
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Evaluation of Rendering Optimizations for
Virtual Reality Applications in Vulkan

Paul Preißner

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Games Engineering

Evaluation of Rendering Optimizations for
Virtual Reality Applications in Vulkan

Evaluation von Renderoptimierungen für
Virtual Reality Anwendungen in Vulkan

Author: Paul Preißner
Supervisor: Prof. Gudrun Klinker, Ph.D.
Advisor: M.Sc. Sven Liedtke
Submission Date: 15 February 2020

I confirm that this master’s thesis in informatics: games engineering is my own work and I
have documented all sources and material used.

Garching bei München, 15 February 2020 Paul Preißner

Acknowledgments

My gratitude is expressed towards TUM and its teaching staff for providing an invaluable
learning and working environment, towards my fellow students for great memories and
towards Mio Mio and Spezi for keeping me glycemic in trying times.

Abstract

Virtual reality (VR) and modern low-level graphics APIs, such as Vulkan, are hot topics in the
field of high performance real-time graphics. Especially enterprise VR applications show the
need for fast and highly optimized rendering of complex industrial scenes with very high
object counts. However, solutions often need to be custom-tailored and the use of middleware
is not always an option. Optimizing a Vulkan graphics renderer for high performance VR
applications is a significant task. This thesis researches and presents a number of suitable
optimization approaches. The goal is to integrate them into an existing renderer intended
for enterprise usage, benchmark the respective performance impact in detail and evaluate
those results. This thesis likewise includes all research and development documentation of
the project, an explanation of successes and failures during the project and finally an outlook
on how the findings may be used further.

iv

Kurzfassung

Sowohl VR als auch low-level Grafikschnittstellen wie Vulkan sind stark gefragte Themen
im Bereich der Echtzeitgrafik. Die Darstellung komplexer und hoch detaillierter Szenen ist
besonders im industriellen Umfeld für VR Applikationen eine Grundvoraussetzung. Oftmals
werden allerdings spezifisch zugeschnittene Lösungen benötigt, wenn vorgefertigt verfügbare
Tools keine Option sind. Daher ist die Optimierung eines Vulkan Grafikrenderers für High
Performance VR Anwendungen eine Kernaufgabe. Diese Arbeit untersucht und präsentiert
demnach eine Anzahl an passenden Optimierungswegen. Teil des Ziels ist es, eine Auswahl
dieser in einen vorhandenen Renderer aus dem industriellen Umfeld zu integrieren, die
jeweilige Performance zu im Detail zu messen und auszuwerten. Diese Arbeit beinhaltet
ebenso jegliche Forschungs- und Entwicklungsdokumentation des praktischen Projekts und
gibt eine Erläuterung der Erfolge und Misserfolge und einen Ausblick darauf, wie die
Ergebnisse womöglich einsetzbar sind.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 The goal . 2
1.2 Industry collaboration . 3
1.3 Technical foundation . 3

2 The RTG Echtzeitgraphik GmbH Tachyon Engine 4
2.1 Render setup . 4
2.2 Render loop . 5

2.2.1 VR render loop . 6

3 Stereo Rendering Optimization - Input reduction 8
3.1 (Hierarchical) Frustum culling . 8
3.2 Frustum (& distance) culling in Tachyon . 8
3.3 Superfrustum Culling . 10

3.3.1 Estimated impact . 12
3.3.2 Implementation specifics . 13

3.4 Round Robin Culling . 14
3.5 Conical Frustum Culling . 15
3.6 Merging approaches . 15

4 Stereo Rendering Optimization - Effort reduction 17
4.1 Multiview stereo rendering . 17

4.1.1 Estimated impact . 20
4.1.2 Implementation specifics . 20

4.2 HMD Stencil Mask . 21
4.2.1 Estimated impact . 21
4.2.2 Implementation specifics . 22

4.3 Monoscopic Far-Field Rendering . 25
4.3.1 Estimated impact . 26
4.3.2 Far-first approach . 26
4.3.3 Near-first approach . 28

vi

Contents

4.3.4 Implementation specifics . 28
4.3.5 rtvklib MFFR failure . 30
4.3.6 MFFR Variant: Depth Shift . 31
4.3.7 MFFR Variant: Alternate eye . 32

4.4 Foveated Rendering . 32
4.4.1 Fixed versus True Foveated Rendering 33
4.4.2 Radial Density Mask . 34
4.4.3 Relevancy of GPU architecture . 35

5 Performance testing setup 38
5.1 Benchmark scene . 38
5.2 Timing code & metrics . 39
5.3 Compilation parameters . 41
5.4 System specifications . 41

6 Performance benchmark results 43
6.1 Individual impact . 45

6.1.1 Comparison of individual optimizations 49
6.2 Combined impact . 53

6.2.1 Comparison of combined optimizations 55
6.3 Viable Combinations Comparison . 60
6.4 Memory Usage . 61

7 Outlook 63

List of Figures 64

List of Tables 66

Glossary 67

Bibliography 68

vii

1 Introduction

Real-time rendering is not a new research topic. Naturally, developers and researchers have
devised shortcuts and optimizations in hardware and software since the first applications in
video games, visualization and simulation. There are methods and algorithms for almost any
type of hardware, rendering technique and application scope. One more recently resurged
trend is VR. The realization of affordable, comfortable and hassle-free VR headsets like the
Oculus Rift series, the HTC Vive, Windows Mixed Reality design or the recently launched
Valve Index led to a newfound vigor for the technology among consumers. Similarly, busi-
nesses as well as scientists are increasingly looking to VR for various fields of research,
marketing opportunities and engineering support and more.
However, VR poses challenges and requirements not commonly seen with traditional real-
time applications on monoscopic screens. While goals such as stable motion tracking, low
latency and high performance rendering are as old as early VR HMDs, this recent resurgence
has prompted more active search for possible solutions. Among these requirements is the
need for high framerates to give the user a feeling of increased visual fluidity and to avoid
motion sickness. VR applications not only need to render at a high framerate, they also need
to do so at higher resolutions than common flat screens since the shorter viewing distance
and added lens distortion means pixels appear larger to the user. The only way to combat re-
sulting visual aliasing and the so called SDE is to significantly increase pixel count and density.

Similarly to Quílez’ opening example in Efficient Stereo and VR Rendering[Íñi17], let us
assume a traditional console video game running at Full HD resolution and 60 frames
per second, which is a common for 8th generation consoles. Meanwhile, the same game
running in a VR headset may require resolutions and framerate ranging from 1200 pixels
per axis per eye (Figure 1.1) at 90 frames per second for entry level headsets and up to or
even exceeding 2000 pixels per axis per eye at 120 frames per second for high end devices
like the Pimax 4K. Image warp will commonly require an even higher internal rendering
resolution by a factor of around 20% or more. For the entry level headset, this means a
resolution increase of roughly 1.6x and a framerate increase of 1.5x for a combined 2.4x power
requirement compared to the console baseline, while in the high end case it is roughly a
4.6x resolution and 4x framerate uptick for a combined 9.2x power requirement in comparison.

1

1 Introduction

Figure 1.1: Comparison of common HMD resolutions (from [Vei19], V. Mäkelä. 2019)

1.1 The goal

While this is very rough napkin math and real applications scale differently due to a multitude
of factors, it paints a clear picture: real-time VR rendering necessitates vastly faster rendering
than traditional screens. Consequentially, VR rendering should take advantage of as much
optimization as possible to attain that goal. There are many established options known
to improve performance for various application types, with some of these options being
de-facto standard features in popular rendering engines. However, there are a range of
optimizations specific to VR or more generally stereoscopic rendering. There is less research
and documentation available as of now, due in part to the aforementioned recent rise in
popularity and prior lack of interest.
Thus, this paper aims to collect several VR optimizations, implement a subset of them in a real
engine and subsequently benchmark and analyse the impact each has on performance. The
goal is to have a better collection and understanding of the various possible methods and how
much effort may be warranted for each. Firstly an explanation of the software and technical
foundation used to implement practical samples is given, following this, optimizations aiming
to reduce render input will be shown, succeeded by a chapter on optimizations aiming to
reduce render effort. Finally, an analysis of the performance impact of each implemented
approach. For the practical aspect of this thesis, the goal is to enable fast rendering of complex
scenes with very large object counts, all while driving VR headsets at high resolution and
framerate.

2

1 Introduction

1.2 Industry collaboration

This thesis is created in collaboration with RTG Echtzeitgraphik GmbH, an engineering and
consulting office based in Garching bei München. RTG Echtzeitgraphik GmbH offers engi-
neering services related to real-time visualization, VR applications and hardware prototyping
to enterprise clients from a variety of industry branches such as automotive and industrial
logistics[Vol20].
The author of this thesis was employed at RTG Echtzeitgraphik GmbH at the time of writing.
This allowed the use of company assets like workstations, a range of VR headsets and relevant
literature as well as expertise with regard to related technologies and enterprise requirements
for a rendering engine. The thesis, accompanied research efforts and all material created for
the purpose of this thesis, however, are the author’s own work.

1.3 Technical foundation

In an effort to represent a realistic use case, an engine with actual production usage target was
chosen as opposed to a purely synthetic test vehicle, namely RTG Echtzeitgraphik GmbH’s
own Tachyon. The engine and its structure is further explained in chapter 2.
The graphics API and library of choice for this thesis is the Khronos Group’s Vulkan. Vulkan
is a low level graphics API officially created in 2014 and formally released in early 2016. It
promises increased flexibility and reduced overhead compared to prior graphics APIs as well
as compatibility with a wide range of hardware architectures and operating systems[The16].
On the flipside, the verbose and low level nature of the API brings increased development
effort and means that these promised improvements can only be leveraged with sufficient
care and caution by developers.
For the practical goal of this thesis Vulkan promises a good fit. Furthermore, Vulkan is
seeing a steady growth in developer interest and industry adoption. But with documentation,
resources and API-specific research still being lackluster. This thesis hopes to add useful
insights to this pool.
Lastly both Vulkan and the VR optimizations presented here are not just compatible with
powerful x86 desktop machines but also with many ARM-based SoCs running Google’s
Android as well as Apple’s iOS, promising prospects for the category of standalone low
power VR headsets which are seeing increasing popularity[Ant18][20].

3

2 The RTG Echtzeitgraphik GmbH Tachyon
Engine

Rendering optimizations can only be implemented if there actually is a renderer at hand. In
order to see how the chosen approaches would perform in an engine intended for productive
use and industrial applications, rather than an ad hoc renderer only built for some specific
tests, Tachyon (working title) was chosen. Tachyon uses a fully Vulkan based forward
renderer (internally rtvklib) with support for multiple viewports of various types, including
an OpenVR-based VR path, an optional physically-based shader pipeline, a user interface
module, a network module and a physics module with more extensions on the development
schedule. The renderer integrates Vulkan version 1.1.85 and up and OpenVR version 1.4.18
and up with support for all major SteamVR headsets at the time of writing, including
roomscale tracking of the Valve Index, HTC Vive and Vive Pro, the Windows Mixed Reality
series and Oculus Rift series.

Tachyon asset data types

To speed up asset load primarily for large 3D models or complex instance hierarchies, the
engine at the time of writing only supports a custom in-house file format *.hvr. This file
format is engineered to contain per-processed data arrays that can be directly imported to
Tachyon as a single sequential block and require only minimal processing within the engine
before startup. Essentially, instead of saving an object or objects and their hierarchies, material
information and other resources as flexible and compatible formats such as FBX or OBJ, RTG
Echtzeitgraphik GmbH opt to export to the HVR format using in-house exporter plugins.
Textures can be imported from a variety of common file formats like PNG, TIFF, Targa or
JPEG as the engine uses the third-party OpenImageIO [Gri19] library.

2.1 Render setup

As typical for the verbose nature of Vulkan, render initialization starts with the creation of all
necessary basic Vulkan resources such as descriptors, descriptor sets, activation of a minimal
set of Vulkan extensions and layers and device enumeration. More specific to rtvklib, multiple
Vulkan pipelines are active by default:

• a material pipeline offering support for a Phong and a PBR shader as well as geometry
and index buffers of arbitrary size

• a skybox pipeline with a simplified skybox shader

4

2 The RTG Echtzeitgraphik GmbH Tachyon Engine

• a point cloud pipeline, primarily to allow rendering of LiDAR scan data

To facilitate rendering into multiple viewports, Tachyon uses the concept of render targets.
Each render target can reference an arbitrary subset of pipelines and comes with its own
set of Vulkan framebuffers, command buffers and render pass and its own virtual camera.
Whenever any 3D object is to be loaded, rtvklib uses several manager classes to keep track of
the various resource types needed for an object. There are managers for geometry, materials,
textures and instances among other types. When an object is loaded, the former three hold
the respective buffers. When an object is to be rendered, it first needs to be instanced, handled
by the latter. An instance references the various geometry and materials of the original
object again, but also holds data specific to individual objects in the virtual world, such as
transforms or bounding geometry.

