
Calibrating a Spatial Augmented Reality Environment with Tangible User
Interface Using an Embedded Optical Sensing System

Min Shan Luong*

Technical University of Munich
Christian Eichhorn†

Technical University of Munich
Maki Sugimoto‡

Keio University
Gudrun Klinker§

Technical University of Munich

ABSTRACT

In this report we present an approach to calibrate a projection-based
augmented reality environment using a digital projector and a small
cube robot with a phototransistor fixed on its topside. The robot is
equipped with an internal tracking system to identify its 2D position
and rotation on a specific play mat. We focus on determining the
relative transformation between play mat and projector and inves-
tigate an approach for calibrating a projector as an alternative to
well-established approaches, e.g., projector-camera calibration meth-
ods. More precisely, we calibrate a projector using measurements
from a phototransistor. Finally, we demonstrate our calibration re-
sult in a simple game environment and evaluate the accuracy of the
measurements and the alignment.

1 INTRODUCTION

Spatial Augmented Reality (SAR) as a subcategory of Augmented
Reality (AR) combines the real and virtual world by displaying dig-
ital information via projectors and augmenting real objects. What
distinguishes it from other categories in AR is that SAR detaches
the display technology from the user to the environment [2]. As a
result, a group of people, in contrast to a single person, can enjoy
the SAR environment together and simultaneously as the visual aug-
mentations are displayed within a shared space instead of requiring
separate hardware for each user, such as head-mounted displays
(HMDs). Moreover, using projections offers a larger field of view
and higher user comfort.

However, a prior calibration of such systems is mandatory for a
correct alignment of virtual and real world. This usually requires a
calibrated camera in conjunction with the projector. In applications,
in which the camera is not involved in any further process apart from
the calibration, the camera becomes redundant. Therefore, we inves-
tigate an approach to calibrate a projection-based AR environment,
which relies on pattern projections and photosensor information, as
well as a small cube robot from the toio toy platform [20] whose
2D pose is known within a specific play mat. This robot can be
controlled remotely and programmed to move within the play mat
area. Alternatively, its position and rotation may be directly mod-
ified by physically moving it by hand. This offers possibilities for
various applications, particularly for education and entertainment.
Together with a calibrated projector setup, the toio system can be
further expanded, for example, with visual effects and interactions
between virtual and real objects. The robot environment and cube
robot can be adjusted to fit any theme, while the robot itself acts
as an interaction interface between virtual and real world, since it
exists in both worlds.

In the following, we present previous work in the fields of pose
tracking using an optical sensors system, and projection-based game
or learning environments with augmented objects or robots. Then
we describe our system environment and explain our calibration
approach in detail. Finally, we evaluate our system quantitatively, as
well as qualitatively by means of a simple game environment.

*e-mail: minshan.luong@tum.de
†e-mail: christian.eichhorn@tum.de
‡e-mail: sugimoto@ics.keio.ac.jp
§e-mail: klinker@in.tum.de

2 RELATED WORK

In contrast to other methods that use cameras for location track-
ing, [18] propose using light-emitting diodes (LEDs) with a passive
binary mask as transmitter and photosensors as receiver of the emit-
ted near infrared (IR) light. Multiple LEDs are arranged in an array,
and the light of each LED is masked to create binary Gray Code
images for spatial modulation, while light intensity sequencing pro-
vides a temporal modulation. Taking the epipolar geometry of the
LED arrangement into consideration, it is possible to compute the
3D location of a photosensing marker. To determine its orientation,
the marker measures the signal strength received from at least four
LED beacons.

Augmented Coliseum presents a display-based game environment
in which small robots are augmented with projections to fit the set-
ting of toy tanks on a battlefield [12]. The authors use visual effects
as for example explosions and laser beams as well as other interac-
tions between real robots and virtual objects to enrich the gaming
experience, e.g., force feedback on robots when hit by missiles, and
obstacles that are impassable for robots making them bounce back
when driven against. A physical simulation that is running in the
background detects collisions using virtual models of real objects
and purely virtual elements. Their display-based measurement sys-
tem requires a projector for the augmentations. Additionally, five
photosensors are installed at fixed locations above each robot. First,
the position of each robot is determined by running spatial division
binary search. After the initial absolute position has been identified,
the projector projects a fiducial marker at this location so that the
orientation of a robot can be calculated using the sensor information
and the varying light intensity from the marker. The user can control
the robots remotely while the robots are tracked by the measurement
system. In addition to tracking a robot’s pose, the same measurement
system allows the user to control these robots by programming them
to follow a fiducial marker.

A Table where Little People Live is an interactive digital art instal-
lation by teamLab [25]. Calibrated projectors project little animated
people, animals, plants, and objects on a table for educational pur-
poses. Beside other purposes, this artwork aims to encourage its
users to nurture their creativity and power of expression, and to
develop an understanding of physical laws, namely Newton’s laws
of motion. Visitors of teamLab’s art museums can interact with
this artwork using objects or their own hands. This is an example
how our augmented toio system could be used to create a learning
environment if we substitute the robots with the objects. [13] present
another example. The authors propose a tabletop learning environ-
ment that helps children understand behaviors of light. The virtual
content is displayed either on the surface of a large LCD or with a
short-focus projector.

Nonetheless, the objects in the previously mentioned examples
can only be influenced in one direction so that virtual objects are
not able to affect real ones physically. As explained in [3], robots
offer the possibility to appear as if they were affected by virtual
objects. This can be achieved if the behavior of a robot, or any
programmable object, is programmed accordingly. [3, 12, 14, 19]
feature bi-directional interaction between real and virtual objects.

Robot Arena [3] is an infrastructure for building SAR games.
Their system requires a projector-camera setup. Its calibration is



done automatically using computer vision or manually by the user.
In [19], the authors use a tele-operated small robot to interact with

virtual objects displayed by a projector and a computer monitor. The
projector is mounted to the ceiling so that the width of its projection
area aligns with the width of the computer monitor. The authors
place reflective dots on the robot which enables their motion capture
system to localize and track the robot’s movement.

