
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Distributed Python Computation in
Mixed Reality Environments

Maximilian Schmidt

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Distributed Python Computation in
Mixed Reality Environments

Verteilte Python Anwendungen in
Mixed Reality Umgebungen

Author: Maximilian Schmidt
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: Sandro Weber, M.Sc.
Submission Date: August 10, 2022

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, August 10, 2022 Maximilian Schmidt

Abstract

To investigate research questions overarching the domains of augmented, virtual and
mixed reality as well as IoT- and web-based technologies with respect to Human-Com-
puter Interaction tasks, the Ubi-Interact [1] framework was developed at TU Munich.

This thesis deals with developing a Python software suite to use this framework, in
a way that is tailored for use by researchers and students alike, no matter their domain
specific backgrounds. It also showcases the advantages of the setup by providing amod-
ular solution for common Optical Character Recognition tasks as a distributed compu-
tation module for Ubi-Interact, using the Tesseract [2] engine combined with different
image processing algorithms to achieve a robust and flexible solution with sufficient
performance to be used in real time applications.

It is shown that Ubi-Interact excels at breaking down problems (or solutions) to dif-
ferent complexities, and allows flexible workflows – from rapid prototyping to perfor-
mance oriented low level development –which is specifically highlighted by the features
of the Python suite.

iii

Contents

Abstract iii

1 Introduction 1
1.1 Historical Classification . 1
1.2 Robot Operating System (ROS) . 2

1.2.1 Design Goals . 2
1.2.2 Messages . 3

1.3 Message Oriented Middleware (MOM) – MQTT, DDS 3
1.3.1 Middleware Abstraction in ROS 4
1.3.2 MOM Solution without Abstraction 5
1.3.3 Which MOM? . 6

1.4 MOOS . 7
1.4.1 Design . 8
1.4.2 Message Data . 8

1.5 LCM . 9
1.6 Ubi-Interact . 9

1.6.1 Message Handling . 10
1.6.2 Middleware Features . 11
1.6.3 Ecosystem . 12
1.6.4 Data Transformation . 12
1.6.5 Use Case . 13

1.7 Thesis Motivation . 14

2 Ubi-Interact Python Packages 15
2.1 Protobuffer Package . 15

2.1.1 Readability . 15
2.1.2 Extensibility . 16
2.1.3 Idiomatic Python Use . 21
2.1.4 Type Hints . 23
2.1.5 Namespaces and Package Structure 24
2.1.6 Ubi-Interact . 24

2.2 Problems and Requirements . 31
2.2.1 Middleware Protocol . 33
2.2.2 Processing Modules . 35
2.2.3 Python Language Features . 37

v

Contents

2.3 Design . 44
2.3.1 “Protocol” concept . 44
2.3.2 Client . 47
2.3.3 Processing Modules . 50
2.3.4 Node . 50
2.3.5 CLI . 56
2.3.6 Implementation Details . 56

2.4 OCR Module . 56
2.4.1 OCR in Mixed Reality . 56
2.4.2 Involved Technology . 57
2.4.3 Automatic Module Discovery . 58
2.4.4 Portability . 59

3 Evaluation 61

4 Conclusion 77
4.1 Summary . 77
4.2 Future Work . 78

Acronyms 79

List of Code Examples 81

List of Figures 83

List of Tables 85

Bibliography 87

vi

1 Introduction

The motivation for this thesis and the motivation to develop a tool like Ubi-Interact are
– of course – closely related. Therefore, if one recognizes the use cases of the framework,
the need to extend it into the Python world will arise naturally.

The following discussionwill highlight the specifics of Ubi-Interact. By technical com-
parison with other existing tools that seem to address similar issues, one can make an
effort to identify the respective use cases. Nonetheless, not only the identified use cases
but also the overall goal for a framework or tool should be taken into account when de-
ciding to use it, since they will guide the further development and improvements – as
well as the support – one might expect for each tool.

Ubi-Interact is motivated by the need to have an open and extendable networking
ecosystem with sufficient performance to support Human-Computer Interaction (HCI)
tasks. It needs to interface with game engines like Unity that are prominently used to
develop mixed and virtual reality applications, as well as other existing infrastructure
[1]. Ubi-Interact aims to provide an alternative to existing solutions (e.g ROS) in this
regard [1], as detailed in section 1.6. For more details on Ubi-Interact design decisions
refer to Weber et al. [1].

1.1 Historical Classification

Some of the systems discussed in chapter 1 have fallen out of favor since their initial
development, the robotics middleware landscape – especially in academics – is virtu-
ally dominated by the Robot Operating System (ROS). A comparison of seven different
“communication packages” was published inMoore et al. [3] at Sep. 2, 2009 – ROS is the
only package that is still in active development. Section 1.4 still discusses the Mission
Oriented Operating Suite (MOOS) and section 1.5 focuses on the Lightweight Commu-
nications and Marshalling (LCM) toolkit, since those packages are the most up-to-date
packages that were used prior to ROS (see table 1.1 for latest releases of each package
analysed by Moore et al.)

1

1 Introduction

PACKAGE LATEST RELEASE PLATFORMS

LCM August 31, 2018 v1.4.0 [4] C, Java, Python, MATLAB
IPC (Carmen) November 3, 2014 v3.9.1 [5] C, Java, Python (since last

version)
JAUS March 12, 2014 v5.141203 [6] C
MOOS June 14, 2018 v10.4.0 [7] C++
Player/Stage April 27, 2017 4.3 [8] C, C++, Java, Tcl, Python
Robotics Studio March 8, 2012 4.0 [9] .NET
ROS active C++, Python1

Note: Adapted from Figure 1, D. Moore et al., “Lightweight Communications and
Marshalling for Low-Latency Interprocess Communication,” Sep. 2, 2009. [Online].
Available: https://dspace.mit.edu/handle/1721.1/46708 (visited on 05/25/2022)
1 community libraries for JVM (Android), Objective C (iOS), C#, Swift, Node.js, Ada,
.NET Core, UWP and C# and Rust

TABLE 1.1: Comparison of (historically) used communication packages [3]

1.2 Robot Operating System (ROS)

1.2.1 Design Goals

The ROS SDK [10] provides middleware components similar to Ubi-Interact. The first
association and expectation onemight havewith respect toUbi-Interact is that it behaves
just like ROS. Since ROS is amature, widely used and generallywell received framework
with a big community, a discussion about why one would want to develop something
similar “from scratch” instead of appreciating the de-facto standard in robotics develop-
ment, is needed. Nonethelessmost of the ROSdesign goals and philosophy is applicable
to Ubi-Interact.

The goals of ROS can be summarized as being 1

• Peer-to-peer
• Multi-lingual
• Tool-based
• Thin
• Free and Open-Source
To make ROS thin, it provides “modules” – i.e. modular software packages – which
employ the principle of component-based systems [12] to make the code reusable and
modular in design. Due to the current complexity and scope of ROS, packages need to
use a ROS specific build system to correctly integrate into the framework. Technically
the current build system catkin is not dependent on ROS, and was in fact developed to

1Refer to Quigley et al. [11] for a more in-depth discussion of the ROS philosophy

2

https://dspace.mit.edu/handle/1721.1/46708

1.3 Message Oriented Middleware (MOM) – MQTT, DDS

reduce the inherent complexity of generic/multi-purpose build systems like CMake to
be usable by ROS developers without a software engineering background and to rem-
edy the problems of the old build system rosbuild [13]. Notably, the developers of
ROS recognized the existing individual preferences for certain languages, as a result
of technical or cultural considerations [11]. These preferences can also extend to the
eco-system around the languages, including build tools: For example catkin’s com-
plexity can be perceived differently, depending on the software background of the user
– while it might not seem complex or unusual to developer with a C++ background and
CMake experience, most interpreted languages like Python or JavaScript package and
build their software differently. While familiarizing oneself with a build tool can be
expected from most developers, there is certainly an argument to be made in favor of
supporting the use of whichever tools they are most experienced in.

1.2.2 Messages

ROS uses custommessage generators (as part of the client libraries) which convert mes-
sage definition files in Interface Description Language (IDL) syntax to source code and
have to be invoked from the build scripts. The “gory details [emphasis added]” [14]
are mostly hidden from users without a software background: in general, ROS uses the
DDS middleware for its communication implementation (which in turn uses IDL mes-
sages) but provides an abstraction for the implementation [15]. For ROS 2 amiddleware
implementation using component libraries like ZeroMQand Protocol Buffers was con-
sidered, but an implementation “from scratch” was rejected in favor of the existing DDS
middleware [15]. Contrarily, Ubi-Interact chooses the alternate route and implements
its communication via ZeroMQ (or simple TCP via WebSockets) and protocol buffers,
the implications are discussed in section 1.6.

1.3 Message Oriented Middleware (MOM) – MQTT, DDS

Message Oriented Middleware (MOM) protocols and packages are ubiquitous in the
Internet of Things (IoT) context – participants need an open network interface to im-
plement the communication, which can vary from a simple RESTful API to complex
messaging with QoS promises. This section focusses on DDS and MQTT since both
use a publish-subscribe messaging pattern that is suitable for a distributed system with
many heterogeneous participants that join and leave independently. DDS represents the
Human-Computer Interaction and robotics domain, as it is used to implement the ROS
middleware features (see section 1.2), whereas Message Queuing Telemetry Transport
(MQTT) is chosen due to its more general IoT/automation use case.

3

1 Introduction

DESIGN GOAL RELATED FEATURES ADVANTAGES DISADVANTAGES

Peer-to-peer Topic protocol for
broadcasted
communication

Topics and Services are
implemented on top of
DDS which e.g.
already implements a
lot of Quality of
Service (QoS) features

additional complexity
by converting between
concepts, e.g. compare
Topic and Service name
mapping to DDS [16]

Service protocol for
synchronous
transactions
DDS middleware layer

Multi-lingual XML-RPC for
peer-to-peer
negotiation

usable in many
languages

could use simple REST
[17, 18]

custom message format
based on IDL

integrated into build
system

dependency on ROS

abstraction from
middleware

Tool-based microkernel design – –

Thin build system consistency complexity
dependency on ROS

modules reusable code –

TABLE 1.2: ROS Feature Analysis

1.3.1 Middleware Abstraction in ROS

The decision to provide an abstraction to the DDS implementation for ROS has several
reasons as explained in ROS on DDS [15], mainly these are

• the existence of multiple implementations of the DDS standard

• the inherent complexity of the DDS specification and API

Currently, there are proprietary and open-source implementations of the DDS standard.
As mentioned in section 1.2 ROS aims to be open-source, which also applies to Ubi-
Interact [1, §2 Motivation]. The effort to stay open-source is related to academic use –
which was the biggest use case for ROS systems when it was first developed and is cur-
rently the major use case for Ubi-Interact. There are several generally feature-complete
open-source implementations of DDS (see table 1.3) and some commercial implemen-
tations (which are not considered for academic use).

4

1.3 Message Oriented Middleware (MOM) – MQTT, DDS

NAME DEVELOPMENT LICENSE PYTHON SUPPORT

OpenDDS active permissive1 work in progress [19]
Eclipse Cyclone DDS active copyleft2 Python binding [20]
FastDDS active permissive3 Python binding [21]
Open Splice moved to Cyclone DDS permissive4 discontinued [22]

TABLE 1.3: DDS open-source implementations

ROS provides the middleware abstractions to not be dependent on a specific implemen-
tation (the API changes from implementation to implementation) and currently uses
Cyclone DDS as the default middleware (as of ROS “Galactic”, previously FastDDSwas
the default – interestingly the FastDDS documentation still claims that this is the case
as of the time of writing [24]). This change in default implementation is only possible
because of the additional abstraction layer and is bound to happen from time to time as
different implementations develop different features.

In addition to the fact that implementation details need to be abstracted, the draw-
back of using an end-to-end middleware solution is “that ROS must work within that
existing design” [15] i.e. adopting an existing solution means adopting the philosophy
and concepts of that solution – for example, DDS associates topics with data types and
QoS specifications. That means that in ROS 2 there is now the possibility for incompati-
ble QoS profiles for subscribers/publishers, while historically – in ROS 1 – any publisher
and subscriber with the same message type on the same topic would be connected [25].
Even for concepts which exist one-to-one in ROS and DDS – e.g. topic names – the de-
velopers have to deal with possible hidden complexity – for example, allowed naming
schemes for ROS topics and DDS topics differ historically, so translating the topic names
has to be done carefully – see disadvantages of the topic concept in table 1.2.

1.3.2 MOM Solution without Abstraction

The reasons for ROS to provide an abstraction layer for the middleware implementation
show a general trade-off that has to be considered when developing a tool that should
integrate into an existing (IT) system. In the case of HCI tasks, these systems consist
of the physical devices used for the interaction like IoT gadgets, smartphones, virtual
reality devices or web browsers, their relations to each other, the user(s), or to put it
simply: “the network of people and technological artifacts involved in the work” [26,
p.3]. These “artifacts” will have specific, individual technical features and limitations.

1uses custom license with “generous license terms similar to ACE, TAO and MPC” [23]
2uses Eclipse Public License v. 2.0
3uses Apache License v. 2.0
4uses Apache License v. 2.0

5

1 Introduction

Weber et al. [1] identify the need for the Ubi-Interact framework to integrate specific
technology (or replace it) which is associatedwith the artifacts one is dealingwith in the
context of HCI tasks in mixed and virtual reality 3D environments – like game engines
(e.g. Unity), physics engines, ROS for “full-body virtual re-embodiment avatars” [27],
or the specific data communication interfaces of IoT devices.

Developers have to deal with the trade-off that – as a matter of principle – if you use
an existing tool, you get the features of that tool “for free”, but you pay to adapt them to
your domain. This trade-off is the reason a Message Oriented Middleware without addi-
tional domain specific abstractions does not scale well with respect to code reusability.
Application developers need to have in-depth knowledge of the MOM to write adapters
for specific use cases, if no abstraction is provided by the framework. Increasing code
reusability is one of the main features of ROS and Ubi-Interact alike, which is hard to
achieve if applications in various domains with diverse requirements and limitations
need to be implemented relative to a fixed MOM (precisely when features or concepts
are not already present in the MOM implementation to begin with). In the end, a good
abstraction is not only a necessary decision due to the fact that one tries to provide inte-
gration and scalability, it is in itself a feature.

1.3.3 Which MOM?

If one chooses to use an existingMOM to implement the communication in a distributed
system, due to the cost associated with adaption in section 1.3.2, it would be ideal to use
a solution which is “isomorphic” to the communication concepts used in the developed
framework. This is trivial if one allows the communication paradigms to be fully dic-
tated by theMOM solution, which is – as discussed in section 1.3.2 – difficult or impossi-
ble when integration into an existing system is desired. Refer to table 1.4 for an overview
of strengths and weaknesses of MOM solutions and their categorisation in terms of im-
portance for virtual or mixed reality HCI – for more details on the feature grading refer
to Aures and Lübben [28]. Notably, MQTT does provide fewer options in terms of data
modeling, but is considered simpler to use [28, §5.10], which is a consequence of MQTT
being a very lightweight protocol as implied by the “protocol overhead” in table 1.4. In
turn, this means that to provide the missing data modeling capabilities which are de-
sired in the HCI context, a framework which relies on MQTT needs to implement those
on top of the communication protocol – in which case it could arguably be simpler not
to use MQTT in the first place and implement the “middleware” layer exactly to the
desired specifications.

While both MOMs in question use a publish-subscribe pattern, the Data Distribution
Service relies on peer-to-peer communication whereas the Message Queuing Telemetry
Transport uses a broker setup where all communication is addressed at the broker appli-
cation responsible for distributing the messages to subscribers. Arguably, the latter is
preferable for the use in mixed reality HCI tasks involving IoT gadgets, since it creates

6

1.4 MOOS

a topology where the broker can naturally provide additional data manipulation to the
connected nodes. According to Weber et al. if “[…] for example an IoT device already
provides access through open network interfaces like [sic] RESTful API, a central mod-
ular process can be established as a communication and status manager for this device
– again exposing its capabilities to the wider system” [1, §3 Goals]. On the one hand,
it can also be argued that a star-shaped network topology remains simpler, no matter
the number of participants, and “[…] the clients operate independently with intercon-
nections. This prevents rogue clients (badly written or hung) from directly interfering
with other clients” [29, §1.1 Topology], but setting up communication this way could
introduce “bottle-necks” at the broker on the other hand.

MEASURE DDS MQTT 3D VR/AR HCI IMPORTANCE

data integrity ++ - Security
authentication ++ + Importance depends on data / legal context,

arguably less important in research than in
production [30, p. 16]

access control ++ -
encryption ++ -
data gnostic ++ - Data Modeling
data centric ++ - Important – data in 3D VR / AR context typically

is complex and heterogeneousserialization ++ -
protocol overhead - +++
QoS +++ +
simplicity of use - ++ Practical usability
real world testing ++ + Important – especially in research, since it affects

resources spent on application development [28]monitoring & RTM +++ +

Note: adapted from Table 1, p. 3, G. Aures and C. Lübben, “DDS vs. MQTT vs. VSL
for IoT,” Network, vol. 1, 2019

TABLE 1.4: Overview of MOM solutions [28]

1.4 MOOS

An interesting solution because of the simplicity of the design, the Mission Oriented
Operating Suite (MOOS) – a “Light, Fast, Cross Platform Middleware for Robots” im-
plemented in C++, with Python bindings available [31] – is not actively developed any-
more (latest version v10.4.0 released June 14, 2018 [7]). It has a “maritime heritage”,
but as of version 10.0.0 the domain independent communication tools were cleanly
split from the application code that was used in maritime autonomy contexts [32] and
made available as the core-moos[7] library.

7

1 Introduction

1.4.1 Design

The communication scheme that MOOS used prior to version 10.0.0 is very simple. In-
stead of an asynchronous publish-subscribe pattern, the communication between
MOOS clients and the broker (called the MOOSDB, since it simply acts like a storage or
“mailbox” for messages) happens synchronously at a defined rate that can be specified
for each client. Every time the client communicateswith the broker, it sends allmessages
in its outbox – wrapped into a single packet or “super message” – and the broker replies
with a packet containing notifications for the clients subscriptions which are placed in
the client’s inbox. Retrieving information from the inbox or putting messages into the
outbox can happen asynchronously, but for the actual communication over the TCP/IP
connection a “one packet sent, one packet received” policy is enforced [29, §5.1]. With
version 10.0.0 asynchronous communication was added, as well as “wildcard” sub-
scriptions.

MOOS components that implement different functionality or components run in sep-
arate processes1 with one MOOS client instance per process and don’t need to know
about each other2, they can however be grouped into “communities” (a group of re-
lated processes that handle inter-process-communication via their own MOOSDB), and
a bridge application can handle data sharing between multiple communities or MOOSDB
instances [34]. This allows developers to use more complex client topologies and UDP
connections (for data sharing), for examplewhen using unreliable wireless connections.

1.4.2 Message Data

MOOS does not concern itself with data marshaling, instead messages can only contain
data as floating point numbers or strings – which then will need to be parsed by the
specific application. Similar to the use of single processes instead of threads, this can be
partly attributed to the academic use of MOOS – Newman [29, §3] advocates the use of
string data for anything non-scalar to
• make the data and log files human readable
• make all data the same type
• make it easy to replay a log file for developing and debugging
• allow the data “schema” (i.e. the contents and internal order of string data) to change

without crashing clients3

1Each MOOS client uses multiple threads to handle the communication
2There are multiple components available to use, see essential-moos [33]
3of course they would not be able to understand the changed data

8

1.5 LCM

which addresses similar issues to the threading decision which was made on account
of “stability” and “the basis of swift and pain-free development by several program-
mers with diverse backgrounds”, referring to programming guidelines and styles that
Newman considers to not be necessarily native to all software developers “especially in
an academic environment [emphasis added]”[29, §4]. These concepts and their justifica-
tionsMOOS introduces for simplicity might prove valuable for similar software designs
or turn out to be a mere product of “simpler times”.

1.5 LCM

The Lightweight Communications andMarshalling (LCM) libraries and tools were also
developed “especially for real-time robotics applications” [35], similarly to ROS. At the
time, they were the only solution that handled type-safe marshalling (i.e. encoding and
decoding data) of data for multiple languages [3, Fig. 1]. Here “type-safe” refers to the
handling of “endianess” of the binary messages shared across components. At the time
of LCM’s development, ROS did only support little-endian systems, and did not have
the community support for client libraries in languages other than C++ and Python that
it has today. While the discussions of shortcomings in software packages used in 2009
is not contributing much to the design of Ubi-Interact, Moore et al. [3] identify the need
for automatic marshaling for multiple languages. As seen in section 1.2 and table 1.2
this need was also identified as a key component in the design of ROS, and has been
addressed with different solutions over the course of its development – currently it is
handled by the DDS middleware, as discussed in section 1.3.1. Both LCM and ROS
chose to use their own type specification languages – based on IDL for ROS and the
XDR [36] standard for LCM – at a time where there were de-facto no better alterna-
tives. For modern software like Ubi-Interact the use of a custom IDL is neither practical
nor necessary: The need for cross-platform serialization for major players in web-based
technologies like Google or Facebook led to the development of several widely used
interface description languages like Protocol Buffers [37] or FlatBuffers [38] which sup-
port all features that were deemed relevant 10 years ago (e.g. handling of endianess),
as well as practically all popular languages.1

1.6 Ubi-Interact

There are two ways to approach the design of Ubi-Interact. One way is to identify the
goals and evaluate the solutions, similar to theway design goals for ROSwere evaluated
in table 1.2. A different way is to analyse the solutions – in the context of the previous
discussions of this chapter – and develop a use case that justifies them. Then the evalu-

1the IDL used by ROS is currently depending on the choice of middleware solution. Not using popular
serialization libraries is a trade-off made in order to gain features and convenience by not implementing
the middleware from scratch, see section 1.3.1

9

1 Introduction

ation of the design will be related to the applicability of the constructed use case and its
congruency with the use case that Ubi-Interact aims for. While the first way is natural
during the development of the system, for a developer who joins the project at a later
stage, the design will be primarily “perceived”. The features presented by Weber et al.
in section 5 of “Ubi-Interact” [1] are mostly still relevant for the current iteration of the
framework. Theywill be categorised asMessage Handling,Middleware Features, Ecosystem
and Data Transformation and discussed in sections 1.6.1 to 1.6.4.