The renderer initialization also encompasses VR through OpenVR. Given a valid OpenVR
environment and HMD is detected, a special render target is created with a Vulkan renderpass
for multiple views and the respective resources. Resources include a framebuffer with one
layer for each eye, created with the rendering resolution returned by OpenVR after querying
IVRSystem::GetRecommendedRenderTargetSize() and using 4x multisampling as is often
recommended for VR applications to minimize aliasing without obscene cost (see for example
[Vla15] p. 25f, [Por17], [Car16], [18a], [Pet17]).

All run-time relevant vector and matrix math in the renderer and the presented optimization
implementations use the free MPL2 licenses Eigen 3.3 math library. Eigen was chosen for
its extensive feature set and its special focus on high performance using SIMD vectorization
including all current forms of SSE and AVX among others[GJ+10].

2.2 Render loop

After all startup and initialization is done, the engine’s render loop executes VKRenderer’s
Update() and RenderFrame() functions back to back. The flows of these are shown in
Figure 2.1 and Figure 2.2, respectively.
VKRenderer::Update() first prompts all aforementioned managers to update their databases,

buffers and anything else they hold in case they are dirty. Then it prompts each render target
to update, which may involve camera transformation updates and buffer synchronization,
for example. For each render target, the loop will then have the instance manager perform a
frustum culling pass, which will for this target save a conservative list of draw call information
for objects visible by this target’s camera viewpoints. If any of these updates and culling
passes set a pipeline or command buffer state invalid, these will be rebuilt accordingly.
VKRenderer::RenderFrame() prompts each render target to perform its per-frame render-

ing operations, be it regular monoscopic output for a traditional viewport or pose tracking
and stereoscopic composition for a VR target.

5

2 The RTG Echtzeitgraphik GmbH Tachyon Engine

Figure 2.1: Renderer Update function

Figure 2.2: Renderer frame render function

2.2.1 VR render loop

The VR render target’s RenderFrame() function is rather straight-forward. As long as the
target and compositor are active, it updates the OpenVR device poses and virtual camera
transforms. It then renders the stereoscopic views, resolves the multisampling layers into
single sample and finally submits both eyes’ images to SteamVR, which serves as the chosen
OpenVR compatible compositor on Windows systems. Note here, rtvklib’s internal VR render
target class is also called OpenVR unfortunately but is not equivalent to the external OpenVR
library. Which of the two is meant in a given sentence is indicated by the formatting as
showcased here.
As the VR view essentially moves constantly, its render target needs to update its Vulkan
VkCommandBuffer every frame. This is done by setting the mCommandBuffersInvalid flag
which has the renderer call UpdateCommandBuffers() which in turn prompts each render tar-
get to RecordCommandBuffers(). For each of the VR render target’s command buffers this is a
simple loop through the RecordDrawCommand()s of the pipelines assigned to this render target
between the Begin and End commands of the command buffer and render pass. The draw com-

6

2 The RTG Echtzeitgraphik GmbH Tachyon Engine

mand recording function has the respective pipeline query the InstanceManager for its post-
culling draw command set and writes the contained entries as vkCmdDrawIndexedIndirect()

draw calls.

Figure 2.3: VR command buffer recording function

Moreover, as seen in Figure 2.4, the VR render target’s OpenVR::RenderFrame() render
function first updates the API-supplied HMD pose matrices and consequently recalculates its
virtual camera parameters. It then submits any given VkCommandBuffers assigned to itself,
followed by a submission of the multisample resolve command buffer. At the end of the loop
iteration it gathers the resulting resolved image textures for each eye and submits them to the
VR compositor for presentation inside the headset.

Figure 2.4: VR frame render function

7

3 Stereo Rendering Optimization - Input
reduction

When looking at real-time rendering as it is done today - albeit from a strongly simplified
perspective - the CPU could be described as an employer and the GPU as an employee. For
each frame, the CPU produces certain render tasks and supplies the necessary information
such as draw calls, shader parameters, buffers and so forth. The GPU then consumes these
tasks and associated items and does the computational brunt to produce the required results.
If one wants to speed up this process, there are two major ways. One is to reduce the amount
of data put into the pipeline so less data needs to be processed overall, the other way is to
increase the efficiency of the processing itself. This first chapter of optimization approaches
presents ways of reducing the amount of data or work input. Note here that only a subset of
the listed methods was implemented due to time constraints.

3.1 (Hierarchical) Frustum culling

The following options build on top of the regular frustum culling concept. In this, the
objects in the scene are checked against a camera frustum whether they are inside or outside
or intersecting with the surface of the frustum. The checks themselves can be generally
optimized in various ways, regardless of stereoscopy. Often, only an object’s bounding
geometry is checked. Collections of objects can be pre-computed so larger numbers may
be discarded at once. An advanced option of culling is to delegate the calculations into
a GPU compute shader so potentially less data needs to be transferred from the CPU per
frame and much higher vector/matrix calculation is gained in exchange for slower branching.
Some modern renderers also do very granular culling like bitmasked checks of precomputed
triangle sets, as seen in Ubisoft’s Anvil Next engine used in Assassin’s Creed: Origins[HA15].
Another optional layer of the culling process is to maintain hierarchical container structures
for the scene objects so larger numbers can be discarded or included early on. For all those
options the goal is the same: to obtain the list or buffer of objects visible by the given camera
frustum in the scene.

3.2 Frustum (& distance) culling in Tachyon

The frustum culling approach in Tachyon was developed specifically for this thesis as a
requirement for Superfrustum culling (section 3.3) and as a sensible general optimization, is
fully CPU-based and utilizes pre-computed hierarchical draw buffers. More specifically, at

8

3 Stereo Rendering Optimization - Input reduction

startup the scene is divided into a coarse grid of chunks where each such chunk possesses
an octree. Also at startup, a thread pool with the double the number of detected hardware
threads is created. At asset load time, these octrees are populated with the loaded objects
through optimistic size-aware insertion. Each cell of a tree then pre-computes a draw buffer
containing a combined draw call for all objects associated with that cell. These buffers can be
recomputed at any time, but the operation should be avoided at runtime as it incurs costly
CPU to GPU transfers. In a culling pass, first all chunks within a certain draw distance radius
of the camera are chosen, so there is an additional very primitive distance culling taking place.
Then each chunk submits a culling call using its tree to the thread pool. Each such call works
as follows:

pseudo SceneChunk::FrustumCull()

{

out draw-calls[camfrusta.size];

for all leftover octree cells

{

for all camera frusta

{

if cell is valid

var checkResult = frustumCheck(frustum, cell);

if checkResult == INSIDE

{

add overall cell draw-call to draw-call list;

} else if checkResult == INTERSECT

{

add 8 child cells to leftover list;

add local cell draw-call to draw-call list;

}

}

}

for all camera frusta

{

unique_lock(cullMutex);

sort and aggregate draw-call list;

add draw-call list to per-pipeline draw-call collection;

}

}

Figure 3.1: per scene chunk frustum culling procedure (shortened pseudo code)

In essence, the octree is looped through in a hierarchical fashion until either all remaining
subcells of the current hierarchy level are outside of the frustum or no more subcells are left

9

3 Stereo Rendering Optimization - Input reduction

to check. Any resulting draw-calls are sorted to be memory layout friendly and aggregated
into as few calls as possible to reduce invocation cost.

However, one problematic area remains and that is Z ordering. Modern graphics pipelines
will perform early Z discard during the fragment stage. If a fragment fails the depth test for
a given draw call, meaning its geometry would be occluded by triangles already written to
the fragment, the shader will skip any further calculation for this geometry and fragment.
For this to take hold in performance improvement, the draw calls need to be issued in a
manner where geometry closer to the camera is drawn first. If draws are done in reverse
order, the pipeline will draw distant geometry first and subsequent closer geometry at the
same fragment will naturally not fail the depth test and overwrite the fragment. Effectively,
all prior writes to any such fragment in that frame would be wasted and go unseen. This
issue is called overdraw and can significantly deteriorate GPU render times in extreme cases.
One such example would be the following, very dense synthetic test scene:

Figure 3.2: Sample scene with high object density, far draw distance and high degree of
overdraw when rendered without per-frame Z ordering, screenshot taken of
Tachyon’s desktop viewport

If the draw calls for each populated octree cell are issued back to front, the overdraw of
many dozens if not hundreds of layers can push frametimes upward to the point where
the GPU is geometry-bottlenecked in the depth test, while issuing the calls front to back
may result in sufficiently low frametimes. At this time, rtvklib does not employ such call
reordering, meaning due to the nature of the octree cells’ pre-recorded command buffers,
overdraw cannot be avoided without a significant rewrite of these pre-recordings.

3.3 Superfrustum Culling

The basic idea behind so-called Superfrustum Culling is to do regular single frustum culling
despite rendering into two cameras, one per eye. The naive way of extending the frustum

10

3 Stereo Rendering Optimization - Input reduction

concept to a stereoscopic camera is to add a second frustum so there is one per eye, then
perform the culling check for both frusta and merge the results.
As is easily visible from Figure 3.3, the spatial proximity of of these two frusta leads to a
large overlap volume, especially as field of view increases with more advanced headsets. One
possible strategy to leverage more performance when culling two eyes is the Superfrustum,
assuming the frustum is the common six sided trapezoid. Cass Everitt of Facebook Tech-
nologies LLC, formerly Oculus LLC, has suggested this approach and provided computation
sketches on his social media back in 2015 [Eve15a](Figure 3.4), and Nick Whiting at Oculus
Connect 4 teased it as a future addition to Unreal Engine 4 [Whi17]. The idea is to combine
the left and right eye frusta by taking the respective widest outer FOV tangent - usually the
left eye’s right side and the right eye’s left side - and using these as the new side tangents of
the superfrustum. Another way to express these is to take the widest half opening angles of
each eye and adding them up to a combined opening angle. Similar is done for the top and
bottom tangents, although these will usually be nearly identical for the two eyes.

Figure 3.3: Overlap of stereo view frusta (overlap area hatched in red)

A pitfall of the superfrustum is its necessary depth recession. This is easy to visualize
when combining the two frusta by extending aforementioned side tangents backwards until
they cross. The meeting point of this step is the new origin of the superfrustum, slightly
recessed behind the two separate eyes. Vivien Oddou of Silicon Studios offered a generalized
way to compute this recession for non-mirrored eye orientation [Odd17](Figure 3.5), while
Everitt has extended his sketches by an asymmetry normalization[Eve15b]. Both of these are
important to consider as virtual reality headsets can have slightly canted and asymmetrical
lenses, either by design or by manufacturing tolerance. Ignoring these two corrections may
still result in a sufficient superfrustum if computed conservatively but should be included
for fully correct setups. While this superfrustum naturally eliminates all overlap of the naive
variant, it in turn includes small false positive regions, notably the triangular void found close
to the origin points between the two eye frusta and potential side edge regions in the case
of asymmetrical lens orientations. In a typical application, the performance cost of these is
negligible.

11

3 Stereo Rendering Optimization - Input reduction

Figure 3.4: Symmetric Superfrustum (cropped to geometric construction) (from [Eve15a], C.
Everitt. 2015)

3.3.1 Estimated impact

The impact of using a Superfrustum will depend on the type of frustum culling math done
and the combination with other techniques.
On its own, with a CPU based culling pass, only an appreciable benefit in CPU rendering
time is to be expected, as the number of frustum checks will be reduced by up to 50% and
only a single buffer needs to be transferred to the graphics unit. The GPU itself still needs to
render each eye separately, including all vertex transformations, pixel shading and so forth.
The specific impact in the case of Tachyon is elaborated on in chapter 6.
Superfrustum culling when performed directly on the GPU obviously has great potential to
significantly cut down on related compute work, once again to the effect of up to 50% versus
a baseline dual frustum culling. An interesting point to consider is whether any of the culling
data needs to be synchronized back to the CPU, as, when not, the GPU compute workload
will only depend on a single small buffer or pushconstant transfer containing the camera
parameters. If, however, the resulting culling set is transferred back to the CPU, for example
for preprocessing of the next frame, this transfer will present another speedup limiter.