In [14], the authors present a tabletop game called IncreTable.
It uses a bi-directional projection display to create unique effects
that are only achievable by using a two-projector setup, one for rear-
projections, and another one for tabletop projections. An example for
these kinds of effects are hidden projections, which are only visible
by shading certain areas. In these areas, very bright projections
from the tabletop projector hide projections from the rear projection
screen. Their system supports digital pen input and remote control
of robots. The authors use a similar approach to the display-based
measurement system in [12] that can be used to both track or control
a robot’s pose. In [14], the robots follow fiducial markers that are
used to control the robots. Alternatively, the user can control them
via pen or game pad input or follow predefined paths. Additionally,
custom-made tangible objects function as special interface to connect
real and virtual world. The user places them manually at fixed
locations in the virtual environment. The authors use a depth-sensing
camera to track physical objects and capture the terrain of the table
which affects the virtual environment.

3 SYSTEM OVERVIEW AND ENVIRONMENT

The purpose of our system is to calibrate a projection-based environ-
ment so that the projections from the virtual world are aligned with
objects that exist in the real world, specifically a small cube robot
and its operating space. To achieve this, we determine the projector’s
intrinsic parameters and estimate the relative transformation between
the robot’s operating space, namely play mat, and the projector. At
the same time, we have a virtual space that mirrors the real world.
By applying the previously estimated transformation on our virtual
camera, we obtain a 6DoF (Degrees of Freedom) pose that is aligned
with the projector. As a result, we obtain an aligned environment in
which we can augment real objects. In the following, we present an
overview of our calibration system and its environment.

3.1 Overview
Our system consists of the following main components:

• Toio system containing cube robot and play mat with a printed
pattern [20].

• Photosensor (phototransistor).

• Microcontroller (MCU) with Wi-Fi module; we use the
ESP-WROOM-02 development board (AE-ESP-WROOM-02-
DEV) [7].

• Computer running a Unity project [26] with toio SDK for
Unity [15]

• Calibrated projector mounted above the toio play mat with a
resolution of 1920×1080 pixels

The robot’s 2D position and rotation is known within the toio
coordinate system as long as it is located on the play mat. This
information allows us to create a virtual copy of this scene inside
Unity. This virtual setup is described in Section 3.3. With the
play mat’s coordinate system aligned with Unity’s world coordinate
frame, we can obtain 3D positions of the robot. In Augmented
Coliseum, it is necessary to restart the pose identification procedure
of a robot when its photosensors lost their follow target, a fiducial
marker [12], e.g., due to occlusion of one or multiple photosensors.

Figure 1: Spatial relationship graph for our system created according
to [5]. One subproblem is determining the projector intrinsic parame-
ters for projecting 3D points to 2D image points for which the 2D-3D
Projective Calibration pattern [17] applies. Assuming the projector
calibration to be known, the 2D-3D pose estimation pattern presented
in [17] applies. Both are common problems. The latter can be solved,
e.g., by solving the Perspective-n-Point problem.

In our scenario, the 2D position and rotation of the toio robot is
known within the provided play mat via an internal optical tracking
system. Therefore, it can recover its pose instantly.

In Prakash [18], specifically designed projectors are needed which
cannot be used for augmenting our toio cube robot environment.
Therefore, we use a standard projector instead of multiple LED
arrangements. We divide the projected 2D image from the projector
into subareas and temporally encode the projector image space with
sequential binary Gray Code images as proposed in Prakash [18]
(see Section 5). The projected pattern is received by a phototran-
sistor, a type of photosensor for measuring brightness that is part
of our embedded optical sensing system (see Section 3.2). This
phototransistor is attached to the cube robot. Hence, we can identify
the 2D position of a cube robot in this projector image space by
decoding the information. This step in our calibration procedure
is similar to the one of Augmented Coliseum [12] as Kojima et al.
identify the position of a robot in projector space using photosensor
measurements. However, instead of using multiple sensors, we pro-
pose a single sensor approach that uses multiple measurements of
different 2D position to determine a robot’s pose. To find a suitable
approach to calibrate our system, we created a spatial relationship
graph describing our setup (see Fig. 1). It shows that we can estimate
the 6DoF transformation between a calibrated projector and the play
mat, thus, also the robot itself, using the identified 2D positions
together with their corresponding 3D points from the virtual world.

Our embedded optical sensing system plays an important role in
collecting data to estimate the pose or the relative transformation be-
tween the play mat and the projector. We describe the development
of this optical sensing system in Section 3.2. Moreover, this optical
sensing system allows us to investigate an approach to determine the
projector’s intrinsic parameters that is based on photosensor mea-
surements. We compare this calibration method to a well-established
one that uses a camera in addition to the projector. Both calibration
approaches are described in Section 6. A well calibrated projector
is essential for our projector pose estimation algorithm as shown in



Fig. 1. Therefore, we calibrate the projector prior to estimating its
6DoF pose.

In addition to the play mat and a robot, we set up a camera in
the virtual environment representing the projector from the real
world. Using a sufficiently large set of point correspondences, we
determine the 6DoF pose of the projector relative to the play mat
(see Section 4). After the pose of the projector has been determined,
we apply the same pose on the camera in the virtual setup. As a
result, the virtual scene is aligned with the real world’s setup when
the projector displays images from the virtual camera. Moreover,
we can extend interactions between objects in the virtual world to
interactions between both virtual and real world objects. The idea is
similar to [12] which has a physical simulation running in parallel.
In Section 4.3, we shortly comment on the 3D projections within the
toio environment.

To validate our calibration, we set up a game environment in
which the robot can interact with virtual objects (see Section 7).
Inspired by [3, 12, 14, 19], we added virtual obstacles that affect
the driving behavior of the robot. We use Unity [26] to create our
virtual environment. The program for the MCU is written in Arduino
Sketch.

