
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Agent-Based Modeling as Level Design
Method for Balanced Gamespaces

Marvin Neske

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

Agent-Based Modeling as Level Design
Method for Balanced Gamespaces

Agentenbasierte Modellierung als
Leveldesignmethode für balanced

Gamespaces

Author: Marvin Neske
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: Daniel Dyrda, M.Sc.
Submission Date: 15.08.2022

I confirm that this bachelor’s thesis in informatics: games engineering is my own work
and I have documented all sources and material used.

Munich, 15.08.2022 Marvin Neske

Acknowledgments

Special thanks to Daniel Dyrda. Thank you for your great guidance and astonishing
advice throughout the past four months.

I also want to thank Paul for the countless of hours we spent working parallel in BBB.
Although we spent most of the time being muted, it kept me motivated throughout the
whole time.

Abstract

Without balance in gamespaces, players will not like the gamespace and even worse,
they will will not like the game. To prevent players from not liking the game, level
designer create many iterations of each gamespace. For each iteration of a gamespace,
playtest data is required. Rather than using human playtesting to generate the data
required, we propose using agent-based modeling (ABM). ABM used in this context
swaps out the humans during the playtesting and replaces them with artificial agents.
To bring the artificial agents as close as possible to human-like behavior, we use machine
learning agents. By training the machine learning agents, human-like behavior was
achieved in a small set of scenarios.

The data generated by the trained agents in gamespace can be used by designers to
more efficiently create new iterations of their gamespaces.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Related Work 3

3 Gamespaces in Video Games 7
3.1 Introduction to Gamespaces . 7
3.2 3D arena first-person shooter gamespaces 9
3.3 Evaluation of Gamespaces . 10

4 Agent-based Modeling for Gamespace Evaluation 12
4.1 Is Agent-based Modeling fitting for Gamespace Evaluation? 12
4.2 A General Agent-based Model . 14
4.3 Agent-based Modeling in the Context of Gamespace Evaluation 15
4.4 Verification, Validation and Replication of an Agent-Based Model 17

4.4.1 Verifying an Agent-Based Model 17
4.4.2 Validating an Agent-Based Model 17
4.4.3 Replication an Agent-Based Model 19

5 Tools used for the implementation 21
5.1 Unity for the implementation . 21
5.2 The Unity ProBuilder toolkit . 21
5.3 The Unity ML-Agents toolkit . 22

5.3.1 Reinforcement Learning in Unity 22
5.3.2 Imitation Learning in Unity . 22

6 Balance in Gamespaces 24
6.1 Different definitions of game balance . 24
6.2 Key Elements of Gamespace Balance . 26

6.2.1 Symmetry in Gamespaces . 26
6.2.2 Dominant Strategies in Gamespaces 26

v

Contents

6.2.3 Fairness in Gamepaces . 27

7 Description of the Implementation 31
7.1 Implementation of the Agent-Based Model in Unity 32

7.1.1 Implementation of the Observer 32
7.1.2 Implementation of the Scheduler 32
7.1.3 Implementation of the Agent . 33
7.1.4 Implementation of the Interactions 36
7.1.5 Implementation of the Environment 38

7.2 Creation of the Agent Behavior using the Unity ML-Agents Toolkit . . . 39
7.2.1 Usage of the Unity ML-Agents framework 40
7.2.2 Normalization process for the Unity ML-Agents 45

7.3 Validation of the Agent-Based Model . 48
7.3.1 Microvalidation of the Agent-Based Model 48
7.3.2 Macrovalidation of the Agent-Based Model 55
7.3.3 Face validation of the Agent-Based Model 57
7.3.4 Empirical Validation of the Agent-Based Model 58

8 Discussion 59
8.0.1 Discussion of the Validation, Verification and Replication 61
8.0.2 Discussion of the Usage . 62

9 Conclusion and Outlook 63

List of Figures 64

Bibliography 65

vi

1 Introduction

The process of game development is an iterative one [Sch20, p. 99f]. Therefore the
process of gamespace development is an iterative one as well [KTy, Chapter: Planning:
Iteration & playtesting]. To create a new iteration of a gamespace you first need to
know what feels wrong and needs to be changed. To know what needs to be changed it
is crucial to gather playtest data. This data can be of certain statistics like the win-rate
of the teams in the gamespace. Data like the win-rate can give insights into the balance
of a gamespace. Gathering data for balancing gamespaces using conventional methods
has clear drawbacks.

To avoid the drawbacks of conventional methods, we propose another approach. The
approach uses agent-based modelling (ABM) in combination with machine learning
to model a situation similar to normal play-testing by humans. A tool implementing
this approach is able to gather the required data to balance a gamespace without the
drawbacks of conventional methods.

Before being able to propose the ABM-approach, three papers are presented which
aim to improve the balance of shooter gamespaces too (See chapter 2).

An explanation for the general term "gamespace" follows in section 3.1. Since this
paper is focused on arena FPS gamespaces, an introduction to them is given in section 3.2.
Additionally, the last section of this chapter (See section 3.3) describes the conventional
methods used to gather the necessary data for balancing out gamespaces while pointing
out their drawbacks.

Afterwards, we propose another way to gather the playtest data required for games-
pace balancing and explain why the proposed method fits (See section 4.1). This new
fitting approach is ABM. After introducing ABM and explaining what components
are included in agent-based models in general (See section 4.2), an agent-based model
focused on gathering playtest data for gamespaces is conceptualized (See section 4.3).
To ensure that a conceptualized model is working as intended, it needs to be verified,
validated and replicated. These processes are described in section 4.4.

Replicating a model only works when knowing which tools were used. Therefore
chapter 5 presents the tools which are used to implement a showcase prototype in
chapter 7.

The showcase prototype is supposed to gather useful data for balancing arena FPS
gamespaces. Key elements of a balanced gamespace are discussed in section 6.1.

1

1 Introduction

Knowing the key elements, we identify what kinds of data the agent-based model
should gather (See section 6.2). The gathered data can help game designers to more
efficiently balance gamespaces.

Finally, chapter 7 describes the showcase implementation in detail. The detailed
description allows for easy replication. Besides using replication to confirm the correct-
ness of a model, validation can also be used to confirm the correctness. Thus, in section
7.3, we try to validate the implemented model.

Although many citations within the following work refer to video game maps and
levels, we will refer to the same terms by using the word "gamespace". In cases where
citations mention the terms game maps or levels, we will continue the work using the
term "gamespaces" instead. Even tough the term "gamespace" does include all video
game maps and levels within its meaning, not all gamespaces can be described with
the terms video game maps or levels. But the meaning of the term "gamespace" will be
explained in section 3.1.

2

2 Related Work

Before we begin to propose the ABM approach for gathering data relevant to games-
pace balancing, the following chapter presents work which aims at creating balanced
gamespaces.

The first work with the title "Evolving Maps for Match Balancing in First Person
Shooters" [LLS14] tackles the problem of "[m]atch balancing [...] in an adversarial
multiplayer shooter [...] from a completely different angle" [LLS14, Abstract]. Whereas
matchmaking algorithms are the conventional method to generate balanced matches,
Lanzi, Loiacono and Stucchi propose to use procedural content generation (PCG) and
a genetic algorithm (GA). By using PCG and GA, they aim to create gamespaces
which "[...] improve the game balancing for specific combinations of players skills and
strategies" [LLS14, Abstract]. They present their work in the open source game Cube 2:
Sauerbraten [pro].

The generated gamespaces in Cube 2 were evaluated by analyzing statistics of two-
player matches in the gamespaces. The analyzed statistics form a score ratio for each
player. The score ratio for one player refers to "how many points [they] scored with
the respect to the overall points scored by both the players during the match" [LLS14,
Section: IV, B]. A score ration of 0.5 for both players defines perfect balance for this
paper. Therefore, when evolving gamespaces, their GA tries to achieve a final score
ratio of 0.5 for both players after the two-player match.

The two-player match is not played by humans though. Instead, "[...] an approxi-
mation of the complex behaviors of human players" [LLS14, Section: IV, B] is done by
using bots from Cube 2. Using these bots is advantageous since it is possible to speed
up the simulation of the two-player match and gather results faster. Furthermore, the
bots can be set into different difficulty levels allowing to balance for different scenarios
[LLS14, Section: IV, B].

In total, they apply their approach to three different scenarios. All three scenarios
are match-ups of players with different skill levels. While both players are equipped
with the same weapon in the first scenario, the remaining scenarios equip each player
with different weapons [LLS14, Section: VI]. After completing experiments on each of
the three scenarios, they come to the conclusion that "[their] approach can successfully
evolve maps for Cube 2 that improve the match balancing in each of the three scenarios
tested" [LLS14, Section: VI].

3

2 Related Work

Another paper regarding the balance of gamespaces tries to identify "[...] how
game balance is affected by the level, represented as [a black, top-down] image [only
showing objects in color], and each team’s weapon parameters" [KLY17, Abstract]. This
information is supposed to help "[...] a computational designer in creating a balanced
battle environment for a pair of weapons used by opposing teams" [KLY17, Section:
3]. To identify a balanced battle, they "[...] [present] a computational model which can
classify a matchup of a team-based shooter game as balanced or as favoring one or
the other team" [KLY17, Abstract]. The computational model was trained using more
than 50,000 simulated matches [KLY17, Section: 1]. Matches were played by two teams
[KLY17, Section: 3]. Each team consisted of three artificial agents [KLY17, Section: 1]
from a "[...] Shooter AI plugin library" [KLY17, Section: 3.2]. Every artificial agent within
one team uses the same weapon type with the goal of scoring more kills than their
opponent [KLY17, Section: 1].

The simulated matches were judged in terms of their balance. They measure the
balance of one match by using the kill ratio of both teams and argue that it is balanced,
if it ends in a tie [KLY17, Section: 3].

Using the playtest data generated by the simulated matches with artificial agents,
"[s]everal neural network architectures, topologies, and activation functions were
considered and tested" [KLY17, Section: 4.2]. The final results of the tests showed
"[convolutional neural networks as] particularly capable of discovering patterns between
the level architecture and weapon parameters" [KLY17, Section: 5].

Finally, they come to the conclusion that their trained model is able to increase the
speed of automatic playtesting since it predicts the balance of a match by analyzing an
image of the gamespace [KLY17, Section: 6]. The analyis of balance is solely based on
the score distribution which they admit is not a sufficient measurement. However, they
argue to still be able to contribute to level generation and design by "[...] taking into
account the effect of players’ weapons or inventories" [KLY17, Section: 6].

The last work to be presented is "Multi-Level Evolution of Shooter Levels" by Cachia,
Liapis and Yannakakis [CLY15]. Within this work they "[present] a method for rep-
resenting and evolving levels for first person shooter games which span more than
one floors" [CLY15, Section: Conclusion]. The evolution of gamespaces is done via
a genetic algorithm (GA). After generating the levels, they are evaluated using both
"[...] simulations of artificial agents competing in the level and theory-based heuristics
targeting general level design patterns" [CLY15, Abstract].

They also use Cube 2 as a framework to generate gamespaces. Simulation-based
evaluations of gamespaces are done with four artificial agents. The agents, which are
included in Cube 2, are set on an average skill level. This skill setting is supposed to

4

2 Related Work

"simulat[e] a more human-like aiming skill" [CLY15, Section: Shooter Level Evaluation].
The aim of the simulation-based evaluation is to measure how well a gamespace

manages to

1. "[...] have players engage their opponents as much as possible [...]" [CLY15,
Section: Shooter Level Evaluation] which is measured as fighting time [CLY15,
Section: Shooter Level Evaluation]

2. "[...] and maintain a balance in player kills" [CLY15, Section: Shooter Level Evalu-
ation] which is measured as kill ratio [CLY15, Section: Shooter Level Evaluation].

While the fighting time is supposed to emphasise the generation of gamespaces with
good pacing [CLY15, Section: Shooter Level Evaluation], the kill ratio " [...] aims to
ensure that all players have an equal chance of winning" [CLY15, Section: Shooter Level
Evaluation]. An equal chance of winning for all players can be derived from "[a]n equal
kill count among artificial agents (of the same skill level) [since] that [means] there is
little impact from the initial spawn locations of players" [CLY15, Section: Shooter Level
Evaluation].

By combining both these simulation-based balance metrics along with additional
metrics based on numerous level design patterns, they were able to conduct experiments
to evaluate the mentioned gamespace generator [CLY15, Section: Experiments]. Their
experiments and tests yield interesting results as the generated levels " [...] allowed
players to engage in combat for longer periods of time [while] an additional floor [...]
allows for players to "timeout" from combat" [CLY15, Chapter: Discussion].

Of the three presented papers, the first paper "Evolving Maps for Match Balancing in
First Person Shooters" [LLS14] aims to create a balanced experience within shooters.
They try "[...] to design the game maps such that the match would result as balanced
as possible, independently from the players involved in the match" [LLS14, Section: II,
A]. The generated gamespaces were evaluated using artificial agents.

The following paper "Learning the Patterns of Balance in a Multi-Player Shooter
Game" [KLY17] does not generate gamespaces but rather aims to "classify a matchup of
a team-based shooter game as balanced or as favoring one or the other team [by only
using] the level, represented as an image, and each team’s weapon parameters" [KLY17,
Abstract]. Classifying the match-ups was done using a trained neural network. To train
the neural network, they generated playtest data using artificial agents.

The last presented work "Multi-Level Evolution of Shooter Levels" [CLY15] also tries
to generate gamespaces using genetic algorithms. For the evolution of gamespaces
done by the genetic algorithm, the generated gamespaces were evaluated. Part of the
evaluation were artificial agents playing within the gamespace.

5

2 Related Work

All of these papers either tried to immediately generate gamespaces with balance in
mind or provide information about the balance of a gamespace. Each of them using
some kind of artificial agent as a tool for evaluation. Compared to the presented papers,
this work does not try to use artificial agents as a tool for evaluation. Instead, the
agents are just used to generate data according to the needs of designers. They are then
able to manually improve on their gamespaces.

The next chapter continues with a definition for the term "gamespace" (See chapter
3).