12

3 Stereo Rendering Optimization - Input reduction

Figure 3.5: Non-mirrored superfrustum recession (from [Odd17], V. Oddou. 2017)

3.3.2 Implementation specifics

Facilitating Superfrustum Culling in Tachyon required only straight-forward changes. At
creation time of the virtual camera, the superfrustum is computed from the given OpenVR
eye parameters following Everitt and Oddou’s way. Assuming the two eye projections are
asymmetric, they need to be symmetricized. For this, after grabbing each eye’s projection
matrix from OpenVR for the desired near and far clip distances, the M[0][0] and M[0][2]
values of each matrix are of interest. These two values represent the OpenGL clipping space’s
X coordinate’s scalars. OpenVR through SteamVR uses the same coordinate layout. At a
Z depth of -1, these two scalar terms are entirely dependent on center point and width
of the projection cube. Solving them for center and width then gives center = M[0][2]

M[0][0] and

width = 2
M[0][0] . A new symmetric projection then obviously could be constructed from this

center and width by taking the center point and stepping "sideways" by half width. The
new right, or r value, for example, will be rsym = abs(center) + width

2 , which if substituted by
the matrix dependent fractions comes out to abs(M[0][2]

M[0][0]) +
1

M[0][0] . This can be solved for a

new Msym[0][0] =
M[0][0]

abs(M[0][2])+1 and Msym[0][2] = 0 (see [Eve15b]). In the next step, these new
Msym[0][0] values for both eyes are inserted into the recession math by Oddou[Odd17]. For
non-mirrored and asymmetric eyes, a superfrustum recession is simply calculated as ipd

tanθ0+tanθ1
with θi being the respective center-to-outside opening angle of each eye. Conveniently with

13

3 Stereo Rendering Optimization - Input reduction

the previously calculated Msym values, these tangents of angles are equal to the reciprocal of
the respective Msym[0][0]. As such for the recession we get ipd

1
Msym [0][0]l

+ 1
Msym [0][0]r

. The calculated

superfrustum recession and new combined field of view angles are saved and used every
frame when re-transforming the superfrustum. The frustum transformation uses a simple
geometric approach where the camera’s world position, forward and up vectors in conjunction
with the near and far distance, field of view and aspect ratio are extruded into the six planes
of the frustum volume. The per-frame culling pass of Tachyon then naturally only checks
against this single frustum and returns a single set of draw commands which are sent to both
eyes.

3.4 Round Robin Culling

Another culling variant specific to stereoscopy uses the round robin principle. Again, the
concept springs from the desire to avoid frusta overlap but instead of combining the frusta, it
exploits a common property of current stereoscopy rendering techniques. As modern headsets
use circular lens optics and flat displays distorting the displayed image, the framebuffers
commonly need to be warped to compensate so the picture looks undistorted to the user. As a
result, a lot of the edge data of the image is either considerably pushed together or outside of
the visible area of the HMD displays. This conservative property means a virtual eye frustum
can be smaller than the technical frustum of that respective eye and false negative discards in
these edge regions would go unseen by the user. Assuming both eyes of the headset have
similar opening angles and parallel or nearly parallel viewing direction, the overlap of the
two frusta would encompass the entire stereo-visible volume. It follows that only culling for
one of the eye frusta would already give a sufficient representation of the actually visible
scene.
There is still a possibility of missing a few edge cases with this alone. So the extension of
the idea to actual round robin assumes another common property of modern VR headsets,
namely high refresh rates. Many of these aim for at least 80Hz (Rift S, WMR) ranging up to
144Hz (Index experimental mode) image refresh to give the user a smooth visual sensation.
Exactly halving that refresh rate and reprojecting images for two refresh cycles with some
pixel interpolation is an established way to still provide an acceptable experience with
minor visual artifacting on slower devices as demonstrated by Oculus LLC’s Asynchronous
Space Warp[BHP16] and SteamVR’s reprojection[18b] features. Subsequently, a conceivable
compromise is to alternate which frustum is used for culling in a round robin fashion so that
even if edge cases include visible false negatives, they only persist for one frame at a time.
In the worst case this would manifest as shimmering or flickering at the outer edges of the
visible screen area.
Overall this makes Round Robin Culling a viable candidate on systems with very limited
culling performance but the tight constraints for sufficiently accurate results make it unfit as
a general recommendation.

14

3 Stereo Rendering Optimization - Input reduction

3.5 Conical Frustum Culling

This third alternative culling extension targets the circular shape of HMD lenses for leverage.
Coming back to the conservative framebuffer size from the previous section, the lenses lead
to a lot of invisible area in the corners of the display. Jonathan Hale attempts to demon-
strate the method in his thesis [Hal18] as both a contribution to the graphics middleware
Magnum[Von19] and a UE4 extension at Vhite Rabbit[Vhi20] - albeit with limited success.
However, his proof of concept shows the validity of the method. The traditional six sided
trapezoid frustum is replaced by a cone encompassing a volumetric projection of the view
through each respective lens as visualized in Figure 3.6.
Hale examined various types of cone intersection math, including AABB and bounding
sphere object checks against a spatially transformed frustum cone and the same checks for
spatially inverse-transformed objects against an origin oriented frustum cone. While his
results showed cone culling performing worse than traditional frustum culling, he notes
optimization was not fully refined and all calculation was done on the CPU. Another note
by Hale cautions that depending on the used HMD, a cone frustum may prove less accurate
than a trapezoid, such as for the Oculus Rift CV1. As some headsets show not a fully circular
image through their lenses but rather the entire distorted frame, it may not be possible to
fit a cone frustum within the traditional frustum and instead that cone may actually exceed
the traditional dimensions and thus cull fewer objects. For appropriate headsets and more
geometry-bound GPUs, this method may provide a small relief if using even faster cone
intersection math.

Figure 3.6: Point-cone intersection illustration by Hale (from [Hal18], p. 21, J. Hale. 2018)

3.6 Merging approaches

A convenient side effect of these three presented optimizations is that they can in part be
merged. For example, it is possible to do Conical Round Robin Frustum Culling in an

15

3 Stereo Rendering Optimization - Input reduction

effort to slice away as much of the conservative invisible area as possible and reduce the
list of drawable objects to an optimistic minimum. It is also possible to construct a Conical
Superfrustum aiming to avoid the mentioned edge false positives, albeit only feasible if the
display per eye is square-like to avoid adding new false positive volume on other sides.

16

4 Stereo Rendering Optimization - Effort
reduction

The following chapter of optimization approaches targets the efficiency of rendering processes
on the graphics chip itself. These approaches have little to no impact on CPU performance
and tend to exploit and scale mostly with GPU power. Note again that only a subset of the
listed methods was implemented due to time constraints.

4.1 Multiview stereo rendering

When rendering a stereo image using the naive method of simply going through the entire
rendering pipeline once for each viewport, potentially a lot of computation is done twice
with little or no change in data or parameters. With the general graphics pipeline (Figure 4.1)
in mind, it is clear that for example the vertex stage will see very little change in output as
geometry and index buffers are largely the same between multiple stereo viewport passes
with only minor shifts in the view matrices. Similarly, the geometry stage is commonly not
dependent on specific eye data and as such it would be a waste to process with the same data
twice. Once the rasterizer stage of the pipeline is reached, the situation changes as stereo
separation means the two images have notably different content and work from one can not
realistically be recycled in the other.

Figure 4.1: Simplified graphics pipeline of a modern GPU (from [Ove], A. Overvoorde)

An optimization exploiting this is called multiview stereo rendering. It very quickly sur-
faced as an idea after the introduction of the Nvidia Geforce 8 and ATi Radeon HD 2000 series
in 2006 and 2007 brought unified shader architectures to the mass market [Lin+08][Som07].
Prior architectures relied on separate vertex and pixel shader units with relatively fixed

17

4 Stereo Rendering Optimization - Effort reduction

capabilities and few ways to share data. Fully programmable shader units then allowed
more customizable and efficient pipeline usage necessary for multiview to show any benefit.
The lack of mainstream stereoscopic systems prohibited the feature from becoming more
important until the official introduction of multiview extensions to graphics APIs like OpenGL
(GL_OVR_multiview) and Vulkan (VK_KHR_Multiview, previously _KHX and _NV). The same
resurgence saw the idea expanded and further optimized. In more recent vendor specific
terms, Nvidia calls it Single Pass Stereo[Can16], Simultaneous Multi-Projection[Smi16] and
Multi-View[BS18] rendering and AMD calls it LiquidVR multiview[Gal16][Jez17]. The idea
behind all these terms is the same, albeit with detail differences between the different flavors.

The core concept of multiview rendering is to submit all draw commands for a stereoscopic
frame in one call instead of two separate passes, which can cut down CPU render and
transfer time depending on the type and amount of data pushed to the GPU. Expensive
synchronization barriers are essentially halved and all necessary writes are performed in a
single go. This is illustrated - albeit strongly simplified - in Figure 4.2, which makes it easily
visible where multiview cuts out unnecessary work. As an addition, hardware multiview
rendering is to only perform those pipeline stages multiple times which actually produce
notably different data for each eye, such as the rasterizer and pixel shader stages, while
only running the earlier stages with little changes once. The data from stages run only once
can then be reused by the multiply run stages with very little extra cost. This expanded
technique improves pipeline efficiency and will scale heavily depending on workload. For
fragment-heavy applications the benefit will be limited while high vertex or geometry loads
tend to scale more optimally. Hardware acceleration requires additional registers and pipeline
shortcuts in the chip itself, which constrains it to more modern GPU architectures built with
it already in mind. Nvidia can be considered the main drivers behind this, having pushed
the technology from parallel geometry projection in Maxwell’s Multi-Projection Acceleration
to Pascal’s SMP adding lens-matched shading to better approximate the lens shape. Finally,
to Turing’s Multi-View with a doubling of available views and positional independence to
support state of the art HMDs with canted displays [BS18].
The small tradeoff is all relevant view data for each viewport having to be handed to the
pipeline at once, creating a little higher memory overhead. Additionally, certain buffers such
as geometry and indices for the vertex stage need to be uniform across all viewports and can
not be altered for each eye as they are processed in a single pass.

Going by the user-maintained Vulkan Hardware Database [Wil20], the major GPU vendors
offer multiview support in their architectures as follows:

• Nvidia: hardware multiview from the Pascal generation and newer, software support
from Kepler onward

• AMD: software support from Graphics Core Next 1.0 onward

• Intel: software support begins with Generation 9.0 (Skylake/Apollo Lake GT) onward
under Windows, Generation 7.0 (Ivy Bridge GT) onward under Linux

• Qualcomm: software support from Adreno 500 onward

18

4 Stereo Rendering Optimization - Effort reduction

(a) Simple stereo rendering loop flow

(b) Multiview stereo rendering loop flow

Figure 4.2: Simplified flow of standard stereo versus multiview render loops

• ARM: software support from Bifrost onward, limited support on Midgard

• Imagination: software support from Rogue onward

Note here, while support of the desktop parts is solid and stable, the ARM-based mobile
chipsets often have incomplete or unstable drivers [Wil19][JMC18].

19

4 Stereo Rendering Optimization - Effort reduction

For all submitted devices (892 at the time of writing) the database shows support coverage of
54% on Windows systems, 69% on Linux systems and only 23% on Android. This statistic is
not very reliable, since an undetermined portion of the submissions contains incomplete or
flawed information such as drivers versioned as 0.0.0 or API versions reported as 0.0.1.