3.2 Embedded Optical Sensing System

In this section, we present the design of our embedded optical sens-
ing system. It comprises an MCU with WiFi module, a photosensor
which is in our case a phototransistor, and several resistors.

For designing the circuit, we built it on a breadboard and con-
nected it to the computer. Using this connection, we can send data
between the MCU and the computer via serial communication. The
photosensor is connected to the MCU to read the phototransistor’s
sensor value. Between these two components, we inserted several
resistors that are necessary for two reasons. On the one hand, we use
them to control the photosensor’s sensitivity level. To determine a
suitable resistance value, we assessed different resistances by using
an oscilloscope until we obtained meaningful sensor values from
the phototransistor. In the end, we chose the resistance for which
the photosensor located in an area with a black or white projection
returns values that are far away from each other in these two cases.
On the other hand, the pin on our MCU that is used for reading
analog values (TOUT pin) is limited to detect input voltage values
ranging from 0V to 1V [4]. Hence, we reduced the input voltage
to a maximum of approximately 1V to avoid damages on the devel-
opment board since the standard for power supplies is 3.3V or 5V .
One method to reduce voltage is by building a voltage divider that
requires at least two resistors. The formula for calculating the output
voltage from a given input voltage and two resistances is:

Vout =Vin ·
R2

R1 +R2
(1)

For our first trial, we used an LED as a photodiode light sensor
as described in [1]. The advantage of LEDs over phototransistors is
that it has a quicker response time, hence it can react faster to signal
changes. However, it requires further adjustments to stabilize the
sensor signals and obtain meaningful values even after adjusting the
resistance. Therefore, we use a phototransistor in the current version.
Our circuit design using a phototransistor is shown in Fig. 2.

For the final version, we created a smaller version of our circuit
design for the cube robot to carry. To decrease the number of cables,
we use a printed circuit board (PCB) that connects the electrical com-
ponents. We store this circuit with its components in a customized
3D-printed plastic case that we attach to the topside of the robot. We
designed the case using a computer-aided design (CAD) software
such that the photosensor can be inserted above the robot model’s
local origin (see Fig. 3).

Figure 2: Circuit design on a breadboard. We use a 68K Ohm resistor
and a voltage divider with 10K and 20K Ohm resistors because the
TOUT pin can only take voltage from 0V to 1V. To validate that a WiFi
packet has arrived, we added an LED and toggle between on and off
on arrival of a WiFi packet. The LED is not part of the final circuit.

Figure 3: Right: final electrical circuit fit into a 3D-printed case. The
phototransistor is placed in the whole in the topside of the case. Left:
3D model for the 3D-printed case.

3.3 Representation of Toio and Projector in the Virtual
World

Our objective is to align the real world with the virtual world. There-
fore, we require data from both worlds, which in our case are 2D-3D
point correspondences. In this section, we describe the acquisition
of the 3D points in the virtual space.

Sony and Morikatron provide a software development kit (SDK)
for developing applications in Unity [15]. It comes with a textured
3D model of the cube robot and the play mat which we use to set
up a virtual scene that mirrors the real world in Unity. Additionally,
we add the 3D model of our case for storing the optical sensing
electronics to create a virtual environment looking close to reality.
Unity has a world coordinate space in which all 3D-objects are
located. Each object in turn define their own object space. For
simplification, we keep the play mat at the world origin so that its
object space and world space are aligned. The toio cube robot is
equipped with an identification sensor on the bottom of the cube.
The pattern printed on the play mat holds unique information which
the sensor can read to identify the position of the robot on the play
mat [22]. Hence, we can assume the pose of the cube robot to be
known relative to the play mat since the toio system tracks the robot
internally. The toio SDK offers functions to convert information in
toio coordinates to Unity coordinates. Therefore, we can mirror the
real toio environment in the virtual scene in Unity. We synchronize



the pose in Unity by setting the position and rotation of the virtual
cube robot according to the pose of real one.

The projector is represented in the virtual world by a camera that
captures the virtual scene. Unity offers the option to use physical
camera parameters for the virtual camera. Thus, we apply the intrin-
sic parameters obtained from the projector calibration (see Section
6) on the camera in Unity. Then, the projector projects the camera
images into the real world to augment the toio environment. As the
virtual camera and the projector are initially not aligned, we need to
determine the relative transformation between the play mat and the
projector. This procedure is described in Section 4.

4 POSE ALIGNMENT OF THE PROJECTOR AND THE VIR-
TUAL CAMERA

Our goal is to identify the 6DoF pose of the projector relative to the
play mat so that we can apply this pose on the virtual camera and
accomplish an alignment of virtual camera and real projector. As
shown in Fig. 1, we can achieve this goal by solving the Perspective-
n-Point (PnP) problem with a set of 2D-3D point correspondences.
The PnP problem describes the problem of estimating the 6-DoF
pose of a calibrated camera with a set of n point correspondences.
The 3D points are points in the world or object coordinate system,
whereas the 2D points are given in image coordinates. Our setup
allows us to collect 2D-3D point correspondences which is described
in the following section. Furthermore, we describe how we use the
estimated pose to achieve an alignment of the projections with the
real objects and comment on the effect achieved using this calibration
approach.

4.1 Collecting Point Correspondences
First, we collect sufficient point correspondences. Optimally, the
points should be spatially distant so that small errors would not
change the estimated pose significantly. Therefore, we chose points
on a regular grid that covers the whole play mat with a reasonably
large resolution to have enough point correspondences. We instruct
the robot to drive to each of these points and project a pattern se-
quence to identify the photosensor location in the image space of
the projector as described in Section 5. We record 3 measurements
per axis of a point and calculate the median value of each axis re-
spectively to counteract 2D measurement errors that might occur
due to an unsynchronized timing of projections and sensor data
requests. These points are our set of 2D points. Furthermore, to
decrease the measurement errors, we suggest to adjust the threshold
for detecting black or white areas, e.g., using normalization images
and other enhancements described in [16], so that our method works
under various ambient light conditions and with different projector
brightnesses. Moreover, the range of the read sensor values differ
dependent on the light’s angle of incident on the sensor surface. This
is a possible cause for wrongly identified 2d positions and should be
taken into consideration.