6

3 Gamespaces in Video Games

As this paper aims to generate the data necessary to balance the gamespaces of 3D
arena first-person shooters (FPS) we need to first introduce gamespaces (See section
3.1). After introducing gamespaces in general we continue to define how gamespaces
for 3D arena FPS look like and why it is important to balance them (See section 3.2).
Having a clear idea of what a 3D arena FPS-gamespaces looks like, we discuss how an
evaluation of a gamespace is done conventionally while pointing out disadvantages
(See section 3.3).

3.1 Introduction to Gamespaces

When players play a video game, the video game experience they have always takes
place in some kind of space.

This space is called the "[...] the ’magic circle’ of gameplay" by Schell [Sch20, p. 166].
For Schell the space "[...] defines the various places that can exist in a game [...]" [Sch20,
p. 166]. Each place within the game has some kind of relationship to the other spaces
in the game. This relationship is also dictated by the space.

Totten defines the gamespace, a video game experience takes place in, a bit different.
For Totten this space "both embod[ies] gameplay and facilitate[s] the player’s journey
through it" [Tot19, p. 24]. It "[...] allow[s them] to better experience the game’s
mechanics [and] do[es] so [...] that players spend more time having fun and less time
figuring out how to use the space" [Tot19, p. 24].

From these to definitions, we deduce that gamespaces are a combination of two
things:

• the fictional environment the game takes place

• the rules and possible interactions within places of the game

The gamespace can be defined for every game. Schell provides the example of Tic-Tac-
Toe and describes its gamespace [Sch20, p. 167ff]. Tic-Tac-Toe can be viewed with two
different lenses.

The first lens refers to the functional space of a game. The functional space includes
everything that stays when "[we] strip away all visuals, all aesthetics, and simply look

7

3 Gamespaces in Video Games

at the abstract construction of a game’s space" [Sch20, p. 166]. Regarding the abstract
construction of Tic-Tac-Toe, all that the game consists of are "[...] nine zero-dimensional
cells, connected to each other in a 2D grid" [Sch20, p. 168] (See fig. 3.1). This abstract 2D
grid is the functional space of Tic-Tac-Toe. It is still perfectly playable when applying
the game rules. However this is not how we usually see Tic-Tac-Toe being played. What

Figure 3.1: Functional space of the game Tic-Tac-Toe

is missing is the aesthetic space of the game.
The aesthetic space is the second lens a game can be viewed from. The aesthetic

space mainly describes what players perceive. Players perceive the looks and feel of the
game. In the case of Tic-Tac-Toe a game board is commonly drawn with two horizontal
and two vertical lines that create a 3x3-grid (See fig. 3.2). Even though you are able

Figure 3.2: Common depiction of the game Tic-Tac-Toe

to place your mark wherever you want within one of the nine grid-cells, it is only
important in which grid-cell your mark lies [Sch20, p. 167]. Hence the abstraction from
the continuous aesthetic space to a discrete functional space.

This description of a gamespace can be made for every game. Since this paper
deals with data generation for the balancing of 3D arena FPS gamespaces we continue
describing them in the next section.

8

3 Gamespaces in Video Games

3.2 3D arena first-person shooter gamespaces

3D arena FPS games are in general a competition between two teams consisting of one
or more players in a specially designed three dimensional continuous playing space
[Ada14, Chapter: 3D Shooters: Gameplay Styles]. The core gameplay mechanic is
shooting from the first person perspective. Hence the name first-person shooter (FPS).
In an arena-style FPS the most simplest goal is to win over the enemy in a shooting duel.
Those shooting duels are often the basis for gamemodes within the arena-style FPS
[Ada14, Chapter: 3D Shooters: Gameplay Styles]. Depending on the mode, an arena
FPS is played in different 3D gamespaces. These gamespaces aim to promote a fun,
exciting and balanced game experience. Therefore, they are often filled with lots of
corridors, covers, open spaces, flanking possibilities and more.

For every gamespace, we can follow the schematic of the example Schell gave with
the game Tic-Tac-Toe and roughly distinguish the functional and aesthetic gamespace
for an arena-style FPS.

Figure 3.3: Screenshot from playable map "de_dust2" from the game Counter-Strike:
Global Offensive [12]

When we strip down all the aesthetics from an arena-style FPS gamespace, we lose:

• the sounds like background music, environment sounds like water flowing, etc.

• the textures and basically everything that makes the gamespace look good

• the lighting of the gamespace which can be different depending on the area

Everything that is left after stripping down the aesthetics is the geometry of the
gamespace. Figure 3.3 and 3.4 show what a rough stripping down of the aesthetics

9

3 Gamespaces in Video Games

could look like for a small part of the in Counter-Strike: Global Offensive available map
"de_dust2".

Figure 3.4: Rough breakdown of the functional space seen in Figure 3.3

While the combination of both the functional and aesthetic gamespace combined
creates the full experience, the isolated functional space defines the how the game will be
played within the space. The way the game is played within that functional gamespace
must feel balanced. Otherwise an unbalanced game might feel "[...] monotonous,
confusing, and frustrating" [Sch20, p. 212] to players. This would lead to them quickly
losing interest and being "[...] terribly disappointed" [Sch20, p. 212]. Disappointing
players is obviously not the goal of a game and needs to be prevented. Thus, our
gamespaces must be balanced. However the only way to know if a gamespace is
balanced, is to evaluate it.

3.3 Evaluation of Gamespaces

As balanced gamespaces, for our players to enjoy, are the goal, one must be able to tell
that a gamespace is indeed balanced. One method to tell if a gamespace is balanced is to
release it and let human players play in it. While human players play the gamespace, it
is possible to gather data. If the data points towards an unbalanced gamespace, changes
to it after release can fix the balance issues. The developers of the game Overwatch [16]
have done this with their gamespace "Horizon Lunar Colony". After lots of community
feedback for the gamespace, former game director Jeff Kaplan announced in a forum
post 1 an upcoming rework for the map which aimed to address balancing issues.
However, changing up gamespaces after release is not the best way. Players could

1Find the forum post here: https://us.forums.blizzard.com/en/overwatch/t/can-we-talk-lunar-colony-
its-a-horrible-map/104996/6 (visited on: 19.07.22)

10

https://us.forums.blizzard.com/en/overwatch/t/can-we-talk-lunar-colony-its-a-horrible-map/104996/6
https://us.forums.blizzard.com/en/overwatch/t/can-we-talk-lunar-colony-its-a-horrible-map/104996/6

3 Gamespaces in Video Games

possibly already have had disappointing experiences within the gamespace, leading to
them not coming back to play again.

Looking at what the developers of Overwatch did, it can have an advantage to release
a not perfectly balanced gamespace early. The best way to check the balance of a
gamespace is "[...] through constant iteration and testing" [KTy, Chapter: Balance] of
the gamespace.

At a point of time in which the gamespace has not been released yet, a valid and often
used approach is to let the development team or dedicated testers test the gamespace.
Playtesting a gamespace with human players costs a lot of money and time. It costs
extra money because either developers have to invest their working-time for testing or
because dedicated testers have to be hired. Additionally, for every gamespace an extra
amount of testing-time has to be accounted for.

If the gamespace gets released early however, the player-base can be much larger.
More players automatically means more data about the gamespace, which could save
time and cost. The gathered data then can deliver more precise information on how to
change the gamespace into a more balanced one. The new gamespace with improved
balance can be analyzed and improved the same way, leading to the process of "[...]
constant iteration and testing" [KTy, Chapter: Balance].

Constant iteration and testing is the best way to balance a gamespace simply because
the other option of building a mathematical model is too complex. To effectively iterate
and test however, we need a constant flow of data. Getting this constant flow of data
from developers and testers during the development time is not feasible, and getting the
data from players after release is not recommendable either. Another way to generate
lots of data is via the usage of Agent-based Modeling.

11

4 Agent-based Modeling for Gamespace
Evaluation

As the conventional evaluation methods for gamespaces are either too expensive or
risk bad player experiences, Agent-based modeling (ABM) was proposed as a new
approach. This new approach is supposed gather the data required to balance a
gamespace without the disadvantages which the conventional methods pose.

Before we explain ABM in more detail in section 4.2, we go over why ABM is
useful in the use case of gathering data for balancing gamespaces (See section 4.1).
Following the structure described in section 4.2, we propose an agent-based model
for our use case (See section 4.3). Every agent-based model needs confirmation of
its correctness. Confirmation of the correctness for a model is done using the three
techniques presented in the last section (See section 4.4).

4.1 Is Agent-based Modeling fitting for Gamespace
Evaluation?

Agent-based modeling (ABM) aims to "[model] complex systems composed of interact-
ing, autonomous ’agents’" [MN05, Chapter 1.]. This approach of modeling complex
systems can be projected onto our problem for the generation of playtest data required
to balance gamespaces. For the generation of playtest data, we require players to play in
the gamespaces. ABM seems like a perfect fit to generate the playtest data since players
are just "[...] interacting, autonomous ’agents’" [MN05, Chapter 1.]". As agents, they
play within a gamespace and thus compose a complex system. This complex system
can be modeled via ABM using artificial agents rather than by using human players.
Replacing humans by artificial agents solves some of the drawbacks that conventional
gamespace evaluation methods come with.

Human developers and specifically hired employees used as tester have the problem
of costing extra money while players used as tester might become disappointed due to
bad experiences during the tests. Both of these problems are fixed by artificial agents
as they do not cost extra money once they are implemented and also do not have
feelings. Additionally, the usage of ABM enables a much faster data gathering process

12

4 Agent-based Modeling for Gamespace Evaluation

as simulations can be sped up and even run over night. Furthermore, simply setting up
a simulation and starting it is also much faster compared to issuing a whole playtesting
session with human players.

Another reason why ABM fits well for simulating players in a gamespace is because
it has "[...] distinct advantages to conventional simulation approaches such as discrete
event simulation [...], system dynamics [...] and other quantitative modeling techniques"
[MN09, Chapter 5.]. ABM is better than conventional modeling techniques in simulating
players in a gamespace because it satisfies six of the eleven proposed criteria by Macal
and North. Their proposed criteria are hints for when agent usage can be beneficial.
The usage of agents might be beneficial if at least one of the criteria is satisfied. The six
fulfilled criteria for our use case are [MN09, Chapter 5.]:

1. "When the problem has a natural representation as being comprised of agents"

- An arena FPS is filled with players as agents.

2. "When it is important that agents have behaviors that reflect how individuals actually
behave (if known)"

- The agents we model should reflect how human players would behave within
the gamespace. While the actual behavior might not be fully known in a new
game, basic strategy and movement patterns can be deduced from the behavior
of other similar games.

3. " When it is important that agents adapt and change their behaviors"

- Players in arena FPS adapt and change their behaviors depending on the games-
pace and other players. Therefore it is also important that the agents are adaptive.

4. " When it is important that agents learn and engage in dynamic strategic interactions"

- Similar to how the agents should adapt and change their behaviors they should
also learn the strategies applicable in the gamespace just like human player do it.

5. "When it is important that agents have a spatial component to their behaviors and
interactions"

- In our case, the spacial component is a gamespace. Depending on the gamespace,
behaviors and interactions from players change.

6. "When scaling-up to arbitrary levels is important in terms of the number of agents, agent
interactions and agent states"

- During the development of the game, different factors might change. Including
scaling factors such as the size of each team and the game mechanics which define

13

4 Agent-based Modeling for Gamespace Evaluation

the interactions. Changes are likely due to the development process being an
iterative one [Sch20, p. 100].

Concluding, we see that ABM is applicable for the modeling of players in gamespaces.
By modeling players in gamespaces we can generate the data necessary for balancing
gamespaces. Compared to other modeling techniques we showed that ABM is superior
since it fulfills the majority of criteria by Macal and North. The next step is to look at
ABM in general.

4.2 A General Agent-based Model

As mentioned already in section 4.1, agent-based modeling aims to "[model] complex
systems composed of interacting, autonomous ’agents’" [MN05, Chapter 1.]. While the
two main building blocks are the agents themselves and the complex system they are
part of, we can further identify and specify the five basic components every agent-based
model consists of [WR15]:

1. The Agents: They are "[...] self-contained, modular, [...] uniquely identifiable [,]
autonomous, [they have a] state that varies over time [and they are] social [due to]
having dynamic interactions with other agents" [MN05, Chapter 2.3]. They also
may be " [...] adaptive [,] goal-directed [or] heterogeneous [...]" [MN05, Chapter
2.3]. Agents have dynamic or static attributes like their name or current position.
All possible combinations of their attributes combined define all the possible
states of the agent. Additionally, agents have "behaviours that relate information
sensed by the agent to its decisions and actions" [MN05, Chapter 2.3].

2. The Environment: It can be anything from a discrete space to a continuous space
or a graph structure. It "[...] may simply be used to provide information on the
spatial location of an agent relative to other agents or it may provide a rich set of
geographic information [...]" [MN05, Chapter 2.3].

3. The Interactions: They specify all possible actions which can take place be-
tween the two previous components: agent-self interaction, environment-self
interaction, agent-agent interaction, environment-environment interactions, agent-
environment interactions [WR15].

4. The Observer: It controls the simulation of the model. It sets up all participating
agents, starts the simulation and controls everything.

5. The Scheduler: It decides in which order parts of the model act. The order of
operation can be sequential, synchronous or parallel [WR15].

14

4 Agent-based Modeling for Gamespace Evaluation

These are the five components of every agent-based model. We now will identify
how a model to generate playtest data should look like by defining each of the five
components.

4.3 Agent-based Modeling in the Context of Gamespace
Evaluation

The five general components of an agent-based model can be projected onto our model
of players within a gamespace. Doing so, we receive these five specific components:

1. The Agents: In our case the agent should resemble what a human player would
do within an arena FPS. Therefore the agent should fulfill these criteria:

– it must be able to take the same actions a human player can take such as
shooting and moving

– it has to have the same goal as a human player

– the agent must have all the same attributes a human player character in the
game would have as well

– it must be adaptive as human players also adapt to new gamespaces or
enemies in the arena FPS

– it should behave much like a human player would do in the gamespace

In most commercial video games nowadays non-player-characters (NPC) will be
implemented into the game to act as possible opponents for players. These NPCs
in most cases will at least satisfy some the required criteria. However the in-game
NPCs unfortunately won’t be a good fit for the agents needed for ABM in this
context. The in-game NPCs in commercial video games are designed to deliver
a fun experience to the player. They create the fun experience by keeping up a
good fight, but ultimately they should not be better than the players and lose. If
the NPCs were to be better than the players, they might become frustrated and
stop playing. Due to this, conventional NPCs are not suitable for the context
of modeling players in a gamespace. Additionally, we want the agents to be
adaptive just like human players. For example, they must be able to learn when
encountering a new gamespace. Therefore the implementation of the agent should
be able to learn.