4.1.1 Estimated impact

Impact of this extension is highly dependent on the specific workload, the used graphics
hardware and the renderer structure.
Independent benchmark numbers are rare to find. In benchmarking the online racing simula-
tion iRacing, Wolfgang Andermahr of ComputerBase GmbH attests a performance increase
of between 14-21% when testing on a Nvidia GTX 1060 and GTX 1080 at 5760 by 1080 pixels.
While this is not a VR application, it gives a first impression of potential gains when rendering
multiple viewports using hardware-accelerated multiview as is the case on these Pascal-based
GPUs [And16]. Similarly, Croteam’s Karlo Jez shows significant CPU performance gains for
software multiview using AMD’s LiquidVR suite, reducing CPU frame time in Serious Sam
VR from 9ms down to 7ms [Jez17]. He specifically notes that this includes all stages of CPU
rendering, even ones that are not connected to multiview, and adds that render command
processing itself is halved from 4ms to 2ms by using software multiview. Going further from
traditional desktop rendering, Mozilla Corp. reports performance improvement of up to 40%
when using the multiview extension for WebGL in a CPU-bound test application [Ser19].

Overall this gives inconsistent performance expectations, but it does provide a trend. It
stands to reason that with rising CPU load and increasing number of virtual viewports,
multiview rendering offers significant performance improvement in the double digit range.

4.1.2 Implementation specifics

In Vulkan specifically, multiview is enabled through the VK_KHR_multiview extension. This
extension’s availability on the target hardware can be queried and if available, the individual
hardware-dependent implementation is abstracted by Vulkan.
In the Tachyon implementation of multiview, the following changes to the render loop are
introduced:

• The VR render target adds VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2 to the required
instance extensions and VK_KHR_MULTIVIEW to the required device extensions during
Vulkan instance and device creation at startup

• the previously separate per-eye VR render passes are merged into a single render pass

• this VR render pass incorporates the multiview pNext extension using a view mask and
correlation mask of 0x11, with each of those bits representing one of the eyes

• the Frustum Culling pass combines the two frustum checks with an early accept and
outputs a merged set of draw call information

20

4 Stereo Rendering Optimization - Effort reduction

• the second command buffer recording - previously intended for the second eye - in
OpenVR::RecordCommandBuffers() is cut out as multiview render passes can only take
a single unified set of command buffers

• the underlying GLSL shader is modified to pick camera parameters based not only on a
given camera index, but also the implicit gl_viewIndex as Vulkan multiview uses this
integer to index the current viewport

The VR render target’s framebuffer, color attachment and depth attachment are already set
up as dual-layered buffers which makes them readily compatible with multiview render
passes. With these changes, the Tachyon renderer is fully switched over to single pass stereo
rendering.

4.2 HMD Stencil Mask

Introduced to the mass market with 3Dlabs’ Permedia II in 1997 and widely adopted since
then, all modern graphics chips support a useful feature called the stencil buffer. This buffer
uses low bit integer values - commonly 8 bits per pixel for a depth of 256 [de 14] - which can
be read from and written to during the fragment stage, with stencil testing happening after
alpha and before depth testing. Sometimes used for certain shadowing operations, the stencil
buffer is primarily used for cheap masking efforts.
One such effort was presented by Alex Vlachos at GDC 2015 [Vla15] as a possibility to
improve performance in VR applications. Once again pointing at the significant areas of
invisible screen space wasted outside the HMD lenses’ warping reach (such as in Figure 4.3),
the idea here is to write into a per-eye pixel matched stencil buffer a mask corresponding to
the shape of the visible screen area. During the fragment stage of a frame render, the stencil
test can early discard all masked fragments and thus avoid pixel shader work for all these
areas. The operation works exactly as the classic idea of a stencil mask when painting surfaces.
Paint will only hit the surface within the cutouts of the stencil. Similarly the graphics chip
will only write color and depth values to unmasked fragments.
An alternative way of rendering the stencil mask is to draw it as a mesh into clip space at
depth 0 at the start of each stereo render pass. This way masked pixels will fail early Z testing
for all further geometry and achieve the same effect as the literal stencil buffer mask. One
downside of this is that it has to be done each frame instead of reusing a once drawn mask,
but the advantage compared to stencil buffer masking is that no stencil layer is required. As
such this alternative way lends itself primarily for applications that otherwise don’t need the
stencil buffer.

4.2.1 Estimated impact

The performance gain naturally scales well with both increased fragment shader bias of the
per-frame workload as well as with the HMD’s blind areas. In his GDC talk Alex Vlachos
showcased gains of 17% lower GPU fill rate for the company’s Aperture Labs VR showcase

21

4 Stereo Rendering Optimization - Effort reduction

(a) HTC Vive full render after warp (b) HTC Vive pixels wasted by lens
cutout marked in red

Figure 4.3: Comparison of rendered rectangular right eye frame after warp versus pixels
wasted by lens distortion (from [Vla15], pp. 52-54, A. Vlachos. 2015)

scene using an HTC Vive headset ([Vla15], p. 59). Assuming a roughly uniform distribution
of objects in the scene and, accordingly, a roughly constant shader workload during use,
the relative improvement in fragment render time is directly proportional to the masked
percentage of the total framebuffer.

4.2.2 Implementation specifics

The rtvklib stencil masking feature is designed to query the require fitted meshes from
OpenVR and render them to the respective eye at startup so the render loop can keep reusing
it every frame without additional render load for the mask (see Figure 4.7). An example of
the rendered mask is shown in Figure 4.4, displaying the Nsight VS stencil buffer capture
when using a Valve Index headset.
Outfitting Tachyon for stencil masking required the addition of the entire stencil stack as
the engine does not use the feature in any other capacity. The changes include extending
the depth attachment of the OpenVR render pass with the VK_IMAGE_ASPECT_STENCIL_BIT

so the additional buffer layer is created at startup. The involved Vulkan pipelines need
stencil operation states defined in their VkPipelineDepthStencilStateCreateInfo, with the
operations set as in Figure 4.5 so the bits are checked against but not modified. Next, the VR
render pass needs its color attachment’s stencilLoadOp set to VK_ATTACHMENT_LOAD_OP_LOAD

so the renderer knows to load the stencil buffer at the start of the color pass, and the
stencilStoreOp to VK_ATTACHMENT_STORE_OP_DONT_CARE so it can leave the buffer behind
after use without saving anything more to it. This is important to make sure the stencil buffer
remains unmodified and expensive writes are avoided.

Rendering the stencil mask itself at startup is done as follows: OpenVR by now has some

22

4 Stereo Rendering Optimization - Effort reduction

Figure 4.4: Nsight VS capture of stencil buffer as rendered for Valve Index HMD

//stencil op settings for pipelines using

//the stencil mask for comparison

VkStencilOpState stencilOpState = {};

stencilOpState.compareOp = VK_COMPARE_OP_NOT_EQUAL;

stencilOpState.failOp = VK_STENCIL_OP_KEEP;

stencilOpState.depthFailOp = VK_STENCIL_OP_KEEP;

stencilOpState.passOp = VK_STENCIL_OP_KEEP;

stencilOpState.compareMask = 0xff;

stencilOpState.writeMask = 0xff;

stencilOpState.reference = 1;

Figure 4.5: Stencil operation flags set for default material Pipeline

helper functions for masking built in, such as the GetHiddenAreaMesh(EVREye eEye) function
that returns a screenspace-normalized list of vertices representing the ideal mask mesh for
the current HMD if available to OpenVR. Exceptions apply, as the API does not contain mask
definitions for all headsets. As an example, the mesh query returns an empty list for the
Oculus Rift CV1 as seen in Figure 4.8. With this in mind, the main benefit is the simplicity of
getting a fitted mask for most HMDs instead of either approximating with circular masks
or going through the trouble of manually creating fitted meshes for existing and upcoming
OpenVR-enabled headsets. For exception cases a fast circular approximation mask may be an
adequate compromise.
Tachyon queries OpenVR for the mesh of each eye, converts the vertex lists into a renderer-
compatible vertex format and writes out a vertex and index buffer each. At the end of the
VR render pass, an ad-hoc command buffer is recorded and submitted to render the two masks
into the VR framebuffer’s depth attachment’s stencil layer. The VK_IMAGE_ASPECT_STENCIL_BIT

23

4 Stereo Rendering Optimization - Effort reduction

is set to ensure only that layer is written to.
Due to Vulkan’s verbose nature, rendering these two masks also requires its own pipeline.
The default material and PBR pipelines only do stencil test compares, no writes and they
perform color writes and rasterizer face culling, which are all things the stencil mask pipeline
should do differently. A separate stencil pipeline is introduced with the stencil operation
state set like in Figure 4.6, the color writes masked off and rasterizer culling disabled. Should
the need to perform per-frame stencil writes arise, merging the material pipelines and the
stencil pipeline may prove beneficial to avoid expensive pipeline re-binds but for the sake of
cleaner separation the described setup was used in Tachyon’s current implementation.

//stencil op settings for the stencil pipeline

VkStencilOpState stencilOpState = {};

stencilOpState.compareOp = VK_COMPARE_OP_ALWAYS;

stencilOpState.failOp = VK_STENCIL_OP_REPLACE;

stencilOpState.depthFailOp = VK_STENCIL_OP_REPLACE;

stencilOpState.passOp = VK_STENCIL_OP_REPLACE;

stencilOpState.compareMask = 0xff;

stencilOpState.writeMask = 0xff;

stencilOpState.reference = 1;

Figure 4.6: Stencil operation flags set for stencil mask Pipeline

Figure 4.7: HMD stencil mask query and render flow in rtvklib

24

4 Stereo Rendering Optimization - Effort reduction

(a) Stencil mask returned for Valve Index (b) Stencil mask returned for Samsung
Odyssey

(c) Stencil mask returned for HTC Vive (d) (lack of) Stencil mask returned for Oculus
Rift CV1

Figure 4.8: Comparison of stencil mask availability (while running SteamVR home)

4.3 Monoscopic Far-Field Rendering

Monoscopic Far-Field Rendering (MFFR) is an approach strongly leaning toward an inherent
property of many optimizations in the field of rendering and real-time computing in general,
which is the property of trading accuracy for speed. MFFR is a topic brought up again soon
after Oculus Rift CV1’s retail launch by Oculus developers Rémi Palandri and Simon Green
at developer keynotes like the ARM GDC 2017 talk[DPV17] and the Oculus Developer Blog
as Hybrid Mono Rendering[PG16].
Understanding the concept requires some explanation of the technical and visual background.
Depth perception of the human eye relies on the slight spatial distance between both eyes as
each eye sees a slightly different angle of a given object. This difference in perceived angle is
called stereo separation. Without it, the brain has difficulties determining the depth at which
a certain object or surface lies. Regular stereo rendering recreates this separation correctly
when rendering the two virtual eyes at their respective spatial offset from the HMD center -
given correct projection and view matrices and accurate world scale at least.

However, as distance grows, stereo separation shrinks - the aspect MFFR exploits. In
infinity, separation would be infinitely small. Even at more reasonable distances separation is
small enough so even with good vision it is hard to properly judge depth unless the object is
large. This of course also holds true for rendered stereoscopy, but an additional limit is the

25

4 Stereo Rendering Optimization - Effort reduction

pixel density of the output displays. This means that at a certain distance from the virtual
camera, stereo separation will shrink to less than a full screen space pixel once projected. If
the difference can not physically be displayed by the HMD, it is a waste of resources to still
render both eyes.
Mono Far-Field Rendering opts to skip the second view during rendering of the name-giving
far field of objects. The hope here is to only render a single view past a certain distance,
reducing rendering load without the user noticing the theoretical loss in accuracy. This
approach has caveats however. The value at which a field split - the distance at which
the stereo rendering is cut off and followed by only mono rendering - will depend on the
individual user, their quality of vision and spatial awareness. It will also potentially depend
on the resolution of the used headset given the user’s vision is good enough to not deteriorate
before that point. Note here, this thesis will not explore these constraints of MFFR further
than approximate values used for testing as time does not allow more.
MFFR has been implemented by Oculus LLC and Epic Games Inc in Unreal Engine 4 and was
recommended for certain types of pixel-bound mobile VR experiences with very limited GPU
power but has been removed from the engine in update 4.20 without further explanation.
An odd decision, as UE documentation posts prior to the removal indicated continued
optimization efforts such as added compatibility with UE4’s multiview path[16a].

4.3.1 Estimated impact

The makeup of the scene itself will also affect the effectiveness of the solution. As cautioned
by Oculus LLC in their developer reference on Mono Far-Field Rendering [PG16], there is a
certain baseline overhead simply for enabling the additional render pass necessary for the
monoscopic image and the associated context switches. Furthermore, only scenes with a
significant amount of distant geometry beyond the field split distance will benefit from the
optimization, as obviously the second view workload can only be saved for objects originally
contained within that second pass.
Going purely by Palandri and Green’s blog entry, their forward-rendered UE4 implementation
supposedly running on a GearVR device saw frametimes in the Epic SunTemple sample
scene drop by 25% and their best-case Unity test scene demonstrated a 49% drop[PG16]. This
would indicate that if circumstances allow - meaning pixel-bound forward-rendered large
scale scenes - impressive performance gains well upwards of 20% can be expected, while less
suitable cases in the worst case will see no change if not minor regression.

