
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

VR Re-Embodiment: Establishing a Control
Structure to enable Physic-based Movement

of the Human Body in Unity 3D

Konstantin Karas

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics: Games Engineering

VR Re-Embodiment: Establishing a Control
Structure to enable Physic-based Movement

of the Human Body in Unity 3D

VR Re-Embodiment: Einführung einer
Kontrollstruktur der Physikalischen

Bewegungen Menschlicher Körperteile in
Unity 3D

Author: Konstantin Karas
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: Sandro Weber, M.Sc.
Submission Date: 15.04.2020

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, 07.04.2020 Konstantin Karas

Acknowledgements

I would like to thank the chair of Augmented Reality, especially Prof. Dr. Gudrun
Klinker, for allowing me to write this bachelor’s thesis. Further, I am grateful for the
chair to generously offer me access to the hardware in the lab. Without this equipment
the fine tuning and test of my system in a real environment would not have been
possible.
The person who I would like to thank the most is my advisor M.Sc. Sandro Weber. His
advice and guidance has helped me immeasurably and I deeply appreciate the time he
has granted for our weekly meetings, answering my many questions.
Finally, I am grateful for my friends and family who during stressful times have
kept my spirits up and my motivation going through their continuous support and
encouragement.

Abstract

The goal of this bachelor thesis is to develop a control structure in Unity 3D that achieves
physical movement of a humanoid remote avatar through local VR tracking information.
The structure mainly utilizes Unity 3D’s built-in components to connect and rotate the
body parts. Estimated masses and angular motion limits of the different parts of the
human body will be used to facilitate realistic motions. In order to avoid overshooting
and dampened behaviour the system has been tuned using relay tuning. An editor has
been designed and implemented to configure the control structure and to allow saving
different settings. A user study has been designed that analyzes the impact of physical
interactions between user and environment upon embodiment, in particular concerning
the sense of agency. It has been conducted in the form of an expert study.

v

Contents

Acknowledgements iii

Abstract v

List of Abbreviations xi

1. Introduction 1
1.1. Related Work . 2
1.2. Original Framework . 4
1.3. Contribution . 6

2. Unity – Physics Components 9
2.1. Rigidbody . 9

2.1.1. Kinematic vs Dynamic mode . 9
2.1.2. Mass and Center of Mass . 9

2.2. ConfigurableJoint . 10
2.2.1. Joint Axis . 11
2.2.2. Degrees of Freedom . 12
2.2.3. Angular Limits . 13
2.2.4. Target Rotation and Angular Velocity 14
2.2.5. Angular Drives . 14

3. Modelling the Human Body 17
3.1. Simplifying the Human Body . 17
3.2. Kinematic Skeleton . 17

3.2.1. Torso . 19
3.2.2. Arms . 19
3.2.3. Legs . 21

3.3. Constraining Human Motion . 21

4. Control Structure 23
4.1. Class: AvatarManager . 23

4.1.1. PD Version . 23
4.1.2. Variables: Bone Dictionaries . 24
4.1.3. Method: InitializeBodyStructures 24

4.2. Class: ConfigJointManager . 24
4.2.1. Simple Colliders . 26

vii

Contents

4.2.2. Mesh Colliders . 29
4.2.3. Multiple Joints per Body Part . 32
4.2.4. Joint Control . 34

5. Automatic Tuning of the Control Structure 35
5.1. Gazebo tuning system . 35
5.2. Adaptation of the Gazebo Automatic Tuning System 37

5.2.1. Challenges & Solutions . 37
5.2.2. Relay Force . 38
5.2.3. Saving the Tuning Results . 39

5.3. Results . 39

6. Editor Window 41
6.1. Editor Window: First Version . 41

6.1.1. Class: JointSettings . 42
6.1.2. Applying Changes to Multiple Joints Template 42
6.1.3. Save & Load . 42
6.1.4. Lessons Learned . 43

6.2. Editor Window: Selection-based Version 43
6.3. Tuning compatibility . 44
6.4. Supporting Constructs . 46

6.4.1. Body Mass . 46
6.4.2. Body Groups . 46

7. Expert Study 49
7.1. Experiment . 49

7.1.1. Participants . 49
7.1.2. Test Environment . 50
7.1.3. Procedure . 51
7.1.4. Perceptual Judgements . 52
7.1.5. Motor Performance . 52

7.2. Expert Feedback . 53

8. Conclusion 55

9. Future Work 57

A. Appendix 59
A.1. Introduction Text . 59
A.2. Demographic Questionnaire . 61
A.3. Embodiment Questionnaire . 62

List of Figures 65

viii

Contents

List of Tables 67

Bibliography 69

ix

List of Abbreviations

• CoF: Center of Mass

• DoF: Degree of Freedom

• HMD: Head Mounted Display

• IK: Inverse Kinematics

• PD: Proportional-Derivative

• PID: Proportional-Integral-Derivative

• UI: User Interface

• VR: Virtual Reality

xi

1. Introduction

Over the last century, robots have been more and more utilized in the industry. The
automation of repetitive and mundane tasks has led to increased productivity in factor-
ies and manufacture leading to a decline of human workforce in that field [GM18].
Robots have performed exceptionally well in environments that ideally do not change.
In this case, the robot can be configured to always perform the exact same task under
identical conditions. However, when it comes to tasks in a dynamic environment, robots
still require the guidance of a human operator. Creative or human thinking is often
required in environments that are hazardous for the human body. To lower the risk
for human workers a robot could be sent to the dangerous location instead, following
the commands of the human. For example, a firefighter could remotely control a robot
to rescue people trapped in an unstable building without directly risking his or her
own health. Another use case is the underwater maintenance of pipelines on the seafloor.

Through game engines, simulations can be run in order to train the operator (e.g.
firefighters [Cha+12]). This can be done even without a real existing robot by using
a virtual representation instead which would be useful if access to the real robot is
restricted due to the risk of damaging it or limited numbers of robots being available (e.g.
due to costs). To achieve best control and familiarity with the robot, it would be useful
if the operator could be re-embodied into the robot. The operator could then act and
react to the given situation as if they were present on the scene themselves. Fortunately,
with the advances made in virtual reality (VR) technologies that may become reality.

The effects of VR on the embodiment of the user have long been studied not only
by computer scientists but also by professionals of many different fields. Embodiment is
a highly complex subject so multiple different definitions have been established over the
years. Kilteni’s [KGS12] work has aimed to establish a proper definition of embodiment
in the context of virtual reality. According to this, the "sense of embodiment" could be
broken down into three parts. As long as one of them is at least somewhat present, the
person experiences the sense of embodiment. When all of them are experienced to their
maximum, the sense of embodiment is felt in its highest intensity.

1

1. Introduction

The first component is the sense of self-location. It is the experience of being located inside
of the virtual body and should not be confused with identifying with the body [KGS12].
The sense of self-location does not imply that one is in control of that body, an experience
that is associated with the second component of embodiment, the sense of agency. Jean-
nerod [Jea03] describes this sense as the correlation between the actor’s intent of their
action and its observed outcome. The actor identifies themselves to be the ones that are
responsible for performing that action.
The final component contributing to the sense of embodiment is the sense of body owner-
ship. A person that experiences this sense feels as if an observed action has been caused
by a body that belongs to themselves. This is different from the sense of agency: a person
might feel that the body belongs to themselves but may not be in control of the actions
done by it. The reverse also holds true, the person might feel as if they are controlling a
body’s action but rather as a puppeteer [I I00].

This thesis aims to strengthen the sense of agency of the user. The key is to have a
framework that can be customized to model all properties of the real-world robot in
order to steer it consciously, precisely and without input delay.

1.1. Related Work

Exemplary for a system that controls a human model by the means of forces while
still being able to react to external influences is the work of Oshita and Makinouchi
[OM01]. The humanoid model that has been utilized consists of 18 bones driven by 39
joints using proportional-derivative (PD) control (see Chapter 2.2.5). The controllers
regulate the angle and angular velocity of each body part. The model supports retaining
self-balance by a mix of active and passive muscle control. No VR input has been used
but animation input instead.
Another publication that has utilized PD control is "Motion capture-driven simulations
that hit and react" [ZH02]. As the title already suggests, motion capture has been used
to record humanoid animations and is used to control the virtual body. The human
model while simple is capable to modify the values of the motion capture data in order
to react to impacts. Inverse kinematics (IK) are used to enhance and expand a motion
capture library. The IK problem is best described as the task of computing the pose of a
system that consists of a chain of jointed components (like an arm) based on the position
and rotation of the final element in that chain [MC99]. For example, the rotation and
position of the elbow and shoulder joint need to be acquired based on the position and
rotation of the hand.
Upon impact, the PD controller is temporarily weakened to produce less stiff and more
natural reactions. The model can remain balanced as well by trying to achieve a specified
position of its center of mass. The system has been tested in the use case of table tennis
(only upper body tracked, lower body controlled by balance force) and boxing. During

2

1.1. Related Work

the boxing, the participants were able to stagger their opponents due to the physics
acting on them, leading to counterbalancing measurements.

In 2008, the french company Aldebaran Robotics has made a novel humanoid ro-
bot available to the market, the NAO. The core feature of that robot is that it has been
designed to be affordable for research teams. Being the size of a toddler, it is light-
weight and has 25 degrees of freedom (DoFs) [Gou+09]. About 13000 NAO robots are
currently used around the world, the latest version of the robot has been released back
in 2018 [Rob]. Different approaches to steer the NAO with human movement have been
established. The Microsoft Kinect [Mic] has been used frequently to gather information
concerning the movement of the human operator. Research has been conducted in
order to solve the problem of the difference in size among humans and compared to the
NAO. The algorithms reconstruct the human body as vectors and obtain the IK from
them [Wan+12][Zha+18]. This mismatch causes problems when navigating the NAO. By
utilizing the starting position and rotation and applying changes based on them to the
NAO, that problem can be further resolved. Due to the limitations of the Kinect (mainly
camera resolution) it cannot be used for finger tracking [AM13].

It appears, that PD control and inverse kinematics have been utilized successfully
in use cases similar to this thesis. Regarding applications for Unity, there are two
relevant tool sets that can be purchased on the Unity Asset Store that focus on these
topics. The first one named Final IK [Roo19a] deals with controlling inverse kinematics
in the context of animations. It offers tools to specify when motion should be controlled
by predefined animations and when the inverse kinematics will take over. This package
works well in tandem with the other one: PuppetMaster [Roo19b]. PuppetMaster offers
control over the setup of a character that is controlled by physics in Unity. As it will be
done in this thesis, it utilizes the ConfigurableJoint component of Unity (see Chapter 2.2).
Since the inverse kinematics has already been implemented in the current framework,
Final IK has been deemed unnecessary for the work in this thesis. At the time of this
thesis, both tool sets were available for €80.40 each. A goal of the thesis has been to
understand the behaviour of some of the components of Unity in order to establish a
control structure. Choosing a shortcut by utilizing PuppetMaster would have undermined
that goal.

Re-embodiment, the experience that one is simultaneously both inside their own and
another body is not only of interest for VR related studies but also for robotics. The
difference is that in one case, the other body is virtual while being a real robot in the
other one. In order to achieve re-embodiment it is mandatory for the user to be familiar
with the input devices and visual interfaces so that their use becomes an unconscious
task. Direct visual feedback and simultaneity of issuing commands and them being
executed in the other body is vital to experience a sense of embodiment. However,
re-embodiment is limited by the lack of tactile feedback [Bes15]. The extension of limbs,

3

1. Introduction

cognition and perception through re-embodiment depend on each other, making it
impossible to merely focus on one of them. Each extension should be differentiated
between prostheses and incorporation. Providing the user with an extension of one’s
arm control (e.g. a virtual arm) does not automatically integrate that virtual arm into
the perception of one’s body [Pre11]. Regarding latency in VR applications, it has been
suggested that the complexity of the task in virtual reality directly impacts the perceived
simultaneity and sense of agency. Simple tasks such as button presses are bound to
perform better than complex tasks and as such the latency can be ignored more easily
[Wal+16].

1.2. Original Framework

The work of this thesis is based on a framework developed by the Technical University of
Munich (TUM) [WK19]. The purpose of the framework is to enable the re-embodiment
of a VR user into a new virtual body, that can react and interact with a virtual world in
a physical way. This means that the new body can collide with objects in the scene. It is
driven by a physics engine instead of mere set position and set rotation commands. These
commands would result in the instant, visual change of position and rotation of an
object. The virtual body should rather apply forces and torques to its body parts in order
to reach the desired target position and rotation. The base of the system is the game
engine Unity 3D [Uni] (further called Unity) in the version 2018.2.21f. Unity handles
all visual feedback for the user and is responsible for the user’s input information to
reach the virtual body. The framework (see Figure 1.1) essentially consists of three main
components:

Figure 1.1.: An overview of the server dependent framework.

4

1.2. Original Framework

The most obvious and basic component is the tracker input of the VR device that the
user is wearing. The system has been tailored to use the SteamVR Plugin [Ste19] for
Unity that enables the use of SteamVR [Ste] for development in Unity. SteamVR is
a program that enables playing VR games using a variety of popular VR devices e.g.
developed by Oculus [Ocu] and Vive [Viv]. The user has to be equipped with a number
of tracking devices. The Head Mounted Display (HMD) is required not only to receive
tracking information concerning the movement of the head, but also serves as the visual
feed back device of the system instead of an external monitor. There are multiple
combinations of tracker positions currently supported. For the most complete tracking
version, a tracker strapped around each shin (as closely to the foot as possible), one
worn around the waist, one tracking controller held in each hand and the HMD are
needed. The trackers around the shins provide information concerning the movement of
the feet. Access to the body rotation and position inside of the tracked area is given by
the waist tracker. The hand controllers obtain the movement of the hands in the wrist
and the HMD of the user’s head. The waist tracker is optional as its information can
be (to a degree) inferred from the relative position of the head and feet. For testing
purposes, the full body tracking using the HTC Vive has been used.