2. The Environment: The agents must be able to navigate through the environment
just as human players can do. Therefore the environment must be the same
gamespace human players also play in. However the agents do not need to

15

4 Agent-based Modeling for Gamespace Evaluation

perceive the aesthetics of the gamespace. Since the agents do not need to perceive
the aesthetic space, it is only necessary to use the functional abstraction of the
gamespace. This functional abstraction can be created as it is described in section
3.2.

3. The Interactions: Regarding the interactions, agents have to be able to interact
with the environment, other players or themselves in the same way, human players
can. For example when a gamespace comes with an interactable elevator which
human players can use, the agents should be able to use it too.

4. The Observer: This component has the task of controlling the simulation to run
just like a real game with human players. It sets up all the agents, lets it run and
ends the game in the same manner after an end-game condition has been met.

5. The Scheduler: Looking at an arena FPS, every player can take actions whenever
they want. This ability comes from a continuous time flow within the game.
Additionally, multiple players can take actions at the same point of time. The
scheduler must realise the same possibilities for the agents. An asynchronous
scheduler would lead to problems. These problems occur when both agents
would like to shoot at each other at the same time. Due to being asynchronous,
the scheduler would handle the damage dealt of one agent before the other one.
If the dealt damage of the first agent then kills the second agent, the attempt of
the second agent to shoot as well would not be considered anymore due to it
being dead already. Therefore the scheduler for modeling players in gamespaces
must be a synchronous one.

To model players in a gamespace we must implement these five components. They can
be implemented during the development phase at a point in which the basic game has
already been set up. We would then need to implement these five components into the
game. As it is best practice to implement a game with low coupling and high cohesion,
it should not be difficult to implement the model into the game. For example, if the
game includes a character controller with low coupling and high cohesion, it should
not be problematic to let the agent logic control a character. The same principle holds
for each of the five components in the model.

Before implementing the model however, one should make sure that the model
correct. Checking a model for its correctness can be done by verifying, validating and
replicating it.

16

4 Agent-based Modeling for Gamespace Evaluation

4.4 Verification, Validation and Replication of an Agent-Based
Model

When working with and implementing ABM, an important part of the process is to
make sure the model is accurate [WR15, p. 311]. Confirming the accuracy can be done
by verifying, validating and replicating the model.

4.4.1 Verifying an Agent-Based Model

Wilensky and Rand state that "[m]odel verification is the process of determining
whether an implemented model corresponds to the target conceptual model" [WR15, p.
311f]. The model described in the last section (See section 4.3) is the conceptual model
designed to generate playtest data for balancing gamespaces. An implementation
of the model requires a certain degree verification before it is used. To verify an
implementation Wilensky and Rand advise to start with a simple model and increment
its complexity bit by bit. This approach is done since, "[i]f a model is simple to begin
with, it is easier to verify than a complex model" [WR15, p. 312]. When further
complexity is then added bit by bit it is also easier to verify the new bits [WR15, p. 312].
However, verifying each bit of the model on its own doesn’t verify the whole model
due to possible complications in between the bits [WR15, p. 312].

Ultimately when verifying the implementation or just pieces of it, we can use
Verification Testing [WR15, p. 315]. Verification Testing "[...] is a form of unit testing [in
which we create] small tests that check whether individual units are working correctly
in the code" [WR15, p. 317]. As an example, for the proposed conceptual model in
section 4.3, a number of Verification Tests could be dedicated to check whether the
agents have all the same interactions a player has.

4.4.2 Validating an Agent-Based Model

While through verification it is ensured that implementation fits the conceptual model,
via the validation it is "[...] ensur[ed] that there is a correspondence between the imple-
mented model and reality. [...] Models are simplifications of reality; it is impossible for a
model to exhibit all of the same characteristics and patterns that exist in reality" [WR15,
p. 325]. Therefore it is important to put the focus of the model onto the questions
we want it to answer. To ensure a model to be focused around the questions, it must
implement the key elements of reality relevant to the questions. Checking a model for
this constraint can be done by combining multiple techniques [WR15, p. 325f].

17

4 Agent-based Modeling for Gamespace Evaluation

Microvalidation

The first technique is Microvalidation. It is a process "[...] making sure [that] the
behaviors and mechanisms encoded into the agents in the model match up with their
real world analogs" [WR15, p. 326]. Wilensky and Rand describe the Microvalidation
process using a flocking model of birds [WR15, p. 329]. By projecting their approach
onto the proposed model for gathering data, it is possible to microvalidate it. During the
microvalidation, we first need to keep in mind the question our model tries to answer.
The model is supposed to gather playtest data relevant for balancing gamespaces.
Therefore some features of the real world analog to our agent, the players, are not
necessary for our model. Feature which are not necessary for the agent, and features
that are, can be found by either leaving them out or adding them to the model. If that
"[...] makes any significant difference to the model results" [WR15, p. 329] we can
assume that the features are either necessary or not.

Comparing the agents in the proposed model in section 4.3 to real world players, the
agents in theory match up with the players. However, while it is not difficult to match
parts of the model such as their attributes or actions, matching the behavior as a whole
is a challenge and thus needs special consideration.

Macrovalidation

While Microvalidation considers the relationship between agents and their real world
counterparts, "Macrovalidation is the process of ensuring that the aggregate, emergent
properties of the model correspond to aggregate properties in the real world" [WR15, p.
326]. Aggregate properties in the real world is the arena FPS game-loop itself as well as
the play-styles and common behaviors of real players in a gamespace. A win-oriented
player, for example, will in most cases prefer a high-ground over a low-ground in an
arena FPS. To macrovalidate the proposed model, it should be possible to point out
similar behaviors between the model and players in a real arena FPS.

Face validation

By using Face validation we "ensure that someone who looks at the model “ on face ” (i.e.,
without detailed analysis) can easily be convinced that the model contains elements
and components that correspond to agents and mechanisms that exist in the real world"
[WR15, p. 332]. Hence, an implementation of the proposed model in section 4.3 must
be immediately identifiable as an arena FPS. For example, an agent that is constantly
spinning would not be face valid because it is not something that someone looking at
an arena FPS is expecting. Unexpected behaviors such as constant spinning should not
occur in the model as they are unreasonable [WR15, p. 332].

18

4 Agent-based Modeling for Gamespace Evaluation

Empirical validation

The last technique is Empirical validation. Rather than basing comparisons on looks,
empirical validation demands that the "[d]ata produced by the model [to] correspond
to empirical data derived from the real-world phenomenon" [WR15, p. 332]. In the
case of gamespace evaluation we are able to gather different types of data which are
related to gamespace balance. For example data such as win-rates or death-locations.
By letting both the model and human players play on the same gamespace, we can
gather comparable data sets. The more similar the data sets are, the better the model.

4.4.3 Replication an Agent-Based Model

Replicating a model means to create a new "[...] implementation by one scientist or
group of scientists of a conceptual model (replicated model) described and already
implemented (original model) by a scientist or group of scientists at a previous time"
[WR15, p. 337]. As much as replicating a physical scientific experiment is part of the
scientific process, replicating is just as much a part of the modeling process [WR15, p.
336].

Replication helps to prove that no mistakes were made during the original modeling
process as well as it "[...] increases our confidence in the model verification since a new
implementation of the conceptual model has yielded the same results as the original"
[WR15, p. 336]. Additionally, "[r]eplication can also aid in model validation as it requires
the model replicators to try to understand the modeling choices that were made and
how the original modelers saw the match between the conceptual model and the real
world" [WR15, p. 336].

To allow an already implemented original model of a conceptual model to be replicated,
at least six dimensions have to declared [WR15, p. 337f]. By changing one or more
dimensions, a new replicated model of a conceptual model is created [WR15, p. 338]. The
new replicated model can can have one or more differences across these six dimensions:

1. Time: Time is a "[...] dimension of replication that will always be varied" [WR15,
p. 338]. If time is the only differing dimension in a replication by the original
researcher, the results must be the same. Otherwise it "would indicate that the
published specification is inadequate, since even the original researcher could not
re-create the model from the original conceptual model" [WR15, p. 338].

2. Hardware: Changing either the run-environment to another machine or repli-
cating the model on a different platform "[...] should [not] provide significantly
different results" [WR15, p. 338]. In the case of different results, further investiga-
tions are necessary [WR15, p. 338].

19

4 Agent-based Modeling for Gamespace Evaluation

3. Language: Using a different programming language "[...] can cause differences
in replicated models. [Therefore for] a model to be widely accepted as part of
scientific knowledge, it should be robust to such changes" [WR15, p. 338].

4. Toolkits: When replicating models with different toolkits, we often encounter
problems which lie within the conceptual model as well as within the toolkits
themselves [WR15, p. 339].

5. Algorithms: Since there are multiple different algorithms to solve certain prob-
lems such as searching, a replication could be implemented using other algorithms
than the original had used. An implementation using other algorithms could
both output the same or different results [WR15, p.339].

6. Authors: If a replication by another researcher is able to generate the same
results as the original, it is likely "[...] the model is accurately described and
the results are robust to changes in the dimensions of replication that have been
altered" [WR15, p.339].

In general, a replication is successful, if "[...] the replicators are able to establish that
the replicated model creates outputs sufficiently similar to the outputs of the original"
[WR15, p.339].

To allow for a successful replication, we will present tools in the next chapter (See
chapter 5) which will later be used for a showcase implementation (See chapter 7).

20

5 Tools used for the implementation

An implementation prototype for the agent-based model proposed in the previous
chapter (See section 4.3) can be done via a variety of tools. We chose the tools described
in this chapter to demonstrate how an implementation might look like and to build a
prototype which will be discussed in detail later on (See chapter 7). First, we propose a
game engine to build the model implementation in (See section 5.1). Afterwards we
describe a tool for creating the environments for an implementation (See section 5.2).
In the end we present a tool that includes two ways of implementing a learning agent
within the proposed game engine (See section 5.3).

5.1 Unity for the implementation

For the base of the implementation we propose the use of the Unity game engine software.
The Unity game engine software is a tool "[...] to create 2D and 3D games, apps and
experiences" [Tec21, Unity User Manual 2020.3 (LTS)]. To create a model of players
within a gamespace we require a very basic video games structure. The very simple
video game structure is supposed to resemble a real use case within the development
of a game. Thus the Unity game engine software fits perfectly to build a prototype.

The implemented prototype (See chapter 7 for more detail) was setup in the Unity
software version 2020.3.30f1 which uses C# as programming language. Additionally,
two unity packages were installed. Packages contain new features. Those features are
toolkits that can extend the core line of features the Unity game engine software offers
[Tec21, Packages and feature sets].

5.2 The Unity ProBuilder toolkit

The first package which additionally got installed for the project is the Unity ProBuilder
toolkit of version 4.5.2. The Unity ProBuilder toolkit adds features to "[...] build, edit,
and texture custom geometry [...]" [Tec21, ProBuilder]. It was used to create different
gamespaces in the project which. The different gamespaces were used to gather data
and train the machine learning agents.

21

5 Tools used for the implementation

5.3 The Unity ML-Agents toolkit

The second installed package is the Unity ML-Agents toolkit of preview version 2.3.0-
exp.2. With the Unity ML-Agents toolkit you are able to "[u]se state-of-the-art machine
learning to create intelligent character behaviors in any Unity environment" [Tec21, ML
Agents]. Created "[...] games [can] serve as environments for training intelligent agents
using deep reinforcement learning and imitation learning" [Jul+18, github: About].

5.3.1 Reinforcement Learning in Unity

Reinforcement learning [Jul21], in general, uses an action taking agent with different
states. Each state has its own set of actions. Agents decide which actions to take
according to their policy. Actions taken while the agent is in a certain state can yield
a reward and/or move the agent into a new state. States have a value depending on
how rewarding it is to be in that state. The main goal of an agent is to maximize their
total cumulative reward by taking the right actions. The agents themselves are always
contained within an environment [Jul21, Reinforcement Learning with Bandits].

The Unity ML-Agents toolkit offers the ability to define Agents. These agents can
then be trained. They are trained according to

• the observations they make in their training environment

• the actions they can take

• and the rewards they get from the environment

[Tec21, ML Agents]. This Structure was used to implement the machine learning agents
for this paper. How exactly the agents are implemented in the project will be described
later on (See chapter 7).

5.3.2 Imitation Learning in Unity

The ML-Agents package also provides the ability to use "Imitation Learning via Behav-
ioral Cloning" [Jul18]. The difference of Imitation Learning to Reinforcement learning
lies within the learning process. Imitation Learning-agents do not solely learn through
a reward/penalty system as Reinforcement Learning-agents do. Instead Imitation
Learning-agents learn by imitating a demonstration of the intended behavior. Develop-
ers can create these demonstrations by playing in position of the agent and recording
the inputs and observations.

22

https://github.com/Unity-Technologies/ml-agents

5 Tools used for the implementation

By using these tools, the proposed agent-based model in section 4.3 can be imple-
mented to generate data. The data is supposed to help designers to balance their
gamespaces. The next chapter explains what a balanced gamespace is.

23

6 Balance in Gamespaces

One of the most important parts of game development is the balancing process. Without
good balancing, even an astonishing game can end up in a "monotonous, confusing,
and frustrating" [Sch20, p. 212] experience. Experience created by a shooter game
depend very heavily on their level design [Ada14, Chapter: Summary]. Therefore the
level and gamespace design must be in balance too.

To balance the gamespace of an arena FPS, the previous chapter (See chapter 5)
presented a number of tools. These tools can be used to implement the agent-based
model described in section 4.3. Using an implemented version of the agent-based model
it is possible to bypass human playtesting and still gather play data for gamespaces.