1.6.1 Message Handling

Ubi-Interact uses protocol buffers to handle message serialization in a portable, cross-
platform, cross-language manner. Protocol buffers address all issues that were identi-
fied by Moore et al. [3] and Newman [29]. One of the most practical features of the
protocol buffer framework is the possibility to develop plugins for the protoc compiler,
which is responsible for compiling schema files to platform and language dependant ap-
plication code. A compiler plugin itself acts on specific protocol buffer messages with
easily accessible API [39]. Therefore, a multitude of third party plugins have been de-
veloped to alleviate issues and implement features for the official language plugins –
compiling schema files to documentation, to native code which can be used more id-
iomatically1, to supplemental files that allow optional static type checking in dynami-
cally typed languages, and much more.

Readability for humans is supported by easily readable schema files, plugins to gen-
erate documentation for those files, and support for conversion to and from human
readable representations like JSON out of the box.

Debugging or “replaying”messages for applications is easy, since themessages can be
displayed, stored and evenmanipulated in readable form (JSON) and feeding them into
the application then becomes a matter of knowing the respective message types. This
also applies to developing compiler plugins: The plugin can be implemented in any
language, and will read a defined protocol buffer message from standard input during
execution, and then write a message of a predefined type to standard output. This can
be mocked in a few lines of code to develop the plugin independently from the use in a
protoc call, which greatly simplifies debugging and introspection during development.

1the types produced by the official plugins all use the same API which is similar to the C++API (e.g. in
naming conventions) and does not lend itself particularly well to produce idiomatic code in e.g. Python or
JavaScript

10

1.6 Ubi-Interact

Since the protocol buffer specification encourages users to make fields of the mes-
sage schema optional (although required fields are supported) updating or changing the
schema does not automatically crash clients that don’t know about the updated schema,
instead this agreement on (compound) data types between processes can help to cor-
rectly differentiate message compatibility. This rather finely grained control over the
agreed structure of exchanged data can be a big factor in developing correct, distributed
and robust applications.

On top of the issueswhichwere discussed in section 1.4, Moore et al. [3] identify some
requirements for marshaling tools – like handling of byte order, which was discussed
in section 1.5, or support for language specific features like the use of namespaces to
prevent type names from clashing [3, § 3.1.3] which are also met by protocol buffers1.

While disagreements on the structure of the data can happen – and don’t always
equate to incompatibilities – the platform and language specific code for a protocol
buffer schema generally should be up-to-date across applications. Since one is dealing
with multiple libraries – maybe even multiple libraries for a single target language, e.g.
in the case of optional files of a static type checker – one is also dealing with multiple
eco systems and tools tomodel software dependencies. It is therefore beneficial to invest
into smooth packaging and distribution of the protocol buffer libraries.

1.6.2 Middleware Features

Akin to ROS, Ubi-Interact offers two communication patterns. Communication using
a publish-subscribe paradigm is offered over an asynchronous bi-directional channel
between client and the message broker – Ubi-Interact does not use peer-to-peer com-
munication. For request-reply interactions this communication would not be suitable,
nonetheless these interactions are often required [40] therefore an alternative synchro-
nous channel is used. The asynchronous channel can be implemented via WebSockets
or ZeroMQ router-dealer-sockets – Ubi-Interact currently foregoes the use of existing
middleware solutions (like MQTT, ZeroMQ’s publish-subscribe sockets or DDS) to
1. simplify the technology stack

2. simplify the network topology (compare section 1.3.3)

3. facilitate preferable – or at least equivalent – handling of web browsers and web tech-
nologies

The synchronous channel can be implemented via HTTP(S) requests or ZeroMQ’s request-
reply sockets. There is no apparent reason to use a specific RPC protocol over this chan-
nel, thus the messages can be either transmitted in binary form (compare section 1.6.1)
or as JSON – the amount of transmitted data is typically not an issue for infrequent
request-reply communication.

1at least in theory – whether the generated code respects the namespace declaration of the schema files is
an issue for chapter 2

11

1 Introduction

The fact that the broker offers multiple communication channels for each client al-
lows Ubi-Interact to bridge the gap between different technology domains. For example
mixed reality applications for the Microsoft HoloLens� are typically developed using
Unity’s integration forMicrosoft’s UniversalWindows Platform (UWP) framework, but
Unity’s .NET flavour is not fully compatible with the .NET for UWP specification [41] –
also UWP can’t make use of new .NET versions1. This introduces a technical limita-
tion on serialization [41], making it impossible to use the standard C# implementation
of the protocol buffer package for JSON (de-)serialization in this very specific context.
Developers that are experienced in this domain know that they are encouraged to use
different serialization [41] e.g. to/from binary data. Instead of forcing developers in
every domain to use a binary encoding for communication with the broker – due to
technical limitations in a single domain – they can choose whichever encoding is more
practical for their use case, hence integrating web and IoT applications with the mixed
and virtual reality domain on equal grounds.

1.6.3 Ecosystem

Ubi-Interact packages are developed natively for every targeted platform or language.
There is no “cross-compilation” support, and the different implementations have differ-
ent features. Conversely though, Ubi-Interact makes heavy use of the cross-platform
protocol buffer specifications to encode internal state and other parts of the system
“worth communicating” [1, §5.1], this includes specification of system behavior via Pro-
cessing Modules [1, §5.5] – see section 1.6.4. Because of the distributed nature of these
modules, they should – if the platform and environment enables it – be readily avail-
able using the surrounding eco-system (e.g. NodeJS / npm or other language dependent
packaging systems).
Processing Modules are often used to integrate external libraries like ROS, TensorFlow

or OpenCV with specific dependencies on the environment [1, §5.5] into a larger dis-
tributed application – therefore it is not always possible or desirable to have an existing
implementation of a given module on all possible platforms. To achieve code reuse and
modularity though, the modules need to be easily discoverable – best-case in a platform
independent manner – to inform developers about (pre-)existing implementations and
functionality.

1.6.4 Data Transformation

“Data Modeling” is important in the mixed or virtual reality HCI context, since data can
become very complex and heterogeneous (compare table 1.4) data access and discovery
at application level should be transparent [28]. Topics in Ubi-Interact are identified by
a topic string, but through the concept of Devices and Components which are encodable

1to support .NET 5/6, apps need to be developed with WinUI 3 [42]

12

1.6 Ubi-Interact

via corresponding protocol buffer messages – therefore known to, and agreed upon by,
all participants – topic strings can be associated with additional meta information like
the exchanged message format, arbitrary tags, the corresponding device (which is not
necessarily a physical device but simply a “meta” structure to group several components
logically) and more [1, §5.4]. Efforts are made to make inference and searching of these
components easier, but these conceptswill not be enforced on participants – it is possible
to subscribe and publish to a topic without dealing with meta information.

Additionally, Ubi-Interact usesProcessingModules to “provide systembehavior in a de-
coupled, I/O device agnostic, modular, reusable and shareable fashion” [1, §5.5]. They
can e.g. provide distributed topic data manipulations, processing or analysis – typically
when instantiated in dedicated processing nodes – or implement a reusable communica-
tion endpoint to facilitate communication between Ubi-Interact and a (physical) device,
application or infrastructure which comes with – or needs to use – different interfaces
or (network) API than Ubi-Interact.1 This feature is rather powerful and definitely part
of the feature set that should be present in the Ubi-Interact implementation of every
target platform – to be precise it gets “exponentially” more powerful the more possible
platforms are targeted, since each new platform can make use of its unique capabilities
to allow new behavior to be shared with all existing applications.

1.6.5 Use Case

The discussion in sections 1.6.1 to 1.6.4 shows that Ubi-Interact is suitable for academic
research in HCI contexts, since it aims for simplicity where possible andmakes minimal
assumptions on the participating devices or clients. Advanced concepts like Processing
Modules or Components are not enforced on the user, which allows developers to pro-
totype quickly and enhance their applications as they get more experienced with the
features, while basic features are similar enough to popular frameworks like ROS to be
picked up with minimal experience. Since Ubi-Interact targets different languages and
platforms, developers can “stay in their comfort zone” and still contribute meaningfully
by sharing their work as a module while exploiting the unique capabilities of each plat-
form.

This use case is currently also the one where Ubi-Interact is used in practice for re-
search in serious games [43, 44], augmented reality applications [45] and “superhuman
sports” [46]. Efforts are also made to research its application for physical (re-)embodi-
ment in VR [27]. It is apparent that Ubi-Interact does not compete with ROS in the
robotics domain. Instead it aims to interface and bridge the gaps to allow students and
researchers to develop novel applications that are not constrained to a single domain.

1for details refer to Weber et al. [1, §5.5]

13

1 Introduction

1.7 Thesis Motivation

Extending Ubi-Interact into the Python world contributes meaningfully to the overall
“eco-system” since Python is a very popular programming language [47, 48] – espe-
cially in academics, since it is easy to teach1 and use. It provides powerful packages for
computer vision tasks and “data science” in particular and the ubiquitous “PythonNote-
books” are a great tool to (collaboratively) implement and learn a variety of concepts in
typical computer science curriculums.

Consequently, development of the Python package was not done with a specific ap-
plication in mind, instead it focuses on being educational, idiomatic, easy to maintain and
last but not least well documented – to be of use for students and researchers alike.
Nonetheless, an example processing module was implemented, which integrates differ-
ent Optical Character Recognition (OCR) tools to provide real-time text recognition for
a stream of image data e.g. from a camera device. The integration of Python applica-
tions into the Ubi-Interact communication and middleware layer is already used in the
context of the “superhuman sports” project by Eichhorn et al. [46].

The Ubi-Interact Python Node [49] implements only the client and processing node
capabilities of the Ubi-Interact protocol since there is currently no need to re-implement
the broker node.

1it’s a little less easy to teach correctly, but that’s not necessarily the focus in academics <\rant>

14

2 Ubi-Interact Python Packages

This chapter focuses on the implementation goals and design decisions that define the
Ubi-Interact Python Node. When technical implementation details become relevant to
justify the design, theywill be illustrated by short code examples. Section 2.3 also briefly
showcases parts of the Python API, highlighting where it adheres to requirements that
were identified in section 2.2.

2.1 Protobuffer Package

As already mentioned in section 1.6.1 the official protocol buffer compiler plugin for
Python produces code that is definitely improvable when it comes to

1. readability

2. extensibility

3. use of Python idioms and language features

4. use of type hints

5. namespaces and package structure

which will be discussed in sections 2.1.1 to 2.1.5.

2.1.1 Readability

Discussing software readability measures in-depth is out of scope for this section, since
they are themselves an active research topic as they are a widely accepted proxy for
code quality. Most code readability measures mainly rely on structural metrics [50],
but some also combine those with textural metrics which analyze the “source code lexi-
con” i.e. the lexical tokens used in code snippets [51]. While the code generated by the
default Python protoc plugin is functional and syntactically correct – which implies a
certain code structure solely because Python syntax cares about indentation (a common
structural metric) – it scores poorly in terms of readability metrics since it is always “op-
timized for code size” [52] and therefore uses minimal classes and reflections to build
the API when the modules are imported.

15

2 Ubi-Interact Python Packages

As you can see in example 2.1.2 the generated code does not reflect the field layout
of the schema file in any way and it is not visible which names will be present in the
global namespace after importing the module or which API methods are present. All
this information will have to be inferred from the protocol buffer API documentation
and additional custom documentation for the schema files. Although comments are
possible in schema files, they are not used in the generated Python module and the
information is lost on the user.

Tomake things worse, the API of the generated types uses capitalized function names
like SerializeToString while the Python style guide clearly recommends function
names to be “lowercase, with words separated by underscores as necessary to improve
readability” [53] and reserves “CapWord” naming for classes and type variables. Even
“mixedCase is allowed only in contexts where that’s already the prevailing style (e.g.
threading.py) to retain backwards compatibility” [53]. This means code that uses the
types generated with the default Python protoc plugin will have clashing naming con-
ventions and therefore be less readable and idiomatic.

2.1.2 Extensibility

Types generated by the default plugin are (by design) not transparent enough to be
easily extensible with additional functionality. The actual metaclass1 that builds the
message classes is not supposed to be extended by “outside clients” [54] – the details
of the construction of new message classes are hidden inside of stateless construction
helpers, which are not methods on the metaclass, to make it even more clear that they
are “not really using any state there and to keep clients from thinking that they have
direct access to these construction helpers” [54]. Of course this is all by design, the doc-
umentation on generated Python code warns users that the “generated classes are not
designed for subclassing and may lead to ‘fragile base class’ problems. Besides, imple-
mentation inheritance is bad design.” [52] Notwithstanding this claim by the protocol
buffer developers, using the messages in a intuitive, extensible and last but not least
“pythonic” way merits some further discussion.

First, one should clarify what the actual public API of a protocol buffer message
should allow:
• Assigning to public message fields

• Serializing the message to bytes

• Deserializing bytes to message objects

• Converting messages back and forth between different non-byte representations like
JSON or Python dictionaries

1 google.protobuf.internal.python_message.GeneratedProtocolMessageType, see [54]

16

1 syntax = "proto3";
2 package my_package.dataStructure;
3

4 message Color { // 4 Channel color using r,g,b and alpha channel
5 double r = 1;
6 double g = 2;
7 double b = 3;
8 double a = 4;
9 }

2.1.1: Protocol buffer schema defining a color – color.proto

1 # -*- coding: utf-8 -*-
2 # Generated by the protocol buffer compiler. DO NOT EDIT!
3 # source: color.proto
4 """Generated protocol buffer code."""
5 from google.protobuf.internal import builder as _builder
6 from google.protobuf import descriptor as _descriptor
7 from google.protobuf import descriptor_pool as _descriptor_pool
8 from google.protobuf import symbol_database as _symbol_database
9 # @@protoc_insertion_point(imports)

10

11 _sym_db = _symbol_database.Default()
12

13

14

15

16 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x0b\x63olor.
proto\x12\x18my_package.dataStructure\"3\n\x05\x43olor\x12\t\n\x01r\x18\x01
 \x01(\x01\x12\t\n\x01g\x18\x02 \x01(\x01\x12\t\n\x01\x62\x18\x03 \x01(\x01\
x12\t\n\x01\x61\x18\x04 \x01(\x01\x62\x06proto3')

17

18 _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals())
19 _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'color_pb2', globals())
20 if _descriptor._USE_C_DESCRIPTORS == False:
21

22 DESCRIPTOR._options = None
23 _COLOR._serialized_start=41
24 _COLOR._serialized_end=92
25 # @@protoc_insertion_point(module_scope)

2.1.2: Python module compiled from color.proto using default plugin

17

2 Ubi-Interact Python Packages

• Inspecting the message structure1 to e.g. find out which field of a oneof group is set,
or which field names are used – this makes code more “data gnostic”
Conversion to and from JSON is supported by the google.protobuf.json_format

module, while the other features are supported out of the box by the generated mes-
sage types.

The following considerations also influence our requirements for a good protocol buffer
implementation (in no particular order and initially without any valuation)
• Python supports multiple inheritance – not just as an afterthought or “by accident”,

but as a major language feature.

• Python is dynamically typed and makes use of “duck typing”, this means formally
meeting type or interface specifications by inheritance should be rarely needed.

• Python type hints, generics, abstract base classes and Protocols2 can be used to imple-
ment co-variant and contra-variant “type contracts”.

• Inexperienced OOP developers are often familiar with some sort of inheritance,
mostly to model a “is a” relationship when reasoning about types – but sometimes
also to reuse code.

• If one chooses to use inheritance as part of the public API in any way, volatility of
the base class implementations will likely introduce the aforementioned “fragile base
class” problems.

• Userswill likely port code from other Ubi-Interact target platforms like JavaScript and
– depending on their Python experience – try to emulate patterns they observe in this
code in their Python implementations.
We also observe how the public API for a message is modeled in the JavaScript imple-

mentation of the protocol buffer framework used by Ubi-Interact: It allows the objects
to have arbitrary public attributes but simply ignores any that are not part of the mes-
sage schema when (de-)serializing. This can lead to patterns that (ab-)use this fact by
inheriting frommessage classes, to create types that encode different state and behavior
but share a representation – at some point the JavaScript implementation used an imple-
mentation like this for Processing Modules which represent arbitrary code for a specific
purpose but need to be serializable in a consistent manner to communicate that a client
offers or requests such a module, see section 1.6.4.

1also known as reflection
2also known as “static duck typing”, see Ivan Levkivskyi et al. [55]

18

2.1 Protobuffer Package

Use Case: Errors as Exceptions

Python makes use of exceptions as flow control structures – different exception types
can be used in except statements to handle specific kinds of exception objects that are
raised in the corresponding try block. Libraries define their own exception types by in-
heriting from existing exception types e.g. from the standard library. The Ubi-Interact
framework defines a schema for Error messages which can be shared between clients
and the broker to inform participants about failures in the system [1, §5.3]. If a Python
client receives such a message, it maybe needs to change the program flow by triggering
some exception handling.

Therefore the Python package should supply a custom Exception type (preferably
multiple types for different kinds of errors) that can be in some way (de-)serialized as
an Error message.

Use Case: Processing Modules

Users of the Ubi-Interact framework can use processing modules (compare section 1.6.4)
to implement distributed computations. These modules are defined in terms of differ-
ent protocol buffer messages to model “desired inputs and expected outputs” and the
processing mode [1, §5.5]. The Python implementation should define some API to run
user-defined Python processing modules and developing new modules should be easy
and fast. Using anAPI similar to the JavaScript implementationwheremodules define a
public interface of lifecycle callbacks that can be implemented in user defined modules
is preferable.

Therefore the Python package should supply an interface that users can implement
to create objects with the appropriate processing module callbacks, which are (de-)se-
rializable as Ubi-Interact ProcessingModule messages.

Design for Extensibility

One can support both use cases with wrappers around protocol buffer messages since
extending the generated types should be avoided. We will discuss some example de-
signs for the Exception use case.

The simplified design seen in fig. 2.1 hides the protocol buffer specifications and only
provides a public API to convert back and forth between types, basically designing the
specifications as immutable once the exception object has been created. This might be
possible for exceptions which are typically treated as immutable objects, but it will not
generalize to the ProcessingModule use case since the specifications of amodulemight be
updated during its lifetime. In this case the public interface needs to mirror the Message
interface of the protocol buffer package, to allow merging and updating the specifica-
tions as needed.

19

2 Ubi-Interact Python Packages

Message

Error
title: String
message: String
stack: String

UbiiError
- specs: Error
toProtobuf(): Error
fromProtobuf(message): UbiiError

Exception

The Python standard
library type

The protocol buffer
message type

FIGURE 2.1: Design of protocol buffer handling hiding specifications

The simplified design seen in fig. 2.2 models the protocol buffer specifications as a
public data member, while still keeping the factory class method to initialize the ob-
jects. This makes the specifications mutable by design, and one could use the Python
property decorator to manage the specification access1.

The binary encoded channel for HTTP(S) requests was added for the reasons con-
cerning the interaction between the C# implementation and the Microsoft HoloLens�
described in section 1.6.2, late during development of the Python package. Since it is
harder to debug transmitted messages which are not human readable, the Python pack-
age did not switch to binary encoding. Consequently, as discussed in section 1.6.2, the
implementation also needs a way to serialize and (de-)serialize the messages to JSON
for synchronous communication with the broker.
Since JSON encoding is not part of the basic API of a generated protocol buffer message
and instead supported by the google.protobuf.json_format module as mentioned
previously, the design in fig. 2.3 is an improvement over the design from fig. 2.2, since
it bundles all needed functionality in an interface that is generalized for all use cases
where custom types need to have a protocol buffer message specification. This inter-
face could even be implemented using Python’s support for generics2, to not loose the
information about the specific Message type that is wrapped. Note that an OOP inter-
face is modeled through abstract base classes and multiple inheritance in Python, and

1there are no truly privatemembers in Python, so it’s not a good idea to jump through hoops to get the “most
private member possible”, but properties are typically a good compromise to keep users from accidentally
using an attribute they are not supposed to

2generic classes are a feature of the typing support introduced with PEP 484 – Type Hints [56]

20

2.1 Protobuffer Package

Error
title: String
message: String
stack: String

UbiiError
+ specs: Error
fromProtobuf(message): UbiiError

Exception

The Python standard
library type

The protocol buffer
message type

FIGURE 2.2: Design of protocol buffer handling with public specifications

– practicality aside – one could even go as far as declaring all members of the abstract
ProtoSpecs type in fig. 2.3 as abstract (specs would the become an abstract property)
to get a “pure” interface that can be implemented in a concrete type for some specific
protocol buffer implementation.

Although defining a custom interface to serialize and deserialize messages and imple-
ment it against a specific protocol buffer package or API would allow to switch imple-
mentations later, it introduces additional complexity which needs to be documented.
Fixing the protocol buffer implementation seems to be the more practical approach,
since the documentation doesn’t need to be duplicated, adjusted or otherwise main-
tained – which is especially important in our academic setting.

