
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Using Mobile AR Tracking Data to Generate
3D Geometry for Gameplay Interaction

Florian Rett

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Using Mobile AR Tracking Data to Generate
3D Geometry for Gameplay Interaction

Verwendung von Mobile-AR Tracking Daten
zur Generierung von 3D Geometrie für

Spielmechaniken

Author: Florian Rett
Supervisor: Prof. Gudrun Klinker
Advisor: Christian Eichhorn
Submission Date: 17.06.2019

I confirm that this bachelor’s thesis in informatics: games engineering is my own work and I
have documented all sources and material used.

Munich, 17.06.2019 Florian Rett

Abstract

In recent years, Augmented Reality achieved some huge development progress and reached
millions of consumers via their smartphones. Due to advances in mobile computing power,
ARCore and ARKit are able to provide markerless motion tracking of the device’s location
and rotation through the real world. Thanks to those frameworks, many AR apps and games
have been developed, allowing to overlay the real world with virtual content. However,
the interaction between the virtual and the real world in such apps is quite limited at the
moment. Virtual objects can be placed on even surfaces around the user, but there is no
further understanding of other real objects present.

This thesis aims to develop a system that provides a deeper understanding of the surround-
ing real world. The presented system does not need any other input than the point cloud of
visual features that is used by the AR frameworks to track the device’s position. This point
cloud is used to create 3D mesh geometry representing real-world objects. These meshes can
then be used for additional interaction between the physical and the virtual world. A sample
game was implemented to showcase the results of the proposed system using those meshes
as core gameplay elements.

iii

Kurzfassung

In den letzten Jahren wurden einige große Fortschritte in der Entwicklung von Augmented
Reality erzielt und die Technologie erreichte Millionen von Nutzern auf deren Smartphones.
Dank der stetig wachsenden Rechenleistung von mobilen Prozessoren sind ARCore und
ARKit in der Lage, ohne die Hilfe von speziellen Markierungen die Position und Rotation
des Geräts in der echten Welt zu verfolgen. Mit Hilfe dieser Frameworks wurde eine Vielzahl
von AR Apps und Spielen entwickelt, in denen man die echte Welt mit virtuellen Inhalten
überlagern kann. Allerdings ist aktuell die Interaktion zwischen der virtuellen und der
echten Welt in diesen Apps noch sehr eingeschränkt. Virtuelle Objekte können auf geraden
Oberflächen in der Nähe des Benutzers platziert werden, es findet allerdings kein Erkennen
von weiteren realen Objekten statt.

Das Ziel dieser Arbeit ist es, ein System zu entwickeln, welches ein tieferes Verständnis
der realen Umgebung ermöglicht. Das vorgestellte System benötigt als Input lediglich die
Punktwolke aus visuellen Merkmalen, die auch von den AR Frameworks zum Tracking der
Geräteposition verwendet wird. Diese Punktwolke wird verwendet, um 3D Mesh Geometrie
zu erzeugen. Die so erzeugten Meshes können dann für weitere Interaktionen zwischen
der physischen und der virtuellen Welt verwendet werden. Um die Ergebnisse des vorge-
stellten Systems zu präsentieren, wurde ein Beispiel-Spiel entwickelt, das diese Meshes als
Kernelement der Spielmechaniken einsetzt.

iv

Contents

Abstract iii

Kurzfassung iv

1. Introduction 1
1.1. Motivation . 1
1.2. Goals of this thesis . 2
1.3. Thesis Outline . 2

2. Related Work 3
2.1. Augmented Reality . 3

2.1.1. Mobile Augmented Reality . 4
2.2. Current AR Games . 5
2.3. Surface Reconstruction . 7

2.3.1. Delaunay Triangulation Based Algorithms 8
2.3.2. Live reconstruction . 8

3. Reconstruction Pipeline 10
3.1. Aquiring the Point Cloud . 10
3.2. Point Cloud Processing . 11
3.3. Clustering . 12
3.4. Mesh Generation . 14

4. Implementation 17
4.1. Application . 17

4.1.1. Configuration Menu . 18
4.1.2. Mesh Collision Testing . 19

4.2. System . 19
4.2.1. Multi-Threaded Computation . 20
4.2.2. Procedural Mesh Generation . 20
4.2.3. Occlusion . 21

4.3. Sample Game . 22

5. Evaluation 24
5.1. Evaluation Method . 24
5.2. Results and Discussion . 25

5.2.1. Quality . 27

v

Contents

5.2.2. Performance . 31

6. Conclusion 35
6.1. Summary . 35
6.2. Future Work . 36

A. General Addenda 37
A.1. Evaluation Data . 37

B. Figures 38
B.1. Game Screenshots . 38

List of Figures 40

List of Tables 41

List of Algorithms 42

Bibliography 43

vi

1. Introduction

The concept of overlaying the real world with virtual content to transmit information in a
more natural way than traditional media is all but new. Its origin can be dated back more
than half a century ago to the first augmented reality display. Over the last decades, many
science-fiction movies featured technologies like holographic displays, foreseeing a future
where augmented reality is a natural part of every-day life. Today, there still is a huge
discrepancy between what is possible with current AR technology and the visions brought to
us by Hollywood, but the gap is closing.

In recent years huge breakthroughs regarding Augmented Reality technology have been
achieved, the most important one probably being Google’s ARCore [1] and Apple’s ARKit [2],
bringing markerless Augmented Reality capabilities to millions of mobile devices and giving
developers the tools to easily create AR applications.

This thesis approaches the problem of enhancing the current capabilities of the mentioned
AR frameworks by enabling new ways how the user can interact with the real world through
an AR application. To achieve this, a reconstruction pipeline is proposed, that is able to detect
arbitrary objects in the real world and generate collision for them, so they can then be used
for user interactions in a game environment.

1.1. Motivation

While augmented reality technology has been around for some time now, it has experienced
noticeable growth in recent years. The main reason for this is the steady increase in mobile
computation power. This allows running systems, that were previously only working on
stationary Desktop PCs, on much smaller and portable devices, which is a far more appealing
application area for augmented reality. The first of such devices to become broadly accepted
were AR glasses such as the Microsoft HoloLens, but due to the high price of multiple
thousand dollars, they were not able to bring AR technology to the consumer market. The
release of ARCore and ARKit changed this, as both platforms merely require a fairly modern
smartphone as they are found in most households nowadays.

In addition to tracking the device’s position in the real world without the use of markers,
both AR frameworks offer a basic form of scene understanding. They detect horizontal
and vertical planes around the user, which can then be used to place virtual content on
real-world surfaces. However, the amount of interaction that is possible with this kind of
scene understanding is very limited and results in little variety in the existing AR apps.
Achieving a better scene understanding within the AR frameworks would allow developers
more freedom when designing user interactions, which can be especially beneficial for video
games using AR elements. This is an inevitable step in the further evolution of AR technology.

1

1. Introduction

1.2. Goals of this thesis

This thesis presents an experimental approach to the described problem of creating a better
scene understanding. The primary goal is to develop a system that uses the internal motion
tracking data of the mobile AR frameworks and generates mesh geometry from them, which
can then be used in a game environment. The system should be able to run on most consumer
devices and therefore not rely on any additional input data such as a depth sensor. A pipeline
for this kind of scene reconstruction is described, implemented and evaluated. A sample
game is designed and implemented to show that the proposed system can be used in a game
environment to enable gameplay mechanics that would not be possible with the default
capabilities of the AR frameworks.

1.3. Thesis Outline

Chapter 2 - Related work is a more in-depth introduction to the research topic and provides
the necessary background knowledge. In the beginning a general overview of the current
state of Augmented Reality is given. The current use of AR technology in games is evaluated
by describing and analyzing some popular AR games found in the mobile app stores. Also,
an overview on surface reconstruction is given, presenting other solutions to a better scene
understanding.

Chapter 3 - Reconstruction Pipeline describes the proposed calculation steps needed for the
reconstruction, including descriptions of all the algorithms that were used.

Chapter 4 - Implementation focuses on the Android application that was developed to test
the proposed reconstruction pipeline. Important systems of the implementation are described
in more detail. There is also given a short description of the sample game that was designed
to present the results.

Chapter 5 - Evaluation displays the results of the proposed reconstruction pipeline. At first,
the used evaluation method is described, followed by the evaluated data and some discussions
about the results. The observed limitations of the system are also stated.

Chapter 6 - Conclusion summarizes the thesis and the achieved results. Some ideas regarding
further improvement of the proposed system and other future research are given.

2

2. Related Work

In this chapter, the current state of Augmented Reality, with a focus on mobile Augmented
Reality, is described. Some examples of popular mobile AR games from both the Google Play
Store and the Apple App Store are investigated regarding their use of AR technology and
their limitations. Next, an overview of existing solutions and related work addressing these
limitations is given.

2.1. Augmented Reality

Augmented Reality (AR) is most commonly described as the technology that overlays or
combines the real world with digital information in some kind of interactive experience [3].
Furthermore, Augmented Reality is classified as a variation of Virtual Reality, with the
main difference being that in Virtual Reality the user is completely immersed in a virtual
environment, whereas in Augmented Reality the user still sees the real world around him,
with virtual objects supplemented to it in order to enhance the reality as it is perceived
by the user [4]. This distinction was further clarified by Milgram and Kishino by defining
the "Virtuality Continuum" as a medium to classify different Mixed-Reality displays, with
Augmented Reality being one subset of those. They use the term Augmented Reality to
"refer to any case in which an otherwise real environment is ’augmented’ by means of virtual
(computer graphic) objects" [5].

Figure 2.1.: The Virtuality Continuum by Milgram and Kishino [5] can be used to classify
different Mixed-Reality displays. The scale describes the ratio of real and virtual
objects of which the scene is composed with the left side being only real and the
right side only virtual objects.

While the first concepts of Augmented Reality can be dated back to 1968 to the first
application using an optical see-through head-mounted display to display simple wireframe

3

2. Related Work

drawings on top of the real world, the term "Augmented Reality" was not used before 1992. In
this year, Caudell and Mizell designed a see-through head-mounted display called HUDSET
to assist in aircraft manufacturing tasks and described the technology to "augment" the user’s
visual field of view with additional information [6], therefore the term Augmented Reality
was established.

2.1.1. Mobile Augmented Reality

The meaning of the term "Mobile AR" has evolved quite a bit over time. When it first came
up, it referred to AR that could be experienced during locomotion, interpreting "mobile" as
any kind of motion. Later, with computer hardware and displays becoming ever smaller and
more portable, the meaning shifted towards Augmented Reality on a "mobile device" [7].
Nowadays the term is mostly used to specifically describe Augmented Reality Apps running
on modern smartphones, as it will be the case in this thesis.