The following chapter aims to identify which data might be useful for balancing
arena FPS gamespaces. To identify useful data to balance a gamespace, we first go
through a few definitions of game balance (See section 6.1). Going through different
definitions of game balance allows to identify key elements for a balanced gamespace
(See section 6.2). Additionally, different kinds of data are presented that might help a
designer to balance their gamespaces.

6.1 Different definitions of game balance

To be able to balance gamespaces, one must first know what balance is. However, a
central definition for good "game balancing" does not exist [BG20, p. 38]. Multiple
definitions of game balance by different author have been studied by Becker and
Görlich. The following section will present some of the studied definitions. The
presented definitions will be relevant to later on identify key elements for gamespace
balance.

In his book Fundamentals of game Design, Adams defines a balanced game to be "[...]
neither too easy nor too hard" while focusing on player skill as "[...] the most important
factor in determining [...] success". A balanced game also has to be "[...] fair to the
player (or players) [...]" [Ada13, Chapter 15: What Is a Balanced Game?]. Along other
factors like the overall difficulty, Adams defines fairness as an integrated part of a
balanced game

24

6 Balance in Gamespaces

When working together with Rollings, Adams again came to the conclusion that the
players skill should be the "[...] determining factor for the success [...]" [BG20, p. 28] in
a balanced game. Thus in a balanced game "[...] a better player should ordinarily be
more successful than a poor one [...]" [BG20, p. 28]. For a better player to ordinarily
be more successful, Rollings and Adams include fairness as a "[...] criteria found in
well-balanced games" [BG20, p. 28].

Shell’s definition also agrees that fairness is essential for balance. He first states
that balancing is just the process of "[...] adjusting the elements of the game until they
deliver the experience you want" [Sch20, p. 212]. His definition of balancing doesn’t
mention fairness in the first place but later on he notes fairness as a "[...] quality that
players universally seek in games [...]". Therefore including fairness as a factor within
the targeted experience.

According to Novak "[a] game is balanced if players perceive that it is consistent, fair,
and fun" [BG20, p. 28]. With this statement Novak also includes fairness as a part of
game balance.

These definitions clearly define fairness as a part of a balanced game. Marc Brown
takes it a step further by saying that "[b]alance is the art of making sure that all options
in a multiplayer game are fair [...]" [BG20, p. 30]. Thus for him, a game can’t be
balanced if it isn’t fair.

Besides fairness, many authors such as Adams [BG20, p. 26] also mention dominant
strategies as a phenomenon to be avoided. Dominant strategies emerge "[w]hen choices
are offered to a player, but one of them is clearly better than the rest" [Sch20, p. 221].
Clearly better choices render the fun out of games since they remove any room for
impactful player decisions [Sch20, p. 221].

For Keith Burgun it is important "[...] to keep a player’s decision impactful" [BG20,
p. 23] and "to prevent a ruination of the game by dominant strategies" [BG20, p. 23].
Achieving these two goals defines game balance for Burgun. To reach game balance,
the "[...] the prime objective [lies] in keeping game elements relevant" [BG20, p. 23].

Similar to Burgun’s definition, for David Sirlin game balance is about providing
players with "[...] meaningful decisions between promising alternatives" [BG20, p. 24].

Dominant strategies lead to a redundant selection process. The selection process
becomes redundant as there is no reason to pick a weaker option over the dominant one
[BG20, p. 26]. In contrast to having a game with dominant strategies, having perfect
equality in a game does not provide a positive experience either [BG20, p. 24]. In a
game with "perfect equality [...] there would be no reason left to choose any action over
another" [BG20, p. 24]. Therefore Dan Felder and James Portnow suggest having "[...]
small power gaps [...]" [BG20, p. 24] or "[...] just a little bit of imbalance [...]" [BG20, p.

25

6 Balance in Gamespaces

27].

Summing up this section, "[s]hooter games depend very heavily on level design for
their experience" [Ada14, Chapter: Summary]. To create levels or gamespaces which
create a good experience, they need to be in balance. Looking at different definitions of
balance, key elements that stand out relevant for arena FPS gamespaces are fairness
and the absence of dominant strategies as well as perfect equality

6.2 Key Elements of Gamespace Balance

It is possible to project the key elements identified in the previous section (See section
6.1) onto gamespaces. Doing so, gives insight on how to balance gamespaces. At first,
the statement from Felder and Portnow regarding the effect perfect quality is discussed
in the context of gamespaces. Afterwards, the concept of dominant strategies in terms
of gamespace will be introduced (See section 6.2.2). In the end, we try to project the
key element of fairness onto gamespaces (See section 6.2.3).

6.2.1 Symmetry in Gamespaces

Felder and Portnow state that perfect equality in a game "[...] render[s] a lot of decisions
meaningless [...] since since there would be no reason left to choose any action over
another" [BG20, p. 24]. A lot of the decision making process also gets lost in perfectly
equal gamespaces. A perfectly equal gamespace in an arena FPS would be perfectly
symmetrical. Regarding symmetry, Adams additionally states that"[...], video game
players generally consider symmetric games rather uninteresting" [Ada13, Chapter
15: Balancing Games with Symmetry]. Therefore designers should avoid creating
symmetric gamespaces.

6.2.2 Dominant Strategies in Gamespaces

As defined in the last section (See section 6.1), dominant strategies emerge "[w]hen
choices are offered to a player, but one of them is clearly better than the rest" [Sch20, p.
221]. To avoid a clearly better option to emerge, Adams suggests to use intransitivity
[BG20, p. 26]. For example, Adams brings up the game Rock-Paper-Scissors as an
intransitiv system [Ada13, Chapter 15: Intransitive Relationships (Rock-Paper-Scissors)].
In Rock-Paper-Scissors "[...] every game element can be beaten by some other[. This]
supports the avoidance of dominant strategies" [BG20, p. 26].

Creating gamespaces with intransitivity in mind will help to end up with a more
balanced design from the get go. For example, it is most likely not advisable to have

26

6 Balance in Gamespaces

an advantageous position available for a team which has clear vision over a strategic
position this team has to defend but in return is not reachable or very much visible
for the opponents. As long as the position is not reachable or very much visible for
the opponents, players of the defending team have a dominant strategy in just waiting
at the advantageous position and eliminate every opponent coming to the strategic
position.

A solution to this situation can be found with intransitivity. By adding a flanking
route leading to the advantageous position, it becomes beatable and is not a dominant
strategy anymore.

Even if designers create gamespaces with intransitivity in mind, their first attempt
will never be as good as a later iteration that has been improved using playtest data.
There are many different kinds of playtest data which can help expose dominant
strategies.

Data to expose Dominant Strategies in Gamespace

While doing playtests, one can gather different kinds of data depending on the subject
to test. When it comes to exposing dominant strategies in gamespaces a few types of
data might help.

For example a heatmap showing where players are being eliminated. Knowing where
the most common dangerous spots are, designers might choose to place a cover there
for the next playtest iteration.

Another possibly useful kind of heatmap shows where players eliminate opponents
from. When most of the eliminations are done from a single highground, it might be
time to reiterate on that highground.

Besides avoiding dominant strategies, fairness has been identified as a key element
to balanced gamespaces.

6.2.3 Fairness in Gamepaces

Similar to how the aforementioned authors define "game balance" differently, they
also have different definitions for the term "fairness". These definitions will now be
reviewed to finally come up with a measurable unit for fairness in gamespaces. The
measurable unit then can be used by game designers to balance the gamespace.

One great distinction has to be made before looking at different definitions of fairness.
This is because fairness can be defined for two different types of games. The first type
being fairness for player vs. player games (PvP-games) and the second type being
player vs. environment games (PvE-games). PvE-games are games in which players do

27

6 Balance in Gamespaces

not directly play against each other. This paper is focused on arena FPS-games and thus
definitions of fairness for PvE-games will not be further discussed. We will continue
with definitions referencing either the general concept of fairness or fairness-definitions
directly aimed at competitive PvP-games.

Adams considers PvP-games in general to be considered fair by players if [Ada13,
Chapter 15: Making PvP Games Fair]:

• the rules give each player an equal chance of winning when play begins

• the rules do not give advantage or disadvantage to players unequally during the
game in ways that they cannot influence or prevent apart from the operation of
chance (in moderation)

Thus creating a concept of fairness in which all players have an equal chance of winning
in the beginning and none are privileged during the game.

Together with Rollings, Adams adds another point to their definition of fairness.
They state that a "[...] player perceives fairness by always being able to win, even after
early mistakes" [BG20, p. 28]. Thus a dire game situation should always be able to be
turned into a favourable one by players.

Schell describes a feeling of a game being unfair when opposing forces have an
advantage which makes it feel like they are impossible to defeat [Sch20, p. 213].
Avoiding the feeling of an unwinnable situation also implies to always offer a possibility
to win just like Rollings and Adams proposed.

As mentioned earlier Novak believes that a balanced game isn’t complete if it isn’t
fair. Regarding fairness he states that "a better player should be more successful in
general [...] than a less-skilled-player, unless the game is based purely on luck instead
of skill" [BG20, p. 27]. This agrees with previous statements as it demands a game in
general to not give out unfair disadvantages to more skilled players which would make
it impossible for them to win. Or on the other hand give out advantages big enough to
less skilled players leading to a safe victory.

Agreeing with Adams, Sirlin demands a fair game to offer "[...] an equal chance
of winning [to each player]" [Sir02, Part 1: Definitions]. This condition must stand
"[...] even though [players] might start the game with different options" [Sir02, Part 1:
Definitions].

Different options per player make another point of distinction. Besides the distinction
of a game being either PvP- or PvE-centric, games also lie on a symmetry-spectrum
[Sir02, Part 1: Definitions]. Sirlin calls games symmetric when they offer the same
starting options to all players. They mention the game Chess as an almost perfectly
symmetric game. Only almost perfectly symmetric though, since white moves first. Thus

28

6 Balance in Gamespaces

white has different starting options compared to black which makes Chess a slightly
asymmetric game. Similar to how Chess isn’t perfectly symmetric other games can
be more or less symmetric by offering varying options to each player. The more
asymmetric a game becomes the more difficult it becomes to make it fair for all players.
While asymmetric games aren’t fair from the ground up, Becker and Görlich have
concluded "[...] that fairness is inherent to symmetrical games [...]" [BG20, p. 38].

Concluding the reviewed definitions, we can distinguish a few points that must hold
for a game to be fair:

• No player should receive an advantage big enough to win purely because of it
unless the opposing force receives it too.

• Perfectly symmetrical games are the ground truth for fairness.

• All players should have roughly the same probability of winning at the beginning
of a game

• In general, when a more skilled player competes with a less skilled player, the
more skilled player should win more often. This makes skill the determining
factor for success.

Following these guidelines we can deduce a simple measurement for fairness. As-
suming we have a game fulfilling the guidelines. The game is played by two teams
directly competing against one another in a PvP-style. The starting positions of our
game are equally strong and give no advantage to one of the teams by either being fully
symmetric or properly setup. During the game player-skill is still the main determining
factor for success. Thus if one of the teams was significantly more skilled than their
opponents, they would win more often over a series of games. However if

• the games starting positions are fair

• no game-changing advantages are handed out by the game to only one team

• the teams are equally strong

we would expect both teams to win roughly half of their games if the gamespace if fair.
Winning half of their games or rather a roughly 50% win-rate in a gamespace thus
should be a sufficient measurement for fairness.

If a roughly 50% win-rate is the result of the playtests made for a gamespace, we can
assume that it is more fair by balancing. Thus, keeping track of the win-rates during
playtests is key to making a gamespace more balanced. Knowing in which direction a

29

6 Balance in Gamespaces

gamespace might be favored can be useful for designers as they might want to achieve
a certain favor within a gamespace.

Knowing how to intentionally create a favored direction within a gamespace based
of playtest data can be especially useful. Some games such as Counter-Strike: Global
Offensive [12] feature a defending/attacking theme. In games with a defending/attack-
ing theme designers might want a whole map or level to be fair and for both teams to
roughly have a 50% win-rate. However, a whole map or level can be broken down into
smaller gamespaces which all have their own balance. The designer-intended balance
within a smaller gamespace might not even be fair. Since "[...] many games are actually
made far more engaging by just a little bit of imbalance, multiplayer games especially"
[BG20, p. 27].

By combining both the data from playtests for avoiding dominant strategies and
for fairness, game designer are able to make better decisions on how to change a
gamespace in order to achieve a better balance.

The next chapter takes the proposed agent-based model from chapter 4 and uses the
tools presented in chapter 5 to implement a showcase prototype for gathering the data
described in this chapter.

30

7 Description of the Implementation

The previous chapters have described all the theories and concepts that are required to
implement and use the ABM approach used to gather the playtest data for balancing.

In this chapter we want to demonstrate the usage of the ABM approach. However,
the approach would be used during the development of a real game. Since we do
not have the chance of using the ABM approach on a real game in development, we
demonstrate the approach by implementing an agent-based model for an imaginary
arena FPS.

This imaginary arena FPS will be very simple. It’s about two opposing teams within
a gamespace as the arena. Within the gamespace, all players can move around freely
after the game starts. Both teams start in a random location within predetermined start
boxes. Goal of one round in the game is to eliminate all players of the opposing team.
Eliminating is done by shooting opponents and reducing their health attribute to zero.
Thus the players have:

• an actions for shooting their opponents

• an action or actions which give them the ability to move freely within the games-
pace and rotate to look around

• a health attribute which resets every round

Possible outcomes of the game are wins for either team or a tie, if both teams are fully
eliminated at the same time.

For the presented imaginary game, we implement an agent-based model to gather
playtest data. At first we describe the model using the five component structure of
every agent-based model (See section 7.1). Afterwards, section 7.2 explains the creation
of the desired agent behavior using the aforementioned Unity ML-Agents toolkit (See
section 5.3 for more detail). The last section (See section 7.3) validates the model, to
confirm its correctness.

31

7 Description of the Implementation

7.1 Implementation of the Agent-Based Model in Unity

As described in chapter 5, the prototype has been built using the Unity game engine.
Within the Unity game engine a simple framework for an arena FPS has been developed.
This framework only implements the five components explained in section 4.3. Each of
these five components will described in more detail now.

In addition to describing the five components for our implementation, we will
describe how each component could be implemented during the development of a
real game. For the real game, we assume it to use the principles of low coupling & high
cohesion.