2.1.3 Idiomatic Python Use

Additional issues are present in the default protocol buffer package which make id-
iomatic Python code harder to write:
• It defines a message interface with method SerializeToString which converts the

message object to bytes. This could be implemented using the __bytes__ special
method in pythonic code as explained in Data model — Python 3 documentation [57].

• Direct assignment to embedded message fields is not possible. Instead, assigning a
value to any fieldwithin the childmessage implies setting themessage field in the par-
ent – if a nested message should be set from another message, one can use CopyFrom
to copy all nested fields [52].

• Direct assignment to repeated message fields has the same issue, which further con-
volutes assignments.

21

Message

<<abstract>>
ProtoSpecs

+ specs: Message
toJSON(): String
fromProtobuf(message): ProtoSpecs
fromJSON(message): ProtoSpecs

Error
title: String
message: String
stack: String

ProcessingModule
status: Status
mode: ProcessingMode
inputs: ModuleIO[0..*]
outputs: ModuleIO[0..*]
...

UbiiError

Exception

UbiiProcessingModule

protocol buffer message
type

FIGURE 2.3: Design of protocol buffer handling using abstract specification base class

22

2.1 Protobuffer Package

The problemswith composite field assignments can’t really be solved easily since they
relate to memory management details in the protocol buffer runtime. In theory they
could be made implicit – of course this could lead to situations where it is not obvious
that message copies are made internally which then need to be addressed.

What should be expected though, is that the types of the google.proto package con-
form to Python standards, for example a RepeatableCompositeFieldContainerwhich
is used for access to fields that are declared as repeated in the schema file and contain
composite types (e.g. another message) claimed to implement the MutableSequence
interface defined by Python’s collections.abc module. In fact, it did only implement
the full interface since version 3.20.0 of the official package – before, it was missing
support for operators1. With version 4.21.0 though (following 3.20.1) the Python
protocol buffer implementation switched to a new protocol buffer runtime – μpb [58] –
and once again does not implement the correct Python interfaces. The wrapped C types
provide some functionality from a MutableSequence, like extending or appending with
corresponding methods. However they don’t adhere to the Python data model and –
like previous versions – don’t implement the __add__ or __iadd__ methods which are
required by the MutableSequence interface. In practice, this means that assignments of
the form
message.repeated_fld += [additional_content]

or
message_a.repeated_fld = message_b.repeated_fld + [additional_content]

will raise errors, although they are expected to work for a type which claims to conform
to the MutableSequence interface.

2.1.4 Type Hints

Python type hints are not new anymore2 and allow static type checkers to help develop-
ers write code that is less likely to fail at runtime. The default protocol buffer package
does support type hints since version 3.20.0 which was not available when develop-
ment on the Python node started. Before the functionality was integrated into the de-
fault compiler plugin, a third party plugin could be used to generate type stubs from
schema files [59]. Type stubs are Python modules that type checkers can use to infer
type information for libraries that don’t use type hints. They need to follow special
naming conventions to be usable [60].

1operators are supported by implementing specific “dunder” methods in Python, e.g. objects which imple-
ment an __add__ method support addition with the + operator

2introduced in PEP 484 – Type Hints [56]

23

2 Ubi-Interact Python Packages

2.1.5 Namespaces and Package Structure

Protocol buffer schema files allow users to define packages to prevent name clashes and
structure the defined types [37]. These packages are ignored for the generated Python
modules though – instead themodules are organized according to the file system layout
of the schema files used as compiler input [52].

Use Case: Topic Data Types

Ubi-Interact clients publish data in topics as TopicDataRecordmessages. This type has
a oneof group defining all possible payload types the record could carry1. To allow
clients to associate searchable meta data with specific topics they can register compo-
nents (which are serializable with a specific protocol buffer message), this would allow
a client to e.g. subscribe to all topics with specific tags, clients, devices or – last but not
least – data types. Of course the information of the expected data field inside the payload
oneof of all records in a specific topic needs to be encoded then and the most practical
way is to use the unique name of the protocol buffer message2. Without special care
during development of the Python package, this information would not be sufficient to
e.g. import the correct Python type for the message, since the package structure from the
schema declarations is present in the unique name that is passed, but not necessarily in
the import path for the corresponding Python module.

In fact, the Pythonmodules generated by the default plugin aremapped one-to-one to
input schema files: The output is a loose collection of modules and not even organized
into packages in the first place3 – the default protocol buffer package does not care at all
how the message definitions are made available to the Python runtime.

2.1.6 Ubi-Interact

All things considered, the default protocol buffer package and plugin weren’t a suitable
solution for the Ubi-Interact use case where performance is not necessarily as important
as simplicity. There are two useful third party plugins available to generate different
Python code as protocol buffer implementation, as well as one package to generate type
stubs which are compared in table 2.1.

1using this setup makes keeping track of topic data types unnecessary since the code is able to inspect the
type of the oneof group through the reflection features of protocol buffers, if necessary

2at least for user defined types – primitive types need special treatment
3the plugin does not generate the appropriate __init__.py files to make the import mechanism recognize
the folders as packages

24

2.1 Protobuffer Package

Instead of the default implementation the Python protocol buffer distribution
ubii-message-formats [64] forUbi-Interact is using proto-plus [63] aGoogle package
which provides wrappers around protocol buffer message types, but with the following
adjustments:
1. custom compiler plugin available as codestare-proto-plus [65] to compile schema

files to proto-plus code – including reStructuredText docstrings

2. adjusted metaclass and helper methods to make wrappers easily extendable

3. custom build tool plugin to automate compilation and pre-process schema files

Compiler plugin

The proto-plus package does not provide a plugin for the protoc compiler and instead
defines message wrappers directly in Python code. There probably is a compiler used
forGoogle projects that give the user the option to use proto-plus code – like theGoogle
Ads API [66] – since those projects need to support existing message formats but it is
no publicly available. Installing the codestare-proto-plus [65] module makes its plu-
gin capabilities available for a compiler running in the same environment. It has been
inspired by the mypy-protobuf package and corresponding compiler plugin but imple-
ments some additional features and currently lacks the support for RPC definitions in
the schema files1. The additional features include support for docstrings which will be
converted to appropriate reStructuredText (see example 2.2) and additional parameters
that can be supplied to the plugin to automatically generate appropriate __init__.py
files inside the generated directory structure to build packages instead of a loose collec-
tion of modules.

Through the use of __init__.py files, the module can support importing of message
(wrapper) types according to their schema names: The plugin builds one module per
schema input file, like the default plugin, but creates __init__.py files that import all
types of the generated modules in the directory to make them in turn importable with-
out knowing exactly whichmodule specifies them. Since the generation of __init__.py
files needs information about all types that need to be imported – which can only be
deduced from the input schema files – this feature is limited to use cases where all nec-
essary schema files are available (this is the exact same limitation the better-proto plu-
gin has invariably, compare table 2.1), but can be turned off if the schema files should
be compiled incrementally or in parallel. Through the use of the proto-plus “pack-
age” feature – which is sadly not very well documented currently – the proto-plus
code can specify the message pool for the messages that are build internally. Messages
with the same “package” definitions will be added to the same pool, which allows to
incrementally build a mutual pool from multiple modules. This could for example be
used to supply the Ubi-Interact messages in multiple packages, in order to allow clients

1this protocol buffer feature is not needed for Ubi-Interact

25

2 Ubi-Interact Python Packages

to choose which ones they need and only use the minimal message set to speed up
(de-)serialization. This feature is also supported by the plugin through the optional
“package” parameter, and documented in the ubii-message-formats documentation
(for the lack of documentation by the proto-plus developers).

Notably, this does not fix the issues of the Python package structure mirroring the di-
rectory structure of input schema files since the plugin should be able to compile schema
files to modules in a one-to-one manner to allow incremental builds. The only reason-
able choice is then tomirror the structure – and since the directory structure of a package
and its subpackages define the import path used by the Python import mechanism, it is
impossible to respect the schemas “package” definitions for the generated Python pack-
age. The module level attribute one can see in l. 7 of example 2.2 is used for the afore-
mentioned proto-plus “package” feature and uses the package "my_package" since it
was explicitly passed to the plugin during compilation. The generated Python module
would be named color_plus.py – since the input file is named color.proto – and an
import statement to import the Color type would look like
from color_plus import Color

although the schema file defines the “package” as my_package.dataStructure (com-
pare example 2.1.1), and the corresponding type would be imported in schema files as
my_package.dataStructure.Color regardless of the directory layout.

Build Tools

To solve the problem of schema file directory structure, a tool was developed that is
able to “fix” the directory structure of schema files by copying them to a tree that mir-
rors the package definitions inside the provided schema files (so a schema file that de-
clares package foo.bar; would end up inside a foo/bar/ directory). A CLI interface
and a plugin for the setuptools build backend are available to integrate this process
into the Python build process if necessary. For our use case the generated files should
make up a subpackage of our protocol buffer package so that it can be replaced by
updated versions whenever the schema changes. The package will also provide ad-
ditional functionality as a separate util subpackage. This subpackage is not shown in
fig. 2.4, and users don’t need to be concerned with it, as all message wrappers are im-
portable from themain ubii.proto package. This is specifically documented so that the
ubii-message-formats packagemaintainer hasmore control over what users get when
theywant to import amessagewrapper: in theory it would be able to switch to an imple-
mentation that does not use proto-plus (as long as the API is compatible) or provide
several different implementations in parallel. Importing from the main package would
then reference a certain default implementation, but if the Ubi-Interact framework e.g.
decides to support flatbuffers the generated code could be distributed as an additional
subpackage without problems).

26

EXAMPLE 2.2: Python module compiled from color.proto using custom plugin
– compare example 2.1.1

1 """
2 @generated by codestare-proto-plus. Do not edit manually!
3 """
4 import proto
5 import proto.message
6

7 __protobuf__ = proto.module(
8 package="my_package",
9 manifest={

10 "Color",
11 }
12)
13

14

15 class Color(proto.message.Message):
16 """
17 4 Channel color using r,g,b and alpha channel
18

19 Attributes:
20 r (proto.fields.Field): :obj:`~proto.fields.Field` of type
21 :obj:`~proto.primitives.ProtoType.DOUBLE`
22 g (proto.fields.Field): :obj:`~proto.fields.Field` of type
23 :obj:`~proto.primitives.ProtoType.DOUBLE`
24 b (proto.fields.Field): :obj:`~proto.fields.Field` of type
25 :obj:`~proto.primitives.ProtoType.DOUBLE`
26 a (proto.fields.Field): :obj:`~proto.fields.Field` of type
27 :obj:`~proto.primitives.ProtoType.DOUBLE`
28 """
29

30 r = proto.Field(
31 proto.DOUBLE,
32 number=1,
33)
34 g = proto.Field(
35 proto.DOUBLE,
36 number=2,
37)
38 b = proto.Field(
39 proto.DOUBLE,
40 number=3,
41)
42 a = proto.Field(
43 proto.DOUBLE,
44 number=4,
45)

27

PACKAGE
M

AIN
FEATURES

A
DVANTAGES

D
ISADVANTAGES

google.protobuf
[37]

Com
piler

plugin
to

generate
Python

m
odulesforschem

a
files

Interface
for

expected
m
essage

A
PI

(com
pare

section
2.1.2)

Sim
plein

thesensethatno
third

party
packagesare

needed
D
esigned

in
conjunction

w
ith

other
default

im
plem

entations
for

different
platform

sforconsistentA
PI

W
elldocum

ented

Inconsistentnam
ing

N
o

type
hints

w
hen

developm
ent

of
U
bi-InteractPython

node
started

N
eedscustom

w
rappersforextensibil-

ity
and

easierJSO
N

support
D
oesnotrespectpackage

declarations

mypy-protobuf
[59]

Type
stubsfordefaultpackage

M
akesdefaultA

PIbetterusable
–

1

betterproto
[61]

Reim
plem

entation
of

protocol
buffer

fram
ew

ork
from

scratch
Custom

com
piler

plugin
to

generate
Python

packages
Focuson

idiom
aticPython

patterns

N
ative

type
checking

Readable
Python

m
odules

(m
essages

are
generated

assim
pledataclasses)

Relative
im

ports
possible,

declared
packagesare

respected
Python

nam
ing

conventions
are

re-
spected

Im
plem

entation
from

scratch
leads

to
m
ultiple

open
bugs

(18
atthe

tim
e
of

w
riting

[62])
M

ultiple
schem

a
files

are
com

piled
into

a
single

m
odule

i.e.
allschem

a
files

need
to

be
available

during
each

com
pilation

or
the

package
breaks

–
new

m
essagescan’tbe

easily
added

N
o

fallback
to

original
im

plem
enta-

tion
possible

i.e.
criticalbugs

need
to

be
fixed

orpackage
isunusable

proto-plus
[63]

“Idiom
atic”

protocolbuffer
w
rappers

developed
and

used
by

G
oogle

M
essages

can
be

defined
as

sim
ple

Python
classesforreadability,package

builds
originaldescriptors

under
the

hood
and

w
rapsthem

forbetterA
PI

A
dvanced

m
arshaling

features
allow

to
specify

rulesforautom
aticm

arshal-
ing

ofdata
send

overthe
w
ire

U
ses

google.protobuf
under

the
hood

to
build

sam
e
types

Features
are

available
via

a
custom

class
that

m
essage

w
rappers

inherit
(sim

ilar
to

the
design

proposed
in

fig.2.3)
Classes

that
represent

the
m
essages

are
readable 3

A
PIism

ore
“pythonic”

than
standard

package
butone

can
alw

ays
fallback

to
the

default

N
o
com

pilerplugin
available

Slightly
slow

erthan
defaultim

plem
en-

tation
due

to
m
arshaling

overhead
W

rapperclassesarenotdesigned
to

be
extendable

perse 2

Lim
ited

typing
support

1
G
enerating

the
stubsshould

be
partofthe

build
processforthe

U
bi-Interactprotocolbufferpackage

w
hich

im
pliessom

e
developm

enteffort
2
Thiscan

be
fixed

by
refining

the
m
etaclass

3
Com

pare
exam

ple
2.1.2

and
exam

ple
2.2

to
see

the
difference

TABLE2.1:Com
parison

ofprotocolbufferPython
packages

28

2.1 Protobuffer Package

Additional Features

For use in Ubi-Interact, the generated message wrappers will be accompanied by a cus-
tom JSON encoder (implementing the interface of the JSONEncoder class in the json
module of the standard library) which will be able to handle de- and encoding of the
HTTP(S) traffic used for the synchronous “service” connection1 (compare section 1.6.2)
as well as a custom metaclass extending the metaclass used by the proto-plus package
to build the message wrappers.

Figure 2.4 shows the basic layout of the ubii.proto package. The ubii namespace
is used to group all Python modules related to Ubi-Interact, the framework and node
implementation from section 2.3 are distributed as ubii.framework and ubii.node re-
spectively. The ubii.proto.utilmodule provides the JSONencoder and the extended
metaclass which can be used to extend message wrappers, illustrated in example 2.3
where a class CustomComponent which acts like a wrapper around a Component proto-
col buffer message (since it inherits from ubii.proto.Component, the wrapper gener-
ated from schema files) is defined.
When defining a new proto-plus message wrapper, a new protocol buffer descriptor will
be built under the hood – unless the __protobuf__ attribute is defined in the module.
Assigning the __protobuf__ attribute of a module to the ubii.proto.__protobuf__
attribute informs the metaclass mechanism where to look for existing message descrip-
tors [67] for all wrappers built in the new module. This behavior is not very well docu-
mented in the proto-plusmodule (currently only in source code), and is a likely source
of bugs since not setting the __protobuf__ attribute will produce wrappers that serial-
ize and deserialize the messages equivalently, but can’t be used completely interchange-
ably. Therefore the documentation of the ubii-message-formats package covers this
in more detail [68].

Since the custom metaclass also inherits the abc.ABCMeta class, it is able to build ab-
stract classes. Thismechanism now allows the Python framework to define abstract base
classes that already implement the wrapping of a specific protocol buffer message – as a
well defined interface for user types that need to be serializable in a certain way (recall
that Python supports multiple inheritance instead of interfaces). For example, users can
implement processingmodules by inheriting froman abstract base class provided by the
ubii.framework package, which is itself inheriting from the
ubii.proto.ProcessingModule wrapper class (but built with the custom metaclass in-
stead of the defaultmetaclass of the proto.message.Message type). Defining the behav-
ior of the processing module is then a matter of overwriting the same callback methods
used for the JavaScript implementation, andmarshaling aswell as handling of the actual
processing module objects in the Python framework comes “for free”.

1the proto-plus wrappers also provide an easier interface for the JSON handling of the
google.protobuf.json_format, module out of the box

29

∼
__
pr
ot
ob
uf
__

:
pr

ot
o.

m
od

ul
e

∼
__
pr
ot
o_
mo
du
le
__

:
St

rin
g

∼
__
pr
ot
o_
pa
ck
ag
e_
_:

St
rin

g

M
es

sa
ge

M
et

a

M
es

sa
ge

__
me
ta
cl
as
s_
_:

ty
pe

=
M

es
sa

ge
M

et
a

pr
ot

o.
m

es
sa

ge

A
B

C
M

et
a

ab
c

JS
O

N
En

co
de

r

js
on

Pr
ot

oM
et

a

Pr
ot

oE
nc

od
er

ub
ii.

pr
ot

o.
ut

ilEr
ro

r

To
pi

cD
at

aR
ec

or
d

Pr
oc

es
si

ng
M

od
ul

e

Se
ss

io
n

…

ub
ii.

pr
ot

o

ub
ii

FIGURE 2.4: ubii-message-formats package

30

2.2 Problems and Requirements

EXAMPLE 2.3: Use of custom metaclass to extend a protocol buffer wrapper

1 import ubii.proto as ub
2

3 __protobuf__ = ub.__protobuf__
4

5 class CustomComponent(ub.Component, metaclass=ub.ProtoMeta):
6 """
7 This custom wrapper wraps the same message as ubii.proto.Component
8 but can do something fancy
9 """

10 def __init__(mapping, *, fancy, **kwargs):
11 super().__init__(mapping, **kwargs)
12 self._fancy = fancy
13

14 def fancy_method(self):
15 return self._fancy

Type Hints

Type stubs generated for the proto-plusmodule have been generated andupdatedwith
some generics to improve typing support, more type hints can be added through the
compiler plugin or the stubs in the future.
The stubs are distributed as generic-proto-plus-stubs [69].

2.2 Problems and Requirements

To respect the Separation of Concerns (SoC) principle, the framework needs to make
sure that the interaction between behavior and representation of objects that are map-
pable to protocol buffer messages is designed in a flexible way. For example, the pro-
tocol buffer message shown in example 2.4 represents a client node. Some parts of that
representation are a result of communicationwith the broker – for example a client does
not have an id from the start, it will get it by using the registration service.
This means that how the local client representation is supposed to be kept up-to-date
depends on implementation details: How does the client node know how it can com-
municate with the broker node in the first place? How does it know the message for-
mats used in the registration communication? In a sense the answers to these questions
describe the Ubi-Interact “middleware protocol” used for communication between the
specific client and broker. It would be bad design if client code which only wants to deal
with high level features like subscribing and publishing would need to change because
the intricacies of the low level client broker communication change at some point. On
the other hand, client code should be able to adapt the “middleware protocol” as easily

31

2 Ubi-Interact Python Packages

as all other parts of the node implementation, for example for nodes that should per-
form a special task – like running processing modules.
While all clients need to get an id at some point, the specifics of the way it is received
should only concern the code that deals with the implementation of the “middleware
protocol”.

TheAPI also needs to specify interfaces to execute common tasks – at least for perform-
ing service communication, subscribing to topics and publishing data –which should be
accessible via an object that conceptualizes our client node. Treating the client node as
the interface between the user and the Ubi-Interact framework is the standard in all cur-
rently existing target implementations. These interfaces need to be implemented against
a specific “middleware protocol” though – see section 2.2.1.

EXAMPLE 2.4: Protocol buffer message schema defining a Ubi-Interact client – client.proto

1 message Client {
2 enum State {
3 ACTIVE = 0;
4 INACTIVE = 1;
5 UNAVAILABLE = 2;
6 }
7

8 string id = 1;
9 string name = 2;

10 repeated ubii.devices.Device devices = 3;
11 repeated string tags = 4;
12 string description = 5;
13 repeated ubii.processing.ProcessingModule processing_modules = 6;
14 bool is_dedicated_processing_node = 7;
15 string host_ip = 8;
16 string metadata_json = 9;
17 State state = 10;
18 float latency = 11;
19 }

,

32

2.2 Problems and Requirements

2.2.1 Middleware Protocol

To illustrate the design problem that needs to be solved, the sequence diagram in fig. 2.5
shows the communication between a client node and the broker until the clientsminimal
functionality can be guaranteed, i.e. it can
• use services

• subscribe to topics

• publish topic data
The basic communication consists of the two “Setup” steps in fig. 2.5. The “Processing”

step shows the communication that is needed for nodes that want to run their own pro-
cessing modules.

The “Async Setup” step can only happen after the “Sync Setup” step, since the client
needs to have a unique id to use the asynchronous topic communication with the broker,
therefore it needs to be able to use the registration service which will register the client
node at the broker and return the unique id in its reply message (the updated Client
message if the registration was successful).

The client node does not need to know how to use each service a priori, instead it can
“ask” the broker – this happens in the “Sync Setup” step. The only communication that
needs to be known a priori is the server configuration service. How brokers advertise this
path is not part of the protocol – the standard for current nodes is to simply provide the
broker nodes IP1 and the (topic) path for the configuration service2 when initializing
the client.