4.3.2 Far-first approach

Implementing Mono Far-Field Rendering into Tachyon - or any renderer for that matter -
requires care and a number of changes. There are at least two possible ways of doing it, both
by way of multiple render passes and with their own respective drawbacks and advantages.
One way of implementing MFFR is doing the far pass first in each frame, followed by a
near pass, both possibly using the same framebuffer as illustrated in Figure 4.9. At the start
of the frame, the framebuffer is cleared - color and depth clear are necessary - after which

26

4 Stereo Rendering Optimization - Effort reduction

the far-field command buffers are submitted and executed. This pass can render directly
into the buffer of one eye and copy color and depth buffer to the other eye. Finally, the
near-field command buffers are submitted and render their values into the buffers already
containing the far field information. For this case, one extra step needs to be performed. As
the projection matrix normally projects the world as seen by the camera into a uni-cube with
each axis being length 1 going from 0 to 1 and this same uni-cube is used for both depth
value calculation and projection clipping (triangle discard via clip space evaluation), the two
passes can not share the same uni-cube. Ways around this would be to either use regular
full-depth projection matrices and clear the depth buffer before the near pass or to scale both
passes’ projection matrices by 0.5 and translate the far projection by 0.5 so the uni-cube is
shared between the two fields without overlap.
If neither is done, the effective depth values of far-pass objects will be closer than they should
be and possibly closer than those of near-pass objects, leading to some near-field objects
being drawn behind far ones. The depth buffer clear option has the benefit of utilizing full
projection precision and correct triangle clipping. The matrix squashing option avoids an
extra clear but means vertices otherwise clipped outside of the uni-cube are pulled into the
uni-cube and not skipped.
The overall advantage of this far-first approach is it yields a full precision far-field depth buffer
which may be useful for stereo interpolation as briefly described in the subsection 4.3.6. The
disadvantage is early Z discard cannot be fully effective as all far geometry is rendered first
even if opaque geometry close to the camera would later obstruct it. Whether the benefits of
lower split distance coupled with interpolation can outweigh the additional cost of overdraw
heavily depends on the scene and how much geometry is contained within the far volume.
The goal of this approach is to reduce memory operations and locality to a minimum and
avoid more costly compositing methods.

Figure 4.9: Per-frame render pass flow of far-first MFFR;
Each row represents one image buffer, each column represents the process steps
the respective buffer is subjected to

27

4 Stereo Rendering Optimization - Effort reduction

4.3.3 Near-first approach

The alternative to rendering the far pass first is to render the stereo near volume at the start
of each frame as illustrated in Figure 4.10. A key difference to the former approach is the first
pass needing to flag the stencil buffer pixel when an opaque fragment is within the uni-cube
and a color value is written. After the stereo pass, each eye contains a binary stencil mask of
the near-field occluded screen areas. In the next step, the far pass can then execute regularly
except with stencil testing enabled. This sequence has no direct need for depth buffer clearing
or uni-cube sharing. However, the constraint is the far pass also needing to sample from left
to right eye separately as a straight buffer copy cannot work anymore. The advantage of this
approach over far-first is early Z discard takes full effect and stencil masking reducing the
leftover render area even more. The downside is the need to perform additional stencil writes
every frame and potentially costly sampling operations.

Figure 4.10: Per-frame render pass flow of near-first MFFR;
Each row represents one image buffer, each column represents the process steps
the respective buffer is subjected to

4.3.4 Implementation specifics

In this thesis, the plan is to do far-first MFFR, albeit the measured results are not favorable. In
the first step of each VR frame, a monoscopic render pass renders the far clip volume’s color
and depth values into the index 0 layer of the framebuffer. The next step is to copy that layer
to index 1 as well. In the final step the regular stereoscopic render commands are executed

28

4 Stereo Rendering Optimization - Effort reduction

with reduced near field clip volume, including clearing the depth buffer at the start of the
stereo pass to avoid the uni-cube issue. While the general approach is mostly straight-forward
and both described ways are possible, implementing either in a Vulkan renderer is no trivial
task and requires the following changes to rtvklib:

• for the virtual camera, a field split distance parameter is introduced and an additional
frustum is added; the stereo frusta cover the volume from near plane to split plane
while the far field frustum covers split plane to far plane

• the frustum culling procedure is altered to write the far frustum’s resulting draw
commands into a separate set instead of merging them into one (as would happen for
regular multifrustum culling in Tachyon)

• at initialization time of the VR render target an additional render pass is created for
monoscopy with the main difference - compared to the regular VR render pass - being
the removal of the multiview extension

• an additional set of Vulkan VkCommandBuffers is added, into which the draw commands
of the far frustum cull set are to be recorded

• an additional set of VkSemaphores is added to synchronize the two render passes and
create them in CreateSyncObjects() during initialization

• an additional VkCommandBuffer for the layer copy operation is added

• at initialization time of the VR render target this copy command buffer is pre-recorded
so it can be reused every frame; this recording includes transitioning the layout of
both the color and depth image from VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL to
VK_IMAGE_LAYOUT_GENERAL, vkCmdCopyImage(...) both images’ layer 0 to layer 1 and
then transitioning the layouts in reverse again

• in the per-frame recording procedure of the VR render target,
RecordCommandBuffers(...), the entire structure of begin and end of command buffers
and render pass and per-pipeline RecordDrawCommand(...) calls is duplicated with the
monoscopy render pass and far field command buffers set; afterward the prior regular
stereo recording still takes place

• in the render target’s RenderFrame(...) function the far field command buffer and
layer copy command buffer submission is inserted before the regular stereo sub-
mits; the mono submit is set to wait on mRenderCompleteSemaphores and signal
mFarfieldCompleteSemaphores, while the stereo submit is only set to wait on the
latter

• in VR render target’s camera setup, the far field frustum projection matrix is constructed
as outlined in [Lap17] pp. 515-519 - albeit transposed as Tachyon still retains the
OpenGL matrix format for a few matrix types

29

4 Stereo Rendering Optimization - Effort reduction

• an additional set of camera data struct and camera index is added

• in the render target’s UpdateCameras() call, the far field volume’s view projection matrix
is updated by transforming aforementioned projection matrix by the current HMD pose
and the updated matrix is written to the camera data buffer on the GPU

4.3.5 rtvklib MFFR failure

Some issues with this implementation prevail and make it unfit for productive deployment in
Tachyon. For one, while the projection matrix itself uses the correct parameters, view matrix
transformation used for the far field remains incorrect, so head movement leads to incorrect
projection distortion effects on the horizontal axis. While the lack of pure separation at little
to no sideways tilt may be acceptable and not easily noticed with a correct view matrix,
tilting the head means more severe separation mismatch as the spatial disconnect is expanded
from being mostly horizontal to being horizontal and vertical, clearly visible in Figure 4.12.
Fixing this disparity would require translating the far field image of each eye to conform
more closely to the expected overall stereo shift. Vitally, this visual distortion does not affect
performance measurements presented in chapter 6 as the used internal culling frustum is
computed from the virtual camera’s world position and direction in any given frame and not
subject to incorrect projection transformation. Subsequently, submitted draws and render
passes are correct and executed in the described order, as exemplified by the Nvidia Nsight
VS debug timeline in Figure 4.11.

Figure 4.11: Draw submission and render pass binding timeline of a typical rtvklib MFFR
frame, captured in Nsight VS. (Split after far-field render pass and stacked
vertically for better page fit)
On the "Render Pass" row, the blue pass denotes the far-field pass, orange is
the left eye and green is the right eye. Far and near are each synchronized by a
VkSemaphore.

Secondly, Vulkan render passes discard fragments at their end by default if depth testing
is enabled and the depth value of said fragment equals 1.0 (and is thus on the far plane).
This means any color values written by the far pass and not overwritten by the near pass are
discarded right at the end of the stereo pass and before presentation. A workaround for this

30

4 Stereo Rendering Optimization - Effort reduction

is to clear the depth buffer at the start of the stereo pass not to 1.0 but to 0.999999, which is
the closest value an IEEE-754 float can reach below 1.0 (22 of 23 mantissa bits set to 1). With
this tweak, color values were composited together without any visible loss at the near field’s
split plane, even if it technically entails a depth clamp in that last mantissa bit.
Lastly, and most importantly, performance simply is not up to par. On the i7 and RTX2080
test system (WS-Big, see chapter 5), enabling MFFR with a sufficiently far split distance
yielded a 34% performance loss. The culprit for this is most likely two-fold. One factor is the
detrimental Z ordering of the submitted draw commands since much of the far field color
buffer is overdrawn by the near pass and thus counts as wasted effort. The other factor is the
lack of parallelism due to the use of a shared framebuffer. The two render passes need to be
synchronized to run in order and cannot be scheduled on parallel thread warps to increase
GPU utilization and thus performance. What’s puzzling in this scenario is that Palandri et al.
in their Oculus blog entry[PG16] saw a clear performance uplift in a Unity sample scene with
seemingly very similar MFFR construction.
As such, the rtvklib MFFR implementation as presented here remains beneficial only in theory
and will require further work to result in real performance gain.

Figure 4.12: Incorrect monoscopic far field distortion (notice the thin center line of distant
geometry shifted up and left in the Left Eye image, but shifted down and right
in the Right Eye image)

4.3.6 MFFR Variant: Depth Shift

In its basic version MFFR as described in section 4.3 completely foregoes separation beyond
the split distance and as such the split distance has to be set relatively far back to minimize

31

4 Stereo Rendering Optimization - Effort reduction

the visual inaccuracy. Naturally, an attempt to try and reduce that split distance closer to
the camera is by artificially and cheaply increasing that accuracy again. One such way is to
use the data already contained in the framebuffer’s depth layer during rendering. As stereo
separation is mostly dependent on depth, given the object itself and its properties are known,
an improvement is to approximate small amounts of separation based on that depth buffer.
Instead of simply copying or sampling the far image to both eyes after the far field pass, one
can do an additional sampling or post-processing pass which includes slightly shifting pixels
according to the depth value of the respective given fragment.
This interpolation should allow pulling the field split distance closer to the camera and
save some stereo render time, but it is unclear whether the savings outweigh the additional
processing cost and this thesis does not explore MFFR beyond the base variant.

4.3.7 MFFR Variant: Alternate eye

Another possible way of pulling in the split distance value while retaining approximated
separation comes back to the VR property of high framerate as explained in earlier chapters
like the Round Robin Culling (section 3.4). Assuming high framerate and refresh rate, the
mono render pass could be called with the camera parameters not custom calculated as a
middle point between the two eyes but alternating between left and right eye parameters
each frame. This way, each alternating eye would be correctly projected every other frame
and incorrect data would likewise only persist for one frame at a time in each eye. If this
eye-alternating MFFR were to be combined with interpolation of the respective incorrect eye,
the perceived inaccuracy (seen as flickering as the visual information is only incorrect every
other frame) may be further reduced. Candidates for this are a simple frame interpolation or
a single frame temporal reconstruction, although a single previous frame may not be enough
for stable results.
Once again this thesis does not encompass this additional option and thus it is unknown
how far the split distance could be pulled in and whether related savings would outweigh
interpolation cost. Just as with Round Robin Culling, the same potential artifacts and issues
are present here.

4.4 Foveated Rendering

This technique lends its name from the fovea centralis, a spot in the center of the primate
retina, responsible for sharp central vision of the eye. The regions around it gradually
lose visual sharpness as they contain fewer and fewer cone cells. Foveated rendering in its
various forms builds on this limitation of the human photoreceptive system. For example, as
described in the Oculus Go optimization guide by Palandri et al.[PGP18] the image produced
by a VR renderer is warped by the VR compositor to closely match the spherical shape
of the lenses and the distorted field of view they create. This warping means that toward
the edge of the frame, more pixels are compressed into a given angle of vision than in the
center, effectively leading to much higher pixel density for peripheral regions. Conversely, the

32

4 Stereo Rendering Optimization - Effort reduction

peripheral vision of the human eye is usually significantly less sharp than the aforementioned
foveal vision. Therefore the outer rim of the rendered image can be rendered at much lower
pixel density without sacrificing a humanly noticeable amount of detail if the HMD can even
physically display this density. Exactly that is the concept of foveated rendering, it decreases
resolution of the edge regions of the image while rendering the central area at full resolution.
However, there is one big constraint. The foveal vision of the user and the artificial foveal
center of the image need to match up, otherwise a user may easily notice the lowered pixel
density. To accurately match these two focus points, the user’s eye movements need to be
tracked and the supposed focus center of the image adjusted accordingly.