One of the greatest challenges when developing an AR application, especially for a mobile
device with limited computational power and size, is the Tracking and Registration problem,
which refers to the process of evaluating the device’s current position and orientation to align
the virtual content with the real world. Chatzopoulos et. al. categorize the existing tracking
and registration solutions into sensor-based and vision-based approaches. Sensor-based
methods use the device’s internal sensors such as inertial or magnetic fields or ultrasonic and
radio-wave measures to calculate the device’s position and orientation. Vision-based methods
estimate a pose from markers or feature points in a captured video [8].

The first implementations of Mobile AR Applications on a smartphone can be dated back
to the year 2004 when M. Möhring et. al. presented a video see-through AR application that
was able to detect markers and render 3D graphics on top of the camera image [9]. In 2009,
Klein and Murray demonstrated the first Simultaneous Localization and Mapping (SLAM)
system running on a consumer smartphone, which was able to track the phone’s movement
with 6 Degrees of Freedom in real-time [10].

Thanks to further increases of smartphone computational power and higher quality cameras
being included, markerless Mobile Augmented Reality is nowadays available on millions
of devices in a consumer-ready state. Today, Google and Apple are developing the main
platforms for consumer Mobile AR. In 2017, Apple released ARKit [2], a Software Develop-
ment Kit for developing AR applications on iOS devices. In the same year, Google released
ARCore [1], an SDK with very similar capabilities targeting the development for mobile
devices running Google’s own Operating System Android.

ARKit and ARCore both use visual-inertial odometry (VIO) to track the device’s motion
through the real world, a technique that has its origin in the field of robotics and autonomous
vehicles [11]. VIO approaches the task of motion tracking in unknown environments by
combining the detection of distinct feature points in the captured camera image, also known
as visual-odometry, with inertial measurements from internal sensors such as accelerometers
and gyroscopes to achieve higher accuracy and consistency. During this process, an arbitrary
coordinate system is created using the first registered camera location as the origin. This
persistent coordinate system can then be used as a reference system for the positioning of the

4

2. Related Work

augmented world.
Since their release both SDKs have received a number of updates, improving the overall

stability and performance of the platform and adding more features. At the time of writing,
ARCore and ARKit share a very similar feature set. Their core features are motion tracking,
to allow markerless AR experiences, a basic scene understanding by detecting horizontal and
vertical planes, which the user can do collision tests against to virtually interact with the
real world, and the ability to share the mapped environment with other devices, therefore
allowing multi-user AR experiences. They also both allow the detection and tracking of 2D
images, to align virtual content with them, and light estimation of the real environment, to
reflect the existing lighting conditions on virtual objects. In addition to those features, ARKit
also offers object recognition and tracking of known 3D objects, whereas with ARCore it is
possible to place virtual content on arbitrary angled surfaces, given enough feature points
were detected on that surface [12, 13].

2.2. Current AR Games

In this section, some examples of currently popular Augmented Reality games from both
the Google Play Store and the Apple App Store are investigated regarding their use of AR
technology to evaluate the current use of AR technology in games.

Pokémon GO by Niantic is by far the most popular and well-known AR game on the market
and was also the first game for many people to experience AR technology in. In the GPS
location-based game for iOS and Android, the player can walk around the real world to
encounter wild pokemon and try to catch them. Later the caught Pokemon can be trained
and used to fight against other players in so-called Gym battles. In addition to using the
real world as the playing field, Pokémon GO also offers an AR mode while catching wild
pokemon. In this mode the device’s camera is combined with its orientation, so the pokemon
appears to be floating in front of the user in the real world. It doesn’t use features such motion
tracking the device or plane detection to place the pokemon on real-world surfaces [14].

Brickscape by 5minlab is a 3D puzzle game where the player has to move blocks inside a
box in order to free a block in the center. In normal mode, the box is displayed in front of a
neutral background and can be freely rotated by the player. When AR is enabled, the game
instead searches for planes to place the box on top of. The player can still rotate the box, but
he can also physically move his phone to change the in-game viewing angle [15].

In A&E Television Networks’ Knightfall AR the player finds himself in the 13th century
during the siege of Acre. The player has to defeat waves of invading enemies by placing
towers along the road or shooting at them with arrows and catapults. Knightfall AR uses
ARCore’s plane detection to place the playing field on a table in front of the player, similar to a
board game. As in Brickscape, the player can look around by moving his phone. Additionally,
the arrows and catapult shots are also aimed using the motion tracked device [16].

Similar to Knightfall, AR Smash Tanks! by Dumpling Design is played on a table top or the
floor by detecting planes in the real world. In this multiplayer game, players fight battles with
miniature tanks. The goal is to destroy the enemies’ tanks with different kinds of weapons.

5

2. Related Work

(a) Pokémon GO [14] while catching a wild
pokemon.

(b) Brickscape [15] when AR mode is enabled.

Figure 2.2.: Screenshots from Pokémon GO and Brickscape.

Figure 2.3.: Knightfall AR [16].

6

2. Related Work

Like in the previous examples, looking around the virtual battlefield is done by moving the
device around [17].

As it can be seen in the examples above, the scene understanding provided by ARCore and
ARKit is suitable to develop simple AR games that place virtual content on the floor, on top of
a table or on a wall. However, this does not allow for a very high degree of immersion while
the player is engaging with such games, which has been shown to have quite a high impact
on the user’s enjoyment [18]. There are many competing definitions for the term immersion.
Slater et al. describe immersion as a sense of "presence" a virtual environment creates for
the user. This perception is mainly influenced by the technology used to deliver the virtual
environment, i.e. the hardware the user is playing with [19]. Coomans and Timmermans, on
the other hand, describe immersion as "a feeling of being deeply engaged where people enter
a make-believe world as if it is real", hence the virtual environment needs to behave in a way
that appears natural to the user [20].

The hardware currently used for mobile AR is very limited in its ability to deliver a high
degree of immersion. In comparison to VR headsets, the field of view of a smartphone display
is really small, there is no way to generate tactile feedback other than vibrating the whole
phone, and the only way the user can interact with the game is via a 2-dimensional user
interface. As changes in the hardware with the purpose to increase immersion cannot be
easily made, the overall immersion of an AR game is mainly dependent on the software
to appear as plausible as possible. One area where this could be improved is the physical
interaction between virtual objects and the real world. These interactions need to be as
accurate as possible, or the user will lose his immersion due to the virtual objects being clearly
different from the world around them. Another area is rendering and especially the occlusion
of virtual objects when they are positioned behind an object in the real world. Currently, the
whole virtual world is just rendered on top of the camera image, making it always appear to
be in front of the real world. Though when the phone is moved, due to the parallax effect the
virtual object will move slower across the screen than the real object, therefore telling the user
the visual sorting order of the objects is not correct. This discrepancy can also greatly reduce
a user’s immersion. Both of these goals can be achieved by a better scene understanding,
which is able to detect and reconstruct more complex geometry than planes. A better scene
understanding would also allow more freedom in the design of AR games, enabling more
complex concepts of virtual objects interacting with the real world.

2.3. Surface Reconstruction

Surface reconstruction is usually referred to as the process of obtaining a 3-dimensional
digital model of an object in the real world, which matches the surface of the real object
as closely as possible. Such generated models can then be used in a number of different
applications, such as video-games, movies, or other kinds of computer graphics applications.
The field of robotics and autonomous vehicles is also using surface reconstruction techniques
to create a map of the surrounding world to avoid collisions with real objects.

An important requirement for surface reconstruction is the ability to scan the real world and

7

2. Related Work

hence gain digital information about it. This can be achieved by a huge variety of techniques
such as laser scanning, photogrammetry, or structured light scanning [21]. Such scanners use
various approaches to generate a point cloud of surface points along the scanned real world.
These point clouds then need to be processed in order to be used in 3D applications.

In many established computer-aided-design applications, point cloud data can directly be
imported and used as a digital representation of the scanned physical object. This approach,
however, is computationally heavy and only suitable for a visual representation, but not for
physical simulations, especially in the case of incomplete or missing data in the point cloud.
A much more commonly used format in computer graphics applications is that of polygonal
meshes. A Mesh consists of a set of points in 3d space (vertices). These vertices are connected
by edges and thereby form polygonal shapes. Usually, triangles are used for these polygonal
shapes, as they are the simplest geometric primitive. Therefore the process of converting a
point cloud into a polygonal mesh is often called triangulation [22].

There is a huge variety of surface reconstruction algorithms, that differentiate in what kind
of objects they are able to reconstruct, input requirements regarding the properties of the
point cloud, and the imperfections in the point cloud data the algorithm is able to handle [21].
An important geometric structure that is worth pointing out because it is used by a good
amount of those algorithms is the Delaunay triangulation and its dual structure, the Voronoi
diagram [23].

2.3.1. Delaunay Triangulation Based Algorithms

The Delaunay triangulation for a set of points in two dimensions has the property, that the
circumcircle of any triangle in the triangulation contains no other point of the sample set in
its interior [24]. This property ensures that the Delaunay triangulation is unique for every
point set, given that no four points are cocircular, i.e. that no circle can be found for which all
four points lie on its perimeter. Even though it was originally only defined in two dimensions,
the Delaunay triangulation can also be used for sample sets in higher dimensions. In 3D
for example, it is in fact a tetrahedralization, with the condition that the circumsphere of
each tetrahedron does not contain any other of the sample points. The uniqueness criteria is
therefore extended to no five points being cospherical [25].

Some of the first surface reconstruction algorithms such as tangent plane estimation [27]
or alpha shape [28] made use of the geometrical properties of the Delaunay triangulation
as an auxiliary data structure for the reconstruction. The Crust algorithm by Amenta et al.
was the first Delaunay triangulation based algorithm with a theoretical guarantee on the
reconstruction result, given a high enough sampling density [29, 30, 26].

2.3.2. Live reconstruction

Most surface reconstruction algorithms aim to improve the quality of the reconstruction as
much as possible, with the required computation time and hardware being less important.
While this makes them unusable in real-time or near-real-time scenarios, there are some
approaches towards live reconstruction of the environment [31].

8

2. Related Work

Figure 2.4.: Left: a sample curve. Right: The Delaunay Triangulation for the given sample
curve [26]. Note that the Delaunay triangulation will always span the convex hull
of all sample points.

The Microsoft Kinect enabled a lot of new developments in the field of surface recon-
struction, as it made a depth sensor with decent quality available to everybody for a low
price. As an example, KinectFusion uses the depth data provided by the sensor to track
the Kinect’s movement and reconstruct a 3D mesh representation of the physical scene in
real-time. Despite the impressive results the system was able to achieve, it relies on the
input of a depth sensor and is therefore not suitable to be used on consumer smartphones.
KinectFusion is also optimized to utilize the parallel computation of a desktop GPU, which
would be way too expensive for current smartphone hardware [32].