After the server configuration service has been used to retrieve the brokers configura-
tion (as a Servermessage), the client needs to use the contained constants – definitions,
specific to this very broker, for the (topic) paths of possibly available services and other
special topics3 as well as data types. With this information, the client node is able to
retrieve the list of (advertised) services and reevaluate or update its knowledge of syn-
chronous communication – which it just learned via the constants – one final4 time.

After the client “knows” how to use the synchronous service communication, has
been registered and has established its dedicated asynchronous topic data connection it
should be able to perform the basic publish and subscribe tasks. Requesting a subscrip-
tion is possible via service communication, publishing and receiving messages happens
asynchronously by sending/receiving TopicData protocol buffer messages for specific
topics via the dedicated bi-directional topic connection.

1via configuration files, command line parameters and/or environment variables
2relying on the broker node documentation e.g. Requests ⋅ SandroWeber/ubi-interact Wiki [70]
3relevant for nodes that want to do more than just simple publish-subscribe communication
4in theory the services could change later – e.g. depending on the broker state – and would need to be
updated

33

Broker Client

get broker IP

create
service connection

service/server_configuration
return Server

retrieve Constants

service/service_list
return ServiceList

Sync SetupSync Setup Setup service communication

service/client/registration(Client)
return Client create

topic connection

Async SetupAsync Setup Setup topic communication

service/topic_subscription(TopicSubscription)
topic: Constants.START_SESSION

return Success

TopicData
topic: Constants.START_SESSION start

processing modules

service/processing_module/runtime/add(ProcessingModuleList)
processing_module_list: started modules

return Success

ProcessingProcessing Processing Module Handling – starting

FIGURE 2.5: Ubi-Interact “middleware protocol”
Names in blue are protocol buffer messages

See Requests ⋅ SandroWeber/ubi-interact Wiki [70]
34

2.2 Problems and Requirements

The following (competing) requirements and problems arise for the interface design:
1. What functionality the client exposes should be independent from its representation

as a protocol buffer message which could e.g. become subject to change.

2. What functionality the client exposes should be independent from the “middleware
protocol” which could e.g. also be subject to change.

3. How the functionality is implemented is inevitably strongly coupled to the “middle-
ware protocol” implementation.

4. It should be clearly conceptualized – if possible in code – when a client is considered
“usable”, i.e. when a feature becomes available as part of the “middleware protocol”.

5. Code using the interface to subscribe and publish, make service calls or use other
features implemented on top of the “middleware protocol” should not have to deal
with the protocol itself, it should be able to “start with a usable client”.

6. The representation of the client needs to be kept up-to-date during the different stages
of the “middleware protocol”.

7. The interface should be “typed” so that type checkers or an IDE can provide additional
support to use it correctly.

2.2.2 Processing Modules

Running processing modules is a very desirable feature for a Ubi-Interact node imple-
mentation targeting a previously unsupported environment. The node implementation
needs to support a more complex “middleware protocol”1 as seen in fig. 2.5. The infor-
mation about the processing modules which the client is able to run needs to be avail-
able as part of the Clientmessage sent during the registration in the “Async Setup” step
(see the schema in example 2.4). After the registration it needs to subscribe to a spe-
cific topic (the exact topic-path used by the broker has been communicated during the
“Sync Setup” step) to handle messages about new sessions (the Session concept will not
be presented here, for more information refer to Weber et al. [1, § 5.5]). After the client
node identifies that a processing module requested in a session can be provided by itself,
it needs to start the processing, wire up inputs and outputs as specified, and inform the
broker about the started modules.

In addition processing modules are prime examples of objects that have complex behav-
ior which interacts with the representation as a protocol buffer message. The schema in

1for brevity the communication which is needed to stop processing modules is not shown

35

EXAMPLE 2.5: Protocol buffer schema defining a Ubi-Interact processing module
– processingModule.proto

1 message ProcessingModule {
2

3 enum Status {
4 INITIALIZED = 0;
5 CREATED = 1;
6 PROCESSING = 2;
7 HALTED = 3;
8 DESTROYED = 4;
9 }

10

11 enum Language {
12 CPP = 0;
13 PY = 1;
14 JS = 2;
15 CS = 3;
16 JAVA = 4;
17 }
18

19 string id = 1;
20 string name = 2;
21 repeated string authors = 3;
22 repeated string tags = 4;
23 string description = 5;
24 string node_id = 6;
25 string session_id = 7;
26

27 Status status = 8;
28 ProcessingMode processing_mode = 9;
29 repeated ModuleIO inputs = 10;
30 repeated ModuleIO outputs = 11;
31 Language language = 12;
32

33 string on_processing_stringified = 13;
34 string on_created_stringified = 14;
35 string on_halted_stringified = 15;
36 string on_destroyed_stringified = 16;
37 }

36

2.2 Problems and Requirements

example 2.5, for example, shows that a module has a status which represents the pro-
cessing state (the associated state machine is shown in Weber et al. [1, fig. 3]). However
the processing behavior is implemented, it needs to have an associated representation
that is up-to-date, just like a Client needs to be updated during the different stages of
the associated “middleware protocol”.

2.2.3 Python Language Features

To discuss the design for these requirements, a short overview over some language fea-
tures of Python is justified.

Multiple Inheritance

Many arguments can be made against – but also in favor of – multiple inheritance in
Python themain takeaway from the commonly referenced articles on thematterPython’s
Super Considered Harmful [71] and Python’s super() considered super! [72] is that composi-
tion over inheritance [73] is a useful principle/guideline – also for Python code – but
when it’s done right there is nothing “scary” or “harmful” in using multiple inheritance
in Python. Many mistakes Python developers make often come down to simply using
features like they were used to – before migrating to Python – instead of in the intended
way. Multiple inheritance is no different, it relies on the correct use of Python’s super()
callable to delegate method calls. Saying that “one big problem with ’super’ is that it
sounds like it will cause the superclass’s copy of the method to be called. This is simply
not the case, it causes the next method in the MRO1to be called” [71] is like saying that
English is a badly designed language because Germans tend to confuse the meaning of
“to become” and “to get”.

Dependency Injection

So that two objects, one which provides some functionality (referred to as service) and
another which wants to use that functionality (referred to as a client), respect the SoC
principle, the design needs to make sure that the client does not need to know how to
construct the service. As a concrete example, the Ubi-Interact client node might be the
client in this context, and the service is an object that somehow implements a topic connec-
tion. The node wants to use that connection to send and receive topic data, but it would
be desirable if the actual connection implementation could be changed later2, without
affecting the client. One way to design this (especially in statically typed languages,

1the Method Resolution Order (MRO) is an attribute of Python types that defines in which order parents
and siblings are searched when a call should be delegated

2e.g. for testing it would be nice to use a mocked connection which “sends” some test data

37

2 Ubi-Interact Python Packages

where there is more cost – e.g. additional compilation – associated with “dynamically”
changing parts of the code) is commonly referred to as dependency injection or inversion
of control, basically the client is provided with the service by some external code – the
injector – which it is not aware of [74].

EXAMPLE 2.6: Naive dependency injection
Obvious flaws discussed in section 2.2.3

1 class Connection:
2 """A service"""
3 def __init__(server):
4 self.server = server
5 self.is_open = False
6 def open(self):
7 print(f'Opening connection to {self.server}')
8 self.is_open = True
9 def close(self):

10 print(f'Closing connection to {self.server}')
11 self.is_open = False
12 def send(self, message):
13 if self.is_open:
14 print(f"Sending {message} to {self.server}")
15

16 class Client:
17 """A client"""
18 def publish(self, connection, message):
19 connection.send(message)

. .
>>> client = Client()
>>> connection = Connection('test server')
>>> connection.open()

Opening connection to test server
>>> client.publish(connection, "Foo")

Sending Foo to test server
>>> connection.close()

Closing connection to test server
,

On the one hand Python code in the standard library often uses dependency injection,
on the other hand dedicated frameworks are used very infrequently. But why is that the
case?
The naive implementation in example 2.6 explicitly injects the dependency on the service
in the functionality of the client. This has some obvious drawbacks:
1. Client code needs a connection object whenever it wants to make a publish call.

2. A connection with some special interface is passed around, but the publish method
only depends on the send functionality.

38

2.2 Problems and Requirements

It seems impossible to “hide” this complexitywithout creating a tightly coupled client
and service, on first glance. For example, although it looks like the client does not cre-
ate the connection in example 2.7, in fact it uses the special open interface and becomes
tightly coupled to the connection implementation. This actually is the anti-pattern in-
version of control aims to avoid.

EXAMPLE 2.7: Bad dependency injection
anti-pattern which leads to tight coupling

1 class Connection:
2 ... // same as before
3

4 class Client:
5 def __init__(connection):
6 self.connection = connection
7 self.connection.open()
8

9 def publish(self, message):
10 self.connection.send(message)
11

12 def close(self):
13 self.connection.close()
14

15 connection = Connection('test server')
16 client = Client(connection)
17 client.publish("Foo")
18 client.close()

In Python “everything is an object”[75] – this allows developers to design the same
scenario that was just discussed like shown in example 2.8. Client code still needs a
usable connection, which is now just any callable that can send themessage, whenever it
wants to use the publish functionality. There is no need for special dependency injection
frameworks, because the nominal “type” of the callable that is used to send themessage
does notmatter in a dynamically and “duck” typed language like Python. Python allows
to use callables with state, consequently one can cleanly separate the call arguments and
context. In example 2.8 connect instances are callable, but can also be used as context
managers (this provides a much cleaner interface for IO operations). This is not part
of the modeled dependency, though – the client does not need to know if he is using
a complex IO connection or a mocked test connection. Python even allows to specify
the expected call signatures with generics, type hints or static duck typing[55] – i.e the
publish functionality in the client can specify exactly how the provided duck should
“quack”.

39

2 Ubi-Interact Python Packages

EXAMPLE 2.8: Python dependency injection pattern
No special interface required – compare with example 2.6

1 class connect:
2 def __init__(self, server):
3 self.server = server
4 self.is_open = False
5 def __enter__(self):
6 print(f'Opening connection to {self.server}')
7 self.is_open = True
8 return self
9 def __exit__(self, *exc_info):

10 print(f'Closing connection to {self.server}')
11 self.is_open = False
12 def __call__(self, message):
13 if self.is_open:
14 print(f"Sending {message} to {self.server}")
15

16 class Client:
17 def publish(self, send, message):
18 send(message)

. .
>>> client = Client()
>>> with connect('test server') as connection:
... client.publish(connection, "Foo")

Opening connection to test server
Sending Foo to test server
Closing connection to test server

>>> client.publish(print, "Bar")
Bar

To take this to the extreme, the publish functionality itself could become an instance
of a special callable type, like in example 2.9. The MessageConsumer type models the ex-
act call signature that is expected (i.e. one positional argument named messagewhich is
a proto-plus wrapper, no return value), which means an IDE will be able to deduce that
a callable with appropriate signature is accessible via the clients publish attribute. This
code is as flexible as possible, it would even be possible to change the publish imple-
mentation of one specific client instance at runtime. The connection is provided like in
example 2.8, except that instead of making connect a class that implements the context-
manager “interface”, the code in example 2.9 creates an equivalent context manager1 in
half the lines of code using the contextlib module from the Python standard library –
which again shows the immense flexibility of this design.

1except that since we are making promises about types by using type hints the returned callable can reason-
ably use the special proto-plus API to serialize the arguments it receives

40

EXAMPLE 2.9: Python dependency injection with static duck typing
Application of the pattern from example 2.8 everywhere

1 from typing import Protocol
2 from proto.message import Message
3 from ubii.proto import Error, Success
4 from contextlib import contextmanager
5

6 class MessageConsumer(Protocol):
7 def __call__(self, message: Message) -> None: ...
8

9 class Client:
10 class Publish:
11 transport: MessageConsumer | None
12 def __init__(self):
13 self.transport = None
14

15 def __call__(self, message: Message):
16 if self.transport is not None:
17 self.transport(message)
18

19 def __init__(self):
20 self.publish: MessageConsumer = self.Publish()
21

22 @contextmanager
23 def connect(server) -> MessageConsumer:
24 def send(message: Message) -> None:
25 payload = type(message).serialize(message) # we promised the right type!
26 print(f'Sending {payload} to {server}')
27

28 print(f'Opening connection to {server}')
29 yield send
30 print(f'Closing connection to {server}')

. .
>>> client = Client()
>>> with connect('test server') as connection:
... client.publish.transport = connection
... client.publish(Error(title='Foo'))
... client.publish(Success(title='Bar'))

Opening connection to test server
Sending b'\n\x03Foo' to test server
Sending b'\n\x03Bar' to test server
Closing connection to test server

41

2 Ubi-Interact Python Packages

To alloweasier “functional” design, someutility callableswhich extend the functools
module from the standard library can be found in the ubii.framework.util.functools
module [76].

Asyncio

To write modern asynchronous code in Python, the standard library provides develop-
ers with the asyncio framework. Users can declare coroutines with the async keyword,
which can be scheduled to be executed when they are await-ed or run concurrently as
tasks. The internal handling of coroutines in the asyncio event loop does not need to be
discussed in detail, but it is important to note that “special” callables like they are used
in example 2.8 are not simply convertible to a coroutine by adding the async keyword
in the right place. Normally, coroutines are created by declaring a function like

1 async def foo():
2 return 'foo'

which in this case creates a function that returns a coroutine that can be later awaited to
yield “foo”.

The coroutines implement a special interface consisting of four methods: __await__,
send, throw and close [77]. Building complex coroutines out of smaller sub-coroutines
can be done analogously to building complex callables by creating a special class that
implements the interface. On one hand, the “functional” design has a lot of benefits,
as was shown in the previous section, and creating special classes to represent complex
coroutines – instead of creating them with async def functions – could be used fre-
quently. On the other hand, the async def declaration is easier to read and implement.
For this reason the Ubi-Interact Python framework uses a coroutine wrapper class to
implement complex coroutines in the same style as complex callables, detailed docu-
mentation and examples are available[78]. Example 2.10 illustrates the usage by defin-
ing a small processing_steps wrapper around some coroutine which is broken down
into smaller pieces of functionality. A similar result could be achieved by using nested
functions, but this design allows to make the state of the coroutine (in our example the
steps it performs) public and mutable – similar designs are used throughout the code-
base of the Ubi-Interact Python framework to model the functionality of some objects
as mutable and allow code in different places to make small adjustments to this func-
tionality. Since instances of processing_steps are considered coroutines, they can run
in background tasks without an issue.

42

2.2 Problems and Requirements

EXAMPLE 2.10: Usage of custom asyncio coroutine wrapper

1 import asyncio
2 from codestare.async_utils import CoroutineWrapper
3

4 class processing_steps(CoroutineWrapper):
5 def __init__(self, values, *, steps=None):
6 self.values = values
7 self.steps = list(steps) or []
8 super().__init__(coroutine=self.work())
9

10 def process(self, value):
11 for step in self.steps:
12 value = step(value)
13 return value
14

15 async def work(self):
16 async for value in self.values:
17 self.process(value)
18

19 async def main():
20 processing = processing_steps(range(3), steps=[print])
21 # or maybe more processing ?
22 processing.steps = [lambda x: x + 1] + processing.steps
23 await asyncio.create_task(processing)

. .
>>> asyncio.run(main())

1
2
3
4

All utility tools for async development are published in a separate distribution,
codestare-async-utils [79], which is documented as part of the Ubi-Interact Python
node documentation. The codestare.async_utils.wrapper module provides the co-
routine wrapper, while the codestare.async_utils.nursery module deals with han-
dling of asyncio background tasks: Tasks can be managed by a TaskNursery (multi-
ple nurseries can be instantiated for one asyncio event loop), which sets up the right
callbacks to catch exceptions and handle system signals (on Windows systems only
SIGBREAK and SIGINT are usable to catch keyboard interrupts). Task nurseries imple-
ment the contextlib.AsyncExitStack [80] interface which basically allows them to
perform arbitrary async teardown code when exceptions occur in managed tasks1.

1for more information refer to codestare.async_utils.nursery module — ubii-node-python documentation [81] and
contextlib — AsyncExitStack — Python 3 Documentation [80]

43

2 Ubi-Interact Python Packages

2.3 Design

The ubii-node-python distribution entails three Python packages for the ubii name-
space:

• ubii.node – Ubi-Interact client node implementation in Pythonand pytest plugin

• ubii.cli – CLI for the Ubi-Interact node

• ubii.framework – base framework that the node implementation is built on

The design of the packages is discussed here, while section 2.2 in general and specifi-
cally the discussion of language features from section 2.2.3 deal with the particularities
that necessitate specific decisions.

2.3.1 “Protocol” concept

The word “protocol” is used throughout the discussions in section 2.2 to describe a se-
ries of predefined stages or steps as building blocks for complex behavior of an object
– namely the “middleware protocol”, which defines how a client communicates with a
broker, and the state machine of a processing module.

As discussed in section 2.2.3, implementation of complex behavior can be broken
down using a combination of language features and special utility classes. As a result,
the Ubi-Interact Python framework uses the concept of a “protocol” to describe object
behavior which is defined as a state machine. This makes the node’s communication
with the broker a protocol as well as the processing behavior of a processing module –
and allows to cleanly separate the behavior for the respective objects from their repre-
sentation as a protocol buffer message and other public interfaces.
A protocol defines the states of the state machine it models and callbacks for possible
state transitions (callables which return coroutines or other awaitables, e.g. by using
async def). Associated with a protocol is a special coroutine which handles running an
instance of a concrete protocol implementation. It can run in a background task which
is by default managed by the protocol itself and can be started and stopped using the
corresponding start and stop operations.

The context of a protocol is mutable state that is passed as input to all defined call-
backs (by default it is just a namespace, but concrete implementations can overwrite
the context property to e.g. return a data class which can use type hints so that the
callbacks know which elements they can expect in the state they get as input).

A concrete implementation of a protocol can be found in the processing module of
the framework, and a further specialisation – but still abstract – which gives more struc-
ture to the expected client broker communication can be found in the client mod-
ule of the framework – a concrete client protocol implementation is available from the
ubii.node.protocol module. Refer to the diagram in fig. 2.6 for an overview of the
relationships, and to example 2.11 for a minimal implementation.

44

C
or

ou
tin

eW
ra

pp
er

+
co

ro
ut

in
e:

as
yn

ci
o.

C
or

ou
tin

e
+

se
nd

(v
al

ue
):

vo
id

+
th

ro
w

(ty
pe

,v
al

ue
,t

ra
ce

ba
ck

):
vo

id
+

cl
os

e(
):

vo
id

co
de

st
ar

e.
as

yn
c_

ut
ils

C
lie

nt

Pr
oc

es
si

ng
M

od
ul

e

…

ub
ii.

pr
ot

o

R
un

Pr
ot

oc
ol

+
pr

ot
oc

ol
:

Ab
st

ra
ct

Pr
ot

oc
ol

<T
>

<
<

ab
st

ra
ct

>
>

A
bs

tr
ac

tP
ro

to
co

l<
T>

+
st

at
e_

ch
an

ge
s:

M
ap

pi
ng

<T
up

le
<T

>,
C

al
lb

ac
k>

+
st

ar
tin

g_
st

at
e:

T
+

en
d_

st
at

e:
T

+
st

at
e:

T
+

co
nt

ex
t:

ty
pe

s.
Si

m
pl

eN
am

es
pa

ce
+

st
ar

t()
:

Ab
st

ra
ct

Pr
ot

oc
ol

<T
>

+
st

op
():

vo
id

ub
ii.

fra
m

ew
or

k.
pr

ot
oc

ol

<
<

ab
st

ra
ct

>
>

A
bs

tr
ac

tC
lie

nt
Pr

ot
oc

ol
<T

>
+

cl
ie

nt
:

U
bi

iC
lie

nt

U
bi

iC
lie

nt
+

pr
ot

oc
ol

:
Ab

st
ra

ct
C

lie
nt

Pr
ot

oc
ol

<T
>

ub
ii.

fra
m

ew
or

k.
cl

ie
nt

Pr
oc

es
si

ng
Pr

ot
oc

ol
+

pm
:

Pr
oc

es
si

ng
Ro

ut
in

e

Pr
oc

es
si

ng
R

ou
tin

e
+

pr
ot

oc
ol

:
Pr

oc
es

si
ng

Pr
ot

oc
ol

ub
ii.

fra
m

ew
or

k.
pr

oc
es

si
ng

ub
ii.

fra
m

ew
or

k

D
ef

au
ltP

ro
to

co
l

…

ub
ii.

no
de

.p
ro

to
co

l

ub
ii.

no
de

FIGURE 2.6: Design of object behavior as state machine instances
– some attributes and dependencies are omitted for brevitya

ae.g. attributes of protocol buffer wrappers

45

EXAMPLE 2.11: Minimal protocol usable with Ubi-Interact Python framework

import enum
import asyncio
from ubii.framework.protocol import AbstractProtocol

class TestProtocol(AbstractProtocol):
class TestStates(enum.IntFlag):

START = enum.auto()
RUNNING = enum.auto()
END = enum.auto()
ANY = START | RUNNING | END

async def on_start(self, context):
print(f"starting with context:\n-> {context}")
await asyncio.sleep(2) # simulating some setup IO ...
await self.state.set(self.TestStates.RUNNING)

async def on_run(self, context):
print(f"running with context:\n-> {context}")

async def on_stop(self, context):
print(f"stopping with context:\n-> {context}")

starting_state = TestStates.START
end_state = TestStates.END

state_changes = {
 (None, TestStates.START): on_start,
 (TestStates.START, TestStates.RUNNING): on_run,
 (TestStates.ANY, TestStates.END): on_stop,
 }

async def main():
protocol = TestProtocol()
async with protocol as started_protocol:

state = await started_protocol.state.get(
predicate=lambda s: s != started_protocol.TestStates.START

)
print(f"Now in state {state!r}")

. .
>>> asyncio.run(main())

starting with context:
-> namespace(state_change=(None, <TestStates.START: 1>))
running with context:
-> namespace(state_change=(<TestStates.START: 1>, <TestStates.RUNNING: 2>))
Now in state <TestStates.RUNNING: 2>
stopping with context:
-> namespace(state_change=(<TestStates.RUNNING: 2>, <TestStates.END: 4>))

46

2.3 Design

2.3.2 Client

The design of client nodes shouldn’t involve lots of UbiiClient subclasses for different
client behaviors, instead – as just discussed – the runtime behavior, the client protocol,
should be part of the public interface. In fact, a client node is simply defined by its repre-
sentation as a ubii.client.Client protocol buffermessage, its behavior in terms of the
used client protocol and the public interface it exposes to users to execute certain tasks in
the Ubi-Interact environment, like e.g. subscribing and publishing. The representation
as a protocol buffer message is “free” if the node inherits the functionality of the corre-
sponding message wrapper, which is possible by means of a custommeta class that was
introduced in section 2.1.6.