4.4.1 Fixed versus True Foveated Rendering

Eye tracking can be foregone in theory, assuming the headset’s field of view is low enough
to physically discourage a wide range of eye movement and instead rely on head rotation.
Additionally, the opening angle of the foveated region should be wider so eye movement
on a small scale is still without consequence for the perceived image quality. The resolution
of peripheral areas may not be reduced as much as with so-called true foveated rendering
so even when the user briefly looks at such an area, the perceived loss is not as distracting.
This compromised form of the technique is commonly called Fixed Foveated Rendering, for
example available on Oculus Go (4.13a).
Given eye tracking of some adequate sort is available, true foveated rendering can be per-
formed in which in each frame the current focus position of each eye is queried and the
virtual view matrix adjusted accordingly. This makes the rendering setup more complex
as the high pixel density area can shift to any location within the image but it allows for a
tighter foveal angle and lower peripheral resolution as it is much less likely - if not entirely
impossible due to limits or occasional mistakes by the tracker - for the user to focus on any
such low density frame data. See ZeroLight Limited’s Nvidia VRS based approach in 4.13b.

33

4 Stereo Rendering Optimization - Effort reduction

(a) Oculus Go Fixed Foveated Rendering map (colored tiles decrease in resolution
outward) (from [PGP18], R. Palandri et al., 2018)

(b) Dynamic Foveated Rendering using Nvidia Variable Rate Shading on HTC
Vive Pro Eye (from [19], 2019)

Figure 4.13: Foveated rendering examples

4.4.2 Radial Density Mask

A somewhat related technique is called radial density masking as shown by Valve’s Alex
Vlachos in his talk at GDC 2016 [Vla16]. The goal is the same as with foveated rendering but
the approach is different to better exploit traditional GPU architectures. Instead of reducing
the theoretical rendering resolution of the peripheral ring, a mask is overlaid. The mask has
the render pipeline skip a certain pattern of pixels in that ring. This can either be done by
marking a checkerboard pattern of pixels in the stencil buffer so the pixel shader fails the
stencil test on them - coming back to section 4.2 - to get a pixel perfect mask, or by overlaying
a masking mesh right at the near plane of the render volume so the respective fragments are
discarded during early Z tests. The latter would allow to approximately match a relative area

34

4 Stereo Rendering Optimization - Effort reduction

reduction target but may not be pixel perfect depending on internal frame resolution. The
resulting checkerboard area can then be interpolated and filtered to reconstruct the missing
information. Vlachos claims gains of up to 15% for the Valve Aperture Robot Repair demo
scene, but warns that reconstruction cost needs to be kept lower than mask savings.

Figure 4.14: Radial Density Masking (2x2 px checkerboard) (from [Vla16], p. 22, A. Vlachos.
2016)

Adaptive resolution

The described methods of fixed/true foveated rendering and radial density masking can be
combined further with another - by now almost universally used - optimization compromise:
dynamic resolution scaling. While monitoring GPU load or frametimes and framepacing,
the resolution of not just the central fovea but the peripheral regions too can be reduced or
increased within given bounds. This can stabilize performance at the cost of some visual
quality in the outer regions or - at the other end of the spectrum - alleviate some of the quality
reduction if the available power overhead allows.

4.4.3 Relevancy of GPU architecture

The previous sections describe various methods but the choice which of them is ideal for a
given engine depends a lot on the target hardware. Foveated rendering relies on splitting the
frame into several rectangular sub-frames and rendering them at differing internal resolution.
Thus, it is only suited for GPU architectures supporting or better yet being built as so-called
tile based renderers. Tile based GPUs such as Qualcomm’s Adreno line and most other
low power mobile SoCs compute the frame parallely in a number of set tiles. On the other
hand traditional GPUs execute render commands only on a frame as one entire unit, called
immediate-mode rendering, albeit with possibly many more compute units at once. These tile

35

4 Stereo Rendering Optimization - Effort reduction

based architectures naturally make it very simple to render tiles outside the foveal center at
lower resolution without additional overhead, with the fovea circle being better approximated
the higher the tile count is.
Older, traditional architectures like those found in many Nvidia and AMD desktop graphics
chipsets are rarely built as tile renderers and may only support this tiling in software. Recent
architectures starting with Nvidia’s Maxwell and AMD’s Graphics Core Next 1.0 support
a hybrid form of tile based rendering, for example Maxwell still uses an immediate-mode
pipeline but uses a tile-based rasterizer buffering 16x16 or 32x32 pixel tiles to improve cache
locality and overall shading efficiency[Kan16]. Graphics APIs can abstract these into more
easily exploitable form. Such low-level optimized and accelerated solutions exist in Vulkan
and DirectX12 alike, most notably Nvidia’s Multi-Res Shading[16b] and AMD’s LiquidVR
MultiRes[Gal16]. On those, rendering frame regions at different resolutions requires internally
splitting a frame into multiple viewports with a subsequent composition pass. This sequential
process incurs additional overhead as it requires broadcasting geometry information to all
these viewports, which is not possible in an efficient way on all GPU architectures as it
relies on similar functionality as multiview (section 4.1) except with significantly more target
viewports. The radial density mask approach may be more suitable for such traditional
GPUs as it manages to render multiple resolutions within a single render pass by leveraging
fragment discard features. This masking will necessitate an interpolation pass to blend
away the masked pixels, while foveated rendering can technically skip further interpolation.
Filtering the low resolution perifoveal pixels is recommended to reduce aliasing.

36

4 Stereo Rendering Optimization - Effort reduction

Figure 4.15: Traditional immediate-mode rendering versus tile-based rendering at Nvidia
GDC 2017 Editors Day presentation (cropped, from [Ngo17], A. Ngo, 2017)

37

5 Performance testing setup

As can be gathered from the previous chapters, the optimizations implemented in Tachyon
for this thesis are

• Superfrustum Culling

• (vendor agnostic) Multiview Stereo Rendering

• HMD-matched Stencil Mask

• Monoscopic Far-Field Rendering

While expectations for the first three items were optimistic, it shall be noted again that
MFFR unfortunately turned out unsuccessful, which will reflect in this following chapter.

5.1 Benchmark scene

In order to properly assess how each of these implementations fares at run-time and how
it impacts performance of the engine, a series of benchmarks were conducted. To ensure
repeatability of the benchmark, a synthetic test scene was constructed, aimed to stress the
tested systems to a degree not likely found in many real scenarios. While this may seem
counterintuitive, it paints a worst-case picture of performance to be expected and how the
tested methods hold up.
This test scene is built as follows: the scene dimensions are set up as 32 by 32 chunks, each
chunk sized 80 units on each axis. This gives an overall scene volume of 2560 by 80 by 2560
units. This seems strongly skewed towards lateral expansion rather than vertical, chosen
primarily due to the expected productive use being industrial scenes covering large factory
floors but not necessarily very vertical setups. Another reason is that the Tachyon scene chunk

system currently does not allow stacking of chunks and as such an adequate compromise
between scene scale and octree scale had to be chosen. Filling this test scene is a selection
of objects, the geometries namely being a primitive cube and three high polycount objects,
a robot called "Robi", a material showcase sphere and a PBR showcase helmet. While such
condensed high detail polygon amounts are not an ideal showcase, they provide enough
geometry load (large number of triangles, 5.1b) for a synthetic test. As culling is done not
per object but per octree cell, the distribution of geometry within small spaces is a lesser
issue and the overall distribution achieved here is consistent enough for tangible testing.
These objects are placed in the scene by iterating through a counter for each axis and placing
an object instance at each new count. To determine the instance position, the three axis

38

5 Performance testing setup

counts at that moment are multiplied by a spacing of 3.6 and a entropy value is added to
each axis. This entropy value is combined as x = sinf(sinf(x) + cosf(y) + tanf(z)), y
= cosf(sinf(y) + cosf(z) + tanf(x)), z = sinf(cosf(sinf(z) + cosf(x) + tanf(y))).
Adding this artificial entropy makes the scene look more chaotic but is still deterministic and
repeatable. By default the placed object is a primitive cube, but at every intersection of x+z,
y-z and z counts valued 11, one high polycount instance is placed, with the chosen type being
modulo-index-incremented over the available high polycount types. This placement setup is
done with target counts of 711 for the X and Z and 22 for the Y axis respectively. This utilizes
the scene height as much as possible and results in a total instance count of 11.121.462, a
respectable number even for detailed industrial applications. In a flythrough in the 2D mirror
viewport, the scene looks as shown in 5.1a.
Still in the interest of repeatability, the head-tracked headset pose is disabled for these tests in
favor of a scripted on-rails camera pose that follows a simple circular pattern for its virtual
position and another one for rotation, both based on the sine and cosine of the number of
frames completed since the first rendered frame. This gives a simple and arbitrarily repeatable
pattern resulting in the same camera position and angle at the same frame count for each run,
obviously making it much easier to match measurements.

5.2 Timing code & metrics

To get an accurate idea of how the computational effort within a frame changes and is split
up over its several steps, STL::chrono high_resolution_clock timing calls were used in
strategic places. For each frame, the measured metrics are:

• total frame-time (microseconds)

• CPU-only time (microseconds)

• Culling-only time (microseconds)

• GPU-only time (microseconds)

• number of draw calls submitted

• number of triangles submitted through draw calls

Times are measured by calculating elapsed counts between start and end time points of the
respective function call. GPU-only time is measured by artificially placing a
VkQueueWaitIdle(graphicsQueue) at the end of the VKRenderer::RenderFrame procedure.
At first glance this seems counter-productive as it prevents frames from overlapping resource
usage, but this is where synthetic repeatability becomes relevant.
To guarantee runs with different optimizations enabled can be compared to each other, the
render loop is modified to follow aforementioned camera pattern and and save the current
frame number with each data point. This obviously flies in the face of desired real-world
decoupling of motion from framerate and overlapping execution, but it ensures identical

39

5 Performance testing setup

(a) Sample scene with high object density and far draw distance, screenshot taken of
Tachyon’s desktop viewport (repetition of Figure 3.2)

(b) The three high polycount assets used in the benchmark scene (LTR: robot "Robi" - 92430
tris, material ball - 46816 tris, glTF2.0 helmet - 15452 tris)

Figure 5.1: Benchmark scene details

workload per frame for each tested configuration. Additionally, the camera pattern and
timings loops are tuned to run exactly twice in exactly 5400 frames each for 10 loops. The
resulting 54000 samples of frame data for each configuration are then filtered to exclude the
worst outliers and the 10 loops are averaged into one representative set of 5400 data points.
The very first frame of the averaged data sets is removed as the very first frame of the first
loop after program start includes all initialization commands and major buffer transfers and
thus results in an outlier frame time an order of magnitude higher than the remaining 53999
frames of each run. However, in the interest of real-world scaling, a later section will also
briefly explore average frametimes for a selection of configurations without these limits in
place.
Lastly, and this part is crucial, the Submit() calls to SteamVR are disabled for the testing
runs as these calls otherwise force vertical refresh synchronization (Figure 5.2), completely
distorting actual performance numbers. While this means during benchmarking there is no
output to the connected HMD, the internal rendering loop still uses all of the HMD’s rendering
parameters and more importantly renders as many frames as it can without a framerate cap
or refresh synchronization, exactly the behavior needed for accurate measurements.

