 Application

This means that players of almost all roles focus strongly on helping their botlaners’.

Therefore, as the botlane is generally often more important than the toplane, in this
case the symmetry of the gamespace reinforces the advantage of the red team.

It is fairly impossible to lock a team into its base - each team’s base has exits through
all three lanes, two additional exits only passable for the team that owns the base, and
the walls that separate the base from the rest of the rift can be passed through by using
a mobility spell (e.g. flash). Even if a team gets pushed deep into their base, under the
fountain, it is very hard to spawnkill players (although it becomes possible if one team
gained an extreme advantage over the course of the game).

To analyze the range in which resources can be claimed needs to include the range
of playable champions®. While the radii of the jungle-camps don’t overlap (for the
individual ranges of different camps refer to the pages on [5]), certain champions can
still attack and claim multiple camps at once, due to the champion’s own range or
mobility. This can make this kind of champion very oppressive as junglers, which is an
issue that is usually approached by balancing the champion instead of changing the
layout of the jungle or the radius from which resources are claimable.

Finally, the maximal distance between the neutral ground of the lanes is slightly longer
than half of the distance from the base to the neutral ground of the bot/toplane. This
allows for relatively quick ganks, while preventing an omnipresence of mobile junglers.

6.3 Evaluation

In conclusion it can be said, that the symmetric layout of the Summoner’s Rift doesn’t
make the game perfectly fair. While it prevents multiple vectors of imbalance, the
different value of resources at symmetric positions tilts the balance in favor of the red
team.

Still, League of Legends has been successful for years now - how is this possible? This
is the case, because the gamespace does not entirely determine the fairness of the game.
Having a fair gamespace can be a good base for a fair game, but a slightly imbalanced
gamespace can be balanced by other components of the game. Especially the draft pick
system’ can significantly benefit one of the teams depending on the current balance of

"This has led to strong changes in the meta-game, which not everyone appreciates. Especially toplane play-
ers often feel that they lack impact on the game, e.g. https://www.reddit.com/r/leagueoflegends/
comments/k9614z/jungle_is_fundamentally_breaking_this_game_and/ (accessed 2022-01-29)

8While other games have resources that can be claimed simply by entering an area, on the Summoner’s
Rift all resources require the players to attack and kill NPCs to claim them.

9The way players select their champions before the game, which involves each player banning a champion,
and then taking turns picking champions: blue team picks one - red team picks two - blue team picks

33

https://www.reddit.com/r/leagueoflegends/comments/k9614z/jungle_is_fundamentally_breaking_this_game_and/
https://www.reddit.com/r/leagueoflegends/comments/k9614z/jungle_is_fundamentally_breaking_this_game_and/

6 Application

champions!?.

As the current statistics show!!, the current meta-game generally benefits the red team
in more organized play (ranked flex, at a rank of platinum+). While this might be
mainly due to the current champion balance, the statistics show, that the red team slays
more dragons on average (which they have an advantage on, as the analysis of the
rift has shown), while the blue team slays more heralds. Interestingly, the red team
also slays more barons - the baron spawns at a point in the game at which the early
advantage of the red team often has already made them dominant enough to negate
their disadvantages towards the baron.

In a further, more in-depth, analysis, it would be especially interesting to analyze the
effects of vision!2 and to dive deeper into the topic of mobility spells. This would mean
to move away from general principles of fairness, and closer towards the MOBA-genre
or LoL itself.

two - red team picks two - blue team picks two - red team picks one

19During a period with few very powerful champions, the blue team is at an advantage because it can
pick first. During periods with certain strong combos, the red team is at an advantage because they
can secure two champions at once.

HCurrent statistics always accessible at https://www.leagueofgraphs.com/rankings/blue-vs-red/euw,
the text refers to the statistics on 2022-01-30, during patch 12.2 of LoL

12A concept that is very significant in the MOBA-genre: The majority of the Rift is covered by fog of war,
obscuring any area that is not entered by ally units. Gaining vision on crucial areas is a key part of the
gameplay.

34

https://www.leagueofgraphs.com/rankings/blue-vs-red/euw

7 Conclusion, Discussion, and Future Work

In the end, creating a fair game remains a complex undertaking. The idea to break
down the game into conceptual parts, and to start by balancing these appears to be
a good way of approaching it. The gamespace is an essential part of a game, and as
such is quite interesting in its variety. Setting up a formalized model to represent the
topology of the gamespace allows developers to analyze very different gamespaces
with respect to the same principles, and can be of great assistance to recognize sources
of imbalance in gamespaces.