By implementing the five components into a real game, we are able to use the ABM
approach and gather data for balancing gamespaces in that real game.

7.1.1 Implementation of the Observer

The first component to explain is the observer controlling the main simulation loop. In
general, one loop consists of one game round. It will already be possible to loop game
rounds in a real game. Therefore, we are able to use the already implemented main
game loop when using the ABM approach for a real game.

For the imaginary game however, a completely new main simulation loop has to be
implemented. The main simulation loop always looks at one arena match. Within this
match two teams play against each other in an environment until one of them wins. The
win-condition in this case triggers, if one team has eliminated all the members of the
opposing team. When both teams eliminate each other at the same time, we experience
a tie. Additionally to the win-condition, every match has a maximum running time. If
either the time for a match runs out, or an elimination-based end-condition is met, the
observer stops the match and announces the result.

Afterwards, a new match is started by the observer. At the start of a new match,
everything reset into its original state.

This concludes the main loop simulating players within the gamespace. Next we
describe how the main loop is scheduled to be synchronous.

7.1.2 Implementation of the Scheduler

The scheduler must be synchronous due to the reasons that have already been described
in section 4.3. Actions by agents must be handled at the same time and equally.
Otherwise one agent might have an advantage over the other one. We assume that a
commercial arena FPS game already handle actions synchronously. If it does, the ABM

32

7 Description of the Implementation

implementation for a real game can use the already implemented synchronous action
handler.

Since we use the Unity game engine for the prototype, we are bound its script
lifecycle [Tec21, Order of execution for event functions]. The Unity script lifecycle is
not synchronous. Due to the lifecylce not being synchronous, implemented scripts in
the prototype will be executed one after another. This could lead to the asynchronous
scheduler problem described in section 4.3. We avoid the problem within the prototype
by using the functionalities of the MonoBehaviour.LateUpdate() [Tec22, LateUpdate] and
MonoBehaviour.Update() [Tec22, Update]. As the names suggest, the LateUpdate-function
is executed after all Update-functions have been executed. We use the order of execution
of the LateUpdate- and Update-functions to implement a synchronous execution of agent
actions.

Instead of letting the agents themselves take actions while they are updating, they only
register actions in the scheduler. The scheduler will collect all registered actions during
the update-phase. After the update-phase ends and all agent-intended actions have
been registered, the scheduler will execute the registered actions in the LateUpdate-
function in a synchronous manner. For example, to synchronize the action of shooting,
the scheduler will handle all registered shooting-actions following this scheme:

1. Go through all registered shooting-actions

2. For each shooting-actions, deal the registered damage of the action to the health
attribute of the target-agent

3. Execute the shooting-action regardless of the attacking agents health. Thus the
shooting will be executed even though the agent might have been killed by
another agent at the same time

4. Only after every shooting-actions has been handled, check for agents that have
been eliminated

This system implements a synchronous scheduler as it is required to correctly model
human players in a gamespace. How the human players have been implemented as
agents will be shown next.

7.1.3 Implementation of the Agent

While the observer is handling the main loop and the scheduler manages a synchronous
update model, the agents acting on schedule during the main loop are implemented

33

7 Description of the Implementation

in the following way. The criteria listed in section 4.3 state that our agents require the
same possibilities a human player would have in an arena FPS. Since we are creating a
prototype, the agents will implement only basic features of an arena FPS. Therefore
they must have at least these points implemented:

• systems allowing the agents to shoot at each other

• systems allowing the agents to navigate through a gamespace and rotate

• all the attributes required for the player character of the imaginary game such as
movement, rotation speed, field of view radius and health

In the case of implementing the ABM approach for a real game, the required systems
will be implemented already as they are necessary for players to even play the game.
As the real game is assumed to use the principles of low coupling and high cohesion, it
should be easy to give the control over a player character to an artificial agent.

Due to having no real game for the showcase implementation, the systems have to
be implemented from the ground up.

The first system which allows agents to shoot at each other will be explained in the
section for interactions (Section: 7.1.4). The shooting action is part of the sections for
interactions because it is implemented to be a direct interaction between two agents
rather than being an action agents can take.

Therefore the explanation of the shooter system is skipped for now and the first
explanation is for the navigation system. Afterwards, a listing of all the agent attributes
is presented.

Implementation of the Navigation System

Agent navigation through a gamespace was implemented into the prototype via the
NavMesh navigation system [Tec21, Building a Navmesh] of the Unity game engine.
NavMeshs in unity are an easy way to " [...] create characters which can navigate the
game world" [Tec21, Navigation System in Unity]. Instead of using a system in which
the agents navigate by giving directional inputs like "Move right", "Move back", they
can just choose a goal location within the gamespace. After choosing a goal location,
the Unity NavMesh system will automatically move the agent towards it without them
getting stuck somewhere.

For the NavMesh system to work, we need to bake a NavMesh for a gamespace
beforehand. The baking step calculates "[...] an approximation of the walkable surface"
[Tec21, Building a Navmesh] while considering agent specifics like its radius, height,
maximum steepness of ramps and maximum dropping distance. After baking the

34

7 Description of the Implementation

NavMesh for a gamespace, the approximated walkable area looks like shown in figure
7.1. Everything that is shown in blue is walkable for the agents. Agents are also able
to drop down from the ramp on the right hand side of figure 7.1. The ability to drop
down is shown by the arrows directing from the top of the ramp down to the floor.

Figure 7.1: Depiction of the baked NavMesh in a gamespace.

Via the usage of the Unity NavMesh we were able to implement a sufficient and easy
to use navigation system. Everything developers have to do, is to bake a NavMesh for
the gamespace before they use the ABM model.

Implementation of Agent Attributes

In section 4.3 it was made mandatory for the agents to have the same attributes as
human players. Therefore, all required attributes will be presented now.

The first attribute resembles the agents health. In an arena FPS with the goal is to
eliminate all opponents, a health system is obviously required. A health system can be
used to implement damage done after getting shot. It is a simple integer value which
every agent has. The integer value gets reduced by the damage taken when the agent is
shot. If the health attribute of an agent reaches zero, it dies. In the case of all agents of
one team dying (or both teams in a tie), the game round is ended. When the observer
resets the game to begin a new round, the health is reset to its initial value as well. A
similar system will exist in every real arena FPS. Thus when using the agent-based

35

7 Description of the Implementation

approach during the development of a real game, one can just use the already existing
health system.

Our agents must navigate through the gamespaces in the same way human players
can. When developing a real game, a navigation system for player will be available
to use for the agents too. Since no real game with an already existing navigation
system is available, the agents use the Unity NavMesh for navigations. When using
the Unity NavMesh system, the agents require the Unity NavMeshAgent component
[Tec22, NavMeshAgent]. The Unity NavMeshAgent component offers lots of navigation
specifics such as acceleration or speed. These navigation specifics were adjusted to
emulate the navigation a human player has in a real arena FPS.

The last necessary attribute in an arena FPS is the field of view (FOV) value. The
FOV defines the viewing angle of players. In real game development this is usually
either fixed for all players or variable for players to choose. If the FOV is fixed for all
players, the agents must have the same FOV to accurately gather play data. If the FOV
is variable and players can choose it, the agents should use the greatest FOV option.
A greater FOV value results in a bigger viewing angle which yields an advantage
compared to using an smaller FOV. Therefore agents should use the greatest FOV
option also available to players. Otherwise they might miss opportunities which arise
by using the greates FOV option.

7.1.4 Implementation of the Interactions

As stated in section 4.3, our interactions need to resemble the interactions available in the
game and gamespace we try to gather data for. In the section about agent-based models
in general, we listed all the possible points of interactions. Since the implemented proto-
type is very simple and only supposed to show off the potential of the ABM approach,
we do not implement any agent-self, environment-self, environment-environment or
agent-environment interactions. However, we do implement an agent-agent interaction.
The agent-agent interaction implemented, is a work-around to how shooting would
be done within a conventional game. In conventional games, players can take the
action of shooting. Rather than implementing shooting as an action agents can take, we
implement it as a direct interaction between two agents.

Implementation of the Shooting System

The shooting system was implemented in a very simplified way compared to a shooting
system in an arena FPS. "Shooter games [and therefore also arena FPS] present the
majority of challenges as tests of the player’s physical skills at hitting targets with
projectiles [...]" [Ada14, Chapter: What Are Shooter Games?]. We disregard the " [...]

36

7 Description of the Implementation

physical skills [of] hitting targets with projectiles [...]" [Ada14, Chapter: What Are
Shooter Games?] for the implementation of our agents.

As soon as an agent has an opposing agent within their field of view, Unity Ray’s
[Tec22, Ray] are sent towards the opposing agent using Unity Physics.Raycast [Tec22,
Physics]. The rays origin is at the head of the shooting-agent, while the rays destinations
varies. Destinations vary because the amount of rays is variable. The first ray always
goes to the head of opposing agent. The head of the opposing agent is located at the
horizontal middle and the highest vertical point of its body. All rays after the first
one have the same horizontal position but are distributed equally along the vertical
axis of the agents body. For example, if the total amount of rays is two, the second
ray goes straight towards the vertical middle of the opposing agents body. Figure 7.2
demonstrates the situation of a blue attacking agent shooting the red opponent with a
total number of three (red) rays. For three rays, the opponents body will be divided
into three. The first ray hits the head, the second ray hits the body at 66% of the body’s
height and the last one hits the body at 33% of the body’s height.

Figure 7.2: Demonstration of the vision system with three rays. The blue agent is
shooting at the red agent depicted by the red lines. The light blue lines
depict the field of view.

Figure 7.2 additionally depicts lines in light blue. These lines are the borders of the
agents field of view. While being in the field of view, opposing agents count as in line
of sight. Since the opposing agent counts as being in line of sight, rays will be sent. If
the rays do not get interrupted by a line of sight breaking object, it means they hit their
destination on the opposing agent. Depending on how many rays hit their destinations,

37

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Ray.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Physics.Raycast.html

7 Description of the Implementation

the damage dealt by the shooting action changes. For each ray hitting, one damage is
dealt to the opponent. Thus, in figure 7.2, the blue agent would deal three damage to
the red agent. The damage is dealt every update cycle for as long as the red agent stays
within the field of view of the blue agent.

Other types of interactions are not modeled as we implement a very simple prototype.

7.1.5 Implementation of the Environment

The last missing component is the environment. In section 4.3 we defined the environ-
ment to be the functional space of a gamespace within the game we try to model and
gather data for.

During the development of a real game, we would want to evaluate the environments
created by the level designers. After an evaluation the level designers then would be
able to interpret the gathered data and iterate on their level design.

Level designers thus create lots of environment prototypes through iteration. These
prototypes are most commonly just the functional space in the beginning. It is not
worth it to go further than just the functional space and make the prototypes aesthetic.
Making prototypes aesthetic is just extra work since it would have to be done for every
iteration until finishing with a fun and balanced gamespace. To find out if a gamespace
is fun and balanced, all we need is the functional space. Since the functional space
is everything the designer create anyway, no extra work is necessary when using the
ABM approach on a real game.

However, for the implementation of the prototype we do not have a real game
in development. Therefore we have to create the gamespaces ourselves. To create
gamespaces we use the tool Unity ProBuilder which was described in section 5.2. After
creation, we can then bake the Unity NavMesh to make agent navigation possible as
described earlier in section 7.1.3.

Another part of the environment are the start box positions for both teams which
need to be set too. Luckily when level designers built a prototype, they determine the
start positions as well. Otherwise the built gamespace would not be playable. In our
scenario however, we need to define the start box locations ourselves too as we also
had to create the gamespaces ourselves. Figure 7.3 shows an example for a gamespace.
Within the gamespace two starting boxes in red and yellow are placed for the two
teams.

These five components build up a framework for the proposed agent-based model.
To complete the framework, the following section will explain the basics for creating
the agent behavior.

38

7 Description of the Implementation

Figure 7.3: Depiction of the starting boxes for both teams. Team red starts somewhere
in the red box while team blue starts somewhere in the yellow box.

7.2 Creation of the Agent Behavior using the Unity ML-Agents
Toolkit

In section 4.3, a list of criteria was presented. The list of criteria includes everything an
agent has to satisfy for the ABM approach. In the last section (See section 7.1), the base
of the ABM approach was explained. However, the base of the implementation does
not satisfy all the criteria for an agent. Within the base explained until now, agents
satisfy the criteria of having the same attributes and actions as human players.

Missing from the list of criteria are these:

• the agents have to have the same goal as human players

• the agents must be adaptive as human players also adapt to new gamespaces or
enemies in the arena FPS

• the agent should behave much like a human player would do in a gamespace

We seek to solve these three remaining criteria using machine learning. By using the
machine learning toolkit Unity ML-Agents [Jul+18] (See section 5.3 for more detail), the
desired behavior for the agents is created.

39

7 Description of the Implementation

7.2.1 Usage of the Unity ML-Agents framework

To achieve a human-like, adaptive and goal driven behavior in the agents, machine
learning was used. Since the Unity game engine was used for the showcase project,
machine learning could be implemented via the Unity ML-Agent toolkit. The toolkit
provides the possibility to "[u]se state-of-the-art machine learning to create intelligent
character behaviors in any Unity environment" [Tec21, Unity Manual: Verified packages:
ML Agents]. Therefore, the base for the agent-based model was first implemented in
the Unity game engine as described in the last section (Section: 7.1. Afterwards, the
desired agent behavior was implemented using the framework of the Unity ML-Agent
toolkit. The framework offers a number of different functions and features to use. How
the most crucial functions were used, will be explained now.