The interface that the client offers shouldmake use of type hints, as alreadymentioned
in section 2.2 they are a very useful feature in modern Python code. Even if the interface
is dynamically implemented by the client protocol, which will be the case since the pos-
sible implementations of features – like subscribing to topics and publishing data – are
dependent on the concrete client protocol that is used to communicate with the broker,
the type hints will help end users to write application code that is agnostic to the protocol
internals and concrete implementation of the interfaces. Also, since the interfaces are
partly asynchronous, the node instances need to be integrated into async code in a way
that application coroutines can wait for them to be usable – without dealing with the
internals of the nodes “client protocol”1 on which they depend.

“Behavior” concept

To implement a set of typed, dynamic attributes of node instances that become available at
some point during the protocol, the UbiiClient makes use of “data classes” [82]. Small
sets of related interfaces can be defined like shown in example 2.12, the Ubi-Interact
Python framework refers to these sets of interfaces as behaviors, while the runtime behav-
ior is referred to as the client protocol. The dataclasses are not limited to using callables, a
behavior can bemodeled via a “standard” attribute as well. For example the support for
service calls in example 2.12 is modeled as access to a sercice_map attribute. If the call-
able interfaces are defined with Python’s static duck typing support, the type checker
or IDE can even deduce the correct argument names – see fig. 2.7.

Client instances receive two sets of behaviors on initialization, the required behaviors
and the optional behaviors, by default required behaviors include only access to service
calls, subscription handling and publishing of data while optional behaviors include
registering of devices, handling of sessions, handling of processing modules and de-
registering/re-registering the client.
Default behaviors are defined in the ubii.framework.client module, but client in-
stances could choose to support completely different sets of behaviors. The client then

1refer to fig. 2.5 once again for a schematic overview

47

EXAMPLE 2.12: Client interface definition using dataclasses and static duck typinga

1 from dataclasses import dataclass
2 from typing import Tuple, Awaitable, Protocol as DuckTypingProtocol
3 from ubii.framework.topics import Topic
4 from ubii.framework.services import ServiceMap
5 from ubii.proto import TopicDataRecord
6

7 class subscribe_call(DuckTypingProtocol):
8 def __call__(self, *pattern: str) -> Awaitable[Tuple[Topic, ...]]:
9 """

10 This defines the exact signature we expect for the subscribe interface
11 """
12

13 class publish_call(DuckTypingProtocol):
14 def __call__(self, *records: TopicDataRecord | dict) -> Awaitable[None]:
15 """
16 This defines the exact signature we expect for the publish interface
17 """
18

19 @dataclass(init=True, repr=True, eq=True)
20 class Subscriptions:
21 """
22 Behavior to subscribe to topics, defines two methods
23 """
24 subscribe_regex: subscribe_call | None = None
25 subscribe_topic: subscribe_call | None = None
26

27 @dataclass(init=True, repr=True, eq=True)
28 class Publish:
29 """
30 Behavior to publish `TopicDataRecord` messages.
31 """
32 publish: publish_call | None = None
33 """
34 await to publish topic data
35 """
36

37 @dataclass(init=True, repr=True, eq=True)
38 class Services:
39 """
40 Behavior to make service calls (accessed via the service map)
41 """
42 service_map: ServiceMap | None = None

aThe Protocol type is used for Python’s static duck typing. (It is not related to the protocol concept discussed
in section 2.3.1 and imported with an alias to avoid confusion.) Imports in the example are intentionally
explicit to reduce noise in the actual code.

48

2.3 Design

FIGURE 2.7: IDE hints with statically duck typed behavior

defines a specific interface to access these behaviors and makes use of asyncio synchro-
nization primitives to notifywaiting coroutineswhen behaviors become available. Users
can implicitly wait for all required behaviors to be implemented by awaiting the client in-
stance or await specific behaviors individually. The interface is shown in example 2.13
– assume the commands are executed in the experimental asyncio REPL1.

Implementing a behavior is simply done by assigning to all fields of the corresponding
dataclass. This may happen automatically as part of the protocol (e.g. all required behav-
iors should be implemented at some point, so users can just await the client), or require
specific actions from the user, in which case all code should use the possibility to check
the implementation status to handle the case of unsupported behaviors.

Figure 2.7 shows how an IDE can help users to correctly use the behaviors: with a
Publish behavior defined exactly like in example 2.12, the IDE can e.g. show the ar-
gument names and notify the user that the call should probably be used in an await
statement.

The combination of these features and Python’s possibility to use sensible defaults for
all dynamic attributes makes the overall interface as flexible as possible but if necessary
also strict enough to guide the end user.

For detailed documentation refer to the documentation of the ubii namespace pack-
age [83] and the ubii.framework.client module [84] in particular.

1available since Python 3.8 – currently undocumented. Allows to use await statements directly in the REPL

49

2 Ubi-Interact Python Packages

2.3.3 Processing Modules

ProcessingModules are implemented based on the protocol concept. As shown in fig. 2.6
the ProcessingRoutine1 type implements the marshaling with respect to
ubii.processing.ProcessingModule protocol buffer messages by inheriting the wrap-
per behavior from the ubii.proto module wrapper type.
Additionally, it implements runtime behavior through the public protocol attribute ref-
erencing a ProcessingProtocol instance. Processing module protocols deal with set-
ting up the necessary asyncio primitives to handle their complex runtime behavior. A
special Scheduler coroutine (using the coroutine wrapper discussed in section 2.2.3)
handles the effects of the modules processing mode on its behavior – for more informa-
tion about processing modes refer to [1, § 5.5].
The complex “behind the scenes” behavior of the module is separated from the public
callbacks of the ProcessingRoutine type, which mirror the callbacks used in JavaScript
code.
To allow easier portability between callback based JavaScript code and async Python
code, the public callbacks of the ProcessingRoutine are implemented as normal call-
ables that don’t make use of the asyncio framework.
They are integrated into the async Python code by the Scheduler and corresponding
asyncmethods in the ProcessingProtocol. The protocol implementation supports han-
dling of Topic Muxers and Demuxers and hot-swapping inputs and outputs of running
modules bymaking clever use of custom “stateful” callables (discussed in section 2.2.3).

For detailed documentation refer to the documentation of the ubii namespace pack-
age [83] and the ubii.framework.processingmodule [85] in particular, as well as the
tutorial on processing modules [86].

2.3.4 Node

The ubii.node package deals with implementing a suitable client protocol and provides
the end user with aworking Ubi-Interact node instance. Two versions of client protocols
have been developed, also to provide an example how to extend the existing protocols.
The LegacyProtocol deals with the minimum of possible communication, and can also
instantiate and run processingmodules which don’t rely on client state for initialization,
i.e. they are fully describable solely by the corresponding protocol buffer message at the
time of client initialization.

It is not unusual though that processing modules rely on information exchanged as
part of the client-broker communication for their own initialization. As shown in fig. 2.5
and the corresponding part in section 2.2 the client node itself starts without knowledge
about the details of the client-broker communication, particularly without exact knowl-
edge of the message types the broker uses. The brokers data type definitions are passed
as part of the ubii.server.Servermessage which indicates a successful “synchronous

1the type is not called “processing module” to distinguish that it also has behavior

50

2.3 Design

setup”.
Processing modules that want to define message formats for their inputs and outputs
“dynamically” (i.e. use the data type definitions of the specific broker handling their
data) therefore need to be initialized late during the client protocol execution, specifi-
cally after the client has received the brokers data type definitions. Processing modules
need to be instantiated before the client registers itself though, since the processingmod-
ule representations need to be included in the correct client representation that is sent
to the broker for registration (refer to example 2.4 for details on the client message spec-
ification).

Since the constants that contain these definitions are a protocol buffer message, i.e.
their structure is known, the modules can be implemented against abstract constants
(e.g. using a data type like constants.MSG_TYPES.DATASTRUCTURE_IMAGE for a not yet
specified constants message they can access during initialization).
Handling processingmodules with amore complex initialization is a new client behavior
which is supported by a new client protocol.

To implement the behavior – using the terminology from section 2.3.2 – the user can
provide a mapping from module names to module factories (i.e. callables returning
ProcessingRoutine instances). If this is the case, the new protocol will use those call-
ables to create the modules before the client is registered, so that they are correctly con-
tained in the client message which is sent to the broker when the client registers itself.

The creation of clients with the right set of behaviors and protocols is handled by
the ubii.node.connect module which defines a special callable, used as an interface
to create functional Ubi-Interact nodes. Example 2.15 deals with possible uses of this
object which can be used as a callable, an awaitable, an async context manager and a normal
context manager, similar to a UbiiClient or a protocol, to support use-cases of different
complexity – from using a Python node to simply publish and subscribe, to cases where
a specific client setup is necessary.

For detailed documentation refer to the documentation of the ubii namespace pack-
age [83] and the ubii.node package [87] in particular.

51

EXAMPLE 2.13: Client interface implementing behavior with Test-Protocol from example 2.11

1 @dataclass(init=True, repr=True, eq=True)
2 class FooBehavior:
3 foo: Callable[[str], None] | None = None
4

5 @dataclass(init=True, repr=True, eq=True)
6 class BarBehavior:
7 bar: str | None = None

⋅ Two very simple behaviors: one defines a callable foo that takes a string as argument
and returns nothing, the other defines an attribute bar which is just a string.

8 class TestProtocol(AbstractProtocol):
9 ...

10

11 class FakeClientProtocol(TestProtocol):
12 TestStates = TestProtocol.TestStates
13

14 def __init__(self):
15 self.client: UbiiClient | None = None
16

17 async def on_run(self, context):
18 self.client[FooBehavior].foo = print
19

20 state_changes = {
21 **TestProtocol.state_changes,
22 (TestStates.START, TestStates.RUNNING): on_run
23 }

⋅ Create an extension of the TestProtocol defined in example 2.11 – note how the
behavior of a client is accessed with [] access.

⋅ The protocol implements the behavior simply by assigning to the attribute.
⋅ A behavior is automatically considered implemented when all attributes have been
assigned. The state_changes have to be updated as well to use the new callback.

⋅ Protocols should pass the relevant data between steps as part of the context if
possible – for simplicity the code above simply uses an instance attribute to access
the client instead.

52

EXAMPLE 2.13: Client interface implementing behavior with Test-Protocol
– continued from p. 52

24 protocol = FakeClientProtocol()
25 client = UbiiClient(
26 name='Test Client', # wrapped `ubii.client.Client` message field
27 required_behaviors=(FooBehavior,),
28 optional_behaviors=(BarBehavior,),
29 protocol=protocol
30)
31 protocol.client = client

⋅ The developer has full control over which behaviors the client can implement, and
how the protocol achieves this.

⋅ The developer of a node needs to make sure that the client and its protocol are
connected appropriately – e.g. the FakeClientProtocol needs to have its client
field assigned.

. .
>>> await client
>>> assert client.implements(FooBehavior)

⋅ To implicitly wait for all required behaviors the user can simply await the client
instance.

⋅ Awaiting the client implicitly starts the protocol if it hasn’t been started.
⋅ After the client has successfully been awaited, all required behaviors will be
implemented.

>>> async with client as started_client:
... assert started_client.implements(FooBehavior)

⋅ The client instance could also be used as an async context manager, just like a
protocol, in fact using the client this way simply wraps the protocol context manager
and stops the protocol when the context is exited.

>>> await client.implements(FooBehavior, BarBehavior)

⋅ The implements interface can also be used in await expressions, to explicitly wait for
the client behaviors to be implemented.

53

EXAMPLE 2.14: Client interface implementing behavior with Test-Protocol
– continued from p. 53

32 async def use_behaviors():
33 await client.implements(FooBehavior, BarBehavior)
34 client[FooBehavior].foo(
35 f"Using behaviors -> {client[BarBehavior].bar}"
36)
37 async def implement_bar():
38 await client[BarBehavior].bar = 'Bar'
39 async def main():
40 async with client as running_client:
41 assert not running_client.implements(BarBehavior)
42 await asyncio.gather(use_behaviors(), implement_bar())

>>> asyncio.run(main())
starting with context:
-> namespace(state_change=(None, <TestStates.START: 1>))
Using behaviors -> Bar
stopping with context:
-> namespace(state_change=(<TestStates.RUNNING: 2>, <TestStates.END: 4>))

⋅ The example code starts two tasks in the background: one implements the optional
BarBehavior, the other uses it – together with the required FooBehavior.

⋅ Code can use the behaviors without knowing when they are implemented by simply
awaiting their implementation.

54

EXAMPLE 2.15: Interface to instantiate Ubi-Interact node

>>> from ubii.node import connect_client
>>> client = await connect_client('http://localhost:8102/services/json')
>>> print(client.protocol.state)

<States.CONNECTED: 8>

⋅ The connect interface can be used in an await expression.
⋅ This creates a client with protocol according to the connect call.
⋅ The interface takes optional arguments to instantiate specific clients with specific
protocols.

⋅ Using the interface this way awaits the client, i.e. the node is implicitly started.
⋅ Stopping the client is not handled implicitly.

>>> with connect_client() as client:
... client.is_dedicated_processing_node = True
... await client

⋅ The connect interface can be used as a normal context manager in a with expression.
⋅ This creates a client with protocol when it is entered and tries to stop the client
protocol when it is exited.

⋅ This can be used if changes to the client need to be done before it is started, e.g. if
processing modules need to be assigned.

⋅ Starting the client is not handled implicitly.
>>> async with connect_client() as running_client:
... print(running_client.protocol.state)

<States.CONNECTED: 8>

⋅ The connect interface can be used as an async context manager in an async with
expression.

⋅ This creates a client with protocol when it is entered, awaits it and stops the protocol
when it is exited.

⋅ Starting and stopping the client is handled implicitly.

55

2 Ubi-Interact Python Packages

2.3.5 CLI

A CLI for a client node – basically a minimal example for a script using the node imple-
mentation from ubii.node – is available from the ubii.cli package, and as an automat-
ically installed console script entry point for the ubii-python-node distribution1. The
CLI also auto-discovers installed Python processing modules – if developers of process-
ing modules make them available through an entry point in a specific group (currently
ubii.processing_modules, documented as part of the cli package [89]). An exam-
ple of an auto-discoverable processing module is described in section 2.3.6. A minimal
client without advanced module handling is implemented in Getting started — Example
Client — ubii-node-python documentation [90].

2.3.6 Implementation Details

The default connections of the Python node are implemented using the aiohttp library,
which supports WebSockets and HTTP(S) requests out of the box and uses Python’s
asyncio framework. A client protocol using aiohttp primitives as basis for service and
topic connections is implemented in the ubii.node.protocolmodule, and used by de-
fault for clients created by means of the connect interface introduced in section 2.3.4.
For all packages, documentation is automatically generated using the combination of
sphinx and Read the Docs [91].

2.4 OCR Module

To show the uses of the Python node, a processing module was implemented to perform
OCR tasks in a Ubi-Interact context. It is available as ubii-processing-module-ocr on
PyPi.

2.4.1 OCR in Mixed Reality

There is a multitude of applications for OCR in augmented and virtual reality – from ex-
tracting metadata for books in a library [92] to interactive text books which help people
with learning disabilities [93], augmenting physical documents with searching capabil-
ities for academic reading tasks [94] or translating text [95, 96]. In all cases the tasks
are rather involved and rely on existing specialized technologies for the different sub
problems – like viewpoint tracking and interaction with virtual objects, handling pos-
sible input methods and gesture recognition as well as relevant output methods (like
speech synthesis or “augmenting” text onto objects) and, last but not least, image pro-
cessing for text detection and OCR. Depending on the context and technology stack, the
sub-tasks are solved locally (using a e.g. ARToolkit [97] or the tools provided by the

1refer to Getting started — CLI — ubii-node-python documentation [88] for documentation

56

2.4 OCR Module

Microsoft HoloLens™) or remotely using a Software as a Service (SaaS) approach [92,
94]. In the case where one can use Ubi-Interact for applications like these, a processing
module would be the right tool to handle Text Detection and/or Optical Character Recog-
nition (OCR), so that multiple platforms could integrate and use this functionality. In
addition to the advantage that no possibly sensitive data has to be sent to some remote
web service, and the associated delay which would rule out the use in real time appli-
cations, Ubi-Interact provides all the communication and middleware tools out of the
box, so developing a processing module should be a comparatively easy task in relation
to e.g. implementing a dedicated web server to avoid privacy and latency issues.

2.4.2 Involved Technology

Out of the discussed publications Li et al. [94] choose to handle OCR by using the Mi-
crosoft Azure API [98] while all other publications choose to use the Tesseract OCR
engine [2].

Tesseract OCR Engine

The Tesseract engine is open source, which makes it specifically interesting for research
applications. It is also very accurate and can process a wide variety of image formats
via the Leptonica Image Processing Library. It is historically one of the most accurate
OCR engines (compare results of the 1995 UNLV Accuracy test for early Tesseract ver-
sions [99]), and has since been adopted and improved extensively by Google. The im-
plementation uses the tesserocr [100] Python wrapper which performs better than
the default Python bindings because it allows to load and reuse a Tesseract instance for
multiple API calls.

OpenCV

Tesseract’s performance – especially in scenarioswhere the OCR has to be done in “natu-
ral” scenes – can benefit from preprocessing the image data, e.g to detect the text bound-
ing boxes (for example used by Fragoso et al. [95]). Despite constant improvements
of the text detection capabilities built into Tesseract, the significance of preprocessing
for our use case is shown in chapter 3. In the future this functionality could become a
dedicated processing module, for now the ubii-processing-module-ocr distribution
provides three different processing modules instead

TesseractOCR_PURE
only uses the capabilities of the Tesseract library to detect text bounding boxes and
extract contents

57

2 Ubi-Interact Python Packages

TesseractOCR_MSER
performs theMaximally Stable Extremal Region (MSER) algorithm [101] to detect
character bounding boxes before using Tesseract to do the OCR

TesseractOCR_EAST
uses the Efficient and Accurate Scene Text Detector (EAST) pipeline proposed by
Zhou et al. [102] to detect text bounding boxes, then uses Tesseract for the OCR

The preprocessing is implemented with the help of the OpenCV [103] image process-
ing library, which supports the MSER algorithm out of the box1 and the EAST pipeline
through its capability to load Convolutional Neural Network (CNN) files.

Numpy

To get the last part of the EAST pipeline reasonably fast, the prediction step was imple-
mented using features of the Python library numpy, as naively porting the C code from
the corresponding OpenCV example [104] will lead to bad performance2. A naive im-
plementation was up to an order of magnitude slower – depending on the hardware
and image size – than an optimized implementation using numpy’s “matrix computa-
tion” features for the predict and decode steps of the EAST pipeline.

2.4.3 Automatic Module Discovery

Section 2.3.5mentions that the CLI script for theUbi-Interact Python node automatically
discovers installed processing modules, and loads them. This functionality is based on
entry points, a feature which a Python distribution can use to “advertise components it
provides to be discovered by other code” [105].
The ubii-processing-module-ocr distribution advertises its three implementations of
the ubii.framework.processing.ProcessingRoutine type as entry points in a specific
group (ubii.processing_modules) so the CLI implementation can find them if they
are installed. New processing modules should also implement this functionality so that
they can be automatically loaded in the default Ubi-Interact Python client if they are
installed. Developers can consult the documentation of their build backend of choice
(ubii-processing-module-ocr uses setuptools) on how to define entry points.

1because we’re extracting bounding boxes – no pun intended
2naively porting the code is actually how all the “online tutorials” do it – because people are not supposed
to understand numpy, supposedly? Anyways, Python wouldn’t be the same without bad code that’s repeat-
edly copy pasted all over the internet <\rant>

58

2.4 OCR Module

2.4.4 Portability

During development of the processingmodule, tesserocr onWindows only supported
Python version 3.6 and 3.7, support for newer versions was added later [106]. Therefore
– to allow users to run the processing module on a Python node running on a Windows
platform, historically – both the processing module and the Ubi-Interact Python node
implementation support Python version 3.7 and upwards. The tesserocr package has
to be installed manually on Windows machines though, it is not available on PyPi.

59

3 Evaluation

This chapter deals with evaluating the performance of the newly developedUbi-Interact
Python client node running the OCR module introduced in section 2.4.