The corresponding 3D points are collected in the virtual scene
in Unity. Our virtual scene mirrors the real toio environment mean-
ing that the robot’s pose is known (see Section 3.3). In our setup,
the play mat’s coordinate system is aligned with Unity’s world co-
ordinate system. However, we need to consider the offset of the
phototransistor to the robot. We estimate this offset with the knowl-
edge we have about the position of the LED in the 3D-printed case
for the MCU and phototransistor circuit (see Section 3.2), and the
origin of the robot’s virtual model [23]. To each 2D point, we save
the respective 3D coordinates of the photosensor in Unity to create
our set of 2D-3D point correspondences. Parts of the data collection
process is shown in Fig. 4.

The 2D-3D point correspondences are saved in a JSON-file so
that we can load them and thus skip the 2D-point acquisition step as
long as the play mat and the projector pose remain unchanged. Fur-
thermore, we can use this to expand our input data for the projector

Figure 4: Our process of data collection (2D-3D point correspon-
dences). Left: Structured light pattern sequence projected on the play
mat and the robot. Right: point grid of the already saved 2D points.
On the right, the virtual play mat is shown from the view of the virtual
camera whose pose is not yet aligned with the projector’s pose. The
robot’s pose relative to the play mat is already mirrored in the virtual
environment before the pose alignment.

calibration using photosensor measurements (see Section 6.2).

4.2 Estimating the Pose
Together with the intrinsic matrix of the projector that we obtained
from the projector calibration (see Section 6) and the point corre-
spondences, we estimate the pose by solving the PnP problem using
OpenCV for Unity [6]. It assumes the pinhole camera model. In
addition to solving the PnP problem, we use RANSAC to reject
outlier points. Outliers may occur due to errors during the 2D point
acquisition. The OpenCV library offers a PnP solver with RANSAC
in the Calib3d module. Finally, we set the pose of the camera in
Unity by applying matrix multiplication with the obtained extrinsic
matrix from OpenCV. During all steps, we need to consider that
Unity uses a left-handed coordinate system while OpenCV uses a
right-handed one. Therefore, we convert both Unity 2D image coor-
dinates and 3D world coordinates to their respective OpenCV spaces
when necessary (e.g. before giving the point data sets to OpenCV for
estimating the projector pose), and vice versa (e.g. when applying
the pose to the virtual camera in Unity).

4.3 Three-Dimensional Projection
In the current implementation, the virtual scene is a perspective pro-
jection rendered from the view of the camera which is approximately
in alignment with the projector. This allows us to project texture on
all real objects that, at the same time, have a representation in the
virtual world aligned in 3D. The visual result is comparable to the
effect achieved using projection mapping. Thus, at those parts in the
image, in which from the perspective of the projector there is a real
object and we want to simply change the texture or anything on its
surface, the current rendering method works well.

However, for virtual 3D objects that don’t exist in the real world,
it could be better to render an image from another view that is
centered above the play mat. By rendering the scene from a centered
top-down perspective, we would obtain projections that are less view-
dependent so that projections of purely virtual 3D objects on the
play mat look correct for multiple users regardless of their viewpoint.
When rendering top-down, we want to keep the three-dimensionality
of the virtual world. As a result, objects higher above the play mat
appear larger in the image than the ones closer to the mat. Moreover,
the shadow size is dependent on the distance between the shadow
caster and shadow receiver. We consider these aspects in our current
implementation that displays a perspective projection from the view
of the virtual camera.

5 DATA COMMUNICATION AND TEMPORAL ENCODING

In the following, we describe how data is communicated between
the different components of our system. The computer is the central
node of communication between the different components and is



Figure 5: The first four pattern images of a Gray code sequence
encoding the projector columns. From left to right: encoding of the
most to least significant bit. Taken from [24].

responsible for their synchronization. Each of these components
is necessary for our approach to temporally encode the projector’s
image space with a sequence of structured light patterns. This
encoding is used to identify the position of the photosensor in the
projector image space. Synchronizing the timing of each unit to
send data is crucial to ensure that the code is received correctly.

The communication between the computer and toio robot is wire-
less via Bluetooth. The robot sends information about its own 2D
pose on the play mat to the computer via this connection. In Section
3.3, the basic concept of how the toio system identifies the cube’s
pose is described. The reverse information flow from the computer
to the robot can be used to send commands to the robot, for example
playing sounds or specific driving behaviors. One option to control
the robot from the computer is by indicating a target position with
the mouse cursor on the virtual scene, or with a list of pre-defined
target positions on the play mat. Another option the toio SDK of-
fers is to instruct the robot to drive with separately assigned wheel
speeds, each for an arbitrary amount of time.

Additionally, the computer is connected to a projector that
projects a series of black and white patterns. These patterns di-
vide the image space of the projector into smaller regions. More
precisely, it is a temporal encoding of these regions as binary Gray
Code with each image corresponding to one digit as it is done in [18].

Another name for Gray Codes is reflected binary code. The subse-
quent pattern image can be created from the previous pattern image
by reflecting and appending this reflected image to the previous one
which is exactly what we do (see Fig. 5). The advantage of Gray
Codes over simple binary codes is that two neighbouring values
(e.g. two neighboring areas in the encoded image space) differ by
only one binary digit (bit) resulting in a Hamming distance of 1.
In the case of projected structured light patterns, this means that
this method is more robust to decoding errors compared to a simple
binary encoding [24].

By displaying a Gray Code image pattern sequence along the
horizontal and vertical axis, we create a regular rectangular grid
with self-defined resolution (2m ×2n; m and n equal to the number
of binary digits per axis) for encoding 2D positions in the pattern
coordinate system.

Ideally, the resolution should be close to the one of the projector
image. Hence, we chose m = 10 and n = 11 resulting in a pattern
resolution of 2048×1024 pixels. This resolution ensures that every
pixel in the projector image, which has a resolution of 1920×1080
pixels, is covered by approximately one pixel in the pattern coordi-
nate system.