Implementing a custom Unity ML-Agent

The Unity ML-Agents toolkit comes with comes with a public class called "agent".
This class is the base for a custom Unity ML-Agent. To create a custom Unity ML-
Agent, a child class is created by inheriting from the agent class. In the child class we
implement custom behavior by overriding certain functions provided by the agent class.
By overwriting the following functions, a arena FPS agent was created:

• OnEpisodeBegin: The first function to be overwritten is the OnEpisdodeBegin-
function. An Episode is one round of training for an agent. The training of an
agent is done by completing many episodes one after another. An Episode begins
with OnEpisodeBegin and ends with a call of the function EndEpisode. For teams
consisting of more than one agent, the episode is ended with EndGroupEpisode.
For the arena FPS agent, one episodes resembles one round of the imaginary arena
FPS. One round of the imaginary arena FPS starts with the players (or agents) in
their start boxes. If one or both teams are eliminated, the round is ended by the
obsverver. The observer then officially ends the episode with either EndEpisode
or EndGroupEpisode. Both EndEpisode and EndGroupEpisode make calls to
OnEpisodeBegin for every agent participating. Therefore the observer keeps
the training loop running by repeatedly restarting episodes with calls to end an
episode which then again call OnEpisodeBegin.

The OnEpisodeBegin function itself is responsible for resetting an agent. Therefore
if the function is called for an agent, all changing attributes are reset. An example
for a changing attribute is the agents health.

Two more changing attribute are the position and rotation of the agent. The

40

7 Description of the Implementation

rotation around the agents y-axis is randomized to a value in the range of [0;360]
degrees while the position is changed to a random position within the agents
start box.

• CollectObservations: The next important function to be overwritten for imple-
menting custom behavior is CollectObservations. It is called by the Unity ML-
Agents toolkit itself and as the name suggests, the function exists to provide the
agent with the observations required for the desired behavior. An example for
a desired behavior could be an agent that is supposed to move from its current
position to a goal location in a straight line. For such a desired behavior, the only
observations required, are the position of the goal and the agents own position.
In general, more complex observations are required to achieve more complex
behaviors. Extending the former example by adding a hole to avoid for the agent,
the former list of observations is not sufficient anymore. It is not possible for the
agent to avoid the hole, if the hole position is not known. To achieve the more
complex behavior of dodging a hole, additional observations are required.

To model the complex behaviors that human players exhibit in gamespaces, these
observations are given to the arena FPS agent:

– Information about the agent itself : This includes its xyz-position as a Vector
of length three and the rotation around its y-axis.

– Information about the opponents of the agent: For every opponent which is
still alive in the round, the agent is given these observations:

∗ The first opponent-observation is an integer value resembling how visible
the opponent is for the agent. If the opponent is not visible at all, the
observation is zero. Otherwise it is the count of vision rays that hit the
opponent (See section 7.1.4).

∗ Afterwards, the same calculations are done again but in reversed di-
rections. Doing the calculations reversed provides the agent with an
observation that indicates how visible the agent is for the opponent.

Both the observations of how visible the agent is for the opponent,
and how visible the opponent is for the agent, are required to identify
advantageous positions. In general, a position is advantageous for a
player, if they are less visible to their opponent than the opponent is
visible to them. Or in other words, if a player is more visible, they are
more vulnerable.

41

7 Description of the Implementation

This also translates to the implemented shooting system. In the shooting
system, a position in which the agent always hits three rays while the
opponent only hits two rays is advantageous to the agent. Three hits
deal three damage while two hits only deal two damage (See section
7.1.4). Therefore the opponent would be eliminated first, as long as it
can not turn the situation in its favor.

∗ As advantageous positions often come from having a higher position
than the opponent, the agent also observes the signed difference in height
to its opponents.

∗ The last observation is the angle difference towards an opponent. It describes
the amount of degrees an agent has to turn, to look straight at the
opponent. The angle difference is within in the range [-179; 180]. If
the agent looks straight at an opponent, the angle difference to that
opponent is 0 degrees. Meanwhile, when looking in the exact opposite
direction, it is 180 degrees. The angle difference is signed to be able to
distinguish between looking to the left hand side or right hand side. To
calculate the angle difference, the Unity Vector3.SignedAngle(Vector3 from,
Vector3 to, Vector3 axis) function is used. [Tec22, Vector3]. As inputs we
used the agents own Unity Transform.forward vector [Tec22, Transform]
as the from-input, a direction vector from the agent to its opponent as
the to-input and a Untiy Vector3.Up [Tec22, Vector3] vector as axis-input.

While it is possible to add more observations regarding the opponents, the envi-
ronment or the agent itself, we ultimately chose to restrain us from adding more
observations. Adding more observations would in return add more complexity
to the agent. A more complex agent is more difficult to train which we could not
achieve within this paper. However, we experimented with other observations
that might be useful to achieve more complex and human-like behaviors:

– A cover score system which evaluates the current location of the agent. Loca-
tions could be evaluated in terms of how visible the agent is in them. Using
this information, agents could be able to find advantageous positions within
the gamespace.

– Predetermined locations of advantageous positions such as cover or highgrounds.

Compared to using the cover score system, the addition of predetermined
locations to the observations might decrease the required amount of time for
an agent to find advantageous positions.

– More information in general about the agent and their opponents. This general
information could include their health attributes or the angle difference an

42

https://docs.unity3d.com/ScriptReference/Vector3.SignedAngle.htmll
https://docs.unity3d.com/ScriptReference/Transform-forward.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Vector3-up.html

7 Description of the Implementation

opponent has towards the agent. In some situations in which the agent is
at a health disadvantage, it might useful to know whether the opponent is
looking in the agents direction or not. If the opponent is not looking in the
direction of the agent, the agent might decide to not engage in combat but
rather wait for a more optimal situation.

– In the case of a more complex game with special features such as health /
weapon pick-ups or jump-pads, it might be useful to include the locations of
these features into the list of observations as well. When knowing the locations
of such features, agents might be able to form strategies around these key
locations. As an example, it might be useful to know the location of the
nearest health pick-up, in case the agent or its opponent are on a low health
level.

– Information about previous deaths of the agent such as its position, own rotation
or angle difference towards the killing opponent. By using death information,
agents might be able to prepare and prevent the same death from happening
again.

It is also crucial to reduce complexity whenever it is possible as "the presence of
irrelevant attributes should considerably slow the rate of learning" [BL97, Section
2]. For example, if a gamespace has no differences in height and is practically a flat
space, it is possible to omit the agents own height from the position observation.
The agents own height does not change in a flat space and is therefore irrelevant.
Omitting the height observation, would reduce the position observation from a
xyz-vector of length three to a xz-vector of length two. Thus, we decrease the
number of observations which might increase the training speed.

• OnActionReceived: The last function to overwrite is the OnActionReceived func-
tion. Like the CollectObservations-function, the OnActionReceived function is
called by the Unity ML-Agent toolkit itself.

The input parameter for the CollectObservations-function is a Unity ActionBuffer
[Tec22, ActionBuffers]. By using the given ActionBuffer, it is possible to read the
actions that the machine learning agent wants to take. Actions an agent might
take are either discrete or continuous. How many continuous and discrete actions
are taken by the agent is part of the agent creation process in the Unity game
engine. While agents always choose a value in the range [-1;1] for a continuous
action, for discrete actions it is required to additionally set a range in which the
agent chooses the action.

For example, a discrete move action could have a range of three. By choosing a
number from the range [0;2], the agent then takes an action. The action the agent

43

7 Description of the Implementation

chose then can be read from the ActionBuffer in the OnActionReceived-function.
As the action is just a integer number, a mapping is required. For the discrete
move action, a mapping of number to action could look like this:

– 0 -> don’t move

– 1 -> move left

– 2 -> move right

To ensure recognizable patterns for the agents to learn and use, the mappings
of chosen numbers to actions must be consistent during the learning process.
However, the initial mapping from numbers to actions does not matter.

For the agent-based model of the imaginary game, the agent implements only
three actions. Since shooting is done automatically and based on line of sight (See
section 7.1.4), it is not implemented as an action agents can actively take. The
actions agents can actively take are

– a continuous move action.

– and a second discrete action for rotation.

The move action consists of two separate continuous actions that form a vector of
length two. The formed vector is used as destination for the Unity NavMesh of
the gamespace.

The formed vector is not usable for the destination input of the Unity NavMesh
system from the get go. NavMeshs in Unity require a vector of length three
consisting of the world coordinates on the Unity NavMesh of the gamespace
[Tec22, NavMeshAgent.SetDestination]. Meanwhile, the formed vector is of length
two and consists of two values in the range [-1;1]. Therefore the vector provided
by the agent is mapped onto a world position within the gamespace. Figure 7.4
shows the mapping for a completely flat gamespace. To reduce the complexity
of the agent, the height in the move action was omitted. Instead, a projection of
the 2D vector onto the real world position is done disregarding the height in the
gamespace. Disregarding the height is sufficient as long as no second floor exists
in the gamespace.

To look around, the agent needs to be able to rotate around its y-axis. The action
implementing this rotation is discrete. The discrete action has a range of three.
One input maps to no rotation at all while the other two inputs map to rotating
either left or right. Rotations always happen with the same rotation-speed.

44

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/AI.NavMeshAgent.SetDestination.html

7 Description of the Implementation

(0, 0)

(-1, -1)

(-1, 1) (1, 1)

(1, -1)

Figure 7.4: Depiction of the mapping from the 2D, [-1,1], space to a 3D gamespace

These overwritten functions implement the custom behavior specifically of our agent.
To implement an agent for an arbitrary real game, these functions must be overwritten
according to the game. When a round within the real game ends, both players and
agents should be reset equally. Observations and Actions of both players and agents
should also be the same or at least work in an equal manner. Additionally, the
observations should be normalized to ensure a more effective training.

7.2.2 Normalization process for the Unity ML-Agents

The implementation uses the Unity ML-Agents toolkit to create machine learning agents
based on neural networks. When working with neural networks "[...] it is considered
a best practice [to normalize observations]" [Jul+18, github: Learning-Environment-
Design-Agents.md]. Normalizing observations can help the neural network to "[...] con-
verge to a solution faster" [Jul+18, github: Learning-Environment-Design-Agents.md].

The process of normalization is different for every model and thus also for every
implementation of the proposed ABM approach. In the last section (See section 7.2.1),
the observations of the ABM implementation for the imaginary game (See chapter 7)
were described. How the observations are normalized will be presented now.

45

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Design-Agents.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Design-Agents.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Design-Agents.md

7 Description of the Implementation

Normalization of the Agent Rotation

The first observations include the agents xyz-position and the rotation around its y-axis.
Regarding the rotation, it is read as a float value in the range of [0;360]. To normalize it
into a range of [0;1], we simply divide the value by the float value of 360.

Normalization of the Agent Position

Normalizing the xyz-position is more difficult. In section 7.2.1 it was required to
transform the agent move action from a 2D-[-1;1] range into 3D world coordinates
applicable for the Unity NavMesh. To normalize the position we now have to do the
opposite by transforming a 3D world coordinate to a 3D-vector with each component
normalized.

Beginning with the y-component resembling the agents height within the gamespace.
The y-component is normalized into a [0;1] range. To transform an arbitrary value into
a [0;1] range, we use the following formula [Jul+18, github: Learning-Environment-
Design-Agents.md]:

normalizedValue = (currentValue − minValue)/(maxValue − minValue) (7.1)

The currentValue is the float value of the y-component. We relate the y-component to
the gamespace in which the agent is permanently contained in. Therefore we can use
the upper and lower bounds of the gamespace as max- and minValues. We get them
by using the Unity Collider.bounds.max.y and Collider.bounds.min.y [Tec22, Collider]
[Tec22, Bounds] which are from the Unity Mesh Collider component reference [Tec21,
Mesh Collider component reference].

The remaining x- and z-component of the 3D world position are normalized into a
[-1;1] range. Figure 7.4 depicts the mapping from 2D coordinates in [-1;1] range to a
3D gamespace. For the normalization the reverse mapping is done. It maps from a
position in the 3D gamespace to a 2D coordinate in [-1;1] range by first calculating the
agent position relative to the gamespace center:

relativePosition = agentWorldPosition − gamespaceWorldCenter (7.2)

in which all variables are vectors of length three and the gamespaceWorldCenter is
retrieved via Collider.bounds.center [Tec22, Bounds] of the same bounds used for the
y-component.

Having the relativePosition, it is possible to calculate the normalized x- and z-
components via:

normalizedX = relativePosition.x/gamespace.extents.x (7.3)

46

https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Design-Agents.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Learning-Environment-Design-Agents.md
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Collider-bounds.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Bounds.html
https://docs.unity3d.com/2020.3/Documentation/Manual/class-MeshCollider.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Bounds.html

7 Description of the Implementation

and
normalizedZ = relativePosition.z/gamespace.extents.z (7.4)

in which the gamespace.extents are retrieved via Collider.bounds.extents [Tec22, Bounds].
The extents have a value of half the size of the gamespace in the corresponding
component direction.

By combining all three components we receive the normalized agent position in
relation to its gamespace.

Normalization of the Angle Difference towards Opponents

The next observation to be normalized is the angle difference towards the opponents.
As the angle difference is in the range [-179;180], we only need to divide the calculated
angle difference by 180 to normalize it into the range of [-1;1].

Normalization of the Height Difference towards Opponents

To normalize the height difference an agent has to its opponent, we first take the normal
difference of their height and afterwards divide it by the maximum distance in height
they can be apart of within the gamespace:

normalizedHeightDi f f erence =
(agentPosition.y − enemyPosition.y)

(gamesspaceMaxHeight − gamespaceMinHeight)
(7.5)

in which the gamespaceMax- and MinHeight are the same Collider.bounds.max.y and
Collider.bounds.min.y used before (See section 7.2.2). The result is a normalization into
the range of [-1; 1].

Normalization of the Vision Counts

The remaining observations are the vision counts both from the opponent towards
the agent and vice versa. Both vision counts depend on the number of rays which hit.
While the maximum amount of rays that can hit is just the total amount of rays we
shoot, the smallest amount of rays that can hit is when all miss, hence zero rays. Using
the same normalization equation used in section 7.1, the following equation results:

normalizedVisionCount = amountO f HitRay/amountO f RaysShot (7.6)

Doing the normalization with this equation produces a normalized vision count in the
range of [0;1].

47

https://docs.unity3d.com/2020.3/Documentation/ScriptReference/Bounds.html

7 Description of the Implementation

These normalizations help to train the model more effective. However, effective
training of a false model is really not effective anymore. Therefore the next chapter
tries to validate the implemented model.