In 2010, Newcombe and Davison presented their system capable of live dense reconstruction
with just a single moving camera. They used a parallel tracking and mapping system to
calculate the camera’s pose and extract visual feature points from the scene. Those feature
points were used to generate dense depth maps which could then be merged into the actual
scene reconstruction. In contrast to KinectFusion, this system uses only a single monoscopic
camera, as it can now be found in every modern smartphone. However, the computations
needed for the live reconstruction of the scene also required a high-end desktop computer
with multiple dedicated graphics cards, making it impossible to run on mobile hardware [33].

9

3. Reconstruction Pipeline

In this chapter, a pipeline for surface reconstruction using mobile AR tracking data is
proposed, including a description of the algorithms that were used for the implementation.
It was observed in early testing, that the raw tracking data is not dense enough to allow a
precise reconstruction of the real world. Therefore the proposed system is limited to the case
of a tabletop scene with multiple separated objects on the table. Those objects can then be
used as geometry in the final application. As an input, it takes the point clouds of visual
features as they were perceived by the Mobile AR framework over multiple seconds. Those
points first get processed to improve the sampling quality. The resulting point cloud is then
clustered into multiple smaller point clouds that each represent a single object. Those clusters
are each triangulated to obtain mesh geometry that can be used in a game environment.

3.1. Aquiring the Point Cloud

The first step of the reconstruction is accessing the point cloud it uses as input. This point
cloud is the set of 3D feature points as they are detected by the Visual-Inertial Odometry
system of the used Mobile AR SDK (see 2.1.1). There are around 100-200 of those points
detected per frame, depending on the exact scene in front of the camera. The points are
scattered over the whole scene, making the point cloud way too sparse to be directly used as a
representation of the real scene. Therefore it is necessary to process the input data in order to
increase the quality and quantity of the points. Each point is described by a unique identifier,
henceforth referenced as the pointID, the coordinates in 3D space (x, y, z) at which location the
point was perceived by the VIO system, and a confidence value indicating the system’s degree
of certainty that the point coordinates are correct.

ARCore allows acquiring a copy of the latest point cloud each frame. Before the data for the
reconstruction can actually be recorded, the table plane should be selected using the SDK’s
built-in plane detection. According to the tabletop scenario, this plane is used to define the
playing area in which objects should be reconstructed. During a recording phase, the point
cloud is acquired on a frame basis. Each point is checked wether it is positioned above the
selected table plane or not to filter out points in the background that are not relevant for the
reconstruction. The remaining points are added to an array and saved until the end of the
recording phase to be then further processed.

10

3. Reconstruction Pipeline

3.2. Point Cloud Processing

After the data recording is finished, the sampled point cloud is processed to increase its
quality and precision. As the scene was scanned for multiple seconds, the visual features were
also detected multiple times. The points captured in different frames that are representing
the same visual features also share the same point ID. Therefore it is possible to combine
all samples with the same point ID into a single point with higher precision than the actual
samples themselves. This processing needs to be done for every point ID independently, so it
can be sped up by utilizing the multiple threads of modern smartphone processors. Therefore
the array containing the recorded data is split into individual arrays for each point ID.

Algorithm 1: Combine multiple samples of one feature into a single one
input : Data: The points that should be processed
output : A single point with higher precision than the input points
foreach Point ∈ Data do

if Point con f idence < Con f idenceThreshold then
Remove Point from Data

end
end
avgLocation← CalculateWeightedAverage()
while maximum distance of Point from avgLocation > DistanceThreshold do

Remove Point from Data
avgLocation← CalculateWeightedAverage()

end
if Data.Length >= MinSamples then

return avgLocation
end

Function CalculateWeightedAverage(Data):
return (∑Data con f idence · location)/ ∑Data con f idence

Algorithm 1 is run for each of those arrays. The algorithm takes the point data array as
input and requires the 3 parameters ConfidenceThreshold, MinSamples, and DistanceThreshold.
In a first step, all points with confidence value below the ConfidenceThreshold are removed,
as too low confidence values can have negative impact on the results. Next, the weighted
arithmetic mean of the point locations with their respective confidence values as weights is
calculated according to equation 3.1. The reason for this is that the points with the same ID
are not detected at the exact same location every frame due to inaccuracies in the VIO system.

avgLocation =
∑p∈Points p.con f idence · p.location

∑p∈Points p.con f idence
(3.1)

It was observed, however, that sometimes a feature point is detected at two completely

11

3. Reconstruction Pipeline

different locations, possibly multiple meters apart from each other. Calculating the weighted
average of points with such a huge difference will result in a location somewhere in between
the two measurements, that is clearly incorrect and does not represent the originally detected
feature. Therefore the algorithm removes points from the calculation that are too far apart
from the weighted average. This is done by first finding the point with the greatest distance
to the beforehand calculated weighted average location. If this distance is smaller or equal
than the DistanceThreshold, the algorithm returns the weighted average as new location for the
current PointID and terminates. If the distance instead is greater than the DistanceThreshold,
the point being too far away is removed and the weighted average is recalculated for the
remaining points. These two steps of finding the point with the greatest distance and
potentially removing it are repeated until all remaining points lie within the DistanceThreshold
of the average. Finally, the MinSamples parameter is used to filter out points with too few
samples to reduce the number of noisy points in the remaining reconstruction pipeline.

3.3. Clustering

For the next step, the point cloud that resulted from the processing algorithm needs to
be clustered into smaller point clouds. The clustering of data is a well-known problem in
computer science with a multitude of algorithms developed. In this thesis, the Density-Based-
Spatial-Clustering-With-Noise algorithm [34], also known as DBSCAN, was implemented.
DBSCAN was designed to detect clusters with arbitrary shapes where the data points have a
high density and filters out noise points that do not fit well enough into any cluster. As the
objects on the table in our scenario are clearly separated from each other, a density-based
approach can reliably produce very good results. Also in contrast to other popular clustering
algorithms such as k-means clustering, DBSCAN does not need to know the number of
clusters beforehand in order to result in a correct clustering, which is important as the number
of objects on the table should be flexible.

The DBSCAN algorithm is described in algorithm 2. It takes an array of points in 3D space
as input, as well as the parameters ε and MinPoints. The ε parameter is used to define the
so-called Eps-neighbourhood of a point P, i.e. the set with all points including P that lie within
distance <= ε from P. The MinPoints parameter sets the minimum number of points that can
form a cluster and is also important for the distinction of the different point classes used by
the algorithm. Points are classified as either core points, border points, or noise. Core points are
those points with at least MinPoints points in their Eps-neighbourhood. Border points have
an Eps-neighbourhood that is smaller than MinPoints, but include at least one core point. As
the name says, border points form the border of a cluster, as they are still close enough to the
core to count as part of the cluster, but there are not enough other points to further extend
the cluster. Noise is used for all points that are neither core nor border points, so either single
points with no other points nearby or small clusters with fewer points than MinPoints, so they
are not seen as a cluster by the algorithm.

The algorithm iterates over all input points. For a point P that has not been visited before,
the Eps-neighbourhood is calculated. If P has more than MinPoints neighbours, a new cluster is

12

3. Reconstruction Pipeline

Algorithm 2: Density-Based Spatial Clustering with Noise
input : Data: Array containing the point cloud to be clustered
output : Clusters: Array of clusters
foreach Point ∈ Data do

if Point not visited then
Neighbours← get all points in radius eps around Point
if Neighbours.Length >= MinPoints then

Cluster C ← ExpandCluster(C, P, Neighbours)
Add C to Clusters

else
mark P Noise
mark P visited

end
end

end
return Clusters

Function ExpandCluster(Cluster C, Point P, Point[] Neighbours):
mark P visited
Add P to C
Seeds← Neighbours
foreach S ∈ Seeds do

if S not visited then
N ← get all points in radius eps around S
if N.Length >= MinPoints then

Add S to C /* S gets new core point */
Add N to Seeds

end
end
if S = Noise then

mark S visited
Add S to C /* S is now a border point */

end
end
return C

generated with P as a core point, else P is classified as Noise. The cluster is then expanded
with all of the neighbours of P. If a neighbour itself has enough neighbours to count as a
core point, its neighbours are also added. This process propagates until all points of that
cluster are found. If a point is found while expanding a cluster that was formerly classified as
Noise, because of too few neighbours, it is now considered a border point of that cluster. The

13

3. Reconstruction Pipeline

algorithm continues creating and expanding new clusters until all points have been visited
and are either part of a cluster or Noise.

3.4. Mesh Generation

The final step in the reconstruction pipeline is the triangulation of the point clusters to obtain
mesh geometry. As the literature research regarding the topic of surface reconstruction
(see 2.3) has shown, most triangulation algorithms are not suitable for the given problem.
They either rely on additional information about the point cloud such as surface normals,
which can not be obtained from the Mobile AR tracking data, or they take a very long
computation time in order to improve the quality of the reconstruction results. Even those
solutions achieving real-time performance rely on Desktop-PC hardware to do the heavy
computational tasks, so they will most likely not work on a smartphone, especially not in
real-time. However, a lot of the algorithms use the geometrical properties of the Delaunay
triangulation as a base for the reconstruction. Such algorithms usually include one or more
refinement steps to achieve better results and further improve the quality of the generated
mesh, but due to the input data already being sparse and inaccurate, such a refinement is
not really necessary as it probably would not be worth the extra computation time. For
these reasons and to limit the complexity of the implementation, the Delaunay triangulation
without any additional refinements was used to triangulate the previously computed clusters.

The Delaunay triangulation can be easily calculated with algorithm 3, which is widely
known as Watson’s algorithm [25]. As it was mentioned in 2.3.1, calculating the Delaunay
triangulation for a set of points in 3 dimensions results in an array of tetrahedra. The only
input the algorithm needs is the array of points to triangulate, which are the points of one of
the previously computed clusters in our case. As a starting step, a so-called super-tetrahedron is
added, that has to be large enough to contain all input points. The points are then inserted one
by one, and a new valid Delaunay triangulation for the already inserted points is generated.
Each time a new point is added, all existing tetrahedra are checked, if the new point is
contained within their circumsphere and thereby violating the Delaunay property. If this
is the case, that tetrahedron is no longer valid and needs to be removed. Removing those
tetrahedra results in a polyhedral hole in the triangulation. The border faces of this hole,
i.e. those triangles that are not shared by another of the invalid tetrahedra, are then used to
create a new tetrahedron with the newly inserted point. After this process, the triangulation
is valid again and the next point can be inserted.

After obtaining the array of tetrahedra satisfying the Delaunay condition, the actual triangles
that are forming the mesh geometry need to be extracted. Each tetrahedron is made up by 4
triangle faces, but many of those triangles would lie inside the final mesh and are thus not
needed for a solid mesh. The only triangles needed are the outer triangles spanning the point
cloud. Due to the use of an initial super-tetrahedron, all such border triangles are part of a
tetrahedron with the fourth point being a vertex of the super-tetrahedron. That means by
iterating over all tetrahedra containing exactly one vertex of the super-tetrahedron and saving
the triangle opposing that vertex, an array with the actual mesh triangles can be obtained.