The second part of the system is the gathering of the inverse kinematics from the
tracking information and applying them directly to a virtual body. Said virtual body is
located inside of the Unity frontend environment and will from now on be referred to
as local avatar to avoid confusion. This is however not the final virtual body of the user
that is controlled by physics but rather the direct IK representation of the user as known
through the tracking information. Unity’s built-in IK solver automatically acquires the
IK information from the tracking input. No further IK optimizations (e.g. for more
anatomical correctness) have been implemented. As there is no tracking information
provided for the fingers and toes, these parts of the local avatar cannot be controlled by
the user.

For the backend component, a server-client communication has been established between
the Unity application and a server that provides the physical calculations needed to
move the final virtual body of the user, the remote avatar. Said server utilizes the physics
engine Gazebo [OSR]. Additionally, the Unity application communicates with the HBP
Neurorobotics Platform [HBP]. This platform allows for the online simulation of a robot
and a virtual environment. This is the environment as seen by the user through the
HMD inside of Unity. The robot is the remote avatar that is steered through the Gazebo
engine by the inverse kinematics obtained by the local avatar.

5

1. Introduction

Since information has to be sent to the server in order to steer the robot, the perform-
ance of the system is prone to suffer from network latency issues. Depending on the
connection to the internet, server load or connectivity problems, the performance of the
operator through the robot is impacted negatively. User input would be delayed and as
a result, the user would have to wait for the remote avatar to follow their commands. The
amount of time that the remote avatar would need to catch up to the user depends on the
internet connectivity, making it unpredictable.

1.3. Contribution

This thesis contributes to the currently implemented frame work by replacing the
server component of the system, namely the Gazebo physics simulation, by introducing a
customisable physics simulation inside of Unity (see Figure 1.2). That physics simulation
will from now on be referred to as control structure. For this purpose, the remote avatar
has been transferred into the Unity application and equipped with components provided
by Unity to enable physics based movement (see Figure 1.3). The inverse kinematics
computed by the local avatar are now directly passed to the remote avatar. Since the
local avatar and the remote avatar are now located in the same instance of Unity and
information is no longer sent to the server, network latency issues have been avoided.
The control structure has been implemented to support any humanoid model as its
remote avatar and has been designed to be quick to learn and efficiently to use.

Figure 1.2.: The new server-independent framework. The Gazebo component was re-
placed by the control structure, the remote avatar and the environment were
moved into Unity.

6

1.3. Contribution

Figure 1.3.: The local avatar showing the IK result (left), the remote avatar with visible
control structure imitating the local avatar (middle) and the remote avatar
with hidden control structure (right). The remote avatar is driven by physics
through the control structure and the local avatar follows the IK obtained
from the tracking information.

To better understand the only vaguely documented functionality of the used components
that are built into Unity, they have been explored and the findings are presented in
Chapter 2. The simplifications made to human anatomy for the purposes of modelling
the remote avatar as a humanoid are showcased in Chapter 3. The details of the compon-
ents contributing to the control structure will be presented in Chapter 4. In order to keep
the previously implemented tuning service operational, it has been made compatible
with the control structure developed for this thesis. More information on this tuning
service will be presented in Chapter 5. Since the structure consists of a great number
of individually customisable components, an editor has been developed in order to
handle the setup and offer the opportunity to load previously saved settings. Chapter 6
covers all functionalities and consequent changes made to the editor over the course of
development. The thesis concludes with the description of an user study that evaluates
the sense of embodiment provided by the established control structure, with a focus on
the sense of agency. This user study has been conducted in the form of an expert study
(see Chapter 7).

7

2. Unity – Physics Components

This chapter describes the most relevant components provided by Unity [Uni19a] used in
this thesis that enable or utilize physics. The mentioned properties and their behaviours
are based on version 2018.2.21f of Unity.

2.1. Rigidbody

In order for an object (also called GameObject) in Unity to be influenced by the physics
engine, a Rigidbody [Uni19b] component has to be attached to it. In this section its most
important properties for this thesis will be discussed.

2.1.1. Kinematic vs Dynamic mode

The isKinematic field of a Rigidbody denies or enables the GameObject that the Rigidbody is
attached to to be moved and rotated by the means of the physics engine. Disabling this
feature will cancel out all forces that have previously been applied to the GameObject.
Normally, when a GameObject is a child of another GameObject in Unity, moving the
parent will also move the child. GameObjects that are organised in a hierarchy, such
as the skeleton of a humanoid model, will follow this principle. For example, if the
left arm is rotated, not only will the upper arm be affected but also the entire arm,
including forearm, hand and fingers. This concept does not hold true once a dynamic
(isKinematic set to false) Rigidbody is assigned. Instead, the parenting has to be simulated
by linking GameObjects containing Rigidbodys together by joints (see Chapter 2.2) through
the physics engine.

2.1.2. Mass and Center of Mass

The mass property of the Rigidbody is self-explanatory: it defines the total weight of the
GameObject that it is attached to. The centre of mass (CoM) however is not as straightfor-
ward. Díaz [Día18] describes it as the "weight average of the overall mass distribution
over the body". Díaz further highlights, that this definition leads to the fact that each
external influence on the individual mass points can be related to a single effect on the
CoM. In Unity, forces are applied to the CoM unless a specific point has been specified. It
should be noted that Unity has no individual mass points to compute the CoM, instead
it is automatically calculated based on the combined shape of all Colliders attached to
the GameObject. A Collider simply informs the physics engine about collisions occurring
between GameObjects. Whenever the Collider changes (gets disabled, shape changes),

9

2. Unity – Physics Components

the centre of mass is recalculated automatically. If the centre of mass should not be
calculated automatically to avoid unintended behaviour, it should be explicitly set to a
value once. After doing so no further recalculations are performed. By default, the CoM
is set to the same position as the origin of the GameObject.

2.2. ConfigurableJoint

Unity provides a couple of different joint archetypes to set up a connection between two
Rigidbodies quickly. Each of them has a parameter for the connected body of the joint. This
parameter (a Rigidbody) refers to the predecessor of the GameObject to which the joint
component is attached. For example, the left upper arm would be the predecessor of the
left forearm and would be assigned to the connected body property of the joint attached
to the forearm (see Figure 2.1). It is not possible to set successors. Multiple joints can
connect the same body parts and influence each other. This could be used in order to
assign a joint for each movement axis (see Chapter 4.2.3).

Figure 2.1.: The connection between the parts of the left arm modeled by joints.

The most basic version of a joint is the FixedJoint. A body holding this component will
directly follow the translations and angular motions of its predecessor. A FixedJoint can
be used to simulate parenting for GameObjects using the physics engine of Unity. It acts
as a joint that has zero degrees of freedom (DoF).
The HingeJoint on the other hand can be directly compared to the hinge of a door. It
allows for exactly one single DoF namely to rotation about one axis. When modelling
limbs like elbows or knees HingeJoints could be considered. The HingeJoint introduces a
spring force that allows the joint to maintain a specified rotation around its axis. Said
force can be configured by adjusting its spring and damper values.
Unity provides the functionality to automatically set up ragdoll physics for a given
character model. It assigns the last type of primitive joints to certain bones of the model,
the CharacterJoint. While the CharacterJoint can be configured to act like a HingeJoint, it
allows for further DoFs and can be used to model ball socket joints (e.g. for shoulders
and thighs).

10

2.2. ConfigurableJoint

While each of the joint variants mentioned so far all have their respective uses, none
provide steering functionalities to use for the control structure. The one that comes
closest is the HingeJoint that can maintain a given angle. The drawback is that the
HingeJoint only has one rotational DoF. Instead of modelling additional DoFs by adding
multiple hinges per joint the ConfigurableJoint component is used. The ConfigurableJoint
allows for far more detailed control and specifications of the joint. Not only can it be
configured to act exactly like one of the other joint types, but it further adds to their
functionality. The following section will provide a more detailed description of the
ConfigurableJoint.

2.2.1. Joint Axis

Each joint specifies its individual coordinate system relative to the local coordinates of
the GameObject (indicated by the connected body property) that the joint is attached to
(see Figure 2.2). In the following this coordinate system will be referred to as joint space.
The x axis of the joint is special since the ConfigurableJoint offers finer control over it
when compared to the y or z axis. Settings for the latter are grouped together or not
provided as is the case for low and high angular limit. Since the x axis provides the
highest level of control, it should be chosen in a way that the movement about the x axis
of the joint is the axis about which the primary motion of the body part occurs. The
parameter Axis hereby refers to the x axis in joint space. To avoid confusion it will be
referred to as primary axis from here on. For example, if this axis is the vector (0, 0, 1)T,
the primary axis of the joint motion is identical to the local z axis of the GameObject (not
the connected body) that it is a component of.

A secondary axis is introduced in order to define the original rotation of the joint about
its primary axis. All future rotations of the joint are relative to this initial rotation. The
secondary axis defines the y axis of the joint space which means that angular limits (see
Chapter 2.2.3) and drives (see Chapter 2.2.5) for the y dimension correspond to this axis.
The third and final dimension (the z-axis) of the joint space is automatically calculated
as the cross product between the primary and secondary axis and as such will always be
perpendicular to both.

11

2. Unity – Physics Components

Figure 2.2.: An example for the axes definition of a ConfigurableJoint. The joint space is
relative to the local space of a GameObject (L2J). The local space has been
rotated and moved relative to the world space (W2L). The joint’s primary
axis (XJ) is identical to the local y axis of the GameObject (YL), the secondary
axis (YJ) matches the local z axis (ZL).

2.2.2. Degrees of Freedom

It is possible to configure each mechanical degree of freedom (DoF) of the joint, one for
each translation and rotation in each independent dimension [ZZ98]. For a Configurable-
Joint a DoF can be set to either Locked, Limited or Free (see Figure 2.3). If it is Locked, no
movement along the axis can occur reducing the DoFs of the joint by one. Essentially,
when all dimensions are set to be Locked the ConfigurableJoint behaves like a FixedJoint. If
it is Limited, movement about the axis has to adhere to the limits specified in the joint
such as the maximum angle. If the limit is set to zero, it results in the same functionality
as it has been the case in the Locked state.
Finally, the DoFs can be set to Free. In this case the movement along the axis is entirely
unrestricted. No limits are considered when the joint movement is calculated by the
physics engine.

12

2.2. ConfigurableJoint

The x-, y- and z-Motion parameters are referring to the translation along the respective
axis in joint space. While this might be useful to construct e.g. sliding doors, it is not de-
sired in the motion of the human body. Unless to simulate severe injuries, a bone should
never separate from the body part that it is connected to by the joint. For this reason, all
linear motions along the axes have been set to Locked. As a result, the joints configured
for this thesis only allow for angular motions, effectively limiting the maximal possible
DoF per joint to three instead of six. However, during testing it has been discovered to
be possible for translations to occur despite being along a Locked axis leading in joints
separating from each other. The causes for this instability have been tracked down to
very light objects (~20g) of small volume. Hence said erroneous behaviour can occur in
the joints of the fingers and toes when colliding with an immovable or relatively heavy
object (~10 times as heavy).

Figure 2.3.: The DoFs parameters of a ConfigurableJoint.

2.2.3. Angular Limits

As mentioned above, setting the motion of an axis to Limited causes the physics to restrict
the rotation of the joint around the specified axis. The components of the joint that
handle this limit is the Low Angular X Limit, High Angular X Limit and Angular YZ Limit.
Notice that the distinction between low and high angular limits for the y and z axis is
missing (see Figure 2.4). These are grouped together and cannot be set individually as
mentioned before.

Figure 2.4.: The exemplary properties of the angular limits of the ConfigurableJoint com-
ponent as seen in Unity 2018.2.21f.

13

2. Unity – Physics Components

The limits for the x and combined yz axis can be further controlled by a separate spring
that pulls the joint back once a limit has been breached. If the spring’s spring value is
set to zero, the limit cannot be violated resulting in a hard limit. For the purpose of this
thesis it has been decided to set all limits as hard limits since having soft limits would
result in unnatural, rubbery motions. For the actual limit, an angle can be specified that
is represented in joint space. Confusingly, this angle is referenced as limit as well, but
for the sake of clarity it will be further called angle. Since there is only one limit for the
yz axis, it is not possible to specify a minimal and maximal angle. Instead the angle
value is automatically treated as the unsigned value of both lower and upper limit of
the joint’s motion. Only symmetrical limits can be specified for the yz axis.
The bounciness of the limit can be set to a value greater than zero in order to make the
joint bounce back when hitting a limit. While this would be useful to simulate very
light or flexible objects such as a rope, this feature has been left disabled for controlling
human joints. Otherwise there would be a jiggling motion of e.g. the arm when the
elbow is stretched to its maximum.

2.2.4. Target Rotation and Angular Velocity

The most relevant aspect of the ConfigurableJoint for this thesis is that it is capable
of turning into and maintaining a rotation relative to its joint space. The rotation is
specified as a Quaternion and is by default a rotation of zero degrees so the joint will
remain in its starting orientation. It should be noted that the target rotation is always
relative to this original orientation of the object and not the current one. Further details
on how to compute the target rotation will be provided later in Chapter 4.2.4.
Another interesting aspect of the ConfigurableJoint is the option to set a target angular
velocity. This velocity is represented as a three-dimensional vector in joint space. Its
direction dictates whether the rotation is clockwise or not. If a value has been set,
the joint tries to maintain the specified angular velocity. The next section will provide
further details.

2.2.5. Angular Drives

As it has been mentioned above, a ConfigurableJoint can create forces to steer into and
maintain a target rotation. It can be visualized as a motor, like in a car, that is located
inside of the joint. When needed, it applies a torque to the GameObjects connected by
the joints, rotating them around the axis that the angular drive is responsible for. Similar
to the angular limits there is a drive for the joint’s x axis and a combined drive for the yz
axis (see Figure 2.5). Each drive consists of the three parameters position spring, position
damper and maximum force.

14

2.2. ConfigurableJoint

Figure 2.5.: The exemplary properties of an angular drive of the ConfigurableJoint com-
ponent as seen in Unity 2018.2.21f.