7.3 Validation of the Agent-Based Model

"Validation is the process of ensuring that there is a correspondence between the
implemented model and reality. Validation, by its nature, is complex, multilevel,
and relative. Models are simplifications of reality; it is impossible for a model to
exhibit all of the same characteristics and patterns that exist in reality. When
creating a model we want to incorporate the aspects of reality that are pertinent to
our questions. Thus, when undertaking the validation process, it is important to
keep the conceptual model questions in mind and validate aspects of the model that
relate to these questions." [WR15, p. 325f]

Keeping the goal in mind of gathering data for the practical task of balancing games-
paces, it might not be necessary to have an implementation which is completely accurate.
An implementation can still provide useful and meaningful data even though it might
not perfectly represent the real world analog

In general, the real world analog would be a real game. However, this implementation
is built for an imaginary game. Because of this, when validating, we instead use
common implementation techniques for certain problems as real world analogs for our
implementation.

Although the implementation does not perfectly represent its real world analog, the
following section does try to validate most of its components using the four techniques
for validation presented in section 4.4.2.

7.3.1 Microvalidation of the Agent-Based Model

The first of the four techniques is microvalidation. To recapitulate section 4.4.2, mi-
crovalidation tries to show matches between the agents and their real world analogs in
terms of mechanics and behaviors [WR15, p. 326].

Matching the agent mechanics

Concerning the mechanics, it is easy to find matches between the implementation and
its real world analog. One way of finding matches is by examining relevant properties
of the real world analog and to look for similarities afterwards [WR15, p. 329]. The
process of examining the relevant properties to look out for similarities might be more

48

7 Description of the Implementation

complicated when using ABM for real world phenomena like the flocking of birds.
However, as the ABM approach is used during the development phase, direct access is
available to all properties of players within the game. Therefore the process of matching
properties of players and agents is simple. The properties of a player in the game are
the possible actions and attributes.

Matching the attributes of an agent and a player within a game has already been
described in section 7.1.3. In a best case scenario both the agents and real players just
use the same system for their attributes. If that is not the case, it is a simple act to
implement the same attributes for an agent, a player has. In either case, the attributes
are microvalid.

Our showcase implements the agent navigation using the Unity NavMesh sytem
[Tec21, Building a NavMesh] (See section 7.1.3 for further detail). The NavMesh system
allows agents to move freely within a gamespace. Comparing the free navigation of
the agents in the showcase implementation to common navigation methods in shooter
games like Counter-Strike: Global Offensive [12] or Overwatch [16], a clear match
is obvious. Both common navigation implementations in commercial FPS and the
showcase implementation navigation allow for free movement within the gamespace.
Therefore, the implemented navigation system is microvalid.

The second action to match is the shooting action. As section 7.1.4 describes, the
shooting action is implemented as a line of sight interaction rather than a test of the
aiming skill. For the line of sight shooting interaction to be microvalid, it must match
shooting with aim. However, as we mentioned earlier in the section, it is sufficient
to have a system which provides results that give insight about the balance of the
gamespace. The following section tries to prove that line of sight is sufficient for this
paper’s cause.

Matching the shooting system

Instead of implementing the shooting action of an agent as the " [...] physical skills
[of] hitting targets with projectiles [...]" [Ada14, Chapter: What Are Shooter Games?],
the agents implement it as a mere interaction between two agents (See section 7.1.4
for more details). Within the interaction we only test for line of sight to the opposing
agent. When having an opposing agent within line of sight, agents automatically shoot,
hit and damage the opponent rather than taking an action of shooting and trying to hit.
The simplified line of sight shooting system is sufficient for generating data about the
balance of a gamespace. Human players within a gamespace will sometimes lose duels

49

https://docs.unity3d.com/2020.3/Documentation/Manual/nav-BuildingNavMesh.html

7 Description of the Implementation

against other human players even if the gamespace gives them a severe advantage.
Advantages given by the gamespace sometimes do not matter in human vs. human
duels due to shooting being a physical skill. Therefore during duels of human players
there is always a little bit of chance involved. This chance tarnishes data regarding the
actual balance of a gamespace. To omit this chance, we simplify the act of shooting to a
line of sight based shooting. Line of sight based shooting simulates a "perfect" player
in terms of aiming capabilities. Having a "perfect" player provides better insight into
the balance of the gamespace as there is no chance or skill involved. Without chance or
skill involvement, a better position should always provide a better result.

Section 7.1.4 also describes the damage mechanic. For every ray hit by the line of
sight shooting, the targeted opponent receives one damage. This approach implements
a basic rule of: "The more visible you are, the more vulnerable you are" which is the key
rule for winning a duel outside of player skill. The rule allows the agent-based model
prototype to simulate the effectiveness of positional advantages in the gamespace. One
example for a positional advantage is depicted in figure 7.5. It shows the red agent
in a higher position. A higher position covers up the lower body of the red agent.
Therefore only two rays from the blue agent hit while in total three rays were sent. The
red agent however, hits all rays. Thus it will deal more damage to the blue agent than
the blue agent deals to the red one. If both agents do not move anymore, the red agent
will ultimately win the duel purely because of the advantage given by the gamespace.
The explanation should prove that an aim based shooting system is not mandatory to
gather data about the balance of a gamespace.

However, just matching the implemented mechanics to the real world analog is not
enough as they also have to be used just like in their real world analog.

Matching the agent behaviors

The real world analog to the agent behavior would be perfect human behavior within
a gamespace. To come as close as possible to this, the implementation uses machine
learning. By using machine learning, we managed to train the agents to behave
like humans on the flat gamespace shown in figure 7.4. Withing the gamespace as
environment, the agents were trained using the reinforcement learning made available
by the Unity ML-Agents toolkit [Jul+18] (See section 5.3 for more detail).

The training itself was conducted in two stages. Goal of the first stage was to
only train the "aiming" of the agents while the second stage combined "aiming" with
movement. Since shooting is based of line of sight, the "aiming" task for the agent

50

7 Description of the Implementation

(a) Red agent shooting blue agent

(b) Blue agent shooting red agent

Figure 7.5: Demonstration of positional advantage of the red agent.

51

7 Description of the Implementation

consists of rotating towards their opponent. To teach the agents to rotate towards their
opponent, they started each episode in a random location within the flat gamespace.
At that random location they were randomly rotated as well. Since the goal was to only
teach the rotation, they could only rotate and were not allowed to move yet.

Reinforcement learning works by giving out rewards to the agents. The agents then
try to maximize their cumulative rewards. Therefore, during training, two positive
rewards were given to the agents. While the first reward was given for just keeping an
opponent within their line of sight, the second, bigger reward was given for eliminating
an opponent. On the other hand, negative rewards or penalties were given for receiving
damage and getting eliminated. Agents receive the maximum cumulative reward, if
they manage to eliminate their opponent without getting hit themselves.

Additionally, an existential penalty was given to each agent every time they updated
themselves. A small existential penalty reduces the cumulative reward for the agents
over time.

This reward and penalty distribution encouraged the agents to gain rewards by
rotating towards each other. Moreover, due to the existential penalty, they were
encouraged to rotate towards each other as fast as possible. They tried to go as fast
as possible because a maximum cumulative reward exists. The maximum cumulative
reward diminishes for every update cycle they took. Thus, to minimize the loss and
maximize the cumulative reward, they start to rotate towards each other as soon as an
episode begins.

Rotating towards each other translates to "shooting" at each other in the line of sight
shooting system. As soon as they optimized the shooting, the second stage was started.

Goal of the second stage was to teach the agents shooting while moving. Just like
in stage one, they started in random locations within the flat gamespace with random
rotation. The reward system did not change either. The only difference to stage one
was that they now were allowed to move.

The two stage training yielded an agent behavior much like you would expect from
humans players in the same gamespace. While no obvious movement patterns emerged,
they learned to shoot each other properly. Figure 7.6 depicts how the trained agents
choose to rotate. They always choose the rotation direction that is the shortest as they
have been trained to aim fast.

The trained aiming of our agents behavior matches the expected aiming behavior
from human players in a flat gamespace. As the winning condition for two human
players within a flat gamespace is to eliminate their opponent before being eliminated
themselves, they too try to shoot the opponent as fast as possible. Within this scenario

52

7 Description of the Implementation

Figure 7.6: Depicts in which direction the trained agents choose to rotate with the
colored arrows. The rotation direction is the shorter rotation towards their
opponent.

our trained agents behavior is therefore microvalid.

Besides the basic aiming behavior, we managed to train an agent to match another
human like behavior. Figure 7.7 depicts the gamespace for the training. Goal of the
training was to teach an agent how to use a ramp as advantageous position. The
training was conducted in two stages again.

Stage one of the two only aimed to teach the agent to use the ramp as a highground.
To train this behavior, the blue agent was replaced by a stationary bot which did not
rotate but had the same amount of health as the red agent. In the beginning of every
training episode, the red agent started inside the area marked in blue in figure 7.7. We
kept the same reward system that was used in the flat-space-aim-training and also
initialized the red agent with the knowledge gained in the training. This way, the red

53

7 Description of the Implementation

Figure 7.7: Depiction of the gamespace designed to train an agent to choose the high-
ground over the lowground. The area marked in red roughly shows the
area providing an advantageous position. The blue area marks the starting
area for the red agent

agent knew how to aim right from the beginning
During the training, the agent quickly learned that walking up the ramp provides

an advantage. Figure 7.5 shows why using the ramp is advantageous. The advantage
comes from the small area roughly shown in figure 7.7. Within the small area, the red
agent has more vision on the blue agent than the blue agent has on red. Due to the red
agent having more vision, it deals more damage and ultimately wins the duel. It wins
the duel because it builds up an health advantage towards the blue agent while being
in the small area.

However, the agent did not use the ramp as one would expect from a human. Since
both the blue and red agent had the same amount of health, it was sufficient for the
red agent to not perfectly use the ramp as an advantageous position. Instead of using
the advantageous position roughly marked in figure 7.7, it kept on moving towards the
blue agent and eventually dropped of the ramp (See figure 7.1 for the drop-off point).
This kind of behavior does not match the real world analog.

Stage two tried to deal with this mismatching behavior. To teach the agent how to
properly use the ramp as an advantageous behavior, we gradually increased the health
of its blue opponent. Gradually increasing the opponents health removed the health

54

7 Description of the Implementation

advantage of the red agent. This made it mandatory for the red agent to use the ramp
as advantageous position. Otherwise the blue agent would win the duel due to having
a health advantage.

After the training, our agent always walked up the ramp and roughly stayed in the
area marked red in figure 7.7. This is the expected behavior from human players in this
situation as well. As using the ramp as cover, gives them a higher chance to win a duel.
Therefore this taught behavior is also microvalid.

7.3.2 Macrovalidation of the Agent-Based Model

The second validation technique is macrovalidation. Recapulating section 4.4.2, "[m]acrovalidation
is the process of ensuring that the aggregate, emergent properties of the model corre-
spond to aggregate properties in the real world" [WR15, p. 326].

This means that the implemented showcase model corresponds to what we see in
commercial arena FPS. The following section presents a few scenarios and compares
them to what we would expect in commercial arena FPS. If more of the presented
scenarios correspond to their expected result, it further macrovalidate our model
implementation.

Scenario 1: Ties in the model

At first, we present a scenario to validate the implemented scheduler (See section 7.1.2
for more detail). Section 4.3 demands a synchronous scheduler in which no agent
has an advantage due to being updated first. We expect the same to be the case in
commercial arena FPS as they would otherwise be unfair.

Figure 7.8 depicts the setup trying to macrovalidate the scheduler. In the scenario
two opposing agents are fixed in position and rotation so that they immediately shoot
each other. In a commercial arena FPS this scenario is to be expected to end in a tie. If
it does not end in a tie, the game would be unfair.

The result of this scenario in the model implementation always ends in a tie and
therefore macrovalidates this scenario.

Scenario 2: Duels in flat gamespace

Scenario 2 tries to macrovalidate a situation in which two opposing players play in a
flat gamespace. Their goal is to eliminate the opponent first. Starting locations as well
as rotations are random for the agents. Additionally, they have the same amount of
health and use the same neural network which makes them equally skilled.

55

7 Description of the Implementation

Figure 7.8: Depiction of scenario 1 (from 7.3.2) in which a tie is forced

How the agents were trained for this scenario is described in section 7.3.1. Having
human players of equal skill in such a scenario in a commercial arena FPS, we would
expect them both to roughly have a 50% win-rate.

The 50% win-rate is also achieved by the model implementation. During 90,489
episodes conducted in total, 4,499 episodes ended in a tie, 42,913 episodes were won
by the red agent and the remaining 43,077 episodes were won by the blue agent. Both
agents come close to a 50% win-rate. The red agent has a win-rate of 47.42%, while the
blue agent has a win-rate of 47.60%.

Our model implementation comes close to the expected 50% win-rate for both agents
which further macrovalidates it.

Scenario 3: Highground advantage

The last scenario is supposed to validate that having a highground is actually an
advantage for the implemented agents. Therefore we set up an unfair gamespace
which is depicted in figure 7.9. In this scenario, both agents have the same amount of

56

7 Description of the Implementation

Figure 7.9: Depiction of scenario 3 (from 7.3.2) in which a unfair highground scenario
is forced

health and use the same neural network. However, the blue agent always starts on the
bottom, while the red agent starts on the highground. Having a highround gives you
an advantageous position in general. Therefore it is to be expected that a human player
in the situation of the red agent wins more often against another human player (of
equal skill) in the situation of the blue agent. This expected outcome is also resembled
by the model implementation.

Out of 92,463 total games played

• one game was not decided due to a time out,

• 1,203 games ended in a tie,

• 15,144 games were won by the blue agent (16.38% win-rate)

• and the remaining 76,115 games were won by the red agent (82.32% win-rate).

The results match the expected result of the same scenario with human players which
further macrovalidates the implemented model.

7.3.3 Face validation of the Agent-Based Model

Via face validation we "ensure that someone who looks at the model “ on face ” (i.e.,
without detailed analysis) can easily be convinced that the model contains elements

57

7 Description of the Implementation

and components that correspond to agents and mechanisms that exist in the real world"
[WR15, p. 332].

When looking at the figures in this paper, the model implementation is easily
recognizable as a arena FPS. The model implementation has an arena (the gamespace)
and two opponents fighting each other within the arena. A game is won by eliminating
the opponent. Those are all features of an arena FPS.