The MCU comes with a Wi-Fi module that we use to establish a
Wi-Fi network on the MCU. Then we connect the computer to the
Wi-Fi network. As there might be issues with the security settings of
the computer, we set it as private network and deactivate the network
security system to allow incoming messages within this network.
The computer sends a single char command as UDP packet through
this network to request signal data from the phototransistor that is
connected to the MCU (see Section 3.2), or other data depending on
the command. On arrival, the MCU sends the current value from the
photosensor back to the computer as UDP packet. This data has to
be sent as byte array. We encoded with an initial char and an closing

Figure 6: Send buffer containing 10 bits of sensor data with enclosing
chars in binary representation. In this example, the sensor data we
want to send is 618. To pack the data in a byte array, we need to split
it in two 8bits chunks. To obtain the first chunk, we apply a binary shift
by 2 followed by a bit mask on the sensor data value. Concerning the
second chunk, we do not need a binary shift but we apply a bit mask
to keep only the last two digits (the two least-significant bits).

char to ensure that a whole packet arrived on the computer. Since
our data ranges from 0 to 1023, a bit shift is required to cover 1024
values or 10 bits (see Fig. 6).

On the computer, our program decodes the message and checks
for transmission errors. In case the received message was corrupted,
we send another request and repeat the procedure. Depending on
a pre-defined threshold, our program interprets the signal from the
photosensor as black or white, meaning that it is located within a
black or white region of the projected pattern, respectively. We store
this information in a binary representation. A white area corresponds
to 1, and a black one corresponds to 0 in our Gray Code. As advised
in [16], it is recommendable to display normalization images to
determine an appropriate threshold depending on the current lighting
condition and the brightness of the projector.

By appending data from the photosensor for each image in the
pattern sequence at a fixed location, we obtain a binary Gray Code
that we decode to identify a coordinate along one axis in our pattern
coordinate system. Because the input lag of the projector is unknown,
we wait for a predefined time before requesting measurements from
the photosensor for the respective pattern image and binary code
position. Repeating the same procedure along the other axis results
in a 2D coordinate that differs from the projector’s image coordinates.
More specifically, it is a 2D coordinate in the previously defined Gray
Code pattern coordinate system. To obtain the photosensor location
in the projector’s image space, we map the pattern coordinates to
a range from the center of the minimum pixel to the center of the
maximum pixel in the projector image space for each dimension
(see Fig. 7). We decided that the Gray Code coordinate points are
located at the center of a pixel in the Gray Code pattern coordinate
system since we only know that our identified photosensor position
lies within this pixel area, but its position within the pixel itself is
unknown. Hence, assuming our object location to be in the center of
a Gray Code pattern pixel could minimize the quantization error.

6 PROJECTOR CALIBRATION

We intend to set up the virtual camera in a way that it holds the
properties of the projector. Therefore, we need to determine the
projector’s intrinsic parameters. Applying these intrinsic parameters
to the virtual camera is necessary for correct perspective projections
from Unity’s physical camera, and for estimating the 6DoF pose
of the projector in our approach (see Fig. 1). For this purpose, we
tested two different methods. This allows us to compare the results



Figure 7: The image coordinate system of the projector (blue) marked
with coordinate points in the pattern coordinate system (green). In
this schematic visualization, the grid defined by the pattern sequence
and the pixel coordinate system of the projector image are aligned for
simplification. In the background, we show the third pattern image of
a Gray code sequence encoding the projector columns for bit MSB
2 (third-most-significant bit). We map each pattern coordinate to an
projector image coordinate within the area highlighted in blue.

from a well-established camera calibration method with our own
method. In both cases, we assume that the projector’s lens distortion
is insignificantly small. Hence, we neglect it and fix the distortion
parameters to zero.

6.1 Procam Calibration
In our first approach, we use the projector-camera (procam) calibra-
tion from [8]. It calibrates a projector and a camera given a set of
checkerboard images taken by the camera. Two images are required
for one pose. One shows the checkerboard pattern with color-coded
spatial structured light pattern projected on it to determine initial
projector intrinsic parameters, and another one with even lighting
for calculating initial camera parameters using the method from [27].
After establishing initial intrinsic parameters for the projector and
the camera, the authors use bundle adjustment to refine the results
that may contain errors arising from an imperfect planar calibration
board. Since the accuracy of the calibration result is highly depen-
dent on the quality of the input images, we created multiple sets
of images while varying the pose of the checkerboard pattern. For
each set of images, we aim to cover the whole image space with
checkerboard poses that highly differ from each other, and manually
filter out images that are not suitable for achieving an accurate result
as for example images, in which the pattern is wrongly detected,
blurry images, or images with an unfavorable lighting (see Fig. 8).
Furthermore, we use a calibrated camera, an Intel RealSense LiDAR
Camera L515 [9], to have a ground truth for the camera matrix. We
request its factory calibration for its color image stream according
to [10] and compare this camera intrinsic matrix to the ones result-
ing from the procam calibration. Our candidate projector intrinsic
matrices are the ones whose respective camera intrinsic matrix is
similar to the one of the factory calibration. We confirm that the
procam calibration outputs reliable intrinsic matrices depending on
the quality of the input images and the visibility of the checkerboard
and structured-light pattern.