According to the NVIDIA documentation [NVI17], the spring and damper value corres-
pond to the proportional and derivative values of a proportional-derivative controller, a
PD-Controller. To better understand these values the principle of PD-Control will be
explained briefly. A PD-Controller is used in order to compute a correction (y(t)). Said
correction can be then applied to an observed parameter in order to keep it stable at
its target value. As the name already suggests the controller consists of a proportional
and a derivative component. Central to the controller is an error quantity (e(t)) that
expresses the divergence of the current and desired value of the input [RZ04]. In the
case of the angular drives, that value would be the difference between the target rotation
and the current rotation of the joint in joint space.

yR(t) = KPRe(t) + KD
de(t)

dt
(2.1)

The proportional constant (KPR) directly controls the impact of the proportional com-
ponent of the controller on the correction. This leads to responsive changes but might
overshoot and oscillate around the desired value. The derivative component utilizes
the rate of change of the observed error in order to predict its future value and makes
preventive corrections accordingly [KNM11]. Its derivative constant (KD) is used to
improve this behaviour but will delay the reaction of the controller [Föl+16] and might
result in slow, overly dampened behaviour.
The maximum force limits the amount of force that the joint can exert at any time when
trying to achieve a given target rotation or velocity. This value can be utilized to simulate
the different strengths of the individual limbs. When a target angular velocity is given,
the joint utilizes the damper value of the appropriate drive as a motor force in order to
correct the difference in the current angular velocity and the desired one. As long as
the damper remains at zero, no force will be applied and the joint will not move, as it
has been observed during testing. If the intention of the user is to constantly drive the
joint using its maximum force, it is recommended to set either the damper or the target
angular velocity to a value that is several magnitudes higher than the maximum force. This
provokes the joint into exerting full force with little to no wind-up time.

15

3. Modelling the Human Body

In the following an overview over the specified model that was used for the remote
avatar is given. This includes the simplifications made to simulate a body part as well
as the combined DoFs of the torso, arms and legs. These DoFs are in reference to the
according parameters described in Chapter 2.2.2. All mentioned DoFs are angular ones.
The problems that have been encountered and their solutions will be discussed briefly.

3.1. Simplifying the Human Body

In this bachelor thesis, all parts of the human body are individually treated as rigid. A
rigid body is an idealized object that is defined by the constant distance between any
pair of points located inside or on the surface of it [ZZ98]. This does implicate that
the shape of the rigid body cannot change regardless of forces acting upon it. Hence
a rigid body approximates the properties of a bone. In this thesis the whole volume
corresponding to a body part is considered to be a bone and thus a rigid body. The
soft tissue of human muscles, flesh and skin are not modelled and are assumed to be
non-deformable for the sake of simplicity and computational cost. From here on a body
part will be referenced as a bone.
The human body can be described as a kinematic skeleton. Multiple bones are chained
together sequentially by different kinds of joints providing different functionalities
[AA13]. Since no musculature is modeled the torque that is applied to the bone is
generated by the joint that is connecting the respective bones.

3.2. Kinematic Skeleton

This section describes how the human skeleton has been approximated and will detail
the properties of significant parts of the body. The simplification above is in accordance
to Unity’s handling of humanoid characters in the Animator1.
Once a humanoid model is imported into Unity, Unity automatically estimates which
body part of the model best resembles the internally used bone defined in the Animator.
For example, if the model has an upper arm, Unity will recognize that body part as
an upper arm independent from its name. This Enum called HumanBodyBones (see
Figure 3.1) that Unity utilizes does not provide a value for each bone found in a real
human body. Instead it is grouping bones into a single bone that cannot or are very

1a component that can control a human body using animations or IK

17

3. Modelling the Human Body

unlikely to move. An example for one of these groups would be the value UpperChest
referencing the bones that together form the rib cage and its part of the spine. In total
there are 56 bone values available that the Animator can distinguish between. If no bone
in the model can be matched to a bone contained in HumanBodyBones that value will
remain unassigned.
For both the local and remote avatar a humanoid, open source character model (Y Bot)
[Mixb] has been chosen. It specifies 52 relevant body parts. These are parts of the
body that can be articulated. Further parts like eyes and jaws are included but have not
been previously been used and will not be used in this thesis. The following sections
will describe the details of individual chains of the skeleton and their respective DoFs
specified in the ConfigurableJoints that were attached to the remote avatar.

Figure 3.1.: The representation of a humanoid body in Unity expressed by the Human-
BodyBones values utilized in this thesis without their left-side counterparts.
Defined finger names are Thumb, Index, Middle, Ring and Little.

18

3.2. Kinematic Skeleton

3.2.1. Torso

The Torso consists of the hip (translation: 3 DoFs, rotation: 3 DoFs), three bones along
the spine (3 DoFs each), both shoulders (0 DoF since not used by IK of the arm) and
includes the neck (3 DoFs) and head (3 DoFs) as well, totalling in 18 DoFs. In order
to apply a force to the whole body, the hip bone is at the top level of the hierarchy.
There exists one branch consisting of bones and joints from every bone of the body
that ends at the hip bone. Since every bone is ultimately connected to the hip bone all
forces applied to the hips will in return affect the joints of the other bones. In doing
so the character can be moved through the environment by "dragging" its hips around
instead of actively generating forces through the legs. The hip is bound to an anchor
object by a ConfigurableJoint that is simulating a FixedJoint. It cannot be moved or rotated
relative to that anchor. This abstraction addresses the issue of self-balancing and accurate
locomotion which is not the scope of this thesis. Theoretically the movement of the hips
could also be set to be limited to 0 and enforced by the appropriate joint drives, however
the resulting performance has been deemed to be too unstable.

3.2.2. Arms

Each arm is greatly simplified regarding actual anatomy. The forearm and palm are each
represented using a single bone. However, each individual finger segment is modelled
with a bone. While the fingers are currently not driven by user input, it is possible that
such input will be desired in future works. With that possibility in mind, the fingers
have been modelled as well in the control structure. Since the arms are connected to the
torso by ConfigurableJoints, each force applied by or to the components of the arms will
travel along the shoulders and carry over to the arm on the other side. This can lead to
slight jiggling motions in the arm on the opposite side when actively moving an arm.
The DoFs of the arm are as follows: There are each 3 DoFs in the upper arm and hand
as well as 2 DoFs (for spreading and grabbing) in each of the five Proximal finger bones,
followed by 1 DoF in the respective Intermediate and Distal bone. The 3 DoFs in the
elbow differ from human anatomy. This is due to compensate the behaviour of Unity’s
IK solver. It has been observed that the elbow joint behaves indeed like a 3 DoFs ball
joint in certain situations.

19

3. Modelling the Human Body

Figure 3.2.: Erroneous rotation of the IK solver. Transparent blue: local avatar with
hand in correct pose, Opaque blue: remote avatar unable to get its hand into
position because of 2 DoFs in the elbow.

Figure 3.2 depicts such erroneous behaviour. The local avatar’s hand is in the correct
desired position, however this pose has been accomplished by bending the lower arm
in an unnatural way instead of performing the correct rotation (rolling) in the upper
arm in order to allow the lower arm to function like in reality. In order to satisfy
the user input, it has been decided to allow for unnatural angular limits in the elbow.
Since that movement is unnatural, there is no reference in reality for it. For time
reasons, instead of manually figuring out the rotation range through trial and error, the
associated DoF in the ConfigurableJoint has been set to Free. Note that this might result
in unrealistic movement of the lower arm when colliding with objects, pushing it into
the "wrong" direction. In the future one might narrow the angular limit down to a range
that compensates the issue while not differing from anatomy too much. By modelling
the arm with this correction, each arm accumulates a DoF of 29.

20

3.3. Constraining Human Motion

3.2.3. Legs

The legs are simplified similarily to the arms, with the exception that the toes are
modelled as one single hinge connected to the foot. It is not possible to simulate
each toe separately like the fingers. The thigh is connected to the hip bone which
is constrained by a FixedJoint. This results in forces applied by the upper leg to the
hips being neutralized and unable to travel through the system. While this is highly
unrealistic, as the legs should be able to push and carry the rest of the body, it greatly
improves the stability and balance of the system and is sufficient for the purpose of the
system. Similar to the elbow, the knee is largely responsible for rolling the foot, very
little additional (anatomically required) rotation is performed in the thigh. The 9 DoFs
of the leg consist of 3 DoFs in the thigh, 2 DoFs in the knee, 3 in the foot (ankle) and
1 DoF for all five toes combined. No independent movement of the individual toes is
supported since the HumanBodyBones do not provide values for the toes and thus cannot
automatically associate the toes of a model with a representation in Unity’s Animator.

3.3. Constraining Human Motion

When it comes to the motion of the human body, the three main constraints are cat-
egorized as anatomic, actual and mechanical. The control structure implemented for this
thesis focuses on the anatomic constraints enforced by the geometry of the human body,
including the range of motion that a joint is capable of. These are directly realized by
making use of the angular limits provided by the ConfigurableJoint components. Actual
constraints relate to external objects that hinder the movement of the body. The control
structure has been designed to support collision detection with its environment and can
thus react to these constraints. The last category has been discarded for the scope of
this thesis. Mechanical constraints address the issue of keeping the body upright and in
balance which as previously mentioned is resolved in this case by moving the avatar at
its hips. [ZZ98]

21

4. Control Structure

So far, the former framework and the relevant components of Unity that enable physics
control have been established. This chapter details the central part of this thesis, the
control structure. Said control structure automatically assigns all of the components
described in the previous chapter. It specifies the numerous values discussed before
and achieves physics-based movement of the remote avatar in Unity. Furthermore, the
structure should be efficient to set up and applicable to different virtual models.

4.1. Class: AvatarManager

This class exposes multiple settings of the control structure to the developer and is
a component of the remote avatar root GameObject. Currently it is possible to switch
between a PD and a ConfigurableJoint version.

4.1.1. PD Version

The first attempt at a control structure has utilized PD controllers. These controllers
have been assigned to each bone of the remote avatar in order to apply a force and a
torque that moves the body part exactly like the corresponding body part of the local
avatar. The force and torque calculation yielded solid results with little overshoot and
delay.

However, when a body part has been accelerated rapidly or the direction has inverted
abruptly, the body parts have had the tendency to disconnect briefly from each other.
This has been the case since only the rotation and position have been controlled, yet if a
force has been applied to a body part, no information has been given to the other body
parts connected to the affected one. A forearm would be displaced, but the hand did
not experience a force and remained in its original place, causing a disconnect.
Furthermore, the PD controller has no angular restrictions to control the movement of
body parts. Such a system could be written by hand and the disconnect could be solved
by stringing the body parts together with ConfigurableJoints, but it has been decided
to forego this approach in favour of utilizing solely the ConfigurableJoint component of
Unity. Since joints in Unity are used to resemble the movement of parented objects by
physics instead of the Transform1 hierarchy, the issue mentioned above can be solved
as well: Setting the respective connected objects relative position offset to zero can be

1position, rotation and scale of a GameObject, provides parenting information

23

4. Control Structure

achieved by locking the degrees of freedom for all translation axes. The Configurable-
Joint as it has been discussed before also utilizes PD control (see Chapter 2.2.5), so the
resulting behaviour should be similar.

4.1.2. Variables: Bone Dictionaries

The core variables of the class are two dictionaries: gameObjectsPerBoneFromTarget and
gameObjectsPerBoneFromRemoteAvatar. These dictionaries contain key-value pairs with
the key being of the type HumanBodyBones and the value a GameObject. The first
dictionary contains information concerning the local avatar’s body parts. The Animator
component of said avatar provides access to the mapping between its HumanBodyBones
and its corresponding Transform in the scene. The GameObject of that Transform is stored
in the dictionary instead of the Transform itself. That way physical properties can be
accessed easily via the Rigidbody component of the GameObject. The other dictionary
resembles the first one with the exception that it is based on the remote avatar instead of
the local one. This is the avatar that should be influenced by physics calculations and
tries to mimic the motion of the local avatar (IK). Both dictionaries are initialized in the
method InitializeBodyStructures.

4.1.3. Method: InitializeBodyStructures

Upon the respective user (developer) input, this method configures and calls the appro-
priate methods depending on the specified control structure. If the PD version has been
chosen then the method will assign a PDController to each of the GameObjects referenced
in gameObjectsFromRemoteAvatar. Otherwise, a ConfigJointManager is initialized that
causes the initialization process of the system that operates on ConfigurableJoints.

4.2. Class: ConfigJointManager

In general, when the ConfigurableJoint variant has been chosen, the system copies the
ConfigurableJoint, Rigidbody and if desired Collider components from a template in the
scene for each body part of the remote avatar (see Figure 4.1). The template called
AvatarTemplate resembles the structure of a humanoid character and thus provides its
own set of HumanBodyBones. As it has been realized in the AvatarManager, the respective
GameObjects that contain the transforms mapped to the bones are stored in a dictionary
inside of the ConfigJointManager.
The AvatarTemplate serves as a blueprint for the physical properties of the remote avatar.
The reason behind the disconnect between the control structure setup and the remote
avatar is that in doing so the remote avatar model can be exchanged with minimal effort.
The only condition that the remote avatar model has to meet is that it is of humanoid
form.

24

4.2. Class: ConfigJointManager

The purpose of the class ConfigJointManager is twofold. It is primarily used to initialize
a control structure that utilizes Unity’s ConfigurableJoint component according to the
specifications provided by the developer in the template. These specifications are then
distributed to the class JointSetup where all components are being assigned to the body
parts that can be found in both the template and the remote avatar. For example, if
the remote avatar does not have a definition for individual finger segments the physical
properties of fingers will not be copied into the remote avatar. The ConfigJointManager
allows the developer to enable and disable features of the control structure (e.g. Collider)
at runtime. These feature changes are then delegated to the JointSetup class where
they are being executed. The secondary functionality of the ConfigJointManager is to
provide the ConfigurableJoints of the body parts belonging to the remote avatar with the
correct target rotation values to mimic the local rotation of their local avatar (driven by IK)
counterparts.