14

3. Reconstruction Pipeline

Algorithm 3: Computing the 3-dimensional Delaunay triangulation
input : Data: Array containing the points of one cluster
output : Tetrahedra: Array of tetrahedra
Add super-tetrahedron to Tetrahedra
foreach Point ∈ Data do

Tetrahedron[] invalidTetrahedra
foreach T ∈ Tetrahedra do

if Point is in circumsphere of T then
Add T to invalidTetrahedra

end
end
Triangle[] polyhedron
foreach T ∈ invalidTetrahedra do

foreach Triangle ∈ T do
if Triangle is not shared by another tetrahedron in invalidTetrahedra then

Add Triangle to polyhedron
end

end
end
Remove invalidTetrahedra from Tetrahedra foreach Triangle ∈ polyhedron do

newTetrahedron ← Triangle + Point Add newTetrahedron to Tetrahedra
end

end

In addition to vertices and triangles, meshes in computer graphics usually also make use
of vertex normals for topics such as collision resolution or shading. Let v1, v2 and v3 be the
triangle vertices and v4 the vertex of the super-tetrahedron, forming a Delaunay tetrahedron
with the given triangle. Then the triangle’s unsigned surface normal # »nu can be calculated
using equation 3.2.

»nu =
»v1v2 × # »v1v3

| # »v1v2 × # »v1v3|
(3.2)

#»n = # »nu only holds true, if v1, v2 and v3 are ordered clockwise when looking down onto
the triangle. As the ordering of the points is not known beforehand, the correct direction
of the normal can be calculated with regard to the fourth tetrahedron vertex. According to
the initial condition of the super-tetrahedron spanning all other points, v4 always lies on the
outer side of the triangle. Thereby #»n must roughly point in the same direction as # »v1v4, i.e.
the angle between the vectors must be smaller than 90◦. The angle between two vectors can
be computed using the dot product, with positive values indicating an angle that is smaller
than 90◦and negative values indicating an angle greater than 90◦. A value of 0 would mean
that the angle is exactly 90◦. However, this is not possible, as v4 needed to lie on the same

15

3. Reconstruction Pipeline

plane as the triangle for this to happen and hence the tetrahedron would not be valid in the
first place. So the actual triangle normal can be calculated using equation 3.3.

#»n = # »nu · sign(# »nu • # »v1v4) (3.3)

It is important to note, however, that this only holds true for left-handed coordinate systems
as they are usually used in computer graphics and was used in the implementation of this
thesis. In a right-handed coordinate system, the result of the vector cross product is flipped
and thereby also #»n is flipped. So in this case #»n = # »nu is correct, if v1, v2 and v3 are ordered
counter-clockwise, and − # »nu is the correct normal if the vertices are ordered clockwise.

After calculating the normal vectors for all triangles, they can be used to obtain approximate
vertex normals. The direction of the normal for vertex vi is the arithmetic mean of the normals
of each triangle T|vi ∈ T.

This reconstruction step results in a set of vertices, triangles and vertex normals, which
can then be used in the implementation to generate mesh geometry at the locations of the
scanned and reconstructed objects on the table. As ordinary mesh assets, these meshes can be
used for any kind of gameplay interaction.

16

4. Implementation

This chapter describes the Android application that was implemented for developing and
testing the proposed reconstruction pipeline. The application was implemented using Epic
Games’ Unreal Engine [35] in version 4.22, the latest at the time of writing. Unreal Engine
offers native integration of ARCore and ARKit, including a unified AR Framework, making it
easy to switch between the two SDKs. Furthermore, Unreal Engine supports building apps
targeting mobile platforms, making the development process streamlined and allowing the
developer to focus on the actual implementation instead of the building pipeline.

4.1. Application

The application is based on the Handheld AR template that is provided by Epic Games as
a part of the engine. The template already handles the basic initialization for ARCore and
ARKit so it can be built and tested on the device without further setup. The template provides
some default functionality to demonstrate the AR SDK’s capabilities. The user can tap on any
surface that was detected and spawn simple virtual objects such as spheres or cones on top of
them. There are some useful debug functions included, such as showing detected planes, the
origin of the tracked AR world, or printing information about the current light estimation.
The camera image is mirrored on the Skysphere behind the virtual content so the virtual
objects appear to be part of the real world. However, most of these template functions were
disabled, as they were not necessary for testing the proposed reconstruction system. Only the
camera mirroring was not altered, as this is an essential part for every video-seethrough AR
application, as they are found on mobile phones.

After launching the app, the currently detected visual feature points and the detected
planes are rendered automatically. Every frame, this information is obtained from the AR
SDK and the rendering data is updated accordingly. In this state, it can clearly be seen that
the user has to move the phone around for more features to be detected. Before he can
continue in the application, the user needs to select the plane he wants to use as table plane
for the reconstruction pipeline. After selecting a plane by tapping on it, all other planes are
hidden to remove visual clutter.

A simple main menu exists to control the application’s basic functionality. Within this
menu, the user can record the detected visual features as data for the reconstruction, write
the recorded data to a file, and actually start the reconstruction pipeline after data has been
recorded. There is also a button to start the sample game that was implemented to showcase
the reconstruction results. The sample game is covered in depth in section 4.3.

While recording the data, the point cloud of feature points is obtained from ARCore every

17

4. Implementation

frame. Those features which lie above the selected table plane are saved so they can later
be processed. After the recording is finished, the complete recorded data can be saved as a
.csv file on the phone, so in the case of any inconsistencies, the data can be transferred to a
PC to track down potential bugs. For this purpose, it is also possible to start and test the
application on a PC itself and load such a file with recorded data, as it can’t be generated on
the PC directly. After recording or importing the data, the actual reconstruction process can
be started, as it is described in chapter 3.

4.1.1. Configuration Menu

Also accessable from the main menu, a configuration menu has been implemented. In this
menu the user can adjust the parameters ConfidenceThreshold, MinSamples, DistanceThreshold,
Epsilon and MinPoints that are used for the algorithms 1 and 2. The ConfidenceThreshold can
be controlled by a slider to set any value between 0 and 1. The other parameters can be
set directly via a text input field. MinSamples and MinPoints are then sanitized as integers,
DistanceThreshold and Epsilon as floating point numbers.

As the recorded data is saved even after the reconstruction is finished, the reconstruction
can easily be recomputed after making changes to the parameters, hence altering the results.
By repeating this process we tested the parameters and extrapolated default values which
provided good results in the testing environment. Those default values can be seen in
table 4.1.

Table 4.1.: The extrapolated default values for the reconstruction parameters with Confi-
denceThreshold c, MinSamples Smin, DistanceThreshold d, Epsilon ε, and Min-
Points Pmin.

c Smin d ε Pmin

0.4 5 3.0 cm 3.0 cm 5

The ConfidenceThreshold should not be set higher than 0.4, except when there are a lot data
points present, e.g. due to a long recording time. In a short recording, there are usually
not many points with relatively high confidence, as the VIO system itself takes some time
to gain enough confidence about the real world. Setting this parameter too high would
produce significantly less sample points which would result in worse reconstruction results
and might even affect the correct clustering of the points. This should also be kept in mind
for MinSamples, as some actually useful samples might be discarded if it is set too high.
Setting it too low, on the other hand, would create a lot of noise in the data, as points would
be included that just appeared for a very short time and are therefore most likely not an
important part of the scanned object.

The DistanceThreshold was not very easy to test and set to a good value. The error of a
point being detected at 2 very distinct locations is not reproducible and only appears sparsely.
However, it should be mainly dependent on the margin of error of the VIO system. If the
system introduces a lot of locational drift due to inertial measurement errors, it should be

18

4. Implementation

considered to set this parameter to a higher value. There were no noticeable different results
observed with higher values than 3 cm, only with values smaller than 2 cm, where many
more points were filtered out.

Epsilon is probably the parameter that needs to be adjusted the most, as it highly depends
on the objects and the scene that is scanned. The objects’ feature points need to be dense
enough, else the clustering algorithm might split an object into 2 parts. On the other hand,
the distance between the objects needs to be greater than Epsilon, otherwise those objects will
be merged into a single one, that also spans the gap between the real objects. The given value
of 3 cm achieved good results for a setup with few objects and enough space in between.
However, on a more crowded table it often happened, that the features of multiple objects got
merged into one big point cloud.

Finally, MinPoints needs to be set to at least 4 to avoid the generation of clusters with less
than 4 points in them, as for such clusters no valid triangulation could be achieved. With the
given value there are still some very small clusters of actual noise points created and then
triangulated, but they can be easily filtered out in case they have a negative impact. Setting
the parameter to a higher value, however, leads to missing information in the reconstruction
for objects with a rather sparse sampling density, due to many points being discarded as
noise.

4.1.2. Mesh Collision Testing

The collisions of the generated meshes are handled by Unreal Engine’s internal physics engine.
In order to test the collision, virtual balls can be thrown via another button in the main menu.
The balls are spawned at the location of the camera and are thrown along the camera view
direction. As they are affected by gravity, the balls fly in a ballistic curve away from the
camera. When hitting the reconstructed geometry, the balls will bounce off according to their
current velocity vector and the object’s surface normal on the point of impact.

4.2. System

Unreal Engine offers two different ways of programming game logic: C++ as a traditional
programming language and the Blueprints Visual Scripting system. With Blueprints gameplay
elements can be implemented using a node-based interface. Blueprints scripts are able to
access most of the engine’s gameplay scripting API. They are compiled and executed in a
special virtual machine, allowing faster iteration times than traditional code at the cost of
computation speed. This makes Blueprints the perfect choice for prototyping and light game
logic. Our application was developed in a hybrid approach of Blueprints and native code.
Blueprints were used for high-level application logic and all User Interface elements. The
data recording and reconstruction algorithms were completely implemented in C++, along
with all file logging functionality. This was done due to the higher performance C++ code
can offer in comparison to Blueprints, along with the fact that Unreal Engine’s asynchronous
and multi-threaded computation is only accessible via the C++ API.

19

4. Implementation

4.2.1. Multi-Threaded Computation

Usually in a game engine, all code is executed inside the main game thread to assure correct
sequential execution of all game logic. This means that executing a function that takes longer
than the time of one frame to complete will halt the remaining game logic and rendering until
the function is finished. This can cause anything from small hitches up to the game actually
appearing to freeze, which is not desirable as it impacts the user experience negatively. The
solution to this problem is to run such complex functions on a different thread than the game
thread, so game logic and rendering can continue as usual. This also needs to be done for
the various calculation steps of the reconstruction pipeline. As the evaluation in chapter 5
shows, the individual processing steps can sometimes take multiple seconds to complete.
Even the lowest measured times are a multitude larger than one 60th of a second which is the
optimal frame time for a fluent gaming experience [36]. Therefore the whole reconstruction
functionality should be run in a separated thread. This also allows to utilize multiple threads
and make use of a multi-threaded system to speed up the reconstruction.