40

5 Performance testing setup

Figure 5.2: Virtual Reality Pipeline as imagined by Nvidia (from [Cle17], p. 35, S. Cleveland.
2017)

5.3 Compilation parameters

Naturally productive deployment would go for fastest possible optimization and as such the
tested configurations were all compiled with -O2 in Release mode using Microsoft Visual Stu-
dio 2015 and its v140 MSVC toolset. To further eliminate potential slowdown from branching
or data tracking, each of the 16 permutations of enabled optimizations is not done simply
through if statements or switch cases, but through preprocessor defines. These defines
are SUPERFRUSTUM_ON, MULTIVIEW_ON, STENCILMASK_ON, MFFR_ON. Similarly, benchmark timing
code is enabled via the BENCHMARK_MEASURE, BENCHMARK_CHUNKINFO and BENCHMARK_CAMRAILS

flags.
As a sidenote here, all configurations were tested with distance culling (DISTANCECULLING_ON,
draw distance 320 units) and frustum culling (FRUSTUMCULLING_ON) enabled as running the
massive 11.1 million instance scene without these in place would realistically bring any test
machine near a grinding halt. It also seems unrealistic to run any scene with advanced VR
optimizations enabled but leave such simple measures disabled. Demonstrably, these culling
methods are also not posing as dangerous bottlenecks to the tested configurations as the
baseline measurement details will show.

5.4 System specifications

Two test machines were used to test functionality of the optimizations and to perform
measurements on. The first machine, further titled WS-Big, is specified as:

• CPU: Intel Core i7 6700 (4c8t Skylake, 4x3.4GHz base, 4.0GHz boost)

• RAM: 2x16GB DDR4-2400/15

• GPU: Nvidia GeForce RTX 2080 Founders Edition (2944 Turing cores at 1800MHz core,
8GB GDDR6 at 1750MHz) - driver version 432.00

41

5 Performance testing setup

• Storage: Samsung SSD 840 Evo 500GB

• OS: Microsoft Windows 10 Pro x64 1809

The second machine, further titled WS-Small, is specified as:

• CPU: AMD Ryzen 5 1600 12nm (6c12t Zen+, 6x3.2GHz base, 3.7GHz boost)

• RAM: 2x8GB DDR4-3066/14

• GPU: Hewlett-Packard Radeon RX 580 (2304 Polaris cores at 1200MHz, 4GB GDDR5 at
1750MHz) - driver version 20.1.3

• Storage: ADATA SSD SX6000 Pro 500GB

• OS: Microsoft Windows 10 Pro x64 1909

Furthermore, the following virtual reality headsets were available with the respective internal
per-eye resolution setting and in the respective capacity:

• Valve Index (2016x2240 pixels)) - WS-Big performance measurements, functionality
verification

• HTC Vive (1512x1680 pixels) - WS-Big functionality verification

• HTC Vive Pro (2016x2240 pixels) - WS-Big functionality verification

• Oculus Rift CV1 (1344x1600 pixels) - WS-Big & WS-Small functionality testing

• Samsung Odyssey (1449x1797 pixels) - WS-Small functionality testing

To ensure repeatability and level the field as much as possible, the CPU of each system is
locked to a fixed clock multiplier and thus operating frequency. For the i7 6700 and its lack of
unlocked multiplier this is achieved by setting minimum and maximum processor state in
Windows to 100 and 99% respectively, which effectively disables singlecore turbo boost and
speedshift and fixates the frequency at the allcore boost multiplier of 37x for 3.7GHz allcore.
For the Ryzen 5 1600 a more reliable method is available, that being manually overriding the
CPU multiplier within the mainboard UEFI, in this case to a fixed value of 38x for 3.8GHz
across all 12 processor threads.
Keeping GPU clock speeds at the same level for all test runs is harder to achieve as all modern
graphics cards employ some version of dynamic boosting algorithms based on temperature,
power target, voltage target and usage. The Radeon RX 580 is set to target a maximum of
1200MHz boost frequency via a VBIOS modification that disables higher automatic boost,
and during core load it maintains this target stable unless the power target of 100 Watts is
exceeded. For Nvidia graphics cards later than 2014’s Maxwell 2 architecture, such a firmware
mod is unfortunately not possible. There is, however, one way of reaching a mostly stable core
frequency. To achieve this, the card needs to be pre-heated using any application generating
GPU load. To prime WS-Big’s RTX 2080, SteamVR Home is idled for 30 minutes before any
test runs are performed, resulting in an equilibrium of 70◦C at 1905MHz core frequency. This
temperature and frequency is maintained for the entirety of each test run as the 210 Watts
power target of the card is never exceeded.

42

6 Performance benchmark results

Testing each combination of ON and OFF states of the four optimizations logically yields
16 permutations. This chapter aims to show the metrics declared in section 5.2 for each
permutation and explore causes and implications for those permutations that would reason-
ably be employed in an application. The following results are measured on WS-Big unless
otherwise specified. Figures and tables may refer to Multiview as MVIEW, to Stencil Masking
as SMASK, to Superfrustum Culling as SFRUST and to Monoscopic Far-Field Rendering as
MFFR.
The plot of draw call count submissions during the test run looks as Figure 6.1 and is identical
for every subsequent test using the respective optimization due to the synthetic construction
of the benchmark. Thus any otherwise observed performance impact barring error margins
stems from changes in execution approach owing to active optimizations. Draw call lists in
rtvklib are built during frustum culling and as such should only change with the number of
frusta used, meaning there are differences in draw call count expected between Superfrustum
ON and OFF and MFFR ON and OFF. Superfrustum roughly halves draw call count compared
to baseline which is expected considering each eye uses the same draw call list instead of
separate and slightly different lists. MFFR differences are explored in section 6.1 as they do
not follow expectations.

Baseline performance

To get a frame of reference for any potential performance improvement - or degradation - a
baseline measurement is necessary, meaning a set of data points with all four optimizations
set to OFF. This baseline as measured on WS-Big is shown in Figure 6.2). While these
performance numbers were recorded, the sensors of the RTX 2080 and i7 6700 were monitored
using the tool HWiNFO64. For the duration of the baseline test, this tool attests utilization
averages of 80% for the GPU core, 37% memory capacity, 32% for the GPU memory controller
and 20% for the PCIe bus link. For the CPU an overall average utilization of 49% with each of
the 8 threads averaging between 30-40% was seen. RAM usage from asset load at program
start up until termination reported 5.4GB for the application by itself.

43

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

1

2

3

4

5

Frame Index

ca
ll

co
un

t
in

th
ou

sa
nd

any & SFRUST OFF any & SFRUST ON

Figure 6.1: draw call count per frame

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.2: baseline/all OFF performance (10 run average)

44

6 Performance benchmark results

6.1 Individual impact

Looking at the performance of each individual optimization by itself gives an idea of potential
bottlenecks and a good reference for each metric to refer back to in the comparisons and more
detailed discussion in subsection 6.1.1.
Starting with Stencil Mask performance in Figure 6.3, no particular outliers can be noticed.
On the contrary, the GPU- and frametime lines appear even a little smoother, specifically
around frames 2100-2300 and 5300 onward, suggesting the worst frametimes of the baseline
plot are primarily pixel shader bound.
Continuing with Superfrustum performance in Figure 6.4, no particular outliers can be
noticed again.
Stereo Multiview performance in Figure 6.5 hints at significant performance savings as overall
frametimes are noticeably lower and framepacing tighter than in the baseline.
Finally Monoscopic Far-Field Rendering returns the problematic numbers in Figure 6.6 as
already hinted at in subsection 4.3.5. It is immediately evident that MFFR has severe issues
with both overall performance and framepacing alike. In regular intervals of about 700
frames, GPU times rapidly fluctuate between 7 and 20 milliseconds for about 700 frames
and then remain at high levels around 15 to 20 milliseconds again. The brief dips down
below 10 milliseconds would be the expected performance of MFFR given the large number
of far-field geometry in the test scene. This would suggest much higher shader load than
the baseline configuration and is in line with the discussed overdraw issue, but does not
explain the observed fluctuations completely. Unexpectedly, even culling time irregularly
spikes upward over the time of the benchmark loop. This comes as a surprise and indicates
the rtvklib frustum culling implementation suffers from a yet unexplored difficulty when
handling that additional frustum. Once draw call count for MFFR is included as a comparison
(Figure 6.7), it is clear that the steep variation directly correlates with the number of draw
calls issued in a given frame. The only feasible explanation at this time is that the culling
procedure incorrectly constructs the result sets leading to significant changes in per-frame
load in these ranges. This does not, however, explain the higher overall frametimes outside
of these fluctuations, which instead are most likely attributed to the enforced sequential
synchronization of the used far-first MFFR approach. This hypothesis is supported by power
draw sensor monitoring in HWiNFO64 during MFFR runs, which saw the figure at only
around 140-150 Watts compared to the 170-180 Watts observed in all other tests despite all
tests consistently reporting back with 80-81% GPU core usage. Considering these performance
issues persist in every configuration including MFFR ON and negates any otherwise gained
savings in these cases, all 8 of these MFFR configurations are omitted from further analysis.
HWiNFO64 monitoring values for most of the presented configurations proved uneventful
and mostly followed baseline numbers within error. There are two exceptions to this, however.
While baseline monitoring sat at 20% average bus load, any case with MFFR enabled saw
a drop of about 3-4 percentage points in this metric, any case with Multiview enabled saw
another 8 percentage point bus load reduction. Additionally, the two cases with both MFFR
and Superfrustum active but Stencil Masking disabled saw yet another drop of 4 percentage
points. In other words, enabling Multiview usually resulted in 12% bus load and enabling

45

6 Performance benchmark results

MFFR as well resulted in a low 8% bus load. While tangentially interesting, these numbers
do not translate well into performance predictions for other systems and applications as too
many system-specific factors affect bus load.

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.3: SMASK ON performance (10 run average)

46

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.4: SFRUST ON performance (10 run average)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.5: MVIEW ON performance (10 run average)

47

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

5

10

15

20

25

30

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only CPU only

Figure 6.6: MFFR ON performance (10 run average)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

0 0

5

10

15

20

25

30

Frame Index

ca
ll

co
un

t
in

th
ou

sa
nd

Whole frame draw call count

0

5

10

15

20

25

30

ti
m

e
in

m
ill

is
ec

on
ds

Figure 6.7: MFFR ON whole frame vs draw call count

48

6 Performance benchmark results

6.1.1 Comparison of individual optimizations

Comparing the individual impacts per metric in one plot each gives a better idea of relative
improvements or deterioration. First off, overall frametimes (Figure 6.8) clearly showcase the
significant boost gotten when using Stereo Multiview, a 19.2% reduction in median frametime
and 19.7% in average frametime as per the numbers in Table 6.1. Stencil Masking shows an
appreciable albeit small performance gain as well, due to the particularly optimized fitment
of the provided Valve Index mask. Here the median and average gains come out to 4.5%
and 4.3%, respectively. The Superfrustum optimization results in a minor performance loss
compared to baseline which seems counterintuitive at first. It becomes logical considering
that with each eye still rendering individually, each eye now renders a higher load than with
separate eye-fitted frusta. As such a Superfrustum the culling time reduction (Figure 6.10)
afforded by the Superfrustum is negated by the increased GPU load (Figure 6.11). An
overall reduction including Superfrustum use can only be expected when combining its
use with Stereo Multiview rendering so the per-eye surplus in draw calls is again negated
by a reduction in command submission time. An interesting effect on CPU and cull time
can be observed for the Superfrustum and Multiview cases. While a CPU load reduction
for Multiview is expected as it cuts down on command submissions, it is unexpected that
it performs any better in cull time. But as Figure 6.10 clearly shows, Multiview leads to
similar cull time savings as the Superfrustum. A retrospective look at the culling procedure
of rtvklib delivers an explanation. In an effort to fairly optimize dual frusta culling for
Multiview rendering, the two eye frusta both write their resulting calls into the same output
set. To avoid duplicate entries in that set and because it seemed illogical to check both frusta,
when an INSIDE or INTERSECT frustum check for the first frustum is returned, the cell’s draw
command is added to the output set and as the second frustum’s check would not change this
command, it is not performed. Inadvertently this means the implemented Multiview path
performs a form of frustum culling that approaches Superfrustum performance when the eye
frusta have a high percentage of overlap. In addition the tested system’s Nvidia RTX 2080
graphics card supports hardware accelerated geometry reprojection for multiview rendering,
which noticeably cuts down GPU render time in the test scene with its generous numbers
of 3D objects present. On a purely software based multiview GPU, only the reduction in
overall CPU time is expected as depicted in Figure 6.12 which still shows non-culling CPU
time - in this case comprised mostly of command buffer building and command submission
- is almost halved. Effectively this means Multiview performs better here than all other
individual optimizations not just in GPU time but also in CPU time and is almost on par with
the Superfrustum in cull time.
As a sidenote, Table 6.1 demonstrates that the presented benchmark data includes little skew
as median and arithmetic mean values show no large differences and verifies again that the
plotted frame data has no major outliers for any cases not involving MFFR.