6.2 Calibration Using Photosensor Measurements
We compared the results from the procam calibration to the ones
of our own method that relies on measurements from the photo-
transistor. Our method uses the implementation for calibrating a
camera in OpenCV for Unity [6]. It requires at least one set of
2D-3D point correspondences as input parameter. However, if we
use only points from a single view, the estimated camera matrix
would only re-project the 3D points from our input data correctly
for this specific estimated camera pose. To avoid the case that errors

Figure 8: Images of a checkerboard pattern attached to a white board
that were used as input for the procam calibration tool by [8]. The
checkerboard pattern has a resolution of 7×10 with a square size of
25mm and is printed on a DIN A4 paper. Left: color grid. Right: even
lighting

in the estimated intrinsic parameters compensate for other errors,
e.g., in the extrinsic parameters, and vice versa, we need points from
multiple views. Therefore, we vary the projector’s pose to collect
data sets from different perspectives. We alternate the pose mainly
by rotating the projector since we are limited by the height of the
ceiling and the size of the projection area which needs to be large
enough to cover about 90% of the play mat. We manually filter
out sets with obvious outlier whose identified 2D position in the
projector image space deviates strongly from the real phototransistor
position. We save all remaining data sets in a JSON-file to load and
use them as input for OpenCV’s camera calibration function.

We retrieve the 3D points from our virtual representation of the
real setup in Unity (see Section 3.3). The procedure for obtaining
3D points per projector pose is described in Section 4.1. Moreover,
per projector pose, these points have to be co-planar with the z-
coordinate equal to 0. Hence, we transformed the points to comply
with the requirements of OpenCV’s implementation. To obtain the
respective 2D-point positions, we spatially divide and encode the
projector’s image space as it is proposed in [18]. The projector dis-
plays the encoded information in form of an image pattern sequence
along two axes, which is then received by the photosensor. Finally,
we decode the data and convert the identified 2D position to a po-
sition in the projector’s image space. The procedure for obtaining
2D points is explained in more detail in Section 5 and 4.1. After
collecting data from 15 different projector poses, we estimate the
intrinsic parameters of the projector using OpenCV for Unity.

Our current implementation of the photosensor measurement ap-
proach is not as reliable as standard calibration techniques using a
camera and computer vision since the identified 2D positions might
deviate from the actual positions due to inaccurate sensor measure-
ments. It is necessary to integrate an outlier rejection algorithm to
make our projector calibration method more robust. Moreover, our
approach can be improved by making it less prone to measurement
errors (see Section 4.1). However, under optimal conditions, our
calibration approach yields similar results to the procam calibration.
A comparison of the resulting intrinsic matrices from each of the
projector calibration approaches is shown in the following (three ma-
trices from the procam calibration, one matrix from the calibration
using photosensor measurements):

pro jectorMat(1,procam)=

 2376.313 0 1009.074
0 2383.285 1005.604
0 0 1


pro jectorMat(2,procam) =

 2396.889 0 978.934
0 2394.495 998.202
0 0 1


pro jectorMat(3,procam)=

 2388.296 0 983.430
0 2385.895 1002.125
0 0 1





pro jectorMatsensor =

 2349.9054 0 984.4547
0 2351.2605 1077.1596
0 0 1


7 RESULTS AND EVALUATION

The objective of our calibration approach is to have an interactive,
projection-based environment augmented with synthetic informa-
tion which are aligned with objects existing in the real world. To
analyze our outcome, we demonstrate the results of our calibration
in a simple game environment which is described in Section 7.1.
For an accurate estimation of the projector’s extrinsic and intrinsic
parameters, the accuracy of the input data is essential. Therefore,
we evaluate the accuracy of the identified 2D position of the photo-
sensor. Furthermore, we point out the limitations and problems of
our system in Section 8.1.

7.1 Qualitative Evaluation
We developed an object-catching game to implement a qualitative
analysis of our calibration outcome. environment. The goal of this
game it to catch as many collectibles as possible while they are
falling from above. We developed this game in Unity [26] as a
subsequent stage after the calibration process is complete. Our game
environment features following elements:

• Player unit (cube robot with visual augmentations)

• Play mat as driving area for the robot and as projection surface

• Collectibles (green spheres) spawned by a thrower unit

• Puddles

• Walls

The cube robot can be controlled by the user via mouse input. It
can be driven within the play mat. However, as soon as the robot
leaves the play mat, the user needs to manually reset the cube to a
position on the play mat for its pose to be tracked and updated in
the virtual environment. The robot’s pose can be instantly recovered
due to toio’s internal tracking system. This means, that the user has
also the option to change the robot’s pose on the play mat by directly
manipulating it by hand. Since the robot is augmented with a texture,
we advise the user to mainly use mouse input to control the robot
so that the texture can be projected onto the actual projection target
without distractions.

To avoid the case in which the robot accidentally drives off the
play mat, we added virtual boundaries along each side of the mat.
As these walls are only existing in the virtual environment, we detect
collisions with the cube using its virtual 3D twin. Collision detection
with other virtual elements works in the same way. When the system
detects that the robot drove into a wall, the robot automatically starts
driving backwards for a certain amount of time.

Beside the walls, we project collectible spheres on the play mat.
These collectibles are spawned next to the virtual mat and fly in a
high curve over the play mat until it reaches the ground. The flying
curve can be estimated by the size and the speed of a sphere’s shadow
on the mat before the sphere itself enters the camera view frustum.
The robot is augmented with a plane that indicates approximately
the bounding box of this player unit. By driving the robot to the
location of a collectible before it touches the ground, the player can
collect the sphere. The number of collected spheres is then updated
and displayed on the player unit plane. To make a successful catch
more apparent, we added visual effects and sound played from the
cube.

Figure 9: Game environment projected onto the play mat after the
camera has been aligned with the projector. A lag between virtual
and real world player unit is visible.

Figure 10: Game environment showing aligned virtual and real objects.
As we project the virtual play mat on the real one, we can see the
displacement of the texture.

Furthermore, puddles are spawned randomly on the virtual mat
and decrease in size until they eventually disappear. When the robot
drives over a puddle, it starts spinning for a certain amount of time
and the user temporarily loses control. Programming the robot’s
behavior allows us to imitate certain events in the real world as for
example slipping on puddles.