The principles proposed in this work are very general and applicable to many games,
but the framework of the model itself is adaptable and can be complemented by fur-
ther, more specific tests for each application. Resource access and navigation between
different parts of a gamespace are important facets of many competitive multiplayer
games, and therefore were the main focus of this work. While the setup of the model
takes some time during the engineering process, it can prove to be worth the effort.
There also remains one weakness to the adapted A* algorithm, that can be tackled in
various ways in future research or concrete applications: The starting node needs to
have stored routes. Hypothetically, the starting node could be positioned in such a
way that routes start there, but no route traverses it, meaning that the node itself never
stores any route. This can be mitigated in different ways, for instance by choosing a
different approach to exploring the first set of nodes, e.g. by looking up nodes that
have a stored route that leads to the starting node.

As the analysis of the Summoner’s Rift has shown, this way of viewing gamespaces
works very well to spot even slight imbalances, assuming the developer has sufficient
knowledge of the game. Nonetheless, the analysis of the gamespace alone can’t fully
determine the fairness of the game: The gamespace is one component among many,
and imbalances in one of these might be tipped back into balance by others.

Further work is needed to find further principles, as the ones in this work are largely
derived from the MOBA genre - while they are largely applicable to games of other
genres, there might be concepts that are more significant in other genres.

There also are multiple alternative approaches to the analysis itself, that can be incor-
porated in future models. Using a machine-learning approach [13] could be useful
for an evaluation of fairness, although it would lead to less human-comprehensible
principles, and could easily misguide developers, depending on the training set. On

35

7 Conclusion, Discussion, and Future Work

the other hand, using machine-learning can possibly help to combat human bias in the
analysis. Machine-learning could certainly be useful for the development of additional
gamespaces for an existing game, checking new gamespaces for similarities to existing
ones.

Also, pattern-finding algorithms [11] could prove useful to check gamespaces for sym-
metric properties or similar paths between different locations, which can be used to
control the engineering process, in order to not destroy previously established symme-
try or to deliberately establish certain similarities.

36

List of Figures

2.1
2.2

23

3.1

41

4.2
4.3

44

4.5

6.1
6.2
6.3
6.4
6.5

Classes for the representation of anode and aroute
Three nodes (red crosses mark the centers, blue lines mark the borders,
magenta lines mark the paths stored in node B, grey lines mark direct
paths between node-pairs) around a narrow crossing
A longer path: Only the contributions of each node are shown, the route
to traverse the respective node from its predecessor to its successor.
Simplified example from the Summoner’s Rift (see section 3.1)

The minimap of LoL, as it appears to a player on the blue team.

This simplified map of an arbitrary MOBA is symmetric. It will serve as
an example for some of the following principles.
Given equal values for all resources, team A has a better access rating. .
Given equal values for all resources, both teams have an equal access
rating, and yet team A is at a great advantage to accumulate multiple
resources in limited time. o o 0oL
The neutral area in this example is closer to the base of team B, putting
them at a disadvantage.
The most important crossing is moved closer to the base of team B,
creating an imbalance. oL L oL oL

An early attempt to distinguish locations for nodes in the jungle
The base for the 3D-extrusion: mini-map with added towers
The model of the Summoner’s Rift with spheres as node centers

14
15

16

17

18

30

The model of the Summoner’s Rift, with borders between adjacent nodes 31

finding crossroads: unweighted on the left, weighted with estimated
node importance on the right (red nodes are used more often)

37

List of Algorithms

AN Ul = W IN =

Calculation algorithm for individual routes 23
A* Algorithm, adapted to work with the node representation 24
Algorithm to look up the access rating for oneteam 26
Algorithm to assess the priority both teamshold 26
Algorithm to find important crossroads 27
Algorithm to accumulate the resources alongapath. 27

38

Bibliography

[10]
[11]

[12]

[13]

F. Aurenhammer. “Voronoi Diagrams—a Survey of a Fundamental Geometric
Data Structure.” In: ACM Comput. Surv. 23.3 (1991).

B. Crecente. League of Legends is now 10 years old. This is the story of its birth. https:
//www . washingtonpost . com/video - games/2019/10/27/league-legends-is-
now-years-old-this-is-story-its-birth/. 2019. (Visited on 01/19/2022).

T. Daniels. Top 10 highest viewed esports events of 2021. https://esportsinsider.
com/ 2021 /12 /highest - viewed - esports - events - 2021/. 2021. (Visited on
01/19/2022).

Fandom. DotA 2 Wiki: Creeps. https://dota2.fandom. com/wiki/Creeps. (Visited
on 01/22/2022).