Ubi-Interact Python processingmoduleswhich run in “frequency”mode, instead of pro-
cessing whenever they receive input (which would correspond to the “trigger on input”
mode) or whenever the broker schedules the processing (corresponding to “lockstep”
mode), will trigger the processing depending on the chosen frequency value.2

The performance of “frequency”modules can be evaluated by the scheduler, in terms
of the actual interval between processing steps compared to the planned interval. If a
processing pass takes longer than the interval resulting from a specific frequency (e.g.
for a frequency of 𝑓 = 101

𝑠 the corresponding interval between processing steps would
equate to Δ𝑡 = 0.1𝑠 accordingly) the relative error between actual processing interval
and the corresponding frequency-interval can be used as a performance metric. The
default scheduler which is used by the processing protocol to handle the correct pro-
cessing execution – see section 2.3.3 – exposes the last 30 time intervals between com-
putations, as well as the last 30 execution times, and takes two optional arguments –
schedule_perf_metric and exec_perf_metric – which need to be callables that can
compute the performance from a given scheduler instance, e.g. by computing the error
of execution times or scheduling times. The default performance metric, based on the
relative errors between processing intervals, is shown in eq. (3.1).

𝑡 = 𝑎𝑣𝑔(scheduler.exec_delta_times)

𝑒𝑟𝑟𝑜𝑟𝑡 = 𝑡 − scheduler.delay
scheduler.delay

𝑃𝑀𝑝𝑒𝑟𝑓 =
⎧{
⎨{⎩

1 𝑡 < scheduler.delay
1 − 𝑒𝑟𝑟𝑜𝑟𝑡 otherwise

(3.1)

2In addition to the aforementioned main processing modes which are described in greater detail by Weber
et al. [1, § 5.5], newer versions of the Ubi-Interact framework also support a “free” processing mode which
lets the client node decide independently when to process.

61

3 Evaluation

The scheduler.delay variable in eq. (3.1) contains the computed delay or interval be-
tween processing steps, corresponding to the frequency value set for the module’s pro-
cessingmode. The scheduler.exec_delta_times variable contains the last 30 recorded
execution times. As one can see from eq. (3.1) 𝑃𝑀𝑝𝑒𝑟𝑓 can get negative if the relative er-
ror becomes larger than 1 so it is not a norm in the mathematical sense – for practical
purposes this is not relevant though.

While this feature is useful to inspect a modules performance during runtime, more
detailed statistics have been computed, for the purpose of this thesis. A test module was
used to simply record all execution times and scheduling times for different processing
frequencies over a 10𝑠 time period, which were then evaluated.

The statistics in table 3.1 are computed from themeasured scheduling times – or rather
the equivalent frequencies that are implied by those timings – to evaluate the timing ac-
curacy of the code. Although it is in theory possible to perform around 4000 processing
passes per second (as long as they don’t actually perform an expensive computation),
the asyncio framework is limited by the clock resolution of the used event loop, but
even more so by the system calls that are used to notify waiting tasks. For example on
Linux await asyncio.sleep(...) uses two epoll_wait system calls where for values
smaller than 1 𝑚𝑠 epoll_wait requests a 1 𝑚𝑠 timeout nonetheless. For values smaller
than 15 𝜇𝑠 epoll_wait requests a 0 𝑚𝑠 timeout, although the two syscalls take 8 𝜇𝑠 each
so the total time waited is still at least 16 𝜇𝑠1. To alleviate this issue, the scheduler has
an attribute timing_thresholds which can take a tuple of ”minimum” timing delays.
The default protocol sets this value to (0.001, 0.00015) – only on Linux machines
when the used loop is the default asyncio loop – which the scheduler uses to adjust
its timings which results in a much more accurate mean scheduling frequency, as can
be seen in table 3.1: The user can adjust this behavior (or opt out of it) by changing
the timing_thresholds attribute, an empty value suggests no adjustments which will
make the actual scheduling intervals at least as big as the delay associated with the set

10 ℎ𝑧 10 ℎ𝑧 60 ℎ𝑧 60 ℎ𝑧 120 ℎ𝑧 120 ℎ𝑧 200 ℎ𝑧 200 ℎ𝑧
no adjust. no adjust. no adjust. no adjust.

count 104 103 615 580 1,257 1,120 2,120 1,748
mean 9.977 9.876 58.7 55.34 120.4 107.1 203.9 167.7
std 0.026 0.029 0.938 1.219 6.163 4.876 15.868 9.866
min 9.825 9.747 55.05 35.33 74.24 69.85 133.6 55.22
50% 9.977 9.877 58.62 55.19 122 108.4 207.4 168.5
max 10.06 9.927 63.07 59 135.3 117.5 236.4 189.3

TABLE 3.1: Timing statistics for test modules with different frequencies

1to verify this, run a program that waits for the specified time and then executes a visible syscall under
strace. Every sleep produces 2 epoll_wait calls, where the first waits for approximately the specified
time, but always at least 1 𝑚𝑠 until the waiting time goes below 15 𝜇𝑠.

62

A) Text Render B) High Quality Photo1 C) Low Quality Webcam
Image

FIGURE 3.1: Images used for evaluation tests – original images resized to 1200 × 900 pixels

by Michael Sander - Self-photographed, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=658534

frequency. Refer to table 3.1 for comparison – one can see that the adjustments become
more relevant for higher frequency modules and are solving the issue of systematic tim-
ing errors but result in less predictable timings. Note that the relative standard deviation
of a 200 ℎ𝑧 frequency module is 15.87/203.9 ≈ 0.078 so around 8% of the mean value,
whichmeans the timings are still tightly clustered around themean albeit less so than for
the non-adjusted module (which has a relative standard deviation of 9.9/167.7 ≈ 0.059
so around 6%). One can also see that for the adjusted timings, the 50th percentile or
median is close to the target frequency, which indicates that there are approximately
as many timings that were faster than the target frequency, as there were slower tim-
ings. The code used to measure these timings is available as a pytest test case in the
ubii-node-python distribution.

Evaluation of the OCR performance is also implemented as a pytest test case avail-
able as part of the ubii-processing-module-ocr distribution. Pytest test cases allow
for easy parametrization of the modules and testing different input images. For com-
parable results, all images have the same dimensions (1200 × 900 pixels) but different
“quality”: one image is simply rendered text on white background to get a baseline per-
formance, one image is a high quality photograph of a sign, and the last one is a webcam
image which shows the text from the baseline example in a real world scene, compare
fig. 3.1. For each evaluation, statistics of the execution times have been included. Note
that these are not comparable to the statistics of the scheduling times shown in table 3.1,
but are simply a more detailedmeasurement compared to the normal performance metric
from eq. (3.1). Bymeasuring the execution times it is possible to evaluate the possibility
for real time application of the processing modules.
All measurements were done with an Intel® Core™ i5-8265U CPU with 1.60GHz and 8GB
of DDR4 RAM clocked at 2667 MHz. Modules ran for 20s or until they processed 50 images,
whichever happened first.

63

https://commons.wikimedia.org/w/index.php?curid=658534
https://commons.wikimedia.org/w/index.php?curid=658534

3 Evaluation

TesseractOCR_PURE

FIGURE 3.2: Pure Tesseract processing on baseline image

count 𝑡 [s] relative std median [s]
50 0.050 0.027 0.050

Without preprocessing the pure Tesseract module is able to detect the test text
without issues. It also has the best execution time, corresponding to ≈ 20 hertz –
according to the measured mean execution time of 0.050s. The default settings for
the module instantiate the API in “default” OCR engine mode – one can choose
between a “tesseract only” implementation for the character recognition, a Long
short-term memory (LSTM) network implementation, or a combination of both
methods (for more information refer to the --oem option in the Tesseract CLI doc-
umentation [107]) – and “automatic” page segmentation mode (see the --psm
option in the Tesseract CLI documentation [107]), and considers text with a mini-
mum confidence of 70. If these settings are changed for certain parts of the evalu-
ation, it will be noted.

64

TesseractOCR_EAST

FIGURE 3.3: EAST preprocessing on baseline image

count 𝑡 [s] relative std median [s]
50 0.135 0.234 0.122

EAST preprocessing detects the textwithout issues, it can be extractedwith results
that match the pure Tesseract modules performance. Notably, the execution time
is longer (more than double the execution time of the non-preprocessing mod-
ule) but processing still happens at around 7 processing passes per second, which
should be considered usable in real time applications.

65

3 Evaluation

TesseractOCR_MSER

FIGURE 3.4: MSER preprocessing on baseline image

count 𝑡 [s] relative std median [s]
50 0.074 0.038 0.073

This module instantiates the Tesseract API in “single character” page segmenta-
tion mode. The MSER algorithm is able to detect the bounding boxes, Tesseract
detects the characters. The default settings use a padding of 2 px around detected
boxes. Without padding, the regions are sometimes too small and Tesseract fails
to correctly extract the character. E.g. the “T” in fig. 3.5 is extracted as “1” and the
“m” can’t be extracted with enough confidence. If the padding is too large, extrac-
tion fails because bounding boxes contain artifacts from neighboring characters.

FIGURE 3.5: MSER preprocessing without padding on baseline image

66

TesseractOCR_MSER

FIGURE 3.6: MSER preprocessing on sign phorograph

count 𝑡 [s] relative std median [s]
20 0.941 0.081 0.910

Using the high quality photograph, the limitations of the MSER module become
visible. This is not the right use case, there is too much noise in the image, and
a lot of ”extremal” regions are detected. Due to the large number of regions of
interest, the processing takes nearly a second. Note that it is also possible to
use the colored image as input, but since performance is almost always better
with a grayscale input the MSER module applies the algorithm to a grayscale ver-
sion of the input image by default (the corresponding module parameter is the
boolean value mser_grayscale, also using any of the possible “color only” op-
tions for the mser_args parameter will automatically use a colored input image –
for more information refer to the documentation of the OpenCVMSER implemen-
tation [108]).

67

3 Evaluation

TesseractOCR_MSER

FIGURE 3.7: MSER preprocessing parameter adjustments on sign photograph

count 𝑡 [s] relative std median [s]
50 0.245 0.202 0.226

Suppressing bounding boxes where no text has been found is possible in all mod-
ules, also the mser_args parameter was used here to set the maximum considered
variation for the MSER algorithm to 0.02 which prunes bounding boxes with simi-
lar sized children, which at least reduces the processing time to ≈ 0.25 𝑠, although
the results are still questionable. The MSER module is clearly not well suited for
this scene and not very robust with respect to the input image.

68

TesseractOCR_PURE

FIGURE 3.8: Pure Tesseract processing on sign photograph with confidence values

count 𝑡 [s] relative std median [s]
50 0.137 0.023 0.137

Processing in “automatic” page segmentation mode correctly finds the bounding
boxes. For illustration fig. 3.8 includes the confidence values for extracted text – as
seen the confidence for the middle text is very low. There is also a “false positive”
text box, below the sign – discarding boxes without recognized text would get rid
of it. Using the “sparse” segmentationmodewas considered as an alternative, but
did produce worse results, i.e. additional “false positive” regions of interest, some
with more text confidence than the middle line of the sign.

FIGURE 3.9: Pure Tesseract processing on sign photograph in “sparse” segmentation mode

69

3 Evaluation

TesseractOCR_EAST

FIGURE 3.10: EAST preprocessing on sign photograph

count 𝑡 [s] relative std median [s]
50 0.199 0.072 0.199

For the settings used in the baseline example, the bounding boxes are somewhat
inaccurately detected by the EAST preprocessing, which seems to hinder the suc-
cessful text extraction.
Actually though, the EAST module does not only detect bounding boxes, it also
performs non-maximum suppression on the detected boxes – by default the thresh-
old to discard boxes is 0.5 i.e. boxes which overlap by at least 50%. If one increases
this value, more of the detected bounding boxes become visible as can be seen in
fig. 3.11, and it becomes obvious that in the case of the boxes for the word “Uni-
versitätsstadt” the one with the highest confidence score (which “survives” the
non-maximum suppression and ends up in fig. 3.10) is not the one which is best
suited for the Tesseract task.

Instead of choosing bounding boxes by non-maximum suppression, the module im-
plements an alternate scheme to merge overlapping bounding boxes which has
proven to be more robust than searching for the right threshold parameters, but
does not generate results with equal accuracy.

70

TesseractOCR_EAST

FIGURE 3.11: EAST preprocessing on sign photograph, decreased non-maximum
suppression

count 𝑡 [s] relative std median [s]
50 0.237 0.056 0.234

For a threshold of 0.7 in the non-maximum suppression stage of the EAST module,
and an OCR confidence of 50 (which is just enough to not consider the bad result
from fig. 3.10), one can see that several “candidates” for each line were detected,
and each group contains a box where the text can be extracted with good confi-
dence, but the EAST algorithm is sometimes more confident in ill-aligned boxes,
which survive strict non-maximum suppression instead of the boxes which are well
suited for the Tesseract task. This means good results can be achieved by tweaking
the suppression threshold in a way that more boxes survive, but keeping the OCR
threshold high enough that “bad” results get discarded, compare fig. 3.12.

71

3 Evaluation

TesseractOCR_EAST

FIGURE 3.12: EAST preprocessing on sign photograph, decreased non-maximum
suppression, decreased min confidence

count 𝑡 [s] relative std median [s]
50 0.214 0.120 0.208

For a threshold of 0.7 in the non-maximum suppression stage of the EAST module,
and an OCR confidence ≥ 50 the “false positive” word “|lnivercitatectadt” from
the ill-aligned box which survived in fig. 3.10 when using a smaller suppression
threshold, can be discarded due to insufficient OCR confidence. One can see that
although the preprocessing increases the execution time – decreasing the execu-
tion frequency from ≈ 6 ℎ𝑧 without preprocessing in fig. 3.8 to ≈ 4 ℎ𝑧 – it is still
useable in real time applications and can produce very good results for images like
the example photograph. Tweaking parameters of course requires some knowl-
edge of the input data and testing, but a slightly smaller OCR confidence as in the
baseline text render and a slightly bigger threshold for the non-maximum suppres-
sion – or using the merge scheme instead – should produce reasonable results in
most cases. Note that more possible candidates result in more OCR passes and
slightly slower execution compared to stricter bounding box selection.

72

TesseractOCR_PURE

FIGURE 3.13: Pure Tesseract processing in “sparse” page segmentation mode on webcam
image

count 𝑡 [s] relative std median [s]
50 0.067 0.038 0.067

Using the settings for the baseline case – specifically automatic page segmentation mode –
does not find a single bounding box to even extract text in the first place!

This is a case for “sparse” page segmentation which produces very good results
as can be seen in fig. 3.13, while the automatic page segmentation mode fails to
detect any bounding boxes. Execution times are very small, as always for the pure
Tesseract module, and allow execution frequencies of ≈ 15 ℎ𝑧. Notably, knowl-
edge about the input image and testing was needed for the right choice of page
segmentation mode – as mentioned, “automatic” mode does fail for a low quality
input like this.

73

3 Evaluation

TesseractOCR_EAST

FIGURE 3.14: EAST preprocessing on webcam image

count 𝑡 [s] relative std median [s]
50 0.134 0.094 0.130

EAST preprocessing with default settings from the baseline example finds and
extracts text even in this low quality image without issue. This is the big advan-
tage of the preprocessing module compared to the pure Tesseract module – it is
much more robust to different kinds of input images. While for the pure Tesser-
act module the choice of page segmentation made the difference between nearly
perfect performance and failure, the EAST preprocessing module hides the dif-
ference from the user. This added robustness comes with the cost of increased
processing time (like in the baseline case around two times the processing time
for the pure Tesseract module) but it is still fast enough for real time applications
with execution frequencies of ≈ 7 ℎ𝑧 just like in the baseline case.

74

TesseractOCR_MSER

FIGURE 3.15: MSER preprocessing on webcam image

count 𝑡 [s] relative std median [s]
50 0.148 0.111 0.144

Due to the sparse text and higher contrast in the scene – compared to the photo-
graph – one can even achieve acceptable results with theMSERmodule with some
adjustments. The biggest difference compared to the baseline case is the use of a
character whitelist. Variables for the Tesseract API can be passed to the module
via the api_variables argument, in this test case the tessedit_char_whitelist
variable of the API instance is set to include only alphabetic characters. With some
tweaking of the OCR confidence threshold (a value of 60 was used here), the re-
sults are acceptable. Since theMSER algorithm does not detect characters, but just
regions, and Tesseract in “single character” segmentationmode assumes one char-
acter per input region, one still tends to get false positives (e.g the “f” in fig. 3.15)
while characters which are too close together will not be extracted with high confi-
dence due to the artifacts thatwere alreadymentioned as problems for the baseline
case. Execution times are reasonable, ≈ 7 ℎ𝑧 execution frequencies are possible. As
we have seen in the photograph example, execution times of theMSERmodule are
correlated with the number of extremal regions found in the image, so for any in-
put with a manageable amount of regions of interest the execution times should
be usable for real time applications.

75

3 Evaluation

Note that itwould be possible to adjust the default settings for the EASTpreprocessing
module in a way that it would produce the required results on all tested images without
tuning. Specifically, a non-maximum suppression threshold of 0.7, an OCR confidence
threshold of 60 and choosing to discard all bounding boxes where no text is extracted
would work in all cases. The defaults use different values nonetheless, since choosing
an OCR confidence threshold of 60 is just as arbitrary as choosing a value of 70 (which
is the current default), and a strict non-maximum suppression with a threshold of 0.5 is
the default for the OpenCV implementation of the algorithm.

76

4 Conclusion

4.1 Summary

A Python software suite for Ubi-Interact was developed, which features a clean API
for the end user as well as a flexible framework for (future) developers and maintain-
ers as well as a pytest plugin (the ubii.node.pytest module available as part of the
ubii-python-node distribution), a feature complete Ubi-Interact client node with pro-
cessing module support (ubii.node package), a custom protocol buffer package with
improved usability (ubii.proto package), and a processing module able to performmul-
tiple real time OCR tasks due to its flexible design (ubii.processing_modules.ocr
package available as ubii-processing-module-ocr distribution), and last but not least
extensive, complete, automatically updated documentation for all relevant parts (and
beyond).

These software modules will be (and have been) used to bring the cross-platform,
cross-language communication and middleware features of Ubi-Interact into the world
of Python – for researchers and students which aim to develop applications bridging
the gap between Internet of Things, Human-Computer Interaction and mixed reality
domains like the “Catching the Drone - A Tangible Augmented Reality Game in Super-
human Sports” [46] project. Conversely it offers the unique capabilities of Python to the
existing Ubi-Interact infrastructure – for example easy to use image processing tools, or
an alternative test framework to aid in developing nodes in other languages.

Analyzing the use cases of Ubi-Interact – also in comparison to existing solutions (for
related problem statements) like the RobotOperating System (ROS) or other historically
and currently used middleware solutions – showed the importance of a multi-layered
design which could present the software in different levels of complexity to facilitate its
use by researchers and students with different backgrounds and experience in an aca-
demic setting. This was achieved by the design concepts of protocols and behaviors (see
section 2.3) which are used throughout the Ubi-Interact Python framework to break
down and simplify complex runtime behaviors in a context where respecting the Sepa-
ration of Concerns (SoC) principle is of utmost importance as objects and concepts are
shared across the system boundaries by multiple heterogeneous nodes in a distributed
network.

77

4 Conclusion

4.2 Future Work

Ubi-Interact is still an evolving software, and as new features – like for example ad-
vanced inference and search on topic metadata or new modes for processing modules
– are implemented, they should be added to the Python node at some point. Also it
would be reasonable to split the developed processing module which is able to perform
two separate tasks – namely recognizing regions of interest in an image, and extracting
text from those regions – into two separate processing modules to increase modularity.
As the Python support for protocol buffers changes, the corresponding package and its
use in the Python node need to be reevaluated, since keeping protocol buffer support
up-to-date could further improve the performance of the framework. Support for the
𝜇pb [58] runtime in the Proto Plus for Python [63] package is especially interesting in that
regard.

Given the now available OCR capabilities, a Ubi-Interact powered system could be
used for a wide range of HCI tasks. For more complex text processing, e.g. when deal-
ing with mixed reality document annotations (a common research problem [94, 96, 109,
110]) separating the preprocessing and actual OCR functionality would allow to use do-
main specific models to obtain the structure (i.e. regions of interest) from the image. In
the case of document annotation, the publication of the PubLayNet [111] dataset has led
to a surge in performance ofmachine learningmodels dealingwith extracting structural
features from (digital) documents. Deep neural networks pre-trained on PubLayNet – a
dataset of scientific documents – can also be repurposed for different domains. This ap-
proach of “transfer learning” is made possible due to the large size of the dataset, which
allows to learn “general” features that can be applicable to several domains. Zhong et
al. [111] show that models pre-trained on PubLayNet and adapted for documents of pri-
vate health insurance providers (which are not immediately similar to the scientific doc-
uments used to train the base model) can “substantially outperform” models that are
for example pre-trained with more generic datasets (COCO [112] and ImageNet [113]).
Using a domain specific model trained on PubLayNet(R. Wang et al. [114] propose a
spacial graph convolutional network to detect text bounding boxes, for example) would
certainly outperform the EAST model (which was developed prior to the publication
of PubLayNet, and is therefore trained on “standard datasets”1) used in conjunction
with the current OCR processing in Ubi-Interact, when it comes to extracting document
structure.

Since the parameters and objects involved in the algorithms used for the OCR task
are made available and mutable at runtime by design, a context aware module could be
integrated into a feedback loop to allow inference of the best parametrization via (user
supplied) context information.

Hopefully the Ubi-Interact Python packages will help to develop more interesting
applications, by giving users of Ubi-Interact yet another platform to work with.