Figure 4.1.: A simplified overview of the joint setup process. The components configured
in the chosen template are copied to the remote avatar. Depending on the
template chosen (see Chapter 4.2.3), a number of joints is copied to the
remote avatar. Each body part (defined as a bone) is treated individually.

25

4. Control Structure

4.2.1. Simple Colliders

The first feature that the ConfigJointManager provides is to facilitate collision detection
between the body parts and other objects in the scene. As described above Collider are
needed to register collisions when dynamic rigid bodies are used. The developer can
currently choose between simple Colliders and Mesh Colliders and can enable or disable
them at runtime. When the simple option is selected the JointSetup class will copy all
Collider components found at the body part of the template to the respective body part
of the remote avatar (see Figure 4.2). These Colliders have been set up manually to best
fit the shape of the template avatar by the using all basic 3D Colliders (box, sphere and
capsule). In some cases, multiple Colliders have been attached to the same body part
to achieve a better fit (see Figure 4.3). It should be noted that while these Colliders do
match the shape of the avatar template, they will potentially be inadequate for the remote
avatar when the remote avatar’s model has been changed.

Figure 4.2.: The simple Colliders (yellow lines) attached to the remote avatar. Approximate
the form of the model but no exact match (see arms, legs, head).

26

4.2. Class: ConfigJointManager

Figure 4.3.: Two spherical Colliders attached to the first and middle segment of the left
thumb. Rotating a Collider is not possible in Unity so a single Capsule Collider
cannot be used.

For the purpose of achieving a reasonable approximation some Colliders intersect with
each other which has led to inadvertent collisions between the bones. These coillisons
have resulted in an unstable, jittery behaviour.
To stabilize the Colliders and thus the body parts attached to them, individual layers2 for
the torso, left and right arm and left and right leg have been created. Additionally, layers
for the hand, feet and shoulders have been introduced to further avoid self-collisions
and provide greater mobility. For example, the left arm cannot collide with the shoulder
or torso in order to be able to move the arm across the upper body. The hand however
can still collide with both the arm and the upper body. The respective body parts
of the template have been assigned to these layers. By utilizing the collision matrix
(see Figure 4.4) in the physics settings of the project in Unity self-collisions have been
disabled resulting in smooth and nearly unhindered movement.
Nearly, because due to the simple forms with which the Colliders imitate the shape of
the body, some invisible collisions have occurred. This has been particularly obvious
regarding the arm movement near the torso. The apparent V-shape of the trunk did not
match the approximation with multiple cubes and capsules sufficiently enough to allow
the arm to touch the visible surface of the torso when pressing against it (see Figure 4.5).

2customisable flag that can be set to manage collisions between GameObjects (see Figure 4.4)

27

4. Control Structure

Figure 4.4.: The layer collision matrix configured for the control structure. Layers created
to manage collisions for the remote avatar are marked in yellow. The checked
boxes indicate that a collision can occur between GameObjects assigned to
these layers (layer names at the top and left).

28

4.2. Class: ConfigJointManager

Figure 4.5.: Because of the simple form of the Colliders, the remote avatar’s hand (solid
blue) gets stuck near the hips when moving the arm in front of the legs from
an initial resting position.

4.2.2. Mesh Colliders

Alternatively, if the developer desires a highly accurate Collider shape, the Add Mesh
Colliders option of the ConfigJointManager can be checked to achieve precise Collider
shapes at the cost of performance. When the developer assigns the AvatarManager
class to an GameObject, a BoneMeshContainer is required to be added as well. This class
contains lists of meshes for most body parts and provides access to these lists given
a respective HumanBodyBone. Currently these meshes need to be assigned by hand.
If the option to use Mesh Colliders is chosen, the JointSetup will assign to each body
part (see Figure 4.6) the Mesh Colliders that are specified in the respective list in the
BoneMeshCollider.

29

4. Control Structure

Figure 4.6.: The Mesh Colliders (yellow lines) attached to the remote avatar. Colliders
closely match the form of the model.

In the case of the Y Bot character model from Mixamo [Mixb] only a single mesh for
the character as a whole has been provided. Since Mesh Colliders in Unity are static as
mentioned above, they cannot be deformed. Instead the developer has to split the mesh
into the individual body parts. In this case it is required to import the model into a
program of choice that is able to modify the vertices of a model. The following is a
brief workflow overview to achieve matching Mesh Colliders for individual body parts in
Unity by using the external software blender [Ble] (see Figure 4.7).

The first step is to split the mesh into individual objects by selecting the desired
vertices of the mesh and pressing p in edit mode to separate them from the mesh. Some
models already have the vertices of the individual body parts defined as groups for
quicker selection.
Once the body parts have been separated there might be the need of further subdividing
body parts into approximately convex shapes. This is likely the case for segments of the
arms and legs to better cope with the shape of the musculature. For the model used in
this paper these limbs have been cut in two at the approximate point where the shape
changes from convex to concave.
The next step is to select the body parts and use the Convex Hull functionality to generate
a completely convex (and closed) form of each body part. This also has the benefit of
reducing the number of vertices in the mesh which will improve performance in Unity.

30

4.2. Class: ConfigJointManager

Since the convex hull is reducing the number of vertices and tries to reshape the form
into a convex one, it is not recommended to perform this step before the body parts
have been further split into subdivisions. The concave parts of the mesh will be spanned
by the convex hull resulting in a significant loss of detail.
Finally, the origin of the objects has to be set to the exact same position as the bones
in Unity in order to exactly match the shape of the untreated mesh in Unity. This can
be accomplished by setting the 3D cursor in blender to the world coordinates of the
GameObject of the respective bone in Unity. Then the origin of the body part in blender
can be set to the 3D cursor. To convert from Unity to blender one should abide the
following rules: the x coordinate is inverse in blender, the y axis becomes the z axis and
the z axis the inverted y axis. The rotation and scale need to be paid attention to as well.
Once all steps have been completed, the file can be exported back to Unity.

Figure 4.7.: The resulting meshes in blender. Highlighted body parts (orange) have been
subdivided to approximate convex shapes. The point of origin of these parts
is shown as a yellow dot at the root of the corresponding body part.

Back in Unity, the ConfigJointManager can enable or disable the different kinds of Collider
in play mode. The JointManager handles the logic for this process by setting the Collider
for each specified bone (all of them if called by the ConfigJointManager). This provides
the possibility to enable and disable the Collider of specific body parts at runtime.

31

4. Control Structure

4.2.3. Multiple Joints per Body Part

The second main option provided by the ConfigJointManager is to enable the developer
to choose between a system that assigns a single ConfigurableJoint (configured in the
AvatarTemplate) and multiple joints (one for each axis). The following section will con-
centrate on the multiple joint variant, since the single joint one is mainly copying the
ConfigurableJoints of each object in the template to the remote avatar’s objects. While the
multiple joint version is copying the joints from a different template (called AvatarTem-
plateMultiple), the creation of this template calls for explanation.

The ConfigJointManager offers the option to split the ConfigurableJoint of the AvatarTemplate
into three individual ConfigurableJoints that are each responsible for a unique axis. This
is handled entirely by the JointSetup class. As a preparation step for the implementation
all joints in the AvatarTemplate have been considered and the values of their primary and
secondary axis noted. Then these values have been adjusted in order to make the x axis in
joint space first match the y and then the z axis in joint space. This provides the necessary
information to define the additional ConfigurableJoints. Depending on the original joint’s
axes, the remaining joints that each control their own axis can be configured. All values
have been collected in a table and grouped by primary and secondary axis values as keys.
The original joint’s axes values have been restored afterwards.

The JointSetup receives the values of the joints’ axes and assigns the identified val-
ues for the additional two joints accordingly. In order to behave exactly like the single
joint from the AvatarTemplate the new ConfigurableJoints need to be modified in the
following way:
The angular y and z DoFs are set to Free in order to not hinder the rest of the joints that
control these dimensions, only the rotation about the x axis is set to Limited. The Low
and High Angular X Limits are set to be the negative of the former given value and the
value itself respectively. This is necessary since the angular limit for the joint’s y and z
axis is given as the absolute, symmetrical difference to zero in the original joint. For
example, a formerly set Angular Z Limit of 20 degrees would be expressed in a separate
joint attached to the same bones that has the local z axis set to be the primary axis with a
Low Angular X Limit of −20 and 20 degrees respectively for the high one (see Figure 4.8)

32

4.2. Class: ConfigJointManager

Figure 4.8.: An example for the splitting process: A single ConfigurableJoint (top) for all
dimensions is divided into 3 individual ConfigurableJoints (bottom), each
controlling its own axis while maintaining the same angular limits (written
here as just the angles) as the original one. Note that while the process sets
the y and z directions to Free, this figure depicts them set to Locked for the
sake of visibility (circle outline instead of filled circle)

.

Before initializing the control structure, the developer is able to select either the single
or multiple joint version, depending on whether finer control over the joints is required
or not. The AvatarTemplateMultiple template has been created by copying the result of
the joint split method and pasting it back into the scene once the play mode has been
exited. Alternatively, the template could have been created by manually assigning three
joints for each body part and setting each value individually. By wrapping this process
in an editor script using the split joint functionality, changes in the AvatarTemplate can
be integrated into the multiple joint template with low effort.
It is currently not supported to switch templates or to split the AvatarTemplate after
initialization. This is due to the fact that switching caused the remote avatar’s body parts
to rotate and twist. The reason for this behaviour is the angular offset between the body
part in the template and in the remote avatar. The joint has originally been configured
for the starting orientation of the template’s body part which no longer matches the

33

4. Control Structure

orientation in the avatar since it has already moved. By removing the joint and applying
new ones, gravity also affects the remote avatar, causing a slight disturbance which
amplifies the offset.

Since most of the time finer control is desirable and in regard of the tuning of the
joints (see Chapter 5), the AvatarTemplateMultiple has been used as the default case
instead of the AvatarTemplate. Future adjustments to angular limits and tests have been
conducted based on this template.

4.2.4. Joint Control

To recall, the second main purpose of the ConfigJointManager class is to control the target
rotation of all joints assigned to the individual body parts. With each update of the
physics engine, the current local rotation of each body part is converted to joint space
and passed to the ConfigurableJoints of that body part as the desired target rotation that
the joint then drives into. The computation of said target rotation is based on Stevenson’s
[Ste13] method and works as follows: for the first step, the joint’s coordinate system
is aligned with the one of the world. Then the intended target rotation is performed
in world space, relative to the joint’s starting orientation. This achievement is then
converted back into joint space by reversing the previously made transformation into
joint space.

34

5. Automatic Tuning of the Control
Structure

This chapter details how the previous PID automatic tuning system implemented by
Webel [Web19] in Unity for the former, Gazebo-based framework has been expanded.
The new version should facilitate the local control structure that has been developed in
this thesis while still supporting the former framework. The difference between a PID
controller and previously described PD controller (see Chapter 2.2.5) is the addition of
an integral (I) component. In [Gof04] the PID is defined as:

yR(t) = KPRe(t) + KI

∫
e(t)dt + KD

de(t)
dt

(5.1)

Basically, said component enables the controller to consider all the previously observed
error e(t) values to compute the reaction [KNM11]. The term tuning in the context of
PID or PD control refers to the process of selecting the correct values for the proportional
(KPR), derivative (KD) and – in the case of PID control – the integral parameter (KI).
However "correct" depends on the behaviour that is intended for the controller which
differs from case to case thus making manually tuning a demanding and prolonged task
[Hor18]. The following chapter provides a brief overview of the previous tuning system
and the changes made to make it compatible with the ConfigurableJoint control structure
created in this thesis.

5.1. Gazebo tuning system

The implemented system belongs to the category of Relay Autotuner. Tuning systems of
this type usually utilize a relay function to induce an oscillation into the observed value
of the controller. Based on that oscillation behaviour the parameters of the controller
can be calculated. Generally speaking an automatic tuning systems requires four steps:
The initial step is an experiment. This is used to generate a model of the behaviour of
the oscillation. From this model the correct controller parameters are obtained given a
specified desired behaviour (heuristic). The last phase is the evaluation. It reviews the
performance of the controller and either accepts the tuning results or restarts the process.
[Ber17]

35

5. Automatic Tuning of the Control Structure

Figure 5.1.: The tuning process applied to the upper leg. The Relay Force (yellow) is
invoked by the joint itself and not an external force that affects the leg.

The current Gazebo tuning system (see Figure 5.1) tunes each joint individually, one after
another. When a body part has an angular DoF greater than one, each axis is tuned
separately. To start the process a joint is rotated in the desired direction and locked in
that position. Then the joint is released and the maximum force that the joint is capable
of exerting is used to drive the joint back towards its target rotation (usually zero).
This force is called "relay force". Depending on the previously assigned parameters
of the PID controller, the joint will overshoot its mark by a certain amount. Once that
has happened, the joint will be driven in the opposite direction with the same relay
force, creating an oscillation pattern. After a warm up period for the joint to reach an
oscillation, the pattern is analysed and the parameters are retrieved based on a heuristic
chosen by the user. The information regarding which joint is tuned and when the relay
force is applied is send to the Gazebo server in order to follow these commands.
Aside from the automatic tuning, a test runner has been implemented that provides an
evaluation on the performance of the PID controller after the tuning process. For a deeper
description on both parts of the system – tuning and evaluation – it is recommended to
look into Webel’s [Web19] description of the system.

36

5.2. Adaptation of the Gazebo Automatic Tuning System

5.2. Adaptation of the Gazebo Automatic Tuning System

The main requirement for the changes made to the Gazebo tuning system has been
that both versions, the Gazebo and the adapted local one, remain functional and can be
effortlessly chosen by the user. In order to meet this demand, a simple boolean value
has been introduced that can be toggled on and off by the user inside of Unity. At each
step in the Gazebo tuning system, whenever information would be sent to the server
an option for the local system has been introduced that will be chosen when the local
system should be used instead of the Gazebo one. Information will then be send to the
control structure instead of the server.