In Unreal Engine, such asynchronous code can be written via the use of Async Tasks [37]. To
utilize them, a child class of an AsyncTask needs to be created. In this child class, the logic to
be run asynchronously and the input parameters needed to initialize the class can be defined.
During runtime, an arbitrary amount of these tasks can be instantiated. A new thread is
created for each of those tasks and the engine internally handles assigning the necessary
computing power to them. Once the computation of a task is done, there is a callback to the
game thread, so its results can then be used.

In our application, all steps of the reconstruction are computed in Async Tasks so they do
not block the game thread, but only the triangulation step creates multiple tasks to run in
multiple threads in parallel. As it was mentioned in chapter 3, the point cloud processing
could as well make use of a multi-threaded implementation. However, it does not take very
long compared to the other steps anyway, so the small performance gains would not be worth
the overcomplication induced by ensuring the completion of every single task before the next
step can be started. Such an insurance is not necessary for the triangulation step as there is no
need to wait for the other tasks to finish. Instead, each generated mesh can just be spawned
once its task is done.

4.2.2. Procedural Mesh Generation

The established workflow for getting a mesh asset into the engine is via the use of special file
types such as .fbx. Game Artists create the needed meshes in a 3D modeling program such as
Blender or Maya and export a .fbx file from there. These files can be imported into the game
engine to later use the mesh in the game. However, to create and load meshes during runtime,
once the application is built and deployed to the device, a more dynamic solution needs to be
used. For this purpose, Unreal Engine offers another way of creating meshes at runtime in
the form of the Procedural Mesh Component [38]. As the name implies, this component can be
used to create a procedural mesh. The created mesh is then asynchronously processed by the
engine to generate collision information for it.

20

4. Implementation

To generate a mesh at runtime with this component it requires an array of vertex locations
and an array of triangles. The triangle array’s length needs to be a multiple of 3, as every
3 consecutive entries in the array refer to the vertex indices that define a triangle. The
component can also take more optional information in the form of vertex normals, texture
coordinates, vertex colors, and tangents. All those optional information is supplied for each
vertex, so their respective array’s lengths need to match the number of vertices, else it would
be completely discarded and default values are used instead. In our implementation, only the
vertex normals (see section 3.4) were supplied. As the mesh’s purpose is to provide physical
interaction and not to be rendered, it is not necessary to use either vertex colors or texture
coordinates for its generation. The vertex tangents would only be used for some special
shaders such as bump-mapping shaders, so they were also omitted.

4.2.3. Occlusion

To create the illusion of virtual objects being part of the real world, the camera image is
rendered on the Skysphere as a background to the virtual scene. By this approach, however,
virtual objects are always rendered on top of the real objects, even if they are actually
positioned behind them. As already mentioned in section 2.2, this can have a negative impact
on the user’s immersion and introduces confusion due to missing occlusion. The generated
meshes can be used to mitigate this problem by correctly occluding virtual objects behind the
real ones. To achieve this, a custom occlusion material was implemented. Figure 4.1 shows
this material inside Unreal Engine’s node-based material editor. The material accesses the
camera image that is also used as the scene background and displays it at the screen position
of the generated mesh. To be indistinguishable from the background image, the material is
set to not react to the scene lighting.

Figure 4.1.: The occlusion material inside Unreal Engine’s Material Editor.

Applying this material to a mesh in the AR scene makes it look invisible, as it is rendered
the exact same way as the background. In contrast to the background, however, the mesh still
has a location in the scene and is rendered on top of other virtual objects that are positioned
behind it, thereby occluding them with the camera image of the real world. Given that the
reconstructed mesh exactly matches the topology of the real object, the use of this material

21

4. Implementation

can create the illusion of the real object occluding virtual objects. An example of the result
when using this material can be seen in figure 4.2.

Figure 4.2.: The occlusion material is used to partially occlude the archer with the background
image, making him appear to stand behind the cube.

For debugging purposes a second material has been created, that just displays the meshes
in a plain white color. This material is set to respond to lighting, so triangles are rendered
with different brightness levels according to their surface normals. Thereby it is easier to
recognize the mesh topology when using this material. A button in the application’s main
menu can be clicked to change between these two materials.

4.3. Sample Game

A sample game was implemented to showcase the usage of the proposed object reconstruction
pipeline. The game is a rudimentary member of the Artillery genre. It is a turn-based
multiplayer game for two players on a single phone. Each player controls an archer that can
move freely around on the table and shoot projectiles. The objects that were placed on the
table need to be navigated around and can be used as cover from enemy projectiles. Detailed
Screenshots showing the game can be found in appendix B.1.

When starting the game, the first player needs to choose a starting location for his archer.
This can be done by tapping anywhere on the table plane. After the soldier is spawned, the
player is prompted to pass the phone on to the second player. He needs to select a starting
location as well.

After both players have spawned their archers, the actual game starts and it is player 1’s
turn. A player has three actions available during his turn: Moving, Shooting, and ending

22

4. Implementation

his turn. The player can move his archer around by tapping anywhere on the table plane.
The archer will then move towards the tapped location in a straight line. If he encounters an
obstacle on the way, for example one of the generated meshes or the other player, he stops
short of his goal. To shoot an arrow, the player needs to aim with his phone. The archer will
always aim towards the intersection point of the table plane and the camera view direction.
In addition to aiming, the player needs to hold down the "Fire" button to control the launch
strength of the arrow, the arrow fires on release. Next to the Fire button is an indication of the
current strength. While charging, a prediction for the first few centimeters of the projectile
path is also shown in form of a dotted line. After shooting, the full projectile path is shown
and the hit result is displayed via a text message.

Figure 4.3.: A Screenshot from within the sample game with both players facing each other
next to the reconstructed objects on the table. In the upper left corner the player
is informed about his successful hit. The projectile path is shown in the form of
the big red dots.

The total distance a player can move per turn is limited, and he can only fire a single arrow,
so each action should be planned carefully. The remaining movement distance is displayed in
the top left corner of the screen and the Fire button changes its color to red once the shot is
fired. The intended way of playing with these limitations is to first walk out of cover, shoot at
the enemy and then walk back into cover. Due to the movement restriction players are forced
into worse positions after taking a good shot, which should ultimately prevent a stalemate of
both players not being able to hit one another without standing in the open after their turn.

23

5. Evaluation

This chapter describes the results of the implemented reconstruction pipeline. Furthermore,
the quality of the reconstruction and the performance of the various processing steps are
measured and analyzed. Finally, the given results are discussed with regard to the strengths
and weaknesses of the proposed system. Performance measurements in this chapter were
taken on a Huawei Honor 10 running Android 9.0 Pie. The smartphone is powered by a
HiSilicon Kirin 970 CPU (4x 2.4 GHz and 4x1.8 GHz), 4 GB RAM and an ARM-Mali-G72-MP12
GPU, which represents similar performance as most last-generation flagship smartphones at
the time of writing.

5.1. Evaluation Method

The evaluation of surface reconstruction techniques can be quite challenging. One part of most
evaluations is measuring the performance of the system. This can be done by reconstructing
the surface from a specific data set and measuring the time the algorithm needs. Repeating
this step with other algorithms as well results in easily comparable performance numbers.
However, as mentioned before, the actual performance of most surface reconstruction systems
only plays a subsidiary role. The more important property to evaluate is the quality of the
reconstructed mesh, i.e. how closely the mesh matches the real object.

Due to the broad variety in surface reconstruction approaches and their differentiating
application areas, there is no standardized way of measuring this quality. Probably the most
common and obvious method is to directly compare the reconstruction result to the surface
from which the input data was obtained [21]. However, with most data sets this cannot be
done easily, as there is no correct digital representation of the real-world object which could
be used to compare the own reconstruction results to. Other approaches to evaluate the
reconstruction quality completely omit an automatic measure for it. Instead, similar to the
performance evaluation, they use the same data set to run multiple reconstruction algorithms
on it [39]. The results are then compared visually to identify the areas where one or the other
approach provided better results.

However, such approaches to the evaluation as they are described above are not feasible to
be applied to our proposed reconstruction pipeline. Due to the limited scanning density of
the mobile AR point cloud and the device’s limited computation power, our results should
not be directly compared to those of other algorithms. Instead, we decided to adopt the
general evaluation criteria of quality and performance and defined our own measures for
them. In the following, the method of acquiring those measurements is described in detail.

To measure the quality of the reconstruction, we decided to use our application to recon-

24

5. Evaluation

struct a single object with simple geometric properties. Due to the object’s simple geometry it
is easy to obtain a correct digital representation of the object to compare our reconstruction
results to. This digital representation can also be referred to as the ground-truth. After the
object has been scanned and reconstructed on the smartphone, the data was saved to the
device and then transferred to a PC. Inside Unreal Engine, this data was loaded next to the
object’s ground-truth mesh. Both meshes were then placed at the same location and aligned
to the coordinate axis so they could be compared by a script that was written for that purpose.
The script fires a bunch of raytraces along the direction of one of the coordinate axis against
both meshes, measuring the distance between them. The raytraces are ordered in a grid with
a spacing of 0.1 cm between each of them. Such a grid of raytraces is fired a total of six times,
twice for each coordinate axis, and for each axis in positive and negative direction respectively.
By recording the distance results of all raytraces that hit both meshes, the mean and the
median of the absolute distance between the reconstruction result and the ground-truth as
well as the standard deviation can be calculated.

The performance measure was split into two parts. The measurements were conducted
on the afore-mentioned smartphone, so the obtained results are significant for a possible
consumer application. First, the same object that was used for quality measures was recon-
structed, recording the time needed for each calculation step. Additional statistics regarding
the size of the input and output data for each step were gathered. These statistics include the
number of processed points, the size of the cluster for the sample object and the number of
triangles in the final mesh. In the second part of the performance evaluation, a more complex
scene consisting of multiple objects on a table was scanned and reconstructed. Mostly the
same data as in the first step was recorded, the differences are described in the following.
Due to the triangulation task being run in parallel, time and triangle count are not measured
for each object individually, but rather the time until all objects were triangulated as well
as the number of reconstructed objects, as those numbers should be more meaningful for
the given scenario. It was observed that in most cases a single cluster took a lot longer to
triangulate than the rest, hence the number of points in that cluster is also recorded.