The object collision detection with the robot only works as fast
as the pose of the robot is updated in the virtual environment. In
some cases, when the pose is not updated frequently enough, the
robot becomes stuck in the virtual wall. The update frequency is
dependent on the notification interval of the robot’s identification
sensor. We set the minimum update interval to 0 milliseconds to
obtain the most recent information about the robot’s pose whenever
possible. However, ”the notification interval may vary depending
on the status of the central unit” [21]. We measured the elapsed
time between updates received on the computer which is ranging
from approximately 30ms to 100ms. This can cause visual lags of
the player unit as visible in Fig. 9. Other reasons contributing to
this lag could be the communication speed between all involved
components, specifically

• the latency for sending messages via Bluetooth between com-
puter and robot, and

• the input lag for sending rendered images from the computer
to the projector and displaying them.

Apart from the small amount of lag that is visible in Fig. 9, our
system looks well calibrated for a game environment (see Fig. 10).
However, we can observe misalignments. This becomes evident
when we for example compare the distance of the components exist-
ing in the real world to their augmentations, i.e. the projected texture
of the play mat and the texture of the cube robot with wire case.

7.2 Accuracy of Photosensor Measurements and Cali-
bration

In most of the cases, the sensor value measured at the same position
in the real world results in the same value. In 11 out of 11 mea-
surements at the same position, the identified 2D coordinate in the
projector image space remained unchanged. When we inspected



Figure 11: The distance from the identified 2D position of the pho-
tosensor in projector image space to its actual position measured
in millimeters. In total, we recorded 8 measured distances for this
diagram. The distances range from 0mm to 3mm The mean deviation
is 2.1mm.

one of our collected data sets with 3 measurements per point in each
axis, all three values of each the x and the y coordinate per point
were identical for 24 out of 25 points. The single outlier exhibits a
deviation of less than 5 pixels along one axis in the projector image
space while the value in the other axis stayed constant over all three
measurements.

After we identified a 2D position in projector image space, we
draw a gizmo, in our case a sphere, at this location which is visible
in the projection (see Fig. 12). Then we compare it with the actual
photosensor location and measure the distance between the photo-
sensor and the projected sphere. We observe a deviation of up to
3mm for 8 measurements at varying positions (see Fig. 11).

We added a small sphere relative to the virtual robot at the loca-
tion at which the photosensor is located relative to the robot in the
real environment (see Fig. 9 and Fig. 10). We use this sphere as a
visual indicator for the position of the photosensor in the camera
image space after estimating and applying the projector pose on it.
To evaluate our results of both the intrinsic matrix and the estimated
extrinsic matrix, which are highly dependent on accurate photosen-
sor measurements, we measure the distance between the real and the
virtual photosensor position. Within 6 calibration trials, we observe
a maximum deviation of 10mm at different positions (see Fig. 13).
Since the result from the whole calibration process shows small
misalignments, there might be errors in the measured data or the
estimated intrinsic and extrinsic parameters. A possible issue could
be errors in terms of the 3D positions of our point correspondences.
The cause could be that we manually calculate and partially estimate
the height of the phototransistor. Moreover, the toio tracking might
be not accurate as the position and orientation values of the robot
from its internal identification sensor oscillate even if the robot is not
moving in the real environment. This would influence our 3D data
points used for the projector calibration as well as the projector pose
estimation. The maximum re-projection error (root-mean-square
error) for all inlier points after estimating the pose by solving PnP
with RANSAC is less than 1.3 pixels.

8 CONCLUSIONS AND FUTURE WORK

We demonstrated in a game environment that we achieved a de-
cent alignment of the virtual and real world by means of our SAR
calibration approach. Furthermore, we have shown that a projector
calibration without a camera is feasible using robots with a photosen-
sor attached. Our approach yields results that are comparable with
the ones from a procam calibration software. Compared to a procam
calibration, it is slightly less accurate and more time consuming.

Figure 12: A projected sphere indicating the identified photosensor
location in projector image space.

Figure 13: The distance between the projected photosensor position
after the system has been calibrated and its actual position in mil-
limeters. This diagram contains 13 measured distances ranging from
approximately 0.3mm to 10mm. The mean is at 3mm.

8.1 Limitations and Problems

Our system once detects the projector pose and respectively trans-
forms the virtual camera relative to the play mat. This means that
if the play mat or the projector is moved, we need to repeat the
calibration procedure. During the calibration, the projection of the
structured light pattern sequence and requesting and reading photo
sensor values need to be timed correctly. Because of the input lag
of the projector, the sensor value could otherwise be read when the
respective pattern image for the currently requested position in the
binary digit array is not displayed. If we were determining the input
lag of the projector in advance, we could speed up the process of
obtaining photo sensor values after projecting the next structured
light pattern in the pattern sequence. Furthermore, the photosensor
measurement is currently not stable for different projection angles
and is highly dependent on the angle of incident of the light rays
coming from the projector. Moreover, the ambient lighting is not
taken into consideration. Thus, we only receive meaningful sensor
values with approximately the same ambient lighting. The used
structured light encoding method becomes less accurate the more
narrow the Gray Code stripes become. The projected stripes become
increasingly blurry and the difference in intensity of black and white
areas become less clear such that it becomes more challenging to
differentiate between these two areas [11].

8.2 Future Work

In future works, we suggest to explore the option to replace the
phototransistor with an LED for a faster response time when reading
sensor values. Furthermore, we recommend to adjust the photosen-
sor’s threshold for differentiating between black and white areas in
the future. The position of the phototransistor could also be regis-
tered properly to the robot coordinate system, as we are currently



only estimating its position based on the 3d-printed casing, of which
we know the dimensions and mounting position.

The current setup uses only one projector. However, using multi-
ple projectors could be a possible extension to show texture projected
on the registered real objects from multiple perspectives.

The toio system supports the tracking of multiple cube robots.
It could be beneficial to add a second toio robot equipped with
our embedded optical sensing system to speed up the collection
process of the point correspondences. With regard to the object-
catching game, it would be possible to introduce a second player
with the second cube. Using this second cube, the second player
could throw collectibles from outside the virtual boundaries and
change the position from which the collectibles are thrown by hand.
For example, the second player could throw a collectible from the
second cube’s current position in its forward direction by hitting its
topside as this kind of input can be recognized by the toio system.
In this way, the area outside the virtual boundaries can be utilized as
well. Moreover, the application becomes a multiplayer game which
could add the fun of playing together.