5.2.1. Challenges & Solutions

Since the Gazebo system did not utilize Unity’s HumanBodyBones nor ConfigurableJoint,
several mapping functions had to be created. The backbone of the tuning system is
the AvatarManager, that provides the tuning service with the relevant constructs of the
local control system. Each axis of a joint has been tuned individually in the Gazebo
tuning system. To follow this principle, the local tuning system is utilizing the multiple
joints template and the user is required to choose this option in the AvatarManager.
The consequence of this choice is that a greater number of joints need to be tuned
since there are more joints in the multiple joints template than supported by the Gazebo
system. For example there are joints for each individual finger segment. Also due to
how the generation of the multiple joints template has been implemented, each joint
(corresponding to a HumanBodyBone) will always consist of three ConfigurableJoints (one
for each axis). This is independent of whether movement in that direction is possible or
not.
In order to address this issue, two optimizations have been made: first, each joint that
has an angular limit of zero or is marked as Locked will not be tuned, in order to speed
up the automatic tuning process by skipping immovable joints. The second one is the
introduction of an optional mirror functionality. When this option is chosen by the user
in advance of the automatic tuning, all joints that correspond to the right side of the
avatar (including its shoulder) will not be considered in the tuning process. Instead their
tuning results will be copied from their counterpart on the left side. This option should
only be chosen under the assumption that the avatar is mostly symmetric in order to
achieve satisfying results.

37

5. Automatic Tuning of the Control Structure

The following naming convention has been introduced to differentiate between the
individual ConfigurableJoints of a body part: The name starts with the HumanBodyBones
(converted to a String) and is followed by the capital letter of the axis. An example
would be LeftUpperLegX for the first dimension of the joint that connects the left thigh
to the hip bone. Based on this naming a function has been introduced that recovers
the corresponding ConfigurableJoint inside of AvatarTemplateMultiple. It uses the Human-
BodyBones component to acquire the correct body part and the axis’s letter to find a
ConfigurableJoint that has a matching primary axis vector, such as (0, 0, 1)T for the letter Z.
This process directly enables the local control structure to be used for the tuning process
since it does not interfere with previously established name based constructs for the
Gazebo tunings. Instead of the name of a Gazebo joint, a name based on the convention
described above is used and related to a JointMapping.

5.2.2. Relay Force

The aforementioned relay force (see Chapter 5.1) had to be replicated for the new tuning
system as well. At first the solution of applying a torque in the direction that the joint
can rotate has been explored. While it has yielded solid results, it has not technically
followed the same concept as in the previous Gazebo tuning. This has been due to the
fact that the torque has been applied to the Rigidbody component of the joint instead
of the joint creating its own torque. A comparison would be to turn a wheel instead of
running the motor in order to move the wheel.

Thus, the final solution utilizes the option of using the ConfigurableJoint as a motor
in order to create the relay force. At the beginning of each individual tuning process the
spring value will be set to zero so that no target rotation will hinder the movement of
the joint and the dampening value will be set to a small value just to waken the motor.
All body parts that are not driven by the joint have been set to being unaffected by the
physics engine in order to stabilize the system. This has been done in order to eliminate
forces propagating through the body and moving the currently tuned joint which would
affect its angle and thus tamper with the tuning result. The target angular velocity of
the joint has been set to an unreasonably high value in order to animate the joint to
apply its maximum force to achieve that velocity. The relay force that has been chosen in
the inspector is set as the value for that maximum force in order to keep that parameter
impactful. Its sign is used in order to change the sign of the target angular velocity and
with it the direction in which the body part will turn.

38

5.3. Results

5.2.3. Saving the Tuning Results

Since there is no longer a server to which a PID configuration could be sent to, these
configurations will now be sent to the respective ConfigurableJoint in the remote avatar. It
is recommended to use the PD tuning heuristic in order to cope with the lack of an in-
tegral component of the ConfigurableJoint’s PD controllers. The drawback of this method
is that the joint only exists during play mode and will be deleted by Unity upon exiting
that mode. The option to send the configuration to any of the avatar templates’ Prefabs1

and updating the Prefab has been discarded in order to avoid unintended changes made
to the Prefab. Each Prefab of the avatar templates should always remain as a backup
for a valid or optimal configuration unless the developer explicitly confirms changes
to the Prefab. Instead the JSON2 saving mechanism of the previously created editor for
the JointSettings of the control structure (see Chapter 6.1.3) has been reused to store all
changes made to every joint during the tuning process. More information concerning
the editor will be provided in Chapter 6.

5.3. Results

For most motions and tasks, the results form the automatic tuning yield a behaviour
with little to no overshoot and both short settling and response time. However, quick
and sudden movement especially when the user is spinning around rapidly in e.g.
a dance the upper body tends to get dragged behind the target leading to a floppy
appearance. This can be adjusted by manually configuring the joint specifications,
mainly the maximum force that the joints can exert. It should be noted, that testing
the performance with animations is not the most representative approach, since the
animations have to be evaluated separately by the evaluation system. The lack of
transition between them causes the local avatar to teleport between idle t-pose or the
end pose of the previous animation and the pose of the first frame in the following
animation. This instant change of position or rotation of body parts leads to errors in
the physics calculation that will result in the temporary breaking of the remote avatar’s
body.

1saved backup configuration of a GameObject, including all of its components (e.g. ConfigurableJoints)
2a standard format to save objects in human-readable text files. Objects can be recovered from text file.

39

6. Editor Window

During the setup of the control structure a user might be interested in changing the
properties of some of the joints in order to create specific scenarios and to observe how
different values affect the simulation. While it theoretically would be valid to simply
select all joints of interest in the AvatarTemplate to change their values and after that
performing the same changes in the multiple joint version of the template (AvatarTem-
plateMultiple) it would be practically unfeasible. In the worst case the user would have
to unfold the entire hierarchy of the template in order to select the desired joints. Since
there are currently three joints for each joint in the AvatarTemplate, applying the same
change to the multiple joint version would add three times the number of fields to
change. Furthermore, the user might be interested in revisiting previous settings of the
AvatarTemplate e.g. in order to compare their performance to the current configuration.
Yet again the user would have to tediously edit each and every field to replicate the
settings. The problem is amplified if the user has not written down or memorized every
value for each joint.

In order to address these issues an editor window has been created. An editor window
is controlled by editor scripts in Unity. These scripts not only run in play mode but also
inside of the editor. The script updates whenever the editor does, which is triggered by
the user’s input e.g when clicking or scrolling.

6.1. Editor Window: First Version

The first version of the editor window has utilized foldouts for every joint in the
AvatarTemplate. Upon selection the user has been presented with the most crucial joint
parameters for the purpose of controlling the remote avatar: the angular limits (actual
degree values) of the joint and the angular drives (X and YZ). These parameters can be
edited by the user and once the desired configuration has been established these settings
can be applied to the AvatarTemplate by the press of a button. A checkbox provides the
user with the possibility to change all joints at once which has been useful to adjust the
drives’ values uniformly for all joints. This option has been referred to as global settings.

41

6. Editor Window

6.1.1. Class: JointSettings

In order to store and present changes made in the editor to the joints’ properties
the class JointSettings has been introduced. Each JointSettings object corresponds to
a joint that that is attached to a bone in Unity. The assigned bone is represented
inside of the JointSettings as a variable that can be used to identify it. By providing the
constructor with the ConfigurableJoint found at the bone in the AvatarTemplate all values
can be initialized and updated. Additionally, information concerning the Rigidbody
component of the joint can be obtained such as the mass and the centre of mass. The
HumanBodyBones value corresponding to the body part that the joint in question is
attached to is stored as well.
In order to set the global settings a separate constructor has been established. Since
there is no ConfigurableJoint to be found in the AvatarTemplate that exists in all bones,
the constructor uses the desired parameters individually. Likewise, since there is no
bone corresponding to it, the LastBone value has been used in order to identify the global
settings.

6.1.2. Applying Changes to Multiple Joints Template

To apply the changes made in the editor to the multiple joints template, the split joint
functionality of the JointSetup class has been reused. Once the apply button in the
editor window has been pressed a new JointSetup instance is created. Since there is
no ConfigJointManager that could be passed over to the constructor the class had to
be reworked in order to support being used outside of play mode. A distinction has
been introduced in most of the class’s methods in order to distinguish between called
from the editor or from a ConfigJointManager during play mode. By using the JointSetup,
changes made to the Rigidbody, Collider and the ConfigurableJoint component of a joint
inside the AvatarTemplate are automatically carried over to the multiple joint template.

6.1.3. Save & Load

For saving and loading the settings of each joint it has been decided to utilize Unity’s
JsonUtility to store the values in a JSON formatted text file. The file is generated once
the user presses the respective button and will be named after the current date and time
of creation if no name has been provided. The user can drag and drop a previously
generated text file into a field in the editor. Upon pressing the load button, the JointSet-
tings stored in the text file will be recovered and will overwrite the current ones that
the editor contains. Optionally the user can name the configuration and if the name of
the file and the name the configuration match, the file will be overwritten instead of
creating a new one.

Unfortunately, it is not possible to convert ConfigurableJoints to JSON since they are not
serializable. Instead the JointSettings values stored inside of a dictionary (referenced

42

6.2. Editor Window: Selection-based Version

by HumanBodyBones as keys) have to be utilized. The main challenge of the save and
load functionality has been the lack of dictionary support of Unity’s JsonUtility. A
helper function has been introduced that parses the entries of a dictionary. It uses
HumanBodyBones as a key and converts the JointSettings found for that key to JSON. Each
JSON String has been added to the result String, followed by a line break to indicate
where one JointSettings object ends and where the next one starts. When parsing the
String returned by this function, the string is divided into substrings that represent
the JointSettings. The HumanBodyBones value stored inside of them is used to recreate
the dictionary. These values become the keys of the dictionary while the recovered
JointSettings objects become the respective values of the dictionary.

6.1.4. Lessons Learned

While this version fulfils all functional requirements of the editor, it is however cumber-
some and laborious to use. For instance, in order to set the angular drives of the fingers
on the left, the user would have to unfold two elements per bone (first to access the bone
and then a second to unfold the angular drive) with a total number of 15 bones for all
fingers of the left hand. In that case it is reasonable to assume that the fingers should be
of similar strength, so the values that the user will input are the same. This leads to the
tedious repetitive task of typing in all desired values.

6.2. Editor Window: Selection-based Version

In order to address the issue of high fidelity, the first version has been expanded upon.
A new feature has been added that automatically selects the currently filtered body parts
(see Chapter 6.4.2) in the inspector. Since all selected objects will have a ConfigurableJoint
component, changes made to the displayed ConfigurableJoint component displayed by
Unity will affect each chosen object. That way changes made to the AvatarTemplate can
be applied quickly. The developer has the option to load the values for the JointSettings
from the ConfigurableJoints in the scene to save them as JSON (see Figure 6.1).

43

6. Editor Window

6.3. Tuning compatibility

In order to support results provided by the tuning system that has been added to the
control structure later in development, new functionalities have been added to the
editor. For example, the ability to use a multiple joints version to apply changes to the
AvatarTemplate and the AvatarTemplateMultiple template. The capabilities of the editor
that have been described in Chapter 6.1 and Chapter 6.2 remain unchanged.
Since the editor script is based on the avatar template that uses a single ConfigurableJoint
for all rotational purposes, it had to be expanded upon to handle the information
provided by the tuning process. The most significant change has been to enable the
editor to be able to cope with the individual joints for each axis. The user is now able to
choose which template (AvatarTemplate or AvatarTemplateMultiple) should be used as a
base (see Figure 6.1). When loading results from the tuning the AvatarTemplateMultiple
template should be used. When there is only information about a single joint per bone
that option should be unchecked.

Since there is no option in the single joint case to control the minimum and maximum
angles of each axis, it has been decided that changes made in AvatarTemplateMultiple will
be applied to the AvatarTemplate as follows: Once the update button has been pressed,
the maximum absolute value of the Low and High Angular X Limit of the joint controlling
the future y axis (secondary axis) and z axis (perpendicular to primary and secondary axis)
respectively will be calculated. These values will be assigned to the single joint’s Angular
Y Limit and Angular Z Limit value in the AvatarTemplate. This might cause that template
to have a greater and more unnatural movement range but all-natural poses can still
be achieved. When converting to the multiple joint template, the system remembers
which absolute value of the angular limits has been greater (the Low or High Angular X
Limit) and only applies changes made in the AvatarTemplate to that value. If the user
wishes to change the other value that is only possible in AvatarTemplateMultiple since
that information cannot be modeled otherwise in the template (without further storage
mechanisms). It is thus recommended to mainly use the AvatarTemplateMultiple template
regarding changes to the angular limits.

44

6.3. Tuning compatibility

Figure 6.1.: The final version of the editor. The JointSettings for the LeftUpperLegX
are unfolded to demonstrate the layout. These values correspond to the
respective joint found in AvatarTemplateMultiple inside of the scene.

45

6. Editor Window

6.4. Supporting Constructs

For the purpose of the editor, two classes have been implemented in order to provide
the developer with more tools to use when making changes to either of the templates.
These classes could be expanded upon in the future if there is demand for further
functionalities.

6.4.1. Body Mass

The intent of this class is to store the relative weight distribution of an average human
male or female in percent and to apply these values when calculating the mass of a body
part. Given a total body weight, the class assigns the individual masses by multiplying
the total mass with the relative values. Based on the body parameter values adjusted by
Leva [Lev96], those values that have not been documented or that have been included
in other body parts have been estimated. For example, the weights of the shoulders
and the upper chest have been assumed to be equal parts of the mass that has been
measured for the Upper Trunk. The user can decide in the editor whether to utilize the
Male, Female or Average (of both Male and Female) values for the avatar. Similarly, the
user can set the anatomically correct centre of mass for the body parts.

6.4.2. Body Groups

In order to increase the level of control of the developer over the control system, the
BodyGroup class has been introduced. The class contains dictionaries of specific parts of
the human body, like a dictionary for the left arm or one for the right hand’s fingers.
The dictionaries can be easily merged together, for example to add the fingers to an
arm’s dictionary. Custom groupings of body parts could be added to the class in the
future in order to meet the developers demands. The dictionaries are created at run
time for the local avatar and could be used to control specific parts of the body separately.
An application would be to completely lock the movement of the left fingers’ joints in
order to simulate a person wearing a cast.