The tests were conducted on a test setup under preferably good conditions. The table was
positioned in a brightly lit room and covered by a white table cloth with a checked pattern,
to offer good contrast and a decent amount of feature points for the VIO system and plane
detection to work well. Also, the test objects were selected by the criteria to offer many feature
points themselves to ensure that enough data for the reconstruction can be collected.

5.2. Results and Discussion

Our object of choice for the quality evaluation was a Rubik’s cube. As it is demonstrated
in this section, our system is very limited in the amount of small details it can capture.
Therefore the rounded corners and small gaps on the sides are ignored and the Rubik’s Cube
is approximated with an actual cube. For the quality evaluation, the cube’s edge length was
measured to be 5.6 cm. This length was then used to scale a cube mesh in the engine to match
the size of the real one. Figure 5.1 showcases an example reconstruction result for the Rubik’s

25

5. Evaluation

Cube. Before the reconstruction, the cube was scanned for around 3-5 seconds, which was
long enough to move the phone around the cube once to obtain feature points from all sides.
Longer scanning times resulted in a lot of noisy points being captured, which sometimes also
altered the shape of the reconstructed cube.

Figure 5.1.: A reconstructed mesh for the Rubik’s Cube. a) Front view. b) Side view. c) Back
view. d) Top view.

For the performance measurements, a more complex scene has been reconstructed. Multiple
different objects have been placed on the table. The exact scene that was used can be seen
in figure 5.2, along with screenshots of the reconstruction result. This time, the scene was
scanned for about 10 seconds while moving the phone slowly around the table once. In
figure 5.2 d) a lot of extra meshes were reconstructed. This was observed to have happened
due to the table plane being initially detected too low and therefore many feature points that
actually lie on the table were recorded as being above the plane. Those feature points then

26

5. Evaluation

satisfied the MinPoints condition and valid clusters were formed. Therefore these noisy extra
objects were reconstructed.

Those feature points were then enough to form valid clusters with regard to the clustering
parameters and be reconstructed themselves.

Figure 5.2.: Reconstruction result for a scene with multiple objects. a) The complete scene
setup. b) Front view of the reconstructed scene. c) Back view of the reconstructed
scene. d) Example for a very noisy reconstruction result.

5.2.1. Quality

For the quality measurements, the process described in 5.1 was repeated a few times to obtain
a variety of different scans of the same scene. In addition, each recorded point cloud was
reconstructed three times with the confidenceThreshold parameters of 0.4, 0.6 and 0.8, as this
parameter strongly influences the number of points in the point cloud after the processing
step. Please refer to appendix A.1 for the full table with all evaluation data.

To make a statement about the reconstruction quality based on the measured metrics, they
first need to be set in relation to the reconstructed object. The Rubik’s Cube that was used
has an edge length of 5.6 cm. As the distance measures are taken from all sides, a mean
distance of 1.0 cm means, that the reconstructed mesh could be a cube with edge length
7.6 cm. In the best measurements, the mean distance was as low as 0.6 cm, in the worst case
up to 2 cm. This confirms the visual impression, that the reconstructed mesh is not a very
accurate representation of the real object. It should also be noted, that the standard deviation
tends to be quite large in relation to the mean distance. This means, that the actual measured
distances fluctuate a lot around the mean distance, so the reconstruction might be pretty
accurate in some regions, while it is extremely far from the real object in others. The high

27

5. Evaluation

Table 5.1.: The results of the quality evaluation for the Rubik’s Cube with mean distance
between real object and reconstruction d (in cm), median distance d̃ (in cm) and
standard deviation of the distance measurements σ (in cm).

d d̃ σ

1 0.61 0.60 0.41
2 1.27 1.12 0.89
3 1.82 1.73 1.42
4 1.77 1.29 1.83
5 1.57 1.46 1.18
6 0.80 0.67 0.65
7 0.64 0.61 0.46
8 0.96 0.73 0.89
9 1.33 0.88 1.36

10 1.24 1.19 0.86
11 1.33 1.20 1.11
12 0.67 0.50 0.72
13 1.68 1.41 1.13
14 1.11 0.73 1.12
15 1.24 0.84 1.30
16 1.92 1.66 1.42

standard deviation also indicates, that the reconstructed object is not particularly cubic, but
rather shapeless.

Another observation that is worth pointing out is that the median distance between
the reconstruction and the ground-truth is smaller than the mean distance in all of the
measurement series. This implies that the individual distance measurements are not normally
distributed. Instead, many of the measured distances are actually smaller than the computed
mean, while the distance at a few sample points is a lot larger. This can also be confirmed
visually, as for example the lower-left corner of the mesh seen in figure 5.1 a) is a lot further
away from the cube than other parts of the reconstruction. As the Delaunay triangulation
that is used for the reconstruction always produces the convex hull around the point cloud as
a mesh, those strong outliers can only be located outside the object. Such outliers expand the
mesh in a large area, leading to a tendency of the reconstruction being larger than the real
object instead of smaller. This tendency could also be noticed and confirmed visually during
the evaluation. A smaller reconstruction than the real object can only happen in regions of
the object where the sampling density was too low and hence all feature points in that area
were discarded as noise.

Table 5.2 shows the averaged quality measurements sorted by the three different confidence
threshold values that were used during the evaluation. This data should be taken with a grain
of salt, as the overall sample size for the confidence thresholds was quite low. Nonetheless,
the data shows, that the confidence threshold value of 0.6 provided the most accurate

28

5. Evaluation

Table 5.2.: The averaged results for the different confidence thresholds used for reconstructions
with confidence threshold c and average mean distance between real object and
reconstruction d

c d
0.4 1.31
0.6 1.03
0.8 1.49

reconstruction with a mean distance of about 1.0 cm across the different measurement series.
As the other two values achieved less accurate results, this indicates that there might be a
local minimum of the reconstruction error for a confidence threshold of around 0.6. Note,
however, that this observation stands in contrast to the default value for the confidence
threshold that was extrapolated in section 4.1.1. This discrepancy is probably a result of the
test setup providing more and better feature points than the setup used during development,
raising the need to filter out points more aggressively. Having to adjust the reconstruction
parameters in dependence of the environment and setup in which the application is used
states a substantial problem. While it is no big deal to use the configuration menu for this
purpose during development, in a consumer application the user should not be bothered
with such technical detail for the app to work properly. Therefore it is necessary to design an
efficient way to automatically determine the best parameter values during runtime, instead of
setting them to a fixed value during development.

An important aspect to note is that the proposed system is also highly dependent on the
used mobile AR framework, ARCore in our application. The only input needed for the object
reconstruction is the point cloud of visual features that was detected by the SDK’s internal
VIO system. Due to technical limitations, the VIO system is not able to detect sufficient
feature points on reflective or uniformly colored surfaces, or if the environment is only dimly
lit. In such cases, the system will not be able to produce a good reconstruction of the real
objects, as it just has too few and inaccurate sampling data.

Another issue with ARCore’s VIO system that we encountered were situations where the
room-scale tracking was completely lost for a short amount of time and then recovered at the
wrong location. When this happens after the scene has already been scanned and the objects
reconstructed, an additional locational offset between the real object and its reconstruction
is introduced, leading to completely inaccurate collision and occlusion behavior. Figure 5.3
shows some examples for this offset. These issues primarily occurred after the camera image
was not able to detect any feature points for a few frames, maybe due to its lens being covered,
the camera only capturing a plain white wall, or the application being halted for a short
amount of time, e.g. when taking a screenshot or switching to another application.

While evaluating the reconstruction quality, we also encountered an interesting phe-
nomenon that has the potential to flaw the entire process of using the VIO tracking data
for a better scene understanding. In figure 5.4, the red dots are drawn at the locations of
the currently detected feature points, as they can be accessed from ARCore. According to

29

5. Evaluation

Figure 5.3.: Examples for the real and virtual world being misaligned after AR tracking was
lost for a short amount of time.

Figure 5.4.: The feature points detected by ARCore (red dots) are not located at the location
of the actual visual feature, but slightly offset.

Google’s documentation, the detected feature points are visually distinct points in the camera
image [12]. This statement leads to the assumption, that the feature points in the given image
should be positioned on the locations with the highest contrast, i.e. the corners where the
lines of the table cloth intersect. However, some of the feature points are located amidst the
white squares, a region that can not be described as visually distinct. These offset feature
points appear repeatedly on many of the line intersections, so it is not just a singular error.
We even encountered a similar offset for some of the feature points on the Rubik’s Cube,
where they appeared slightly above or outside the cube, hence causing some inaccuracies in
the reconstruction. We have come up with two possible explanations for these offsets: Either
ARCore detects feature points that are not visible to the human eye, which is fairly unlikely
due to the limited resolution of smartphone cameras, or the location that is saved for the
feature points is not the actual location of the feature but rather some kind of anchor point

30

5. Evaluation

near the feature, that might be needed for internal VIO calculations. If the second explanation
is true, the feature points achieved from ARCore cannot be reliably used for precise scene
reconstruction, as they are not necessarily a part of the real object’s surface. However, this
does not state a big problem for our current reconstruction approach, as it suffers from greater
inaccuracies than those imposed by such offset feature points.

5.2.2. Performance

In the first part of the performance evaluation, the time it takes the system to reconstruct
a single object was measured. For this purpose, the same Rubik’s Cube as before was
used. Table 5.3 shows the time measurements of a few reconstructions and the respective
amount of data that was used. The application was restarted between each of the recorded
measurements.

Table 5.3.: Calculation times for the reconstruction of a single object with point cloud process-
ing time tp (in s), number of processed points NpP, clustering time tC (in s), number
of points in the cluster NPC, triangulation time t∆ (in s), number of triangles N∆

and the total time needed for the reconstruction tΣ (in s). x depicts the mean values
for each column.

tp NpP tC NPC t∆ N∆ tΣ

1 0.9 46 0.1 44 0.6 36 1.6
2 0.1 157 0.9 103 0.15 54 1.15
3 0.2 277 0.28 187 0.9 62 1.38
4 0.22 274 0.22 188 0.37 42 0.81
5 0.1 98 0.15 89 0.78 44 1.03
6 0.12 267 0.1 137 0.28 52 0.5
7 0.2 248 0.7 76 0.11 38 1.01

x 0.26 195 0.35 118 0.46 47 1.07

In most cases, the application took around 1-1.5 seconds to completely reconstruct the cube.
This time frame is short enough to keep the user’s attention inside the application and not
distract him too much due to long loading times. It appears that the triangulation step tends
to take longest, while the point cloud processing is the fastest of the reconstruction steps.