Moreover, face validation rules out any unreasonable behaviors. As the trained
behaviors are microvalid and match with the real world, they are also face valid.

7.3.4 Empirical Validation of the Agent-Based Model

The last technique is Empirical validation. Empirical validation expects the imple-
mented model to generate similar data to the real world. The section for macrovali-
dation (See section 7.3.2) has already shown that the implemented model generates
similar data in terms of the win-rate. Therefore in terms of win-rate, the implemented
model is empirically validated.

This concludes the validation of the implemented model. We have shown that in
many points our model comes close to a real arena FPS played by human players.
However, the following chapter (See chapter 8) will discuss certain topics regarding the
validation and other points of this paper’s work.

58

8 Discussion

This paper aimed to introduced agent-based modeling to use it as a tool for gathering
playtest data regarding the balance of gamespaces. Additionally, we implemented a
showcase implementation and presented it.

In the following chapter we will discuss the proposed method and implementation.

Discussion of the Differences between Model Implementation and its Real World
Analogs

In section 4.3 the required environment component for the agent-based model was
described. We argued that it is only necessary to use the functional space of any
gamespace to gather data regarding the balance. However, some cases exist in which
knowledge of the aesthetic space is necessary. For example, dark corners of a gamespace
are not translated into the functional space. Dark corners can lead to human players
overseeing an opponent hiding in them. Situations in which human players might
oversee opponents are completely disregarded by the proposed model. Therefore it
might generate incomplete data.

Further gameplay elements which get lost in the functional space are sounds. Sounds
might add or even take from the information available to human players. The agents in
the proposed model do not depend on sound which creates a discrepancy between the
real world and the model.

Additional information like (stepping-)sound can give human players insight about
the location of opponents. The location of opponents or rather the direction to them
is always observed by the implemented agent (See section 7.2.1 for more detail). Not
knowing the opponents position is an important factor as it can be used to balance
gamespaces. An example for using an unknown opponent-position as a tool for balance
is demonstrated in figure 8.1. The red arrow depicts an incoming opponent and the
dotted line depicts the field of view of the player.

While in figure 8.1a an opponent only has one possible exit, in figure 8.1b they can
either exit from the left-hand side or the right-hand side. Therefore, a waiting player
has to choose which exit they guard. Forcing players to choose which exit they want to
defend, makes it overall harder to defend both exits. This balances the gamespace in

59

8 Discussion

(a) Only one possible way opponents can come from

(b) Two possible way opponents can come from

Figure 8.1: Demonstration of how knowing the opponents position might change bal-
ance.

60

8 Discussion

favor of the attacking force because defenders cannot predict the attackers decision.
However, as the agents always know where the opponent will come from, such

balancing options get lost in the implemented model.

Another discrepancy lies in the implementation of the rotation. The implemented
agents rotate with a rate of one degree per update cycle. One degree per update cycle
is very slow compared to the possible turning speeds in commercial video games.
However, the turning speed is a minor discrepancy. It is only minor because the
implemented agents always know the direction in which their opponent is. This allows
them to prepare their rotation. By preparing the rotation, they decrease the negative
effect of the slow rotation.

In section 7.3.1 the training and its results were presented. We managed to teach
the agent human-like behavior in a flat gamespace and to use a ramp as advantageous
position. While the taught behaviors can already provide data, they are not very close
to actual strategic, human-like behaviors in arbitrary gamespaces. Especially since the
behavior was only trained within small, simple and contained gamespaces and not in
big gamespaces which are common in commercial videogames.

8.0.1 Discussion of the Validation, Verification and Replication

While section 7.3 does try to validate the implemented model, "[...] it is impossible for a
model to exhibit all of the same characteristics and patterns that exist in reality" [WR15,
p. 325]. However, more validation is necessary in particular, when more complex
human-like behavior is modeled.

In addition to validation, section 4.4 presents two more techniques which make sure
a model is correct.

The first technique is verification. Verification aims to get rid of "bugs" in the
implemented program. An implemented model however, is not described by a binary
verified/unverified status but it rather lies on a verification spectrum because more
ways of testing and checking for correctness always arise. Therefore Wilensky and
Rand suggest, that it is the authors responsibility to decide whether the current state of
verification is enough. [WR15, p. 325]

Although every implemented system was tested thoroughly, no verification tests
were implemented. The lack of verification tests is the reason why more verification is
required for the model.

61

8 Discussion

The second technique to test for correctness of the model is replication. Replicating
the implemented model has not been done in this paper but all the required dimensions
are provided and a replication should be possible.

8.0.2 Discussion of the Usage

Assuming the modeled ABM approach would work and simulate human players
perfectly, it still only generates data. While the data will most likely improve the overall
quality of created gamespaces, the model misses an important point of human playtests.
Human playtests allow the designers to survey the players and get feedback regarding
fun, feeling and overall game experience.

To not miss out on this crucial information, human playtest should still be conducted.
However, the tool can reduce the amount of human playtests needed to reach a desired
quality level in terms of balance.

62

9 Conclusion and Outlook

The process of creating a gamespace is done via constant iteration. To improve on the
previous iteration, game designers require lots of playtest data. To generate the required
data, conventional methods use human players. However, using human players has
its drawbacks. To reduce the amount of human playtests required, we use machine
learning agents and let them play instead of humans. Letting machine learning agents
play, is part of our proposed method. The proposed method is supposed to use ABM
for generating the required data to balance gamespaces.

While the machine learning agents do not resemble human players very well yet,
they showed promising results in simple scenarios. Within these simple scenarios, the
expected result of human players matched with the generated data from our agents.

Future work includes fixing the discrepancies between the implemented model and
real arena FPS. Afterwards, a more complex and human-like behavior for the agents
should be the main goal, since the generated data improves with the quality of the
agent. Especially an agent that is able to work in arbitrary gamespaces would allow for
modeling any arena FPS.

Parallel to further improvements in terms of agent behavior, further verification,
validation and also replication are necessary to confirm the correctness of the model.
Using real playtest data in different scenarios to further macrovalidate and empirically
validate is a recommended first step.

63

List of Figures

3.1 Functional space of the game Tic-Tac-Toe 8
3.2 Common depiction of the game Tic-Tac-Toe 8
3.3 Screenshot from playable map "de_dust2" from the game Counter-Strike:

Global Offensive [12] . 9
3.4 Rough breakdown of the functional space seen in Figure 3.3 10

7.1 Depiction of the baked NavMesh in a gamespace. 35
7.2 Demonstration of the vision system with three rays. The blue agent is

shooting at the red agent depicted by the red lines. The light blue lines
depict the field of view. 37

7.3 Depiction of the starting boxes for both teams. Team red starts some-
where in the red box while team blue starts somewhere in the yellow
box. 39

7.4 Depiction of the mapping from the 2D, [-1,1], space to a 3D gamespace 45
7.5 Demonstration of positional advantage of the red agent. 51
7.6 Depicts in which direction the trained agents choose to rotate with the

colored arrows. The rotation direction is the shorter rotation towards
their opponent. 53

7.7 Depiction of the gamespace designed to train an agent to choose the
highground over the lowground. The area marked in red roughly shows
the area providing an advantageous position. The blue area marks the
starting area for the red agent . 54

7.8 Depiction of scenario 1 (from 7.3.2) in which a tie is forced 56
7.9 Depiction of scenario 3 (from 7.3.2) in which a unfair highground scenario

is forced . 57

8.1 Demonstration of how knowing the opponents position might change
balance. 60

64

Bibliography

[12] Counter-Strike: Global Offensive. Version: 1.38.2.1. 2012.

[16] Overwatch. Version: 1.72.1.0 - 99843. 2016.

[Ada13] E. Adams. Fundamentals of game design, ThirdEdition. New Riders, 2013.

[Ada14] E. Adams. Fundamentals of Shooter Game Design. New Riders, 2014.

[BG20] A. Becker and D. Görlich. “What is game balancing?-an examination of
concepts.” In: ParadigmPlus 1.1 (2020), pp. 22–41.

[BL97] A. L. Blum and P. Langley. “Selection of relevant features and examples in
machine learning.” In: Artificial intelligence 97.1-2 (1997), pp. 245–271.

[CLY15] W. Cachia, A. Liapis, and G. Yannakakis. “Multi-level evolution of shooter
levels.” In: Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Vol. 11. 1. 2015, pp. 115–121.

[Jul+18] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y.
Gao, H. Henry, M. Mattar, et al. “Unity: A general platform for intelligent
agents.” In: arXiv preprint arXiv:1809.02627 (2018). Corresponding github
page: https://github.com/Unity-Technologies/ml-agents.

[Jul18] A. Juliani. ML-Agents Toolkit v0.3 Beta released: Imitation Learning, feedback-
driven features, and more. 2018. url: https://blog.unity.com/technology/
ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-
features-and-more (visited on 07/17/2022).

[Jul21] A. Juliani. Unity AI-themed Blog Entries. 2021. url: https://blog.unity.com/
technology/unity-ai-themed-blog-entries (visited on 07/17/2022).

[KLY17] D. Karavolos, A. Liapis, and G. Yannakakis. “Learning the patterns of bal-
ance in a multi-player shooter game.” In: Proceedings of the 12th international
conference on the foundations of digital games. 2017, pp. 1–10.

[KTy] A. K."TychoBold". Level Design - In Pursuit of Better Levels. url: https://docs.
google.com/document/d/1fAlf2MwEFTwePwzbP3try1H0aYa9kpVBHPBkyIq-
caY/edit# (visited on 07/19/2022).

65

https://arxiv.org/abs/1809.02627
https://github.com/Unity-Technologies/ml-agents
https://blog.unity.com/technology/ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-features-and-more
https://blog.unity.com/technology/ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-features-and-more
https://blog.unity.com/technology/ml-agents-v0-3-beta-released-imitation-learning-feedback-driven-features-and-more
https://blog.unity.com/technology/unity-ai-themed-blog-entries
https://blog.unity.com/technology/unity-ai-themed-blog-entries
https://docs.google.com/document/d/1fAlf2MwEFTwePwzbP3try1H0aYa9kpVBHPBkyIq-caY/edit#
https://docs.google.com/document/d/1fAlf2MwEFTwePwzbP3try1H0aYa9kpVBHPBkyIq-caY/edit#
https://docs.google.com/document/d/1fAlf2MwEFTwePwzbP3try1H0aYa9kpVBHPBkyIq-caY/edit#

Bibliography

[LLS14] P. L. Lanzi, D. Loiacono, and R. Stucchi. “Evolving maps for match balancing
in first person shooters.” In: 2014 IEEE Conference on Computational Intelligence
and Games. IEEE. 2014, pp. 1–8.

[MN05] C. M. Macal and M. J. North. “Tutorial on agent-based modeling and simu-
lation.” In: Proceedings of the Winter Simulation Conference, 2005. IEEE. 2005,
14–pp.

[MN09] C. M. Macal and M. J. North. “Agent-based modeling and simulation.” In:
Proceedings of the 2009 winter simulation conference (WSC). IEEE. 2009, pp. 86–
98.

[pro] open source project: Cube 2: Sauerbraten. http://sauerbraten.org/ (visited on
08/03/2022).

[Sch20] J. Schell. The Art of Game Design: A book of lenses (Third Edition). CRC Press
LLC, 2020.

[Sir02] D. Sirlin. "Balancing multiplayer games". 2002. url: https://www.sirlin.net/
articles/balancing-multiplayer-games-part-1-definitions (visited on
07/06/2022).

[Tec21] U. Technologies. Unity Manual. 2021. url: https://docs.unity3d.com/2020.
3/Documentation/Manual/UnityManual.html (visited on 07/17/2022).

[Tec22] U. Technologies. Unity Scripting API. 2022. url: https://docs.unity3d.
com/2020.3/Documentation/ScriptReference/index.html (visited on
07/21/2022).

[Tot19] C. W. Totten. Architectural Approach to Level Design. CRC Press, 2019.

[WR15] U. Wilensky and W. Rand. An introduction to agent-based modeling: modeling
natural, social, and engineered complex systems with NetLogo. Mit Press, 2015.

66

https://www.sirlin.net/articles/balancing-multiplayer-games-part-1-definitions
https://www.sirlin.net/articles/balancing-multiplayer-games-part-1-definitions
https://docs.unity3d.com/2020.3/Documentation/Manual/UnityManual.html
https://docs.unity3d.com/2020.3/Documentation/Manual/UnityManual.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/index.html
https://docs.unity3d.com/2020.3/Documentation/ScriptReference/index.html

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Gamespaces in Video Games
	Introduction to Gamespaces
	3D arena first-person shooter gamespaces
	Evaluation of Gamespaces

	Agent-based Modeling for Gamespace Evaluation
	Is Agent-based Modeling fitting for Gamespace Evaluation?
	A General Agent-based Model
	Agent-based Modeling in the Context of Gamespace Evaluation
	Verification, Validation and Replication of an Agent-Based Model
	Verifying an Agent-Based Model
	Validating an Agent-Based Model
	Replication an Agent-Based Model

	Tools used for the implementation
	Unity for the implementation
	The Unity ProBuilder toolkit
	The Unity ML-Agents toolkit
	Reinforcement Learning in Unity
	Imitation Learning in Unity

	Balance in Gamespaces
	Different definitions of game balance
	Key Elements of Gamespace Balance
	Symmetry in Gamespaces
	Dominant Strategies in Gamespaces
	Fairness in Gamepaces

	Description of the Implementation
	Implementation of the Agent-Based Model in Unity
	Implementation of the Observer
	Implementation of the Scheduler
	Implementation of the Agent
	Implementation of the Interactions
	Implementation of the Environment

	Creation of the Agent Behavior using the Unity ML-Agents Toolkit
	Usage of the Unity ML-Agents framework
	Normalization process for the Unity ML-Agents

	Validation of the Agent-Based Model
	Microvalidation of the Agent-Based Model
	Macrovalidation of the Agent-Based Model
	Face validation of the Agent-Based Model
	Empirical Validation of the Agent-Based Model

	Discussion
	Discussion of the Validation, Verification and Replication
	Discussion of the Usage

	Conclusion and Outlook
	List of Figures
	Bibliography