For the editor, body groups are created as well in order to quickly filter through
the list of displayed joint values (see Figure 6.2) and in the case of the selection-based
version to select all joints in a group. Switching between the groups works smoothly,
although if the developer decides to switch the template version, they have to press
Refresh Joint Settings from Scene (see Figure 6.1) to reload the JointSettings from the new
template. Only then the correct joints will be displayed in the editor.

46

6.4. Supporting Constructs

Figure 6.2.: The option to choose between body groups integrated into the editor. Here,
the joints of the AvatarTemplate filtered by LEFT_LEG are displayed.

47

7. Expert Study

As mentioned earlier, the main purpose of the control structure established in this paper
has been to provide a server independent system that is not impeded by network latency.
A user study has been constructed in order to analyse how well the system has met that
goal. For the purpose of the study, a buffer has been introduced that stores the desired
target rotation for each body part and releases them with an offset (the latency) specified
by the test operator. Of course, this has not been done when a latency of 0ms has been
chosen to save computation time. Due to the fact that the hips are not controlled by the
target rotation via script but rather by a ConfigurableJoint acting as a FixedJoint connecting
it to the local avatar, the hips were not affected by the latency. Another possibility would
have been to store the input of the user in a buffer instead, before sending it to the local
avatar, but that would not be equivalent to the network latency in the former system.
Extensive rework of the control structure would have to be conducted and thoroughly
tested, to make sure that no other parts of the system are unstable. On the plus side,
not introducing latency to the hips will reduce the risk of the participant losing their
balance and lowers the risk of injury, which has been a concern when designing the test
for the feet.

7.1. Experiment

This section describes the design and intent of the study. An overview over the test
procedure and conditions will be provided.

7.1.1. Participants

Originally, it was intended to recruit the participants through a system of TUM that
allows the informatics students of a course to gain a bonus to their mark (if they
have passed the exam) for participating in a user study. Alternatively, students on the
university campus could have been invited to join the study. Unfortunately, due to the
spreading of the COVID-19 virus in Europe [WHO], the university had to take actions
and close access to the VR equipment. Even without these measures, people were asked
to avoid personal contact and because of the risk of infection, a user study that involves
devices placed on the face like the HMD was out of the question. To compensate an
expert study has been conducted, to assess the quality of the test. Nonetheless, the
following sections will detail the structure of the originally designed user study. Future
work can use this information to conduct the study once the situation has been resolved.

49

7. Expert Study

7.1.2. Test Environment

The virtual test environment (Figure 7.1) has been designed to be simplistic as to not
distract the participant from the task at hand. Facing the participant’s avatar is a full
body mirror that displays the participant’s movement as feedback to the participant at
any time [Wal+16]. Furthermore, the mirror serves as a user interface (UI) that displays
the remaining time and the amount of task completions. The avatar has been tuned
by the newly integrated tuning system and is based on the multiple joint template.
It utilizes Mesh Colliders for precise collision detection and the mass of its body parts
have been based on an average (BodyMass uses Average values for body parts) person
with a total weight of 72kg. The height of the local and remote avatar is set by the test
operator to match the height provided by the participant. Positioned in front of the
virtual body are empty boxes that are equipped with a Collider for each side wall as well
as a kinematic Rigidbody. This has been done in order to enable physical interactions
between the box and the virtual body while preventing the user from both moving and
rotating the boxes. These boxes along with a green cube (the hand target) belong to the
hand phase of the test. A similar setup is located on the ground for the user to step onto.
That arrangement is called the foot phase.

Figure 7.1.: Test setup at free-roam phase before test starts, both hand and foot phase
visible.

50

7.1. Experiment

7.1.3. Procedure

Once the demographic questionnaire (A.2) has been filled out and the instructions (A.1)
have been read by the participant, the participant is equipped with the tracking devices.
The participant initially starts with no virtual body, only the visible handheld controllers
indicate their position. In the scene is the transparent local avatar standing in a t-pose.
The participant is asked to move towards it and compare their heights. If needed the
test operator can adjust the height of the local avatar until it matches. Once it does,
the participant is asked to stand inside of the local avatar and perform a t-pose. Upon
pressing the grip buttons the control structure is initialized and the remote avatar spawns.
The local avatar becomes invisible to avoid distracting the participant. The participant is
now given two minutes to free-roam the test environment to get accustomed to their
new virtual body. If needed adjustments to the trackers are made.

Once the time is up, the operator presses a button correlating to a latency setting.
Depending on the number of participants conducting the study, several latency settings
can be tested for. Since the test has been designed to take place in the lecture free period
after the exams of the TUM, a small number of participants has been expected. As a
result the number of latencies to be analysed has been limited to three. The latencies 0ms,
125ms and 350ms have been chosen, requiring a total of 12 participants (3! permutations
and one repetition to verify the results). According to the findings of Waltemate et al,
the sense of agency should decline for latencies greater than 125ms and break apart when
greater than 350ms [Wal+16]. At the start of the test the operator chooses a permutation
of latencies and presses the correct button accordingly for the first latency setting. The
core element of the study follows.

After a short preparation timer has run out, the hand phase starts. The participant
has to use their writing hand to reach inside the boxes from right to left (or left to right
if left handed) and touch the grey back panel of the box with their fingers. The panel
turns green once they have touched it. They have to avoid hitting any other side of
the box. Hitting another side causes the side to turn red. Once they no longer touch
it it goes back to white. Meanwhile the time that the side has been red is measured in
addition to the duration of each body part colliding with the side. That way it can be
later evaluated how much e.g. the thumb has been involved in hitting a certain side.
This tests the accuracy of the participants movement.
Once each back panel has been touched, the participant has to touch the green target
in order to complete the task, they now complete the same task again in the reversed
direction until the timer has reached zero. Once that happens, the participant is asked
the embodiment questions as seen in Chapter 7.1.4 in random order. Most questions
will be answered with a number between 1 (strongly disagree) and 7 (strongly agree).

51

7. Expert Study

The foot phase under the same latency conditions follows once all questions have been
answered. The task is essentially the same, the participant has to step into the boxes
while avoiding to hit the sides. Once the green target has been stepped onto, the test
pauses and the participant is guided back to the starting position. Upon reaching it the
test commences until the time has run out, the same embodiment questions follow.
The process repeats two more times until all latency settings have been tested.

7.1.4. Perceptual Judgements

After each phase of a latency test, the participant is verbally asked the questions
presented in the embodiment questionnaire that can be found in the appendix (A.3) in a
random order. It has been adapted from a standardized questionnaire for the evaluation
of embodiment [GP18] with the focus being the established components of embodiment
(see Chapter 1: sense of location, sense of agency and sense of body ownership). Additional
components (such as "response to external stimuli") included in said questionnaire have
not been considered in the evaluation (Table 7.1) and not included in the questions of
the embodiment questionnaire of this thesis. The questions remain the same, but are
directly impacted by the task that has been completed prior to them. That way, the
reaction to the individual phases, hand and foot, can be obtained.

Body Ownership Agency Location
Questions Q1, Q2, Q3, Q4, Q5 Q6, Q7, Q8, Q9 Q10, Q11, Q12
Evaluation (Q1 – Q2) – Q3 + (Q4 – Q5) Q6 + Q7 + Q8 – Q9 Q10 – Q11 + Q12

Sense of Embodiment ((Ownership/5) * 2 + (Agency/4) * 2 + (Location/3) * 2 + 0/4 + 0/4 + 0/5) / 9

Table 7.1.: Sense of Embodiment evaluation scheme based on [GP18]. Not examined
components have been set to their average value of 0. The answer (1 − 7)
to a question results in a value ranging from −3 (strongly disagree) to +3
(strongly agree) for the evaluation. Score ranges from left to right: −15/15,
−12/12 and −9/9. Score range for sense of embodiment: −2/2.

The most relevant result of the study is the experienced sense of agency. By introducing
artificial latency to the system, the temporal discrepancy between the participant moving
their real body (intent) and the remote avatar responding to that input (result) increases
which should directly impair that sense of agency of the participant.

7.1.5. Motor Performance

Accompanying the embodiment questionnaire is an evaluation of the motor performance
of the user. Each joint is analysed regarding its precision (angular error) using the
existing tuning evaluation system [Web19]. By comparing the participant’s subjective
answers from the embodiment questionnaire with the actual measured data of their
performance, more insight into the quality of the system can be acquired than by merely
basing the evaluation on the subjective view. The motor performance of the participant

52

7.2. Expert Feedback

is further analysed by comparing it to the measured time spent hitting the sides of the
boxes, leading to information concerning when a certain latency will impede the actual
task. The information of the body parts involved in collisions can give an outlook on e.g.
whether or not further finger tracking is required.

7.2. Expert Feedback

The feedback concerning the control through the physics engine as well as the concep-
tualized user study has been largely positive. Movement without artificial latency has
been experienced to be simultaneous to the movement of the own body (see Table 7.2).

Body Ownership Agency Location
Evaluation ((-2) – (-3)) – (-3) + (1 – (-3)) = 8 3 + 3 + (-2) – (-3) = 7 2 – (-3) + (-1) = 4

Sense of Embodiment ((8/5) * 2 + (7/4) * 2 + (4/3) * 2) / 9 ≈ 1.04

Table 7.2.: The evaluation of the hand phase without any artificial latency from the expert
study. The sense of agency received the highest score relative to its possible
maximum. All scores are well above average (0).

The questions contained in the demographic questionnaire have been deemed useful
in order to relate the embodiment results to attributes of the participant. Several
suggestions and advice obtained from the expert feedback have been realized after the
expert study:

• The order in which the boxes should be touched has not been made clear in the
scene. To solve this issue numbers from 1 − 4 have been introduced above (for
the hand phase) or next to (for the foot phase) the boxes. In the case of the hand
phase, the numbers will reverse once all targets have been touched to display to
the participant, that they should now touch the boxes in the opposite order.

• A major point of critique for the foot phase has been that the boxes felt too small in
the direction of the foot length. This issue has been said to originate from the lack
of fine angular foot control (tracker is above ankles) which results in a feeling of
wearing oversized shoes. As a result involuntary collisions with the boxes could
not have been avoided or were too difficult to avoid. In order to obtain more
precise results from the user study, these boxes have been lengthened by about
10%.

• The introduction text has been missing a statement at the end that encourages the
participant to ask unanswered questions. That statement has been added.

As it has been expected, control for the fingers, especially the thumb have been requested
in order to avoid collisions with the boxes. Moving the fingers together has been the
instinctive approach which is currently not possible. The IK information obtained
from the tracking data has the wrist at its end point. No information concerning the

53

7. Expert Study

movement of the fingers is provided to the control structure and as a result the target
rotation of these joints is not set. Another point of critique has been the aforementioned
phenomenon that the finger segments do separate from each other upon collision. This
looks unnatural and disturbing for the user. Solutions suggested in Chapter 2.2.2 have
not been applied to the study in order to keep the controlled avatar as close to a real
body as possible.

54

8. Conclusion

This work has introduced a control structure for Unity 2018.2.21f that has replaced the
former Gazebo-based server physics simulation. The behaviour of the ConfigurableJoints
provided by Unity has been analysed and used to implement a control structure that
enables a humanoid avatar to be controlled through the physics engine of Unity based
on the formerly implemented inverse kinematics system. The process is automatized
and customisable. The introduction of the templates further increased the usability of
the system, making it easily applicable to new models (see Figure 8.1). The editor has
been reconfigured multiple times and serves as an overview of the control structures
parameters. Finally, the tuning system has been successfully adapted to work together
with the new control structure. It is recommended to predominately use the multiple
joints template for the remote avatar as the tuning has been performed on that template.
The AvatarTemplate’s tuned values on the other hand are a compromise that while
working might lead to different behaviour in some joints. The designed user study and
the sense of agency created through the implemented control structure have been rated
positively by the expert study.

Figure 8.1.: An alternative model [Mixa] used for both the local and remote avatar. The
control structure was automatically created (arrows) even though the model
has not all HumanBodyBones that the templates define (4 fingers per hand)
and the proportions are different (no Colliders added).

55

9. Future Work

This chapter summarizes some of the issues still remaining and if known provides
suggestions how to resolve them:

The ConfigurableJoints tend to be prone to numerical errors of the physics engine and can-
not deal with extremely rapid acceleration. For example, when the local avatar teleports
(e.g. by spawning in a location different from where the remote avatar is) the remote avatar
tends to explode. That means that the individual parts of the body get disconnected
from each other and do not stabilize. This happens in spite of the maximum angular
force being limited and the motion in all three axes set to Locked. The field Angular X
Limit Spring has been used to stabilize the issue, it applies a force to the body part in
order to enforce an angular limit. However, if the parameters of this force are set too
low, the angular limits will be disabled. Setting them to a magnitude of around 400000
enforces the limit, but in some cases causes oscillations around the limit. These paramet-
ers would have to be tuned by the means of PD or PID control to find an optimal solution.

As mentioned before, the body parts tend to get disconnected when colliding with
objects in the scene that are much heavier or immovable. The phenomenon can be
avoided by scaling the avatar to a larger size or increasing the weight of the body parts
in questions (fingers and toes). It has not become clear why this behaviour occurs since
the joints have been configured to not allow relative motions between the body parts
that they connect, only rotations.

The parts of the body tend to react very stiffly to collisions due to the method that has
been used to drive them. The target rotation is based on the local rotation of the body
parts of the local avatar. These have not changed since no physics have been applied to
the local avatar. For example, when an object presses against the shin, the entire leg will
be rotated and the lower legs remains unchanged relative to the thigh. By changing the
computation of the target rotation to depend on the rotation of the body part in world
space, that issue could be resolved. The Mesh Colliders have been constructed for the
currently used model. An automation of the described Mesh Collider generation pro-
cess (see Chapter 4.2.2) would save time when a range of different models would be used.