It should be noted, that for each calculation step there were measurements that took an
unusually long time compared to the average time. For the point cloud processing, this
outlier was sample 1, for the clustering samples 2 and 7, and for the triangulation samples 3
and 5. These outliers did not occur in correlation with exceptionally high numbers of input
data, so there might be another reason for such spikes in calculation time. A probable cause
for them could be the use of async tasks (see 4.2.1) to decouple the reconstruction from the
game thread. The other threads that are created for the calculation steps are presumably
run with a lower priority so they do not take up valuable game resources. This might lead
to scheduling issues that further delay the execution of that thread, especially while other

31

5. Evaluation

apps on the phone demand processing time as well. This could be confirmed by repeating
the taken measurements multiple times to rule out any issues with the data sets, as it was
done for some recordings of the complex scene setup in the second part of the performance
evaluation.

The DBSCAN clustering algorithm has a runtime complexity that is slightly higher than
linear [34], while the triangulation algorithm runs in O(N2.5) [25]. In theory, the point cloud
processing algorithm has a worst case complexity of O(N ·m2), with N being the number of
different pointIDs and m the number of samples per point ID. However, the number of input
data stays in the same order of magnitude for all reconstructions, so the complexity is not
as relevant as the actual factor that gets applied to it for each algorithm. Unfortunately, due
to the low sample size, it is not possible to extrapolate any correlation between the size of
the input data and the resulting calculation time for any of the calculation steps. Therefore it
is also not possible to make any further statements about the expected performance of our
application for other reconstructions.

In the second part of the performance evaluation, the time needed to reconstruct the more
complex scene that can be seen in figure 5.2 was measured and analyzed. The results of these
measurements are shown in table 5.4. Some of the data recordings were reconstructed twice
with slightly different clustering parameters to change the number of clusters. As before, the
application was restarted between each of the recordings.

The reconstruction of the complex scene took longer than the reconstruction of a single
object, which should be no surprise due to the fact that more objects have to be reconstructed.
The mean and median values show, that the processing time tp and the clustering time tC
did not change noticeably in comparison to table 5.3. The triangulation time t∆, on the
other hand, increased a lot, taking multiple seconds on average to triangulate all clusters.
Naturally, this also increased the total time needed to reconstruct the scene. On average, the
full reconstruction time tΣ is still low enough to be accepted by the user as necessary and
keep his attention. In the worst cases, however, reconstructing the scene took more than half
a minute. We even experienced one case, where the triangulation algorithm did not terminate
at all, though we were not able to track down the cause for this. These worst case times are
well beyond the time where users will lose their attention and probably uninstall the app
immediately due to the waiting time [40].

As it was already observed with the Rubik’s Cube, sometimes one of the calculation
steps took a significantly longer time than the average. For tp and tC these outliers are
in the same magnitude as they were before despite the far larger datasets, indicating that
the previous assumption of this being a scheduling issue was correct. This assumption is
further strengthened by the recorded times in lines 8 and 9. Both were taken from the same
dataset, with only the clustering parameters being altered between them. The point cloud
processing was the exact same for both reconstructions, but still tp is nearly ten times higher
for measurement number 9.

The same kind of outliers also appeared for t∆, however, the spikes were a lot higher here.
This can easily be seen with the mean t∆ being more than four times higher than the median
t̃∆. The scheduling issue observed for the other calculation steps is probably also at least in

32

5. Evaluation

Table 5.4.: Calculation times for the reconstruction of a sample scene consisting of multiple
objects with dataset number D, point cloud processing time tp (in s), number of
processed points NpP, clustering time tC (in s), number of clusters NC, triangulation
time t∆ (in s), number of points in the cluster that took the longest to triangulate
NPC and the total time needed for the reconstruction tΣ (in s). x depicts the mean
value and x̃ the median value for each column.

D tp NpP tC NC t∆ NPC tΣ

1 1 0.1 1141 0.73 14 0.26 67 1.09
2 2 0.17 2311 0.21 36 6.96 434 7.34
3 3 0.1 1436 0.1 19 1.48 403 1.68
4 3 0.16 1436 0.22 11 1.37 404 1.74
5 4 0.12 1793 0.19 15 1.41 340 1.72
6 4 0.14 1793 0.34 8 35.3 341 35.78
7 5 0.19 1909 0.42 14 21.44 315 22.05
8 6 0.1 1393 0.13 17 12.73 282 12.96
9 6 0.96 1393 0.17 12 0.42 282 1.56

10 7 0.87 929 0.86 8 0.95 199 2.68
11 8 0.11 1029 0.92 10 0.31 178 1.34
12 9 0.25 2409 0.33 42 0.63 333 1.2
13 9 0.31 2409 0.61 27 8.95 431 9.86
14 10 0.1 1313 0.15 11 3.49 348 3.74
15 11 0.11 1424 0.19 15 0.33 345 0.63
16 12 0.12 1475 0.16 14 13.11 307 13.4

x 0.24 1600 0.36 17 6.82 313 7.42
x̃ 0.13 1436 0.21 14 1.44 337 2.21

parts responsible for these spikes, however, as the effect is a lot stronger here, we suspected
that there might be another issue. To investigate this, some datasets with a high triangulation
time were reconstructed multiple times without changing any reconstruction parameters. The
measurements from this test are not included in table 5.4 as they would corrupt the mean and
median calculations, but can be found in appendix A.1. If long calculation times are caused
by a scheduling issue they should be significantly shorter in the repeated reconstructions, as
it was seen with tp before. However, in all of those repeated reconstructions, the triangulation
steps took roughly the same time as in the original measurement, hence indicating that
there is another issue causing the high calculation time in addition to the scheduling issue.
Figure 5.5 shows that extremely high t∆ values only appeared for a large number of points
that were triangulated, but there are also clusters with a high number of points that were
triangulated really fast. These findings lead to the conclusion, that the problem is not bad
scaling of the algorithm with large input data. We rather suspect the existence of some
degenerate cases in the point cloud data where our specific implementation of the Delaunay
triangulation struggles for some reason and takes a lot longer to terminate. Fixing this issue

33

5. Evaluation

Figure 5.5.: The relation between the number of points in a cluster and the resulting triangu-
lation time. Data used from both parts of the performance evaluation.

by reworking the implementation may bring the total reconstruction time for a complex scene
consistently down to about 2-3 seconds, which should be far more acceptable for users than
the currently measured times.

34

6. Conclusion

6.1. Summary

The main goal of this thesis was to enhance the current capabilities of the existing mobile AR
frameworks by generating a more detailed scene understanding that can then be used in a
game environment. This should be achieved without the use of any specialized hardware,
instead only using the internal tracking data of the AR framework. Both of these goals were
achieved, but it has to be kept in mind that the used approach heavily limited the application
area by putting hard constraints on the scene that can be reconstructed. Nonetheless, our
solution should be seen as a proof of concept that a better scene understanding can be
achieved on current smartphone hardware.

For the limited scenario of a tabletop game with a few arbitrary objects on top, our proposed
solution was able to provide a decent approximation of those objects and generate a mesh that
could be used for collision calculation. The reconstructed mesh does not claim to be a realistic
representation of the real object, so the collisions should not be expected to realistically reflect
the real collision behavior as well. Nevertheless, it was demonstrated that the collision can
be used in a beneficial manner for a game scenario. While the sample game that has been
implemented during this thesis was designed to make good use of the collisions, we believe
that it is possible to design other interesting game concepts that utilize the proposed system
as well.

We have also shown that the reconstructed meshes can be used for the occlusion of virtual
content behind real objects. The effect of this occlusion on the immersion of the user is greatly
restricted by reconstruction inaccuracies, as small discrepancies between the shape of the
reconstructed mesh and its real counterpart can easily be seen. However, we believe that
inaccurate occlusion is still better than no occlusion at all, as it represents an additional tool
to play around with while developing an AR application.

The evaluation has shown that the proposed system in its current state is not ready to
be used in an end user application. The optimal reconstruction parameters have been
observed to strongly depend on real world environmental conditions and hence need to be
changed accordingly to achieve good results. Having to control such a technical detail of
the implementation for the application to work properly would surely be overwhelming for
many users and should therefore be avoided.

During the evaluation, it has also become clear that there are two main problems with our
current implementation of the proposed reconstruction pipeline. First, there seems to be an
issue with Unreal Engine’s Async Tasks which we used to realize asynchronous computation.
Probably due to a scheduling issue some calculations take a lot longer than usual, increasing
the total time needed for the reconstruction. The second problem we encountered is that

35

6. Conclusion

our implementation of the Delaunay triangulation takes very long to complete for some
data sets, while it performs well in most other cases of a similar size. If those two issues
appear concurrently, the triangulation of a cluster might take up to several minutes, which
definitively needs to be prevented before using the system in real applications.

6.2. Future Work

While working on this thesis some topics arose that might be approached in the future.
The first and most obvious of those is further development and refinement of the proposed
reconstruction system. In a first step, the given implementation could be reviewed to fix
the critical bugs that were discovered during the evaluation such as the extremely spiking
triangulation times. The evaluation has also shown, that while being able to achieve usable
results, the system in its current state needs a lot of manual adjustment to work properly
in the given environment. A solution for this might be to dynamically determine the best
reconstruction parameters based on the perceived camera image.

To further enhance the current system, each reconstruction step needs to be treated isolated
and optimized individually. Additional analysis of the ARCore feature point cloud might
reveal a better way to process the points to gain a higher precision. Especially the surface
reconstruction algorithm used in this thesis has some problems impacting the quality of the
reconstruction. As the Delaunay triangulation always outputs the convex hull around the
input points, it currently is not possible to reconstruct concave regions, as they often appear
in real-world objects, also a single noise point has the potential to corrupt the reconstruction
result in a big area. Other surface reconstruction techniques can be reviewed and tested with
the given system to see if they are able to achieve better results.

There are also a bunch of other approaches to a better scene understanding that should
be further examined. For the best user experience, it is necessary for future system to omit
the recording step that is required for our proposed solution. Instead, the reconstruction
should run in real-time and dynamically update the mapping of the real world. Such a
system would also be able to achieve a significantly higher quality in the long run as errors
can be corrected automatically. With mobile devices having more and more computation
power being built each each year, real-time reconstruction systems that were previously only
running on high-end desktop hardware may be adapted to work on smartphones as well in
due future.

Finally, Google and Apple are constantly developing updates for their mobile AR frame-
works. Each time they add new features developers and researchers are given new ways and
starting points to further enhance the scene understanding.

36

A. General Addenda

A.1. Evaluation Data

Google Spreadsheet - http://bit.ly/BA_Data

37

http://bit.ly/BA_Data

B. Figures

B.1. Game Screenshots

Figure B.1.: Both players spawned their archer and are hiding behind the reconstructed objects.
Player 2 is prompted to pass the phone back to player 1, whose turn is next.

Figure B.2.: Screenshot while a player is currently shooting. The white dots show the predicted
projectile path for the current launch strength.

38

B. Figures

Figure B.3.: The player just missed his shot, indicated by the red dots showing that the
projectile has passed over the other archer. The fire button is now disabled and
rendered red as the player has already used his shot this turn.