1including ICDAR 2015, COCO-Text and MSRA-TD500

78

Acronyms

API Application Programming Interface. 3–5, 10, 15, 16, 18–21, 26, 28, 32, 40, 64, 66, 75,
77

CLI Command Line Interface. 44, 56, 58, 64

CNN Convolutional Neural Network. 58

DDS Data Distribution Service. 3–6, 9, 11, 85

EAST Efficient and Accurate Scene Text Detector. 58

HCI Human-Computer Interaction. iii, 1, 3, 5, 6, 12, 13, 77, 78

IDL Interface Description Language. 3, 9

IoT Internet of Things. iii, 3, 5–7, 12, 77

LCM Lightweight Communications and Marshalling. 1, 9

LSTM Long short-term memory. 64

MOM Message Oriented Middleware. 3, 6, 7, 85

MOOS Mission Oriented Operating Suite. 1, 7–9

MQTT Message Queuing Telemetry Transport. 3, 6, 11

MRO Method Resolution Order. 37

MSER Maximally Stable Extremal Region. 58

OCR Optical Character Recognition. iii, 14, 56–58, 61, 63, 64, 71, 72, 75–78

OOP Object Oriented Programming. 18, 20

QoS Quality of Service. 3–5

REPL Read Evaluate Print Loop. 49

79

Acronyms

ROS Robot Operating System. 1–6, 9, 11–13, 77

RPC Remote Procedure Call. 11, 25

SaaS Software as a Service. 57

SoC Separation of Concerns. 31, 37, 77

TCP Transmission Control Protocol. 8

UDP User Datagram Protocol. 8

UWP Universal Windows Platform. 12

XDR External Data Representation. 9

80

List of Code Examples

2.1 Default Python module generated from simple schema file 17
2.1.1 Protocol buffer schema – color.proto 17
2.1.2 Python module compiled from color.proto using default plugin 17

2.2 Python module compiled from color.proto using custom plugin 27
2.3 Use of custom metaclass to extend a protocol buffer wrapper 31
2.4 Protocol buffer schema – client.proto 32
2.5 Protocol buffer schema – ProcessingModule.proto 36
2.6 Naive dependency injection . 38
2.7 Bad dependency injection . 39
2.8 Python dependency injection pattern . 40
2.9 Python dependency injection with static duck typing 41
2.10 Usage of custom asyncio coroutine wrapper 43
2.11 Minimal protocol usable with Ubi-Interact Python framework 46
2.12 Client interface definition using dataclasses and static duck typing . . . 48
2.13 Usage of public Ubi-Interact Python node interface – part 1 52
2.13 Usage of public Ubi-Interact Python node interface – part 2 53
2.14 Usage of public Ubi-Interact Python node interface – part 3 54
2.15 Interface to instantiate Ubi-Interact node 55

81

List of Figures

2.1 Design of protocol buffer handling hiding specifications 20
2.2 Design of protocol buffer handling with public specifications 21
2.3 Design of protocol buffer handling using abstract specification base class 22
2.4 ubii-message-formats package . 30
2.5 Ubi-Interact “middleware protocol” . 34
2.6 Design of object behavior as state-machine instances 45
2.7 IDE hints with statically duck typed behavior 49

3.1 Images used for evaluation tests . 63
3.2 Pure Tesseract processing on baseline image 64
3.3 EAST preprocessing on baseline image . 65
3.4 MSER preprocessing on baseline image 66
3.5 MSER preprocessing without padding on baseline image 66
3.6 MSER preprocessing on sign phorograph 67
3.7 MSER preprocessing parameter adjustments on sign photograph 68
3.8 Pure Tesseract processing on sign photograph with confidence values . . 69
3.9 Pure Tesseract processing on sign photograph in “sparse” segmentation

mode . 69
3.10 EAST preprocessing on sign photograph 70
3.11 EAST preprocessing on sign photograph, decreased non-maximum

suppression . 71
3.12 EAST preprocessing on sign photograph, decreased non-maximum

suppression, decreased min confidence 72
3.13 Pure Tesseract processing in “sparse” page segmentation mode on

webcam image . 73
3.14 EAST preprocessing on webcam image . 74
3.15 MSER preprocessing on webcam image 75

83

List of Tables

1.1 Comparison of (historically) used communication packages [3] 2
1.2 ROS Feature Analysis . 4
1.3 DDS open-source implementations . 5
1.4 Overview of MOM solutions [28] . 7

2.1 Comparison of protocol buffer Python packages 28

3.1 Timing statistics for test modules with different frequencies 62

85

Bibliography

[1] S. Weber, D. Dyrda, M. Ludwig, and G. Klinker, “Ubi-Interact,” in MobiQuitous
2020 - 17th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, ser. MobiQuitous ’20, New York, NY, USA:
Association for Computing Machinery, Dec. 7, 2020, pp. 291–300, ISBN:
978-1-4503-8840-5. DOI: 10.1145/3448891.3448924. [Online]. Available:
https://doi.org/10.1145/3448891.3448924 (visited on 05/18/2022).

[2] Tesseract OCR, tesseract-ocr, Jul. 2, 2022. [Online]. Available:
https://github.com/tesseract-ocr/tesseract (visited on 07/02/2022).

[3] D. Moore, E. Olson, and A. Huang, “Lightweight Communications and
Marshalling for Low-Latency Interprocess Communication,” Sep. 2, 2009.
[Online]. Available: https://dspace.mit.edu/handle/1721.1/46708 (visited
on 05/25/2022).

[4] Lightweight Communications and Marshalling (LCM), lcm-proj, May 23, 2022.
[Online]. Available: https://github.com/lcm-proj/lcm (visited on
05/25/2022).

[5] Reid Simmons. “Inter Process Communication (IPC).” (Nov. 4, 2014),
[Online]. Available: http://www.cs.cmu.edu/~ipc/ (visited on 05/25/2022).

[6] “ACTIVE-IST - Open Source Tools.” (2011), [Online]. Available:
http://active-ist.sourceforge.net/index.php (visited on 05/25/2022).

[7] Core-moos, themoos, May 4, 2022. [Online]. Available:
https://github.com/themoos/core-moos (visited on 05/24/2022).

[8] R. Vaughan, The Stage Simulator, May 16, 2022. [Online]. Available:
https://github.com/rtv/Stage (visited on 05/26/2022).

[9] “Announcing Microsoft Robotics Developer Studio 4 Beta - Microsoft Robotics
Blog - Site Home - MSDN Blogs.” (Sep. 23, 2011), [Online]. Available:
https://web.archive.org/web/20110923175247/http:
//blogs.msdn.com/b/msroboticsstudio/archive/2011/09/17/announcing-
microsoft-robotics-developer-studio-4-beta.aspx (visited on
05/26/2022).

[10] Open Robotics. “ROS: Landing Page.” (2021), [Online]. Available:
https://www.ros.org/ (visited on 05/07/2022).

87

https://doi.org/10.1145/3448891.3448924
https://doi.org/10.1145/3448891.3448924
https://github.com/tesseract-ocr/tesseract
https://dspace.mit.edu/handle/1721.1/46708
https://github.com/lcm-proj/lcm
http://www.cs.cmu.edu/~ipc/
http://active-ist.sourceforge.net/index.php
https://github.com/themoos/core-moos
https://github.com/rtv/Stage
https://web.archive.org/web/20110923175247/http://blogs.msdn.com/b/msroboticsstudio/archive/2011/09/17/announcing-microsoft-robotics-developer-studio-4-beta.aspx
https://web.archive.org/web/20110923175247/http://blogs.msdn.com/b/msroboticsstudio/archive/2011/09/17/announcing-microsoft-robotics-developer-studio-4-beta.aspx
https://web.archive.org/web/20110923175247/http://blogs.msdn.com/b/msroboticsstudio/archive/2011/09/17/announcing-microsoft-robotics-developer-studio-4-beta.aspx
https://www.ros.org/

Bibliography

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
A. Y. Ng, et al., “ROS: An open-source robot operating system,” in ICRA
workshop on open source software, Kobe, Japan, vol. 3, 2009, p. 5.

[12] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback, “Towards
component-based robotics,” in 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Aug. 2005, pp. 163–168. DOI:
10.1109/IROS.2005.1545523.

[13] Open Robotics. “Catkin/conceptual_overview - ROS Wiki.” (Mar. 26, 2020),
[Online]. Available: http://wiki.ros.org/catkin/conceptual_overview
(visited on 05/09/2022).

[14] Open Robotics. “Messages - ROS Wiki.” (2019), [Online]. Available:
http://wiki.ros.org/Messages (visited on 05/15/2022).

[15] Open Robotics. “ROS on DDS,” ROS on DDS. (2021), [Online]. Available:
http://design.ros2.org/articles/ros_on_dds.html (visited on
05/17/2022).

[16] “Topic and Service name mapping to DDS.” (Jun. 2018), [Online]. Available:
https://design.ros2.org/articles/topic_and_service_names.html
(visited on 07/27/2022).

[17] J. Canady. “If you have REST, why XML-RPC?” (May 11, 2013), [Online].
Available: https://web.archive.org/web/20130511053512/http:
//joncanady.com/blog/2010/01/14/if-you-have-rest-why-xml-rpc/
(visited on 05/15/2022).

[18] “XmlRpcDiscussion - Atom Wiki.” (2003), [Online]. Available:
http://www.intertwingly.net/wiki/pie/XmlRpcDiscussion?action=
show&redirect=DontUseXmlRpc (visited on 05/15/2022).

[19] PyOpenDDS, OCI Labs - Object Computing, Inc., Apr. 13, 2022. [Online].
Available: https://github.com/oci-labs/pyopendds (visited on
05/22/2022).

[20] Python binding for Eclipse Cyclone DDS, Eclipse Cyclone DDS™, May 12, 2022.
[Online]. Available:
https://github.com/eclipse-cyclonedds/cyclonedds-python (visited on
05/21/2022).

[21] Python binding for Fast DDS, eProsima, May 10, 2022. [Online]. Available:
https://github.com/eProsima/Fast-DDS-python (visited on 05/22/2022).

[22] N. Wang and S. Shasharina, “Data Distribution Service for Python
Applications,” p. 21, Nov. 9, 2015. [Online]. Available:
https://www.omg.org/news/meetings/tc/dc-13/special-events/dds-
pdfs/S8-Wang.pdf (visited on 05/21/2022).

88

https://doi.org/10.1109/IROS.2005.1545523
http://wiki.ros.org/catkin/conceptual_overview
http://wiki.ros.org/Messages
http://design.ros2.org/articles/ros_on_dds.html
https://design.ros2.org/articles/topic_and_service_names.html
https://web.archive.org/web/20130511053512/http://joncanady.com/blog/2010/01/14/if-you-have-rest-why-xml-rpc/
https://web.archive.org/web/20130511053512/http://joncanady.com/blog/2010/01/14/if-you-have-rest-why-xml-rpc/
http://www.intertwingly.net/wiki/pie/XmlRpcDiscussion?action=show&redirect=DontUseXmlRpc
http://www.intertwingly.net/wiki/pie/XmlRpcDiscussion?action=show&redirect=DontUseXmlRpc
https://github.com/oci-labs/pyopendds
https://github.com/eclipse-cyclonedds/cyclonedds-python
https://github.com/eProsima/Fast-DDS-python
https://www.omg.org/news/meetings/tc/dc-13/special-events/dds-pdfs/S8-Wang.pdf
https://www.omg.org/news/meetings/tc/dc-13/special-events/dds-pdfs/S8-Wang.pdf

Bibliography

[23] OpenDDS, Object Computing, Inc., May 20, 2022. [Online]. Available:
https://github.com/objectcomputing/OpenDDS (visited on 05/21/2022).

[24] eProsima. “DDS API — Fast DDS 2.6.0 documentation.” (Feb. 14, 2022),
[Online]. Available: https://fast-dds.docs.eprosima.com/en/latest/
(visited on 05/22/2022).

[25] Open Robotics. “About Quality of Service settings — ROS 2 Documentation:
Rolling documentation.” (May 11, 2021), [Online]. Available:
http://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-
Settings.html?highlight=topic (visited on 05/22/2022).

[26] P. C. Wright, R. E. Fields, and M. D. Harrison, “Analyzing Human-Computer
Interaction as Distributed Cognition: The Resources Model,” Human–Computer
Interaction, vol. 15, no. 1, pp. 1–41, Mar. 2000, ISSN: 0737-0024, 1532-7051. DOI:
10.1207/S15327051HCI1501_01. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1207/S15327051HCI1501_01
(visited on 05/22/2022).

[27] S. Weber and G. Klinker, “VR Re-Embodiment in the Neurorobotics Platform,”
2019. DOI: 10.18420/MUC2019-WS-585. [Online]. Available:
http://dl.gi.de/handle/20.500.12116/25215 (visited on 05/23/2022).

[28] G. Aures and C. Lübben, “DDS vs. MQTT vs. VSL for IoT,” Network, vol. 1, 2019.
[29] P. Newman, “Under the Hood of the MOOS Communications API,” p. 7,

Mar. 17, 2009.
[30] J. Recor, M. Luker, R. Petersen, et al., “Organizing for improved security,” 2003.
[31] Python-moos, themoos, Jul. 7, 2021. [Online]. Available:

https://github.com/themoos/python-moos (visited on 05/24/2022).
[32] P. Newman, “A Guide to using MOOS-V10 Communications,” p. 25, Jul. 2,

2013.
[33] Essential-moos, themoos, Jul. 8, 2021. [Online]. Available:

https://github.com/themoos/essential-moos (visited on 05/25/2022).
[34] P. Newman, “Bridging Communities with pMOOSBridge,” p. 6, Jun. 21, 2009.
[35] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight Communications

and Marshalling,” in 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Oct. 2010, pp. 4057–4062. DOI: 10.1109/IROS.2010.5649358.

[36] M. Eisler, “XDR: External Data Representation Standard,” Internet Engineering
Task Force, Request for Comments RFC 4506, May 2006, 27 pp. DOI:
10.17487/RFC4506. [Online]. Available:
https://datatracker.ietf.org/doc/rfc4506/ (visited on 05/26/2022).

89

https://github.com/objectcomputing/OpenDDS
https://fast-dds.docs.eprosima.com/en/latest/
http://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html?highlight=topic
http://docs.ros.org/en/rolling/Concepts/About-Quality-of-Service-Settings.html?highlight=topic
https://doi.org/10.1207/S15327051HCI1501_01
https://www.tandfonline.com/doi/full/10.1207/S15327051HCI1501_01
https://doi.org/10.18420/MUC2019-WS-585
http://dl.gi.de/handle/20.500.12116/25215
https://github.com/themoos/python-moos
https://github.com/themoos/essential-moos
https://doi.org/10.1109/IROS.2010.5649358
https://doi.org/10.17487/RFC4506
https://datatracker.ietf.org/doc/rfc4506/

Bibliography

[37] Protocol Buffers - Google’s data interchange format, Protocol Buffers, May 26, 2022.
[Online]. Available: https://github.com/protocolbuffers/protobuf
(visited on 05/26/2022).

[38] FlatBuffers, Google, May 26, 2022. [Online]. Available:
https://github.com/google/flatbuffers (visited on 05/26/2022).

[39] “Plugin.pb.h | Protocol Buffers,” Google Developers. (May 18, 2021), [Online].
Available: https://developers.google.com/protocol-
buffers/docs/reference/cpp/google.protobuf.compiler.plugin.pb
(visited on 05/27/2022).

[40] Open Robotics. “Services - ROS Wiki.” (2019), [Online]. Available:
http://wiki.ros.org/Services (visited on 05/15/2022).

[41] S. Whims. “Missing .NET APIs in Unity and UWP - UWP applications.”
(Jun. 23, 2022), [Online]. Available: https://docs.microsoft.com/en-
us/windows/uwp/gaming/missing-dot-net-apis-in-unity-and-uwp
(visited on 05/31/2022).

[42] “Developing for Windows with the Windows App SDK ⋅ Discussion #1615 ⋅
microsoft/WindowsAppSDK,” GitHub. (Oct. 19, 2021), [Online]. Available:
https://github.com/microsoft/WindowsAppSDK/discussions/1615 (visited
on 05/31/2022).

[43] D. A. Plecher, C. Eichhorn, A. Köhler, and G. Klinker, “Oppidum - A
Serious-AR-Game About Celtic Life and History,” in Games and Learning
Alliance, A. Liapis, G. N. Yannakakis, M. Gentile, and M. Ninaus, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2019, pp. 550–559, ISBN: 978-3-030-34350-7. DOI:
10.1007/978-3-030-34350-7_53.

[44] D. A. Plecher, A. Ulschmid, T. Kaiser, and G. Klinker, Projective Augmented
Reality in a Museum: Development and Evaluation of an Interactive Application. The
Eurographics Association, 2020, ISBN: 978-3-03868-111-3. DOI:
10.2312/egve.20201258. [Online]. Available:
https://diglib.eg.org:443/xmlui/handle/10.2312/egve20201258 (visited
on 06/01/2022).

[45] D. Plecher, M. Ludl, and G. Klinker, “Designing an AR-Escape-Room with
Competitive and Cooperative Mode,” 2020. DOI: 10.18420/VRAR2020_30.
[Online]. Available: http://dl.gi.de/handle/20.500.12116/33433 (visited
on 06/01/2022).

90

https://github.com/protocolbuffers/protobuf
https://github.com/google/flatbuffers
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.compiler.plugin.pb
https://developers.google.com/protocol-buffers/docs/reference/cpp/google.protobuf.compiler.plugin.pb
http://wiki.ros.org/Services
https://docs.microsoft.com/en-us/windows/uwp/gaming/missing-dot-net-apis-in-unity-and-uwp
https://docs.microsoft.com/en-us/windows/uwp/gaming/missing-dot-net-apis-in-unity-and-uwp
https://github.com/microsoft/WindowsAppSDK/discussions/1615
https://doi.org/10.1007/978-3-030-34350-7_53
https://doi.org/10.2312/egve.20201258
https://diglib.eg.org:443/xmlui/handle/10.2312/egve20201258
https://doi.org/10.18420/VRAR2020_30
http://dl.gi.de/handle/20.500.12116/33433

Bibliography

[46] C. Eichhorn, A. Jadid, D. A. Plecher, S. Weber, G. Klinker, and Y. Itoh,
“Catching the Drone - A Tangible Augmented Reality Game in Superhuman
Sports,” in 2020 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), Nov. 2020, pp. 24–29. DOI:
10.1109/ISMAR-Adjunct51615.2020.00022.

[47] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère, “Popularity,
Interoperability, and Impact of Programming Languages in 100,000 Open
Source Projects,” in 2013 IEEE 37th Annual Computer Software and Applications
Conference, Jul. 2013, pp. 303–312. DOI: 10.1109/COMPSAC.2013.55.

[48] K. Srinath, “Python–the fastest growing programming language,” International
Research Journal of Engineering and Technology (IRJET), vol. 4, no. 12,
pp. 354–357, 2017.

[49] Maximilian Schmidt, Ubi-Interact Python Node, Jan. 29, 2022. [Online].
Available: https://github.com/SandroWeber/ubii-node-python (visited on
06/01/2022).

[50] J. Dorn, “A general software readability model,” MCS Thesis, vol. 5, pp. 11–14,
2012. [Online]. Available:
http://www.cs.virginia.edu/weimer/students/dorn-mcs-paper.pdf.

[51] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk, “A
comprehensive model for code readability,” Journal of Software: Evolution and
Process, vol. 30, no. 6, e1958, 2018, e1958 smr.1958, ISSN: 2047-7481. DOI:
10.1002/smr.1958. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1958 (visited on
06/01/2022).

[52] “Python Generated Code | Protocol Buffers,” Google Developers. (Jun. 2,
2022), [Online]. Available: https://developers.google.com/protocol-
buffers/docs/reference/python-generated (visited on 06/03/2022).

[53] G. van Rossum, Barry Warsaw, and Nick Coghlan. “PEP 8 – Style Guide for
Python Code.” (Jul. 5, 2001), [Online]. Available:
https://peps.python.org/pep-0008/ (visited on 06/02/2022).

[54] Protocol Buffers - google.protobuf.internal.python_message, Protocol Buffers, Jun. 2,
2022. [Online]. Available: https://github.com/protocolbuffers/protobuf/
blob/67f46d249565b5002795c164625eb237437c966a/python/google/
protobuf/internal/python_message.py (visited on 06/02/2022).

[55] Ivan Levkivskyi, Jukka Lehtosalo, and Lukasz Langa. “PEP 544 – Protocols:
Structural subtyping (static duck typing).” (Mar. 5, 2017), [Online]. Available:
https://peps.python.org/pep-0544/ (visited on 06/07/2022).

91

https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00022
https://doi.org/10.1109/COMPSAC.2013.55
https://github.com/SandroWeber/ubii-node-python
http://www.cs.virginia.edu/weimer/students/dorn-mcs-paper.pdf
https://doi.org/10.1002/smr.1958
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1958
https://developers.google.com/protocol-buffers/docs/reference/python-generated
https://developers.google.com/protocol-buffers/docs/reference/python-generated
https://peps.python.org/pep-0008/
https://github.com/protocolbuffers/protobuf/blob/67f46d249565b5002795c164625eb237437c966a/python/google/protobuf/internal/python_message.py
https://github.com/protocolbuffers/protobuf/blob/67f46d249565b5002795c164625eb237437c966a/python/google/protobuf/internal/python_message.py
https://github.com/protocolbuffers/protobuf/blob/67f46d249565b5002795c164625eb237437c966a/python/google/protobuf/internal/python_message.py
https://peps.python.org/pep-0544/

Bibliography

[56] G. van Rossum, Jukka Lehtosalo, and Lukasz Langa. “PEP 484 – Type Hints.”
(Sep. 29, 2014), [Online]. Available:
https://peps.python.org/pep-0484/#generics (visited on 06/11/2022).

[57] “Data model — Python 3 documentation.” (2022), [Online]. Available:
https://docs.python.org/3/reference/datamodel.html (visited on
06/11/2022).