For the editor, a visual representation for the joints’ angular limits would be useful
to provide a more hands on visual feedback to the user who can then easily compare
the movement range of the concerned body parts with his own as a reference.

57

9. Future Work

The tuning of the system works, yet in some cases (mostly the wrist joints) it struggles
to find an appropriate oscillation pattern and will be stuck until it has found one. This
might lead to the system being stuck in an endless loop in the worst case. The automatic
tuning sometimes delivers unsatisfying results as it has been previously been the case as
well for the Gazebo framework. It is recommended to make manual adjustments to joints
that sometimes move overly damped.

While the expert study has led to positive feedback, the actual user study has not
been conducted. Future work may utilize the provided material and design to gain
further information on the impact of the system on the user’s sense of agency.

58

A. Appendix

A.1. Introduction Text

Before the experiment, you will be geared up with a belt tracker around your waist, 2
trackers strapped around your shins just above your shoes and the HMD. Please tell
your tester if the equipment is uncomfortable so that it can be adjusted to suit you
(especially important for the HMD). Whenever dealing with a VR experience there is a
possibility to have motion sickness. If you are feeling sick and do not wish to continue
or need a break please contact your tester immediately.

During the experiment, you will control a virtual body from a first-person point of view.
At first you will not have a body. The Vive controllers floating in the scene indicate the
position of your hands. You can see your body-to-be standing in the scene. Move behind
it and tell your tester whether it is taller or shorter than yourself. He will then adjust
the size of the body until it matches yours if needed. Next step inside of the body and
perform a T-pose (standing upright facing forwards, legs together with feet pointing
forward, arms stretched out at roughly 90 degrees to the torso) The Vive controllers
should be inside of the hands of the virtual body. Once the tester tells you, press the
grip buttons of the Vive controllers to materialize your virtual body. If you feel like
your body is not in a natural position in relation to your head (e.g. you cannot see your
feet when looking down, or a shoulder is at eye level) please inform your tester so that
he can manually adjust until the offset is fixed.

You now have time to explore the test setup for a while before the actual test starts
to get comfortable with your new body. In front of you is a mirror. You can see both
phases of the test: one for the hands and one for the feet. The task is to touch the
back panel of each box (grey, turns green) without touching any edges. If you touch
an edge it will turn red. Each box has to be touched in the correct order. Only move on
to the next box once the back panel has been green. One correct task completion is
done when the green cube (for the hand phase) and the green bar (for the foot phase)
is touched with the correct limb (hand/foot) respectively. For each phase you have one
minute, try to complete as many tasks as you can while touching all back panels (turns
green) and have red edges as few as possible. Do not try to cheat.

During the hand phase, only use your primary hand to touch the back panels. Leave
the other hand at rest at your side. Touch the boxes then from right to left if right-handed
and from left to right if left-handed. Upon hitting the green cube touch the boxes with

59

A. Appendix

the same hand in reversed order. If you cannot quite reach the boxes you can lean or
make small side steps.

During the foot phase, once you have stepped on the green bar on the floor, the
test will pause and your tester will guide you back to the start. Once you have reached
the white square on the floor the test resumes. After each phase, the scene and your
character will freeze for several seconds. Please move as little as possible during that
time.

The boxes have physical properties and are immovable. You can touch them and
they hinder your movement. It may happen that your finger joints do disconnect from
each other when hitting an object.

After each phase you will be verbally asked questions from the embodiment ques-
tionnaire (16 questions). You will mostly answer with a number between 1 (strongly
disagree) and 7 (strongly agree). Please be as honest and precise as possible! The
procedure will be repeated 3 times (both hand and foot phases and questions).

If you have any questions right now, please feel free to ask your test operator.

60

Demographic Questionnaire

Participant ID (randomly assigned by the tester): ________________________________

Age: ________________________

Sex: ________________________

Height: ________________________

Weight: ________________________

Profession / Field of Study ________________________

Do you have normal / corrected to normal vision? Yes No

Are you color-blind? Yes No

Can you see in stereo-mode? Yes No

Do you suffer from any condition that impairs your movement? Yes No

How much time (in h) per week do you exercise or practice sport? ________________

How would you rate your hand-eye coordination?

(1 = none, 2 = weak, 3 = moderate, 4 = good, 5 = very good)

How would you rate your foot-eye coordination?

(1 = none, 2 = weak, 3 = moderate, 4 = good, 5 = very good)

How familiar are you with virtual reality games/applications?

(1 = none, 2 = weak, 3 = moderate, 4 = good, 5 = very good)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

A.2. Demographic Questionnaire

A.2. Demographic Questionnaire

61

Embodiment Questionnaire

Participant ID ______________ Condition ______________

Something that caused me problems or that I struggled with was…

Please select your level of agreement with the following statements:
“During the experiment there were moments in which…

Q1. I felt as if the virtual body I saw when I looked down was my own body.“

Q2. I felt as if the virtual body I saw was someone else.“

Q3. It seemed as if I might have more than one body.“

Q4. I felt as if the character I saw when looking in the mirror was my own body.“

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

A. Appendix

A.3. Embodiment Questionnaire

62

Q5. I felt as if the character I saw when looking in the mirror was another person.“

Q6. I felt like I could control the virtual body as if it was my own body.“

Q7. The movement of the virtual body were caused by my movements.“

Q8. I felt as if the movements of the virtual body were influencing my own

 movements.“

Q9. I felt as if the virtual body was moving by itself.“

Q10. I felt as if my body was located where I saw the virtual body.“

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

A.3. Embodiment Questionnaire

63

Q11. I felt out of my body.“

Q12. I felt as if my (real) body were drifting towards the virtual body or as if the virtual

 body were drifting towards my real body.“

Q13. I felt as if my real body were turning into an ‘avatar‘ body.“

Q14. I felt that the motion of the virtual body was simultaneous to my movement.”

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

strongly
disagree

disagree somewhat
disagree

neither agree
nor disagree

somewhat
agree

agree strongly agree

A. Appendix

64

List of Figures

1.1. An overview of the server dependent framework. 4
1.2. The new server-independent framework. The Gazebo component was

replaced by the control structure, the remote avatar and the environment
were moved into Unity. 6

1.3. The local avatar showing the IK result (left), the remote avatar with visible
control structure imitating the local avatar (middle) and the remote avatar
with hidden control structure (right). The remote avatar is driven by
physics through the control structure and the local avatar follows the IK
obtained from the tracking information. 7

2.1. The connection between the parts of the left arm modeled by joints. . . . 10
2.2. An example for the axes definition of a ConfigurableJoint. The joint space

is relative to the local space of a GameObject (L2J). The local space has
been rotated and moved relative to the world space (W2L). The joint’s
primary axis (XJ) is identical to the local y axis of the GameObject (YL), the
secondary axis (YJ) matches the local z axis (ZL). 12

2.3. The DoFs parameters of a ConfigurableJoint. 13
2.4. The exemplary properties of the angular limits of the ConfigurableJoint

component as seen in Unity 2018.2.21f. 13
2.5. The exemplary properties of an angular drive of the ConfigurableJoint

component as seen in Unity 2018.2.21f. 15

3.1. The representation of a humanoid body in Unity expressed by the Human-
BodyBones values utilized in this thesis without their left-side counterparts.
Defined finger names are Thumb, Index, Middle, Ring and Little. 18

3.2. Erroneous rotation of the IK solver. Transparent blue: local avatar with
hand in correct pose, Opaque blue: remote avatar unable to get its hand
into position because of 2 DoFs in the elbow. 20

4.1. A simplified overview of the joint setup process. The components con-
figured in the chosen template are copied to the remote avatar. Depending
on the template chosen (see Chapter 4.2.3), a number of joints is copied to
the remote avatar. Each body part (defined as a bone) is treated individually. 25

4.2. The simple Colliders (yellow lines) attached to the remote avatar. Ap-
proximate the form of the model but no exact match (see arms, legs,
head). 26

65

List of Figures

4.3. Two spherical Colliders attached to the first and middle segment of the
left thumb. Rotating a Collider is not possible in Unity so a single Capsule
Collider cannot be used. 27

4.4. The layer collision matrix configured for the control structure. Layers
created to manage collisions for the remote avatar are marked in yellow.
The checked boxes indicate that a collision can occur between GameObjects
assigned to these layers (layer names at the top and left). 28

4.5. Because of the simple form of the Colliders, the remote avatar’s hand (solid
blue) gets stuck near the hips when moving the arm in front of the legs
from an initial resting position. 29

4.6. The Mesh Colliders (yellow lines) attached to the remote avatar. Colliders
closely match the form of the model. 30

4.7. The resulting meshes in blender. Highlighted body parts (orange) have
been subdivided to approximate convex shapes. The point of origin of
these parts is shown as a yellow dot at the root of the corresponding body
part. 31

4.8. An example for the splitting process: A single ConfigurableJoint (top) for
all dimensions is divided into 3 individual ConfigurableJoints (bottom),
each controlling its own axis while maintaining the same angular limits
(written here as just the angles) as the original one. Note that while the
process sets the y and z directions to Free, this figure depicts them set to
Locked for the sake of visibility (circle outline instead of filled circle) . . . 33

5.1. The tuning process applied to the upper leg. The Relay Force (yellow) is
invoked by the joint itself and not an external force that affects the leg. . 36

6.1. The final version of the editor. The JointSettings for the LeftUpperLegX
are unfolded to demonstrate the layout. These values correspond to the
respective joint found in AvatarTemplateMultiple inside of the scene. 45

6.2. The option to choose between body groups integrated into the editor.
Here, the joints of the AvatarTemplate filtered by LEFT_LEG are displayed. 47

7.1. Test setup at free-roam phase before test starts, both hand and foot phase
visible. 50

8.1. An alternative model [Mixa] used for both the local and remote avatar.
The control structure was automatically created (arrows) even though the
model has not all HumanBodyBones that the templates define (4 fingers
per hand) and the proportions are different (no Colliders added). 55

66

List of Tables

7.1. Sense of Embodiment evaluation scheme based on [GP18]. Not examined
components have been set to their average value of 0. The answer (1 − 7)
to a question results in a value ranging from −3 (strongly disagree) to
+3 (strongly agree) for the evaluation. Score ranges from left to right:
−15/15, −12/12 and −9/9. Score range for sense of embodiment: −2/2. 52

7.2. The evaluation of the hand phase without any artificial latency from the
expert study. The sense of agency received the highest score relative to its
possible maximum. All scores are well above average (0). 53

67

Bibliography

[AA13] K. A. Abdel-Malek and J. S. Arora. ‘Chapter 2 - Human Modeling: Kin-
ematics’. In: Human Motion Simulation. Ed. by K. Abdel-Malek and J. Arora.
Burlington: Elsevier Science, 2013, pp. 7–40. isbn: 978-0-12-405190-4. doi:
10.1016/B978-0-12-405190-4.00002-7. url: http://www.sciencedirect.
com/science/article/pii/B9780124051904000027.

[AM13] I. Almetwally and M. Mallem. ‘Real-time tele-operation and tele-walking of
humanoid Robot Nao using Kinect Depth Camera’. In: 10th IEEE International
Conference on Networking, Sensing and Control (ICNSC), 2013. Piscataway, NJ:
IEEE, 2013. isbn: 9781467352000. doi: 10.1109/icnsc.2013.6548783. url:
http://dx.doi.org/10.1109/icnsc.2013.6548783.

[Ber17] J. Berner. ‘Automatic Controller Tuning using Relay-based Model Identi-
fication’. eng. PhD thesis. Lund University, Oct. 2017. isbn: 978-91-7753-
447-1. url: https : / / lup . lub . lu . se / search / ws / files / 33100749 /
ThesisJosefinBerner.pdf.

[Bes15] K. M. Besmer. ‘What Robotic Re-embodiment Reveals about Virtual Re-
embodiment’. In: Postphenomenological Investigations (2015), p. 55.

[Ble] Blender. blender.org - Home of the Blender project - Free and Open 3D Creation
Software. url: https://www.blender.org/ (visited on 06/04/2020).

[Cha+12] M. Cha, S. Han, J. Lee and B. Choi. ‘A virtual reality based fire training
simulator integrated with fire dynamics data’. In: Fire Safety Journal 50 (2012),
pp. 12–24. issn: 0379-7112. doi: 10.1016/j.firesaf.2012.01.004. url: htt
p://www.sciencedirect.com/science/article/pii/S0379711212000136.

[Día18] E. O. Díaz. 3D Motion of Rigid Bodies: A Foundation for Robot Dynamics Analysis.
Springer, 2018. isbn: 9783030042752.

[Föl+16] O. Föllinger, U. Konigorski, B. Lohmann, G. Roppenecker and A. Trächtler.
Regelungstechnik: Einführung in die Methoden und ihre Anwendung. 12., über-
arbeitete Auflage. Lehrbuch Studium. VDE Verlag GMBH, 2016. isbn:
3800742020.

[GM18] G. Graetz and G. Michaels. ‘Robots at work’. In: Review of Economics and
Statistics 100.5 (2018), pp. 753–768.

[Gof04] F. J. Goforth. ‘On motion control design and tuning techniques’. In: (Boston,
MA, USA). 2004, 716–721 vol.1. isbn: 0-7803-8335-4. doi: 10.23919/ACC.
2004.1383689.

69

https://doi.org/10.1016/B978-0-12-405190-4.00002-7
http://www.sciencedirect.com/science/article/pii/B9780124051904000027
http://www.sciencedirect.com/science/article/pii/B9780124051904000027
https://doi.org/10.1109/icnsc.2013.6548783
http://dx.doi.org/10.1109/icnsc.2013.6548783
https://lup.lub.lu.se/search/ws/files/33100749/ThesisJosefinBerner.pdf
https://lup.lub.lu.se/search/ws/files/33100749/ThesisJosefinBerner.pdf
https://www.blender.org/
https://doi.org/10.1016/j.firesaf.2012.01.004
http://www.sciencedirect.com/science/article/pii/S0379711212000136
http://www.sciencedirect.com/science/article/pii/S0379711212000136
https://doi.org/10.23919/ACC.2004.1383689
https://doi.org/10.23919/ACC.2004.1383689

Bibliography

[Gou+09] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B.
Marnier, J. Serre and B. Maisonnier. ‘Mechatronic design of NAO humanoid’.
In: 2009 IEEE International Conference on Robotics and Automation (Kobe, Japan).
IEEE. 2009, pp. 769–774.