Figure B.4.: A successful hit. In the top left corner the player is informed about his successful
hit. The big red dots show the projectile path hitting the enemy archer.

39

List of Figures

2.1. Virtuality Continuum by Milgram and Kishino [5] 3
2.2. Screenshots from Pokémon GO and Brickscape. 6
2.3. Knightfall AR [16]. 6
2.4. Example of a Delaunay Triangulation in 2D [26] 9

4.1. The Occlusion Material . 21
4.2. The Occlusion Material in use . 22
4.3. Screenshot within the sample game . 23

5.1. A reconstructed mesh for the Rubik’s Cube . 26
5.2. Reconstruction result for a scene with multiple objects 27
5.3. AR world misalignment . 30
5.4. Feature points offset from features . 30
5.5. Relation between number of points and triangulation time 34

40

List of Tables

4.1. Extrapolated reconstruction parameters . 18

5.1. Quality Evaluation Results . 28
5.2. Averaged results for different confidence thresholds 29
5.3. Calculation times for the reconstruction of a single object 31
5.4. Calculation times for the reconstruction of multiple objects 33

41

List of Algorithms

1. The point cloud processing algorithm . 11
2. The DBSCAN algorithm . 13
3. Watson’s algorithm . 15

42

Bibliography

[1] Google. ARCore. 2018. url: https://developers.google.com/ar/ (Retrieved 04/25/2019).

[2] Apple. ARKit. 2018. url: https://developer.apple.com/arkit/ (Retrieved 05/03/2019).

[3] A. B. Craig. Understanding augmented reality: Concepts and applications. Newnes, 2013.

[4] R. T. Azuma. “A survey of augmented reality”. In: Presence: Teleoperators & Virtual
Environments 6.4 (1997), pp. 355–385.

[5] P. Milgram and F. Kishino. “A taxonomy of mixed reality visual displays”. In: IEICE
TRANSACTIONS on Information and Systems 77.12 (1994), pp. 1321–1329.

[6] T. P. Caudell and D. W. Mizell. “Augmented reality: An application of heads-up display
technology to manual manufacturing processes”. In: Proceedings of the twenty-fifth Hawaii
international conference on system sciences. Vol. 2. IEEE. 1992, pp. 659–669.

[7] C. Arth, R. Grasset, L. Gruber, T. Langlotz, A. Mulloni, and D. Wagner. “The history of
mobile augmented reality”. In: arXiv preprint arXiv:1505.01319 (2015).

[8] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui. “Mobile augmented reality survey:
From where we are to where we go”. In: Ieee Access 5 (2017), pp. 6917–6950.

[9] M. Mohring, C. Lessig, and O. Bimber. “Video see-through AR on consumer cell-
phones”. In: Third ieee and acm international symposium on mixed and augmented reality.
IEEE. 2004, pp. 252–253.

[10] G. Klein and D. Murray. “Parallel tracking and mapping on a camera phone”. In: 2009
8th IEEE International Symposium on Mixed and Augmented Reality. IEEE. 2009, pp. 83–86.

[11] M. Li and A. I. Mourikis. “High-precision, consistent EKF-based visual-inertial odome-
try”. In: The International Journal of Robotics Research 32.6 (2013), pp. 690–711.

[12] Google. ARCore Fundamental Concepts. 2018. url: https://developers.google.com/
ar/discover/concepts (Retrieved 06/05/2019).

[13] Apple. ARKit Documentation. 2018. url: https://developer.apple.com/documentation/
arkit (Retrieved 06/06/2019).

[14] Niantic. Pokemon GO. 2016. url: https://itunes.apple.com/us/app/pok%C3%A9mon-
go/id1094591345?mt=8 (Retrieved 05/16/2019).

[15] 5minlab. Brickscape. 2017. url: https://itunes.apple.com/us/app/brickscape/
id1233962836?mt=8 (Retrieved 05/16/2019).

[16] A. T. Networks. Knightfall AR. 2017. url: https://play.google.com/store/apps/
details?id=com.aetn.games.android.history.knightfall.ar&rdid=com.aetn.
games.android.history.knightfall.ar (Retrieved 05/16/2019).

43

https://developers.google.com/ar/
https://developer.apple.com/arkit/
https://developers.google.com/ar/discover/concepts
https://developers.google.com/ar/discover/concepts
https://developer.apple.com/documentation/arkit
https://developer.apple.com/documentation/arkit
https://itunes.apple.com/us/app/pok%C3%A9mon-go/id1094591345?mt=8
https://itunes.apple.com/us/app/pok%C3%A9mon-go/id1094591345?mt=8
https://itunes.apple.com/us/app/brickscape/id1233962836?mt=8
https://itunes.apple.com/us/app/brickscape/id1233962836?mt=8
https://play.google.com/store/apps/details?id=com.aetn.games.android.history.knightfall.ar&rdid=com.aetn.games.android.history.knightfall.ar
https://play.google.com/store/apps/details?id=com.aetn.games.android.history.knightfall.ar&rdid=com.aetn.games.android.history.knightfall.ar
https://play.google.com/store/apps/details?id=com.aetn.games.android.history.knightfall.ar&rdid=com.aetn.games.android.history.knightfall.ar

Bibliography

[17] D. Design. AR Smash Tanks! 2017. url: https://play.google.com/store/apps/
details?id=com.dumpling.smashtanks&hl=en (Retrieved 05/16/2019).

[18] D. Weibel and B. Wissmath. “Immersion in computer games: The role of spatial presence
and flow”. In: International Journal of Computer Games Technology 2011 (2011), p. 6.

[19] M. Slater, M. Usoh, and A. Steed. “Depth of presence in virtual environments”. In:
Presence: Teleoperators & Virtual Environments 3.2 (1994), pp. 130–144.

[20] M. K. Coomans and H. J. Timmermans. “Towards a taxonomy of virtual reality user
interfaces”. In: Proceedings. 1997 IEEE Conference on Information Visualization (Cat. No.
97TB100165). IEEE. 1997, pp. 279–284.

[21] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, and C. Silva. “State
of the art in surface reconstruction from point clouds”. In: EUROGRAPHICS star reports.
Vol. 1. 1. 2014, pp. 161–185.

[22] R. Sitnik and M. Karaszewski. “Optimized point cloud triangulation for 3D scanning
systems”. In: Machine Graphics & Vision International Journal 17.4 (2008), pp. 349–371.

[23] E. F. Ohou. “Surface Reconstruction: Techniques and Methods from 3D Points Data”.
In: ().

[24] D.-T. Lee and B. J. Schachter. “Two algorithms for constructing a Delaunay triangu-
lation”. In: International Journal of Computer & Information Sciences 9.3 (1980), pp. 219–
242.

[25] D. F. Watson. “Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes”. In: The computer journal 24.2 (1981), pp. 167–172.

[26] F. Cazals and J. Giesen. “Delaunay triangulation based surface reconstruction”. In:
Effective computational geometry for curves and surfaces. Springer, 2006, pp. 231–276.

[27] J.-D. Boissonnat. “Geometric structures for three-dimensional shape representation”. In:
ACM Transactions on Graphics (TOG) 3.4 (1984), pp. 266–286.

[28] H. Edelsbrunner and E. P. Mücke. “Three-dimensional alpha shapes”. In: ACM Transac-
tions on Graphics (TOG) 13.1 (1994), pp. 43–72.

[29] N. Amenta, M. Bern, and D. Eppstein. “The crust and the β-skeleton: Combinatorial
curve reconstruction”. In: Graphical models and image processing 60.2 (1998), pp. 125–135.

[30] N. Amenta and M. Bern. “Surface reconstruction by Voronoi filtering”. In: Discrete &
Computational Geometry 22.4 (1999), pp. 481–504.

[31] E. Piazza, A. Romanoni, and M. Matteucci. “Real-time CPU-based large-scale 3D mesh
reconstruction”. In: arXiv preprint arXiv:1801.05230 (2018).

[32] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S.
Hodges, D. Freeman, A. Davison, et al. “KinectFusion: real-time 3D reconstruction
and interaction using a moving depth camera”. In: Proceedings of the 24th annual ACM
symposium on User interface software and technology. ACM. 2011, pp. 559–568.

44

https://play.google.com/store/apps/details?id=com.dumpling.smashtanks&hl=en
https://play.google.com/store/apps/details?id=com.dumpling.smashtanks&hl=en

Bibliography

[33] R. A. Newcombe and A. J. Davison. “Live dense reconstruction with a single moving
camera”. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. IEEE. 2010, pp. 1498–1505.

[34] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. “A density-based algorithm for discovering
clusters in large spatial databases with noise.” In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

[35] Epic Games. Unreal Engine. 1998. url: https://www.unrealengine.com (Retrieved
05/22/2019).

[36] L. Valente, A. Conci, and B. Feijó. “Real time game loop models for single-player
computer games”. In: Proceedings of the IV Brazilian Symposium on Computer Games and
Digital Entertainment. Vol. 89. 2005, p. 99.

[37] Unreal Engine Wiki. Using Async Tasks. 2016. url: https://wiki.unrealengine.com/
Using_AsyncTasks (Retrieved 05/29/2019).

[38] Unreal Engine Wiki. Procedural Mesh Component. 2018. url: https://wiki.unrealengine.
com/Procedural_Mesh_Component_in_C%2B%2B:Getting_Started (Retrieved 05/30/2019).

[39] M. Kazhdan, M. Bolitho, and H. Hoppe. “Poisson surface reconstruction”. In: Proceedings
of the fourth Eurographics symposium on Geometry processing. Vol. 7. 2006.

[40] J. Nielsen. “Website response times”. In: Nielsen Norman Group 21.06 (2010).

45

https://www.unrealengine.com
https://wiki.unrealengine.com/Using_AsyncTasks
https://wiki.unrealengine.com/Using_AsyncTasks
https://wiki.unrealengine.com/Procedural_Mesh_Component_in_C%2B%2B:Getting_Started
https://wiki.unrealengine.com/Procedural_Mesh_Component_in_C%2B%2B:Getting_Started

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Goals of this thesis
	Thesis Outline

	Related Work
	Augmented Reality
	Mobile Augmented Reality

	Current AR Games
	Surface Reconstruction
	Delaunay Triangulation Based Algorithms
	Live reconstruction

	Reconstruction Pipeline
	Aquiring the Point Cloud
	Point Cloud Processing
	Clustering
	Mesh Generation

	Implementation
	Application
	Configuration Menu
	Mesh Collision Testing

	System
	Multi-Threaded Computation
	Procedural Mesh Generation
	Occlusion

	Sample Game

	Evaluation
	Evaluation Method
	Results and Discussion
	Quality
	Performance

	Conclusion
	Summary
	Future Work

	General Addenda
	Evaluation Data

	Figures
	Game Screenshots

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