ACKNOWLEDGMENTS

I wish to thank Prof. Maki Sugimoto for advising and supporting
me throughout this project both on-site and remotely. I appreciate
his help, particularly in creating the small-sized circuit for the MCU
and the photosensor, and in designing a 3D-printed case for these
components. Many thanks to Christian Eichhorn who gave advice
to me remotely during regular meetings with a focus on scientific
work.

REFERENCES

[1] Analog Devices Inc. Activity: Led as light sensor: Adalm2000.
[2] O. Bimber and R. Raskar. Spatial augmented reality: Merging real

and virtual worlds. Peters, Wellesley, Mass., 2005.
[3] D. Calife, J. L. Bernardes, and R. Tori. Robot arena. Computers in

Entertainment, 7(1):1–26, 2009. doi: 10.1145/1486508.1486519
[4] Device Plus Editorial Team. Using esp-wroom-02 wifi module as

arduino mcu, 09.01.2018.
[5] F. Echtler, M. Huber, D. Pustka, P. Keitler, and G. Klinker. Splitting

the scene graph - using spatial relationship graphs instead of scene
graphs in augmented reality. In Proceedings of the Third International
Conference on Computer Graphics Theory and Applications, pp. 456–
459. SciTePress - Science and and Technology Publications, 2008. doi:
10.5220/0001099804560459

[6] Enox Software. Opencv for unity.
[7] Espressif Inc.
[8] B. Huang, Y. Tang, S. Ozdemir, and H. Ling. A fast and flexible

projector-camera calibration system. IEEE Transactions on Automation
Science and Engineering, 18(3):1049–1063, 2021. doi: 10.1109/TASE.
2020.2994223

[9] Intel Corporation. Intel realsense lidar camera l515.
[10] Intel Corporation. Intel realsense: rs-enumerate-devices tool.
[11] D. Kim, M. Ryu, and S. Lee. Antipodal gray codes for structured light.

In 2008 IEEE International Conference on Robotics and Automation,
pp. 3016–3021. IEEE, 2008. doi: 10.1109/ROBOT.2008.4543668

[12] M. Kojima, M. Sugimoto, A. Nakamura, M. Tomita, M. Inami, and
H. Nii. Augmented coliseum: An augmented game environment with
small vehicles. In First IEEE International Workshop on Horizontal In-
teractive Human-Computer Systems (TABLETOP ’06), pp. 3–8. IEEE,
2006. doi: 10.1109/TABLETOP.2006.3

[13] M. Kuwahara and N. Umezu. Learning environment based on an
interactive projection table for children. In 2021 IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR), pp.
109–113. IEEE, 2021. doi: 10.1109/AIVR52153.2021.00026

[14] J. Leitner, M. Haller, K. Yun, W. Woo, M. Sugimoto, M. Inami, A. D.
Cheok, and H. D. Been-Lirn. Physical interfaces for tabletop games.
Computers in Entertainment, 7(4):1–21, 2009. doi: 10.1145/1658866.
1658880

[15] morikatron Inc. and Sony Interactive Entertainment Inc. toio sdk for
unity.

[16] MVTec Software GmbH. gen structured light pattern (operator).
[17] D. Pustka, M. Huber, M. Bauer, and G. Klinker. Spatial relationship

patterns: elements of reusable tracking and calibration systems. In
2006 IEEE/ACM International Symposium on Mixed and Augmented
Reality, pp. 88–97. IEEE, 2006. doi: 10.1109/ISMAR.2006.297799

[18] R. Raskar, H. Nii, B. deDecker, Y. Hashimoto, J. Summet, D. Moore,
Y. Zhao, J. Westhues, P. Dietz, J. Barnwell, S. Nayar, M. Inami,
P. Bekaert, M. Noland, V. Branzoi, and E. Bruns. Prakash. ACM
Transactions on Graphics, 26(3):36, 2007. doi: 10.1145/1276377.
1276422

[19] D. Robert, R. Wistorrt, J. Gray, and C. Breazeal. Exploring mixed
reality robot gaming. In M. D. Gross, N. J. Nunes, E. Y.-L. Do,
S. Brewster, and I. Oakley, eds., Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction, pp.
125–128. ACM, New York, NY, USA, 2011. doi: 10.1145/1935701.
1935726

[20] Sony Interactive Entertainment Inc. toio.
[21] Sony Interactive Entertainment Inc. toio core cube specifications:

Configuration: Identification sensor id notification settings.
[22] Sony Interactive Entertainment Inc. toio core cube specifications:

Identification sensor.
[23] Sony Interactive Entertainment Inc. toio core cube specifications:

Shape and size.
[24] G. Taubin, D. Moreno, and D. Lanman. 3d scanning for personal

3d printing: Chapter 5 - structured lighting. In Unknown, ed., ACM
SIGGRAPH 2014 Studio on - SIGGRAPH ’14, p. 39 ff. ACM Press,
New York, New York, USA, 2014. doi: 10.1145/2619195.2656314

[25] teamLab Inc. A table where little people live, 2013.
[26] Unity Technologies. Unity.
[27] Z. Zhang. A flexible new technique for camera calibration. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(11):1330–
1334, 2000. doi: 10.1109/34.888718


	Introduction
	Related Work
	System Overview and Environment
	Overview
	Embedded Optical Sensing System
	Representation of Toio and Projector in the Virtual World

	Pose Alignment of the Projector and the Virtual Camera
	Collecting Point Correspondences
	Estimating the Pose
	Three-Dimensional Projection

	Data Communication and Temporal Encoding
	Projector Calibration
	Procam Calibration
	Calibration Using Photosensor Measurements

	Results and Evaluation
	Qualitative Evaluation
	Accuracy of Photosensor Measurements and Calibration

	Conclusions and Future Work
	Limitations and Problems
	Future Work