Fandom. League of Legends Wiki: Monster. https://leagueoflegends . fandom.
com/wiki/Monster. (Visited on 01/29/2022).

Fandom. Overwatch Wiki: Health pack. https://overwatch.fandom. com/wiki/
Health_pack. (Visited on 01/22/2022).

J. Funk. MOBA, DOTA, ARTS: A brief introduction to gaming’s biggest, most impene-
trable genre. https://www.polygon.com/2013/9/2/4672920/moba-dota-arts-a-
brief-introduction-to-gamings-biggest-most. 2013. (Visited on 01/19/2022).
E. Haas. Unleashing the Elements. https : //nexus . leagueoflegends . com/en-
us/2019/12/unleashing-the-elements/. 2019.

H. lida. On games and fairness. Japan Advanced Institute of Science and Technology,
2007.

N. J. Nilsson. The Quest for Artificial Intelligence. Cambridge University Press, 2009.

G. Preti, M. Lissandrini, D. Mottin, and Y. Velegrakis. “Mining patterns in graphs
with multiple weights.” In: Distributed and Parallel Databases 39 (2021).

T. Reddad and C. Verbrugge. Geometric Analysis of Maps in Real-Time Strategy
Games: Measuring Map Quality in a Competitive Setting. Tech. rep. 3. School of
Computer Science, McGill University, 2012.

R. A. Rossi, N. K. Ahmed, R. Zhou, and H. Eldardiry. “Interactive Visual Graph
Mining and Learning.” In: ACM Trans. Intell. Syst. Technol. 9.5 (2018).

39

https://www.washingtonpost.com/video-games/2019/10/27/league-legends-is-now-years-old-this-is-story-its-birth/
https://www.washingtonpost.com/video-games/2019/10/27/league-legends-is-now-years-old-this-is-story-its-birth/
https://www.washingtonpost.com/video-games/2019/10/27/league-legends-is-now-years-old-this-is-story-its-birth/
https://esportsinsider.com/2021/12/highest-viewed-esports-events-2021/
https://esportsinsider.com/2021/12/highest-viewed-esports-events-2021/
https://dota2.fandom.com/wiki/Creeps
https://leagueoflegends.fandom.com/wiki/Monster
https://leagueoflegends.fandom.com/wiki/Monster
https://overwatch.fandom.com/wiki/Health_pack
https://overwatch.fandom.com/wiki/Health_pack
https://www.polygon.com/2013/9/2/4672920/moba-dota-arts-a-brief-introduction-to-gamings-biggest-most
https://www.polygon.com/2013/9/2/4672920/moba-dota-arts-a-brief-introduction-to-gamings-biggest-most
https://nexus.leagueoflegends.com/en-us/2019/12/unleashing-the-elements/
https://nexus.leagueoflegends.com/en-us/2019/12/unleashing-the-elements/

Bibliography

[14]

[15]

[16]

[17]

J. Schell. The Art of Game Design: A Book of Lenses, Third Edition. CRC Press LLC,
2019.

WELCOME TO THE RIFT LEARN THE BASICS. https://wuw.leagueoflegends.
com/en-us/how-to-play/. (Visited on 01/19/2022).

Wiktionary. gamespace — Wiktionary, The Free Dictionary. https://en.wiktionary.
org/w/index.php?title=gamespace&oldid=62030049. 2021. (Visited on 01/20/2022).

M. Wu, S. Xiong, and H. Iida. “Fairness mechanism in multiplayer online battle
arena games.” In: 2016 3rd International Conference on Systems and Informatics
(ICSAI). 2016, pp. 387-392. po1: 10.1109/ICSAI.2016.7810986.

40

https://www.leagueoflegends.com/en-us/how-to-play/
https://www.leagueoflegends.com/en-us/how-to-play/
https://en.wiktionary.org/w/index.php?title=gamespace&oldid=62030049
https://en.wiktionary.org/w/index.php?title=gamespace&oldid=62030049
https://doi.org/10.1109/ICSAI.2016.7810986

	Abstract
	Contents
	Introduction
	Related Work

	Process
	General Approach
	Structure of the Formalization
	Measurements
	Choosing a Game

	League of Legends
	Structure of the Game
	The Summoner's Rift
	Champions
	Phases of a Game

	Principles
	Horizontal Balance
	Resource Access
	Paths

	Vertical Balance

	Algorithms
	Setting Up the Routes
	Finding Paths
	Measuring

	Application
	Setting Up the Model
	Analysing the Rift
	Evaluation

	Conclusion, Discussion, and Future Work
	List of Figures
	List of Algorithms
	Bibliography