[58] 𝜇pb: Small, fast C protos, Protocol Buffers, Jun. 30, 2022. [Online]. Available:
https://github.com/protocolbuffers/upb (visited on 06/30/2022).

[59] N. Koorapati, Nipunn1313/mypy-protobuf, Jun. 8, 2022. [Online]. Available:
https://github.com/nipunn1313/mypy-protobuf (visited on 06/11/2022).

[60] Ethan Smith. “PEP 561 – Distributing and Packaging Type Information.”
(Sep. 9, 2017), [Online]. Available: https://peps.python.org/pep-0561/
(visited on 06/11/2022).

[61] D. G. Taylor, Better Protobuf / gRPC Support for Python, Jun. 13, 2022. [Online].
Available: https://github.com/danielgtaylor/python-betterproto
(visited on 06/13/2022).

[62] D. G. Taylor, Issues ⋅ danielgtaylor/python-betterproto, Jun. 13, 2022. [Online].
Available: https://github.com/danielgtaylor/python-
betterproto/issues?q=is%3Aopen+is%3Aissue+label%3Abug (visited on
06/13/2022).

[63] Proto Plus for Python, Google APIs, Jun. 13, 2022. [Online]. Available:
https://github.com/googleapis/proto-plus-python (visited on
06/13/2022).

[64] M. Schmidt, Ubii-message-formats : ”Python Code for Ubi Interact protobuf
messages”, 2022. [Online]. Available:
https://github.com/saggitar/ubii-msg-formats.git (visited on
06/14/2022).

[65] M. Schmidt, Codestare-proto-plus : ”Protoc plugin to compile proto plus python
classes”, 2022. [Online]. Available:
https://github.com/saggitar/proto-plus-plugin.git (visited on
06/14/2022).

[66] “Protobuf Messages | Google Ads API,” Google Developers. (Jun. 29, 2022),
[Online]. Available: https://developers.google.com/google-
ads/api/docs/client-libs/python/protobuf-messages (visited on
06/14/2022).

92

https://peps.python.org/pep-0484/#generics
https://docs.python.org/3/reference/datamodel.html
https://github.com/protocolbuffers/upb
https://github.com/nipunn1313/mypy-protobuf
https://peps.python.org/pep-0561/
https://github.com/danielgtaylor/python-betterproto
https://github.com/danielgtaylor/python-betterproto/issues?q=is%3Aopen+is%3Aissue+label%3Abug
https://github.com/danielgtaylor/python-betterproto/issues?q=is%3Aopen+is%3Aissue+label%3Abug
https://github.com/googleapis/proto-plus-python
https://github.com/saggitar/ubii-msg-formats.git
https://github.com/saggitar/proto-plus-plugin.git
https://developers.google.com/google-ads/api/docs/client-libs/python/protobuf-messages
https://developers.google.com/google-ads/api/docs/client-libs/python/protobuf-messages

Bibliography

[67] “Google.protobuf.descriptor_pool — Protocol Buffers 3.17.0 documentation.”
(2008), [Online]. Available:
https://googleapis.dev/python/protobuf/latest/google/protobuf/
descriptor_pool.html#module-google.protobuf.descriptor_pool (visited
on 06/16/2022).

[68] M. Schmidt. “Getting started — ubii-message-formats documentation.” (2022),
[Online]. Available: https://ubii-msg-
formats.readthedocs.io/en/feature-python/getting-started.html
(visited on 06/16/2022).

[69] M. Schmidt, Generic-proto-plus-stubs: Manually updated type stubs for proto-plus
with some generics, 2022. [Online]. Available:
https://github.com/saggitar/generic-proto-plus-stubs (visited on
06/17/2022).

[70] “Requests ⋅ SandroWeber/ubi-interact Wiki,” Requests ⋅
SandroWeber/ubi-interact Wiki. (2021), [Online]. Available:
https://github.com/SandroWeber/ubi-interact/wiki/Requests.

[71] James Knight. “Python’s Super Considered Harmful.” (2021), [Online].
Available: https://fuhm.net/super-harmful/ (visited on 06/22/2022).

[72] R. Hettinger. “Python’s super() considered super!” Deep Thoughts by
Raymond Hettinger. (May 26, 2011), [Online]. Available: https:
//rhettinger.wordpress.com/2011/05/26/super-considered-super/
(visited on 06/22/2022).

[73] E. Gamma, R. Helm, R. Johnson, R. E. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Deutschland GmbH,
1995, 512 pp., ISBN: 978-3-8273-3043-7. Google Books: tmNNfSkfTlcC.

[74] “Hollywood Principle.” (Aug. 27, 2013), [Online]. Available:
http://wiki.c2.com/?HollywoodPrinciple (visited on 06/22/2022).

[75] “Objects, values and types — Python 2 Documentation.” (Mar. 7, 2005),
[Online]. Available: https://web.archive.org/web/20050307224942/http:
//www.python.org/doc/current/ref/objects.html (visited on 06/22/2022).

[76] M. Schmidt. “Ubii.framework.util.functools module — ubii-node-python
documentation.” (2022), [Online]. Available:
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.
framework.util.functools.html (visited on 06/25/2022).

[77] “Data model — Coroutine Objects — Python 3 Documentation.” (2022),
[Online]. Available: https:
//docs.python.org/3/reference/datamodel.html#coroutine-objects
(visited on 06/23/2022).

93

https://googleapis.dev/python/protobuf/latest/google/protobuf/descriptor_pool.html#module-google.protobuf.descriptor_pool
https://googleapis.dev/python/protobuf/latest/google/protobuf/descriptor_pool.html#module-google.protobuf.descriptor_pool
https://ubii-msg-formats.readthedocs.io/en/feature-python/getting-started.html
https://ubii-msg-formats.readthedocs.io/en/feature-python/getting-started.html
https://github.com/saggitar/generic-proto-plus-stubs
https://github.com/SandroWeber/ubi-interact/wiki/Requests
https://fuhm.net/super-harmful/
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/
http://books.google.com/books?id=tmNNfSkfTlcC
http://wiki.c2.com/?HollywoodPrinciple
https://web.archive.org/web/20050307224942/http://www.python.org/doc/current/ref/objects.html
https://web.archive.org/web/20050307224942/http://www.python.org/doc/current/ref/objects.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.framework.util.functools.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.framework.util.functools.html
https://docs.python.org/3/reference/datamodel.html#coroutine-objects
https://docs.python.org/3/reference/datamodel.html#coroutine-objects

Bibliography

[78] M. Schmidt. “Codestare.async_utils.wrapper module — ubii-node-python
documentation.” (2022), [Online]. Available:
https://ubii-node-python.readthedocs.io/en/develop/api/codestare/
codestare.async_utils.wrapper.html (visited on 06/24/2022).

[79] M. Schmidt, Codestare-async-utils: ”Utility modules for async development”, 2022.
[Online]. Available: https://github.com/saggitar/.git (visited on
06/24/2022).

[80] “Contextlib — AsyncExitStack — Python 3 Documentation.” (2022), [Online].
Available: https://docs.python.org/3/library/contextlib.html#
contextlib.AsyncExitStack (visited on 06/25/2022).

[81] M. Schmidt. “Codestare.async_utils.nursery module — ubii-node-python
documentation.” (2022), [Online]. Available:
https://ubii-node-python.readthedocs.io/en/develop/api/codestare/
codestare.async_utils.nursery.html (visited on 06/25/2022).

[82] “Dataclasses — Data Classes — Python 3 documentation.” (2022), [Online].
Available: https://docs.python.org/3/library/dataclasses.html (visited
on 06/25/2022).

[83] M. Schmidt. “Ubii namespace — ubii-node-python documentation.” (2022),
[Online]. Available: https://ubii-node-
python.readthedocs.io/en/develop/api/ubii/ubii.html (visited on
06/29/2022).

[84] M. Schmidt. “Ubii.framework.client module — ubii-node-python
documentation.” (2022), [Online]. Available: https://ubii-node-python.
readthedocs.io/en/develop/api/ubii/ubii.framework.client.html
(visited on 06/29/2022).

[85] M. Schmidt. “Ubii.framework.processing module — ubii-node-python
documentation.” (2022), [Online]. Available: https://ubii-node-python.
readthedocs.io/en/develop/api/ubii/ubii.framework.processing.html
(visited on 06/29/2022).

[86] “Processing Modules Tutorial — ubii-node-python documentation.” (2022),
[Online]. Available: https://ubii-node-
python.readthedocs.io/en/develop/concepts/processing.html (visited
on 06/29/2022).

[87] “Ubii.node package — ubii-node-python documentation.” (2022), [Online].
Available: https://ubii-node-
python.readthedocs.io/en/develop/api/ubii/ubii.node.html (visited on
06/29/2022).

94

https://ubii-node-python.readthedocs.io/en/develop/api/codestare/codestare.async_utils.wrapper.html
https://ubii-node-python.readthedocs.io/en/develop/api/codestare/codestare.async_utils.wrapper.html
https://github.com/saggitar/.git
https://docs.python.org/3/library/contextlib.html#contextlib.AsyncExitStack
https://docs.python.org/3/library/contextlib.html#contextlib.AsyncExitStack
https://ubii-node-python.readthedocs.io/en/develop/api/codestare/codestare.async_utils.nursery.html
https://ubii-node-python.readthedocs.io/en/develop/api/codestare/codestare.async_utils.nursery.html
https://docs.python.org/3/library/dataclasses.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.framework.client.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.framework.client.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.framework.processing.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.framework.processing.html
https://ubii-node-python.readthedocs.io/en/develop/concepts/processing.html
https://ubii-node-python.readthedocs.io/en/develop/concepts/processing.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.node.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.node.html

Bibliography

[88] M. Schmidt. “Getting started — CLI — ubii-node-python documentation.”
(2022), [Online]. Available: https://ubii-node-
python.readthedocs.io/en/develop/getting-started.html#cli (visited
on 06/29/2022).

[89] M. Schmidt. “Ubii.cli.main module — ubii-node-python documentation.”
(2022), [Online]. Available: https://ubii-node-
python.readthedocs.io/en/develop/api/ubii/ubii.cli.main.html
(visited on 06/29/2022).

[90] M. Schmidt. “Getting started — Example Client — ubii-node-python
documentation.” (2022), [Online]. Available:
https://ubii-node-python.readthedocs.io/en/develop/getting-
started.html#client-example (visited on 06/29/2022).

[91] “Home | Read the Docs.” (2022), [Online]. Available:
https://readthedocs.org/ (visited on 07/30/2022).

[92] A. A. G. Alex, S. Jegatha, J. G. Jayanthi, and S. A. Rabara, “SaaS Framework for
Library Augmented Reality Application,” in 2014 World Congress on Computing
and Communication Technologies, Feb. 2014, pp. 8–12. DOI:
10.1109/WCCCT.2014.58.

[93] K. Vinumol, A. Chowdhury, R. Kambam, and V. Muralidharan, “Augmented
Reality Based Interactive Text Book: An Assistive Technology for Students with
Learning Disability,” in 2013 XV Symposium on Virtual and Augmented Reality,
May 2013, pp. 232–235. DOI: 10.1109/SVR.2013.26.

[94] Z. Li, M. Annett, K. Hinckley, K. Singh, and D. Wigdor, “HoloDoc: Enabling
Mixed Reality Workspaces that Harness Physical and Digital Content,” in
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’19, New York, NY, USA: Association for Computing Machinery,
May 2, 2019, pp. 1–14, ISBN: 978-1-4503-5970-2. DOI: 10.1145/3290605.3300917.
[Online]. Available: https://doi.org/10.1145/3290605.3300917 (visited on
07/02/2022).

[95] V. Fragoso, S. Gauglitz, S. Zamora, J. Kleban, and M. Turk, “TranslatAR: A
mobile augmented reality translator,” in 2011 IEEE Workshop on Applications of
Computer Vision (WACV), Jan. 2011, pp. 497–502. DOI:
10.1109/WACV.2011.5711545.

95

https://ubii-node-python.readthedocs.io/en/develop/getting-started.html#cli
https://ubii-node-python.readthedocs.io/en/develop/getting-started.html#cli
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.cli.main.html
https://ubii-node-python.readthedocs.io/en/develop/api/ubii/ubii.cli.main.html
https://ubii-node-python.readthedocs.io/en/develop/getting-started.html#client-example
https://ubii-node-python.readthedocs.io/en/develop/getting-started.html#client-example
https://readthedocs.org/
https://doi.org/10.1109/WCCCT.2014.58
https://doi.org/10.1109/SVR.2013.26
https://doi.org/10.1145/3290605.3300917
https://doi.org/10.1145/3290605.3300917
https://doi.org/10.1109/WACV.2011.5711545

Bibliography

[96] T. Toyama, D. Sonntag, A. Dengel, T. Matsuda, M. Iwamura, and K. Kise, “A
mixed reality head-mounted text translation system using eye gaze input,” in
Proceedings of the 19th international conference on Intelligent User Interfaces, ser. IUI
’14, New York, NY, USA: Association for Computing Machinery, Feb. 24, 2014,
pp. 329–334, ISBN: 978-1-4503-2184-6. DOI: 10.1145/2557500.2557528. [Online].
Available: https://doi.org/10.1145/2557500.2557528 (visited on
07/02/2022).

[97] “Artoolkitx/artoolkitx: artoolkitX.” (2020), [Online]. Available:
https://github.com/artoolkitx/artoolkitx (visited on 07/02/2022).

[98] “Cloud Computing Services | Microsoft Azure.” (2022), [Online]. Available:
https://azure.microsoft.com/en-us/ (visited on 07/02/2022).

[99] “UNLV tests on Tesseract,” tessdoc. (2020), [Online]. Available: https:
//tesseract-ocr.github.io/tessdoc/UNLV-Testing-of-Tesseract.html
(visited on 07/02/2022).

[100] Fayez, Tesserocr, Jun. 29, 2022. [Online]. Available:
https://github.com/sirfz/tesserocr (visited on 07/02/2022).

[101] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust wide-baseline stereo from
maximally stable extremal regions,” Image and Vision Computing, British
Machine Vision Computing 2002, vol. 22, no. 10, pp. 761–767, Sep. 1, 2004, ISSN:
0262-8856. DOI: 10.1016/j.imavis.2004.02.006. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0262885604000435
(visited on 07/02/2022).

[102] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, “EAST: An
Efficient and Accurate Scene Text Detector,” presented at the Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5551–5560. [Online]. Available: https://openaccess.thecvf.com/
content_cvpr_2017/html/Zhou_EAST_An_Efficient_CVPR_2017_paper.html
(visited on 07/02/2022).

[103] Opencv, OpenCV, Jul. 2, 2022. [Online]. Available:
https://github.com/opencv/opencv (visited on 07/02/2022).

[104] “OpenCV: Samples/dnn/text_detection.cpp.” (Jul. 3, 2022), [Online].
Available: https:
//docs.opencv.org/4.x/db/da4/samples_2dnn_2text_detection_8cpp-
example.html#_a4 (visited on 07/02/2022).

[105] “Entry points specification — Python Packaging User Guide.” (Jul. 1, 2022),
[Online]. Available: https:
//packaging.python.org/en/latest/specifications/entry-points/
(visited on 07/02/2022).

96

https://doi.org/10.1145/2557500.2557528
https://doi.org/10.1145/2557500.2557528
https://github.com/artoolkitx/artoolkitx
https://azure.microsoft.com/en-us/
https://tesseract-ocr.github.io/tessdoc/UNLV-Testing-of-Tesseract.html
https://tesseract-ocr.github.io/tessdoc/UNLV-Testing-of-Tesseract.html
https://github.com/sirfz/tesserocr
https://doi.org/10.1016/j.imavis.2004.02.006
https://www.sciencedirect.com/science/article/pii/S0262885604000435
https://www.sciencedirect.com/science/article/pii/S0262885604000435
https://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_EAST_An_Efficient_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_EAST_An_Efficient_CVPR_2017_paper.html
https://github.com/opencv/opencv
https://docs.opencv.org/4.x/db/da4/samples_2dnn_2text_detection_8cpp-example.html#_a4
https://docs.opencv.org/4.x/db/da4/samples_2dnn_2text_detection_8cpp-example.html#_a4
https://docs.opencv.org/4.x/db/da4/samples_2dnn_2text_detection_8cpp-example.html#_a4
https://packaging.python.org/en/latest/specifications/entry-points/
https://packaging.python.org/en/latest/specifications/entry-points/

Bibliography

[106] “Releases ⋅ simonflueckiger/tesserocr-windows_build.” (2017), [Online].
Available: https://github.com/simonflueckiger/tesserocr-
windows_build/releases (visited on 07/03/2022).

[107] “Tesseract/tesseract.1.asc at main ⋅ tesseract-ocr/tesseract.” (Sep. 13, 2021),
[Online]. Available: https://github.com/tesseract-
ocr/tesseract/blob/main/doc/tesseract.1.asc (visited on 07/26/2022).

[108] “OpenCV: Cv::MSER Class Reference.” (Aug. 5, 2022), [Online]. Available:
https://docs.opencv.org/3.4/d3/d28/classcv_1_1MSER.html (visited on
07/26/2022).

[109] J. Lin, G. Sun, T. Cui, J. Shen, D. Xu, G. Beydoun, P. Yu, D. Pritchard, L. Li, and
S. Chen, “From ideal to reality: Segmentation, annotation, and
recommendation, the vital trajectory of intelligent micro learning,” World Wide
Web, vol. 23, no. 3, pp. 1747–1767, May 1, 2020, ISSN: 1573-1413. DOI:
10.1007/s11280-019-00730-9. [Online]. Available:
https://doi.org/10.1007/s11280-019-00730-9 (visited on 08/04/2022).

[110] J. Qian, Q. Sun, C. Wigington, H. L. Han, T. Sun, J. Healey, J. Tompkin, and
J. Huang, “Dually Noted: Layout-Aware Annotations with Smartphone
Augmented Reality,” in Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’22, New York, NY, USA: Association for
Computing Machinery, Apr. 29, 2022, pp. 1–15, ISBN: 978-1-4503-9157-3. DOI:
10.1145/3491102.3502026. [Online]. Available:
https://doi.org/10.1145/3491102.3502026 (visited on 08/04/2022).

[111] X. Zhong, J. Tang, and A. Jimeno Yepes, “PubLayNet: Largest Dataset Ever for
Document Layout Analysis,” in 2019 International Conference on Document
Analysis and Recognition (ICDAR), Sep. 2019, pp. 1015–1022. DOI:
10.1109/ICDAR.2019.00166.

[112] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in Computer
Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.,
ser. Lecture Notes in Computer Science, Cham: Springer International
Publishing, 2014, pp. 740–755, ISBN: 978-3-319-10602-1. DOI:
10.1007/978-3-319-10602-1_48.

[113] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Jun. 2009, pp. 248–255. DOI:
10.1109/CVPR.2009.5206848.

97

https://github.com/simonflueckiger/tesserocr-windows_build/releases
https://github.com/simonflueckiger/tesserocr-windows_build/releases
https://github.com/tesseract-ocr/tesseract/blob/main/doc/tesseract.1.asc
https://github.com/tesseract-ocr/tesseract/blob/main/doc/tesseract.1.asc
https://docs.opencv.org/3.4/d3/d28/classcv_1_1MSER.html
https://doi.org/10.1007/s11280-019-00730-9
https://doi.org/10.1007/s11280-019-00730-9
https://doi.org/10.1145/3491102.3502026
https://doi.org/10.1145/3491102.3502026
https://doi.org/10.1109/ICDAR.2019.00166
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/CVPR.2009.5206848

Bibliography

[114] R. Wang, Y. Fujii, and A. C. Popat, “Post-OCR Paragraph Recognition by Graph
Convolutional Networks,” presented at the Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2022, pp. 493–502.
[Online]. Available:
https://openaccess.thecvf.com/content/WACV2022/html/Wang_Post-
OCR_Paragraph_Recognition_by_Graph_Convolutional_Networks_WACV_
2022_paper.html (visited on 08/04/2022).

98

https://openaccess.thecvf.com/content/WACV2022/html/Wang_Post-OCR_Paragraph_Recognition_by_Graph_Convolutional_Networks_WACV_2022_paper.html
https://openaccess.thecvf.com/content/WACV2022/html/Wang_Post-OCR_Paragraph_Recognition_by_Graph_Convolutional_Networks_WACV_2022_paper.html
https://openaccess.thecvf.com/content/WACV2022/html/Wang_Post-OCR_Paragraph_Recognition_by_Graph_Convolutional_Networks_WACV_2022_paper.html

	Abstract
	Contents
	Introduction
	Historical Classification
	Robot Operating System (ROS)
	Design Goals
	Messages

	Message Oriented Middleware (MOM) – MQTT, DDS
	Middleware Abstraction in ROS
	MOM Solution without Abstraction
	Which MOM?

	MOOS
	Design
	Message Data

	LCM
	Ubi-Interact
	Message Handling
	Middleware Features
	Ecosystem
	Data Transformation
	Use Case

	Thesis Motivation

	Ubi-Interact Python Packages
	Protobuffer Package
	Readability
	Extensibility
	Idiomatic Python Use
	Type Hints
	Namespaces and Package Structure
	Ubi-Interact

	Problems and Requirements
	Middleware Protocol
	Processing Modules
	Python Language Features

	Design
	"Protocol" concept
	Client
	Processing Modules
	Node
	CLI
	Implementation Details

	OCR Module
	OCR in Mixed Reality
	Involved Technology
	Automatic Module Discovery
	Portability

	Evaluation
	Conclusion
	Summary
	Future Work

	Acronyms
	List of Code Examples
	List of Figures
	List of Tables
	Bibliography