[GP18] M. Gonzalez-Franco and T. C. Peck. ‘Avatar Embodiment. Towards a Stand-
ardized Questionnaire’. In: Frontiers in Robotics and AI 5 (2018), p. 74. issn:
2296-9144. doi: 10.3389/frobt.2018.00074. url: https://www.frontiersi
n.org/articles/10.3389/frobt.2018.00074/pdf.

[HBP] HBP. Neurorobotics Platform. url: https://neurorobotics.net/ (visited on
06/04/2020).

[Hor18] S. Hornsey. ‘A Review of Relay Auto-tuning Methods for the Tuning of
PID-type Controllers.’ In: Reinvention: an International Journal of Undergraduate
Research 11.1 (2018).

[I I00] I. I. Gallagher. ‘Gallagher, S. 2000. Philosophical Conceptions of the Self:
Implications for Cognitive Science’. In: Trends in Cognitive Sciences 4.1 (2000),
pp. 14–21. issn: 1879-307X. doi: 10.1016/S1364-6613(99)01417-5.

[Jea03] M. Jeannerod. ‘The mechanism of self-recognition in humans’. In: Behavioural
Brain Research 142.1 (2003), pp. 1–15. issn: 0166-4328. doi: 10.1016/S0166-
4328(02)00384-4. url: http://www.sciencedirect.com/science/article
/pii/S0166432802003844.

[KGS12] K. Kilteni, R. Groten and M. Slater. ‘The Sense of Embodiment in Vir-
tual Reality’. In: Presence: Teleoperators and Virtual Environments 21.4 (2012),
pp. 373–387. issn: 1054-7460. doi: 10.1162/PRES_a_00124.

[KNM11] V. Kumar, B. C. N. Nakra and A. Mittal. ‘A Review of Classical and Fuzzy
PID Controllers’. In: International Journal of Intelligent Control and Systems 16
(2011), pp. 170–181.

[Lev96] P. de Leva. ‘Adjustments to Zatsiorsky-Seluyanov’s segment inertia para-
meters’. In: Journal of biomechanics 29.9 (1996), pp. 1223–1230. issn: 0021-9290.
doi: 10.1016/0021-9290(95)00178-6. url: http://www.sciencedirect.
com/science/article/pii/0021929095001786.

[MC99] D. Manocha and J. F. Canny. ‘Efficient Inverse Kinematics for General 6R
Manipulators’. In: IEEE Transactions on Robotics and Automation (1999). issn:
1042-296X. url: https://www.researchgate.net/publication/2237060_
Efficient_Inverse_Kinematics_for_General_6R_Manipulators.

[Mic] Microsoft. Kinect – Entwicklung von Windows-Apps. url: https://developer.
microsoft.com/de-de/windows/kinect/ (visited on 06/04/2020).

[Mixa] Mixamo. Mixamo - Doozy. url: https://www.mixamo.com/#/?page=1&
query=doozy&type=Character (visited on 06/04/2020).

70

https://doi.org/10.3389/frobt.2018.00074
https://www.frontiersin.org/articles/10.3389/frobt.2018.00074/pdf
https://www.frontiersin.org/articles/10.3389/frobt.2018.00074/pdf
https://neurorobotics.net/
https://doi.org/10.1016/S1364-6613(99)01417-5
https://doi.org/10.1016/S0166-4328(02)00384-4
https://doi.org/10.1016/S0166-4328(02)00384-4
http://www.sciencedirect.com/science/article/pii/S0166432802003844
http://www.sciencedirect.com/science/article/pii/S0166432802003844
https://doi.org/10.1162/PRES_a_00124
https://doi.org/10.1016/0021-9290(95)00178-6
http://www.sciencedirect.com/science/article/pii/0021929095001786
http://www.sciencedirect.com/science/article/pii/0021929095001786
https://www.researchgate.net/publication/2237060_Efficient_Inverse_Kinematics_for_General_6R_Manipulators
https://www.researchgate.net/publication/2237060_Efficient_Inverse_Kinematics_for_General_6R_Manipulators
https://developer.microsoft.com/de-de/windows/kinect/
https://developer.microsoft.com/de-de/windows/kinect/
https://www.mixamo.com/#/?page=1&query=doozy&type=Character
https://www.mixamo.com/#/?page=1&query=doozy&type=Character

Bibliography

[Mixb] Mixamo. Mixamo - Y Bot. url: https://www.mixamo.com/#/?page=1&query=
ybot&type=Character (visited on 06/04/2020).

[NVI17] NVIDIA. Joints — NVIDIA PhysX SDK 3.4.0 Documentation. 2017. url: https:
//docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide
/Manual/Joints.html#d6-joint (visited on 06/04/2020).

[Ocu] Oculus. Oculus| VR-Headsets & Geräte. url: https://www.oculus.com/
(visited on 06/04/2020).

[OM01] M. Oshita and A. Makinouchi. ‘A Dynamic Motion Control Technique for
Human–like Articulated Figures’. In: Computer Graphics Forum 20.3 (2001),
pp. 192–203. issn: 1467-8659. doi: 10.1111/1467-8659.00512. url: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00512.

[OSR] OSRF. Gazebo. url: http://gazebosim.org/ (visited on 06/04/2020).

[Pre11] H. Preester. ‘Technology and the Body: The (Im)Possibilities of Re-embodi-
ment’. In: Foundations of Science 16 (2011), pp. 119–137. doi: 10.1007/s10699-
010-9188-5.

[Rob] S. Robotics. Softbank Robotics. url: https://www.softbankrobotics.com/
emea/en/company (visited on 06/04/2020).

[Roo19a] RootMotion. Final IK | Animation | Unity Asset Store. 2019. url: https:
//assetstore.unity.com/packages/tools/animation/final-ik-14290
(visited on 06/04/2020).

[Roo19b] RootMotion. PuppetMaster | Physics | Unity Asset Store. 2019. url: https:
//assetstore.unity.com/packages/tools/physics/puppetmaster-48977
(visited on 06/04/2020).

[RZ04] M. Reuter and S. Zacher. Regelungstechnik für Ingenieure: Analyse, Simulation
und Entwurf von Regelkreisen ; mit 77 Beispielen und 34 Aufgaben. 11., korrigierte
Aufl. Viewegs Fachbücher der Technik. Vieweg, 2004. isbn: 3528050047.

[Ste] Steam. SteamVR. url: https://store.steampowered.com/steamvr (visited
on 06/04/2020).

[Ste13] M. Stevenson. ConfigurableJointExtensions: Unity extension methods for comput-
ing a ConfigurableJoint. TargetRotation value from a given local or world rotation.
2013. url: https://gist.github.com/mstevenson/4958837 (visited on
06/04/2020).

[Ste19] Steam. SteamVR Plugin - Asset Store. 2019. url: https://assetstore.unity.
com/packages/tools/integration/steamvr- plugin- 32647 (visited on
06/04/2020).

[Uni] Unity. Unity Real-Time Development Platform | 3D, 2D VR & AR Visualizations.
url: https://unity.com/ (visited on 06/04/2020).

71

https://www.mixamo.com/#/?page=1&query=ybot&type=Character
https://www.mixamo.com/#/?page=1&query=ybot&type=Character
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Joints.html#d6-joint
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Joints.html#d6-joint
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Joints.html#d6-joint
https://www.oculus.com/
https://doi.org/10.1111/1467-8659.00512
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00512
https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00512
http://gazebosim.org/
https://doi.org/10.1007/s10699-010-9188-5
https://doi.org/10.1007/s10699-010-9188-5
https://www.softbankrobotics.com/emea/en/company
https://www.softbankrobotics.com/emea/en/company
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/physics/puppetmaster-48977
https://assetstore.unity.com/packages/tools/physics/puppetmaster-48977
https://store.steampowered.com/steamvr
https://gist.github.com/mstevenson/4958837
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://unity.com/

Bibliography

[Uni19a] Unity. Unity - Manual: 3D Physics Reference. 2019. url: https : / / docs .
unity3d.com/2018.2/Documentation/Manual/Physics3DReference.html
(visited on 06/04/2020).

[Uni19b] Unity. Unity - Scripting API: Rigidbody. 2019. url: https://docs.unity3d.
com/2018.2/Documentation/ScriptReference/Rigidbody.html (visited on
06/04/2020).

[Viv] Vive. VIVE | Discover Virtual Reality Beyond Imagination. url: https://www.
vive.com (visited on 06/04/2020).

[Wal+16] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde, S. Kopp, M. Ernst and
M. Botsch. ‘The impact of latency on perceptual judgments and motor
performance in closed-loop interaction in virtual reality’. In: Proceedings of
the 22nd ACM conference on virtual reality software and technology (Munich,
Germany). 2016, pp. 27–35.

[Wan+12] F. Wang, C. Tang, Y. Ou and Y. Xu. ‘A real-time human imitation sys-
tem’. In: 10th World Congress on Intelligent Control and Automation (WCICA),
2012 (Beijing, China). Ed. by D. Cheng. Piscataway, NJ: IEEE, 2012. isbn:
9781467313988. doi: 10.1109/wcica.2012.6359088. url: http://dx.doi.
org/10.1109/wcica.2012.6359088.

[Web19] M. Webel. PID-Tuning Framework for Remotely Operated Humanoid Robots. 2019.
url: https://wiki.tum.de/display/infar/MA%3A+PID-Tuning+Framework
+for+Remotely+Operated+Humanoid+Robots (visited on 06/04/2020).

[WHO] WHO. Novel Coronavirus (2019-nCoV) situation reports. url: https://www.
who.int/emergencies/diseases/novel-coronavirus-2019/situation-
reports (visited on 06/04/2020).

[WK19] S. Weber and G. Klinker. ‘VR Re-Embodiment in the Neurorobotics Platform’.
In: Mensch und Computer 2019 - Workshopband (Hamburg, Germany). Bonn:
Gesellschaft für Informatik e.V., 2019. doi: 10.18420/muc2019-ws-585.

[ZH02] V. B. Zordan and J. K. Hodgins. ‘Motion Capture-Driven Simulations That
Hit and React’. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (San Antonio, Texas, USA). SCA ’02. New
York, NY, USA: Association for Computing Machinery, 2002, pp. 89–96. isbn:
1581135734. doi: 10.1145/545261.545276. url: https://doi.org/10.1145/
545261.545276.

[Zha+18] Z. Zhang, Y. Niu, Z. Yan and S. Lin. ‘Real-time whole-body imitation by hu-
manoid robots and task-oriented teleoperation using an analytical mapping
method and quantitative evaluation’. In: Applied Sciences 8.10 (2018), p. 2005.

[ZZ98] V. M. Zatsiorsky and V. M. Zaciorskij. Kinematics of Human Motion. Human
Kinetics, 1998. isbn: 9780880116763. url: https://books.google.de/books?
id=mf4i7G5nXvkC.

72

https://docs.unity3d.com/2018.2/Documentation/Manual/Physics3DReference.html
https://docs.unity3d.com/2018.2/Documentation/Manual/Physics3DReference.html
https://docs.unity3d.com/2018.2/Documentation/ScriptReference/Rigidbody.html
https://docs.unity3d.com/2018.2/Documentation/ScriptReference/Rigidbody.html
https://www.vive.com
https://www.vive.com
https://doi.org/10.1109/wcica.2012.6359088
http://dx.doi.org/10.1109/wcica.2012.6359088
http://dx.doi.org/10.1109/wcica.2012.6359088
https://wiki.tum.de/display/infar/MA%3A+PID-Tuning+Framework+for+Remotely+Operated+Humanoid+Robots
https://wiki.tum.de/display/infar/MA%3A+PID-Tuning+Framework+for+Remotely+Operated+Humanoid+Robots
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.18420/muc2019-ws-585
https://doi.org/10.1145/545261.545276
https://doi.org/10.1145/545261.545276
https://doi.org/10.1145/545261.545276
https://books.google.de/books?id=mf4i7G5nXvkC
https://books.google.de/books?id=mf4i7G5nXvkC

	Acknowledgements
	Abstract
	Contents
	List of Abbreviations
	Introduction
	Related Work
	Original Framework
	Contribution

	Unity – Physics Components
	Rigidbody
	Kinematic vs Dynamic mode
	Mass and Center of Mass

	ConfigurableJoint
	Joint Axis
	Degrees of Freedom
	Angular Limits
	Target Rotation and Angular Velocity
	Angular Drives

	Modelling the Human Body
	Simplifying the Human Body
	Kinematic Skeleton
	Torso
	Arms
	Legs

	Constraining Human Motion

	Control Structure
	Class: AvatarManager
	PD Version
	Variables: Bone Dictionaries
	Method: InitializeBodyStructures

	Class: ConfigJointManager
	Simple Colliders
	Mesh Colliders
	Multiple Joints per Body Part
	Joint Control

	Automatic Tuning of the Control Structure
	Gazebo tuning system
	Adaptation of the Gazebo Automatic Tuning System
	Challenges & Solutions
	Relay Force
	Saving the Tuning Results

	Results

	Editor Window
	Editor Window: First Version
	Class: JointSettings
	Applying Changes to Multiple Joints Template
	Save & Load
	Lessons Learned

	Editor Window: Selection-based Version
	Tuning compatibility
	Supporting Constructs
	Body Mass
	Body Groups

	Expert Study
	Experiment
	Participants
	Test Environment
	Procedure
	Perceptual Judgements
	Motor Performance

	Expert Feedback

	Conclusion
	Future Work
	Appendix
	Introduction Text
	Demographic Questionnaire
	Embodiment Questionnaire

	List of Figures
	List of Tables
	Bibliography