49

6 Performance benchmark results

Table 6.1: Median and average (arithmetic mean) timings for frametime, gpu-time and cull-
time for baseline and individual optimizations in milliseconds (rounded to two
decimal places)

Config
frame gpu cull

median avg median avg median avg

baseline 11.29 11.75 9.06 9.36 1.97 2.04
SMASK 10.78 11.24 8.63 8.88 1.95 2.02
SFRUST 11.49 11.96 9.59 9.88 1.67 1.74
MVIEW 9.12 9.43 7.31 7.46 1.68 1.74

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

06

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SFRUST only SMASK only MVIEW only

Figure 6.8: comparison (Whole frame time)

50

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

01

1.5

2

2.5

3

3.5

4

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SFRUST only SMASK only MVIEW only

Figure 6.9: comparison (CPU time)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00.5

1

1.5

2

2.5

3

3.5

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SFRUST only SMASK only MVIEW only

Figure 6.10: comparison (Cull time)

51

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

04

6

8

10

12

14

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SFRUST only SMASK only MVIEW only

Figure 6.11: comparison (GPU time)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

0.2

0.4

0.6

0.8

1

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF MVIEW only

Figure 6.12: baseline vs MVIEW (CPU sans cull time)

52

6 Performance benchmark results

6.2 Combined impact

Next, the possible combination of multiple optimizations is examined. Similar to the indi-
vidual benchmarks, Stencil Masking tightens framepacing by a small margin (Figure 6.13 &
Figure 6.14) while Superfrustum use cancels out its CPU gains. Unless, that is, the Superfrus-
tum is combined with Multiview rendering in Figure 6.15, in which case it results in a minor
reduction in cull time barely beating Multiview’s own multi-frustum optimization. The two
configurations of Stereo Multiview with Stencil Masking and either Superfrustum ON or OFF
(Figure 6.14 & Figure 6.16) showcase the greatest promise in overall frame time and GPU
render time.

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.13: SMASK & SFRUST ON performance (10 run average)

53

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.14: SMASK & MVIEW ON performance (10 run average)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.15: SFRUST & MVIEW ON performance (10 run average)

54

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00

2

4

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

Whole frame GPU only Culling only

Figure 6.16: SMASK & SFRUST & MVIEW ON performance (10 run average)

6.2.1 Comparison of combined optimizations

To get an even better understanding of how each of these four configurations stack up against
each other and against the baseline, another set of comparison plots is examined. Due
to the established negative impact on GPU times of Superfrustum use without Multiview
rendering, the combination of Stencil Masking and Superfrustum just barely outperforms
the baseline overall (Figure 6.17), by a lower margin (median 4.3% and avg 3.8% vs 4.5% and
4.3%) than Stencil Masking on its own. Any combination involving Stereo Multiview leads
to significant improvement as expected. Interestingly, however, combining Multiview with
the Superfrustum performs worse compared to just Multiview on its own by a small margin
(Figure 6.21).
When it comes to best overall performance, the combinations of Multiview with Stencil
Masking and of Multiview with Stencil Masking and Superfrustum are close together, but the
former surprisingly comes out ahead by a small margin. It appears the small amount of blind
volume of the Superfrustum compared to the separata frusta affords a small advantage in
cull time but trades it for a minor increase in GPU rendering load. CPU time benchmarks
in Figure 6.18 mirror the results already seen for the individual impacts with Superfrustum
improving on the baseline by a noticeable margin and any Multiview configuration extending
this lead even more. Cull time also shows a similar story to subsection 6.1.1 with Superfrus-
tum and Multiview configurations being effectively on par, underlined by the near-identical
cull time medians/averages in Table 6.2. The combination of Superfrustum with Multiview
yields another miniscule cull time improvement but once more trades it for increased GPU

55

6 Performance benchmark results

rendering load as seen in Figure 6.20.
As such, the configuration of Stereo Multiview ON, Stencil Masking ON, Superfrustum OFF
and MFFR OFF performs the best on the used machine with a median frametime reduction of
23.7% and average reduction of 24.4%. Expressed inversely as framerate, this equals a boost
from 88.57fps median and 85.11fps average to 116.14fps (+31.1%) and 112.61fps (+32.3%)
respectively.

Considering all these results, the most viable optimizations to employ are as follows:

• Stencil Masking (SMASK) lends itself as a quickly implemented and lightweight way
of gaining a moderate pixel shader performance boost, only requiring a single 8 bit
framebuffer layer per eye at most

• Stereo Multiview (MVIEW), while reliant on GPU and API support and thus only
available on more recent architectures - and only accelerated in hardware on very
modern chipsets such as the RTX 2080 used here - , can yield significant gains with little
to no other significant tradeoff

• Stereo Multiview and Stencil Masking naturally promises to be a synergetic combination
of approaches with no major downside

• Stereo Multiview and Superfrustum (SFRUST) Culling can be combined for good results,
but may only scale favorably if the target system is constrained in culling performance
so the savings afforded by the Superfrustum outweigh the slight increase in GPU load

• Combining all three of these optimizations is subject to the same restriction as Multiview
plus Superfrustum but the addition of Stencil Masking in this case can regain if not
overcome the Superfrustum GPU performance loss

Other optimization combinations presented up to this point are either non-sensical such as
Superfrustum Culling without Multiview acceleration which results in too high a loss in
GPU performance or are functionally defective in the case of MFFR combinations in the
state implemented for this thesis. However, further work and improvement on the latter is
expected to return positive gains given adequate virtual environments.

56

6 Performance benchmark results

Table 6.2: Median and average (arithmetic mean) timings for frametime, gpu-time and cull-
time for baseline and combined optimizations in milliseconds (rounded to two
decimal places)

Config
frame gpu cull

median avg median avg median avg

baseline 11.29 11.75 9.06 9.36 1.97 2.04
SMASK & SFRUST 10.80 11.30 8.93 9.25 1.66 1.72
SMASK & MVIEW 8.61 8.88 6.84 6.95 1.65 1.70
SFRUST & MVIEW 9.30 9.62 7.54 7.72 1.60 1.66
SMASK & SFRUST & MVIEW 8.80 9.07 7.05 7.15 1.62 1.69

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

04

6

8

10

12

14

16

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SMASK & SFRUST SMASK & MVIEW
SFRUST & MVIEW SMASK & SFRUST & MVIEW

Figure 6.17: comparison (Whole frame time)

57

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

01

1.5

2

2.5

3

3.5

4

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SMASK & SFRUST SMASK & MVIEW
SFRUST & MVIEW SMASK & SFRUST & MVIEW

Figure 6.18: comparison (CPU time)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

00.5

1

1.5

2

2.5

3

3.5

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SMASK & SFRUST SMASK & MVIEW
SFRUST & MVIEW SMASK & SFRUST & MVIEW

Figure 6.19: comparison (Cull time)

58

6 Performance benchmark results

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

04

6

8

10

12

14

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

all OFF SMASK & SFRUST SMASK & MVIEW
SFRUST & MVIEW SMASK & SFRUST & MVIEW

Figure 6.20: comparison (GPU time)

0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0

3,
00

0

3,
50

0

4,
00

0

4,
50

0

5,
00

07

8

9

10

11

12

13

Frame Index

ti
m

e
in

m
ill

is
ec

on
ds

MVIEW only SFRUST & MVIEW

Figure 6.21: MVIEW only vs SFRUST & MVIEW (Whole frame time)

59

6 Performance benchmark results
6.

3
V

ia
bl

e
C

om
bi

na
ti

on
s

C
om

pa
ri

so
n

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

3,000

3,200

3,400

3,600

3,800

4,000

4,200

4,400

4,600

4,800

5,000

5,200

5,400

678910111213141516

Fr
am

e
In

de
x

timeinmilliseconds
al

lO
FF

SM
A

SK
on

ly
M

V
IE

W
on

ly
SM

A
SK

&
M

V
IE

W
SM

A
SK

&
SF

R
U

ST
&

M
V

IE
W

Fi
gu

re
6.

22
:B

es
t

ca
nd

id
at

es
co

m
pa

ri
so

n
(W

ho
le

fr
am

e
ti

m
e,

ex
cl

ud
in

g
M

FF
R

an
d

m
os

t
SF

R
U

ST
co

nfi
gu

ra
ti

on
s

d
ue

to
th

ei
r

ne
ga

ti
ve

sc
al

in
g)

60

6 Performance benchmark results

6.4 Memory Usage

Previously in this thesis for examination of various frame-internal buffers, layers and matrices,
Nvidia’s Nsight (Visual Studio Edition) allows detailed inspection of almost all runtime
information related to a frame’s command composition over time and the settings and buffers
involved in each command or event, as the tool calls it. Nsight was used to read out and
briefly discuss the effect of the various optimizations on video memory usage (Figure 6.23). It
is, after all, of interest whether any one optimization may easily overflow the VRAM capacity
of a particular graphics card. For the baseline (all OFF) configuration, the following resources
are allocated:

Table 6.3: VRAM usage of baseline (all OFF) test configuration

Resource (No. units)
memory

footprint type

Color Buffer 137.81 MB (RGBA8 4xSample, 2 layers of 2016x2240)
Depth Buffer 139.58 MB (D32, 2 layers of 2016x2240)
Resolve Image (2x) 17.72 MB (RGBA8, 1 layer of 2016x2240)
Asset Textures (11x) 21.33 MB (RGBA8, 1 layer of 2048x2048)
Env. Textures 16.03 MB (RGBA16, 6 layers of 512x512)
Env. Textures 528.00 KB (RGBA32, 6 layers of 64x64)
PBR Reference 1024.00 KB (RG16, 1 layer of 512x512)

Index Buffer 1.77 MB (cube + high poly assets geometry)
Instance Model Matrices 678.80 MB (64B per instance)

Another 257.41MB are used for texture and buffer staging but not used every frame there-
after. A buffer for camera matrices and positions takes up 288B. Additionally 1025 small
(about 200-220KB) buffers are used at startup, declared as index buffers, but only about
30 are regularly reused in a frame. For each of the listed buffers, textures and images, a
DEVICE_LOCAL memory pool of the corresponding size resides in the GPU onboard memory,
model matrices and staging buffers are created as HOST_VISIBLE & HOST_COHERENT memory
to be synchronized between the CPU RAM and GPU VRAM when changed. Such changes
may include object transformation via the respective model matrix or upload of new textures
to the GPU.

Upon activation of any optimizations, only one distinct change is observed. When Stencil
Masking is enabled, the depth buffer is created with not only the depth bit set but also the
stencil bit and its format is changed from a 32bit SFLOAT to a 32bit SFLOAT along with a
layer of 8bit UINT. The effect of this change in resource usage is a size increase of the depth
buffer from 139.58MB to a combined depth and stencil buffer with a size of 277.39MB.
Apart from this, the other three optimizations have negligible effect on video memory uti-
lization. For each frustum afforded or saved by MFFR or the Superfrustum, the camera

61

6 Performance benchmark results

parameter buffer is expanded or shrunk by 144B. And for each additional frustum the
command buffer increases in size, but the change is not easily measurable as the changed
frustum sizes and changing draw lists in each frame lead to more fluctuation in the buffer size.

The preliminary consensus from these limited measurements is that the implemented
optimizations have significant impact only on framebuffer size where the worst - and only
different - case means a 49% footprint increase for Stencil Masking. The total video memory
usage change can thus be considered insignificant as scene resources and assets make up the
majority of resources.

Figure 6.23: Resources tab of a live Nsight VS frame capture for the baseline test configuration

62

7 Outlook

In summary, the goal of this thesis was to gather a selection of optimization methods specif-
ically tailored to VR. Of these methods, a subset was to be implemented in an industrial
real-time visualization rendering engine. Finally, these implementations were to be bench-
marked in a high stress scenario to asses the performance of each optimization by itself and
in conjunction with the remaining methods. This goal sprung from the hope to collect useful
information and tangible numbers about ways to speed up VR rendering by a significant
margin.
While the list of presented optimization approaches is not exhaustive or complete, as new or
more advanced methods are constantly being developed in this field, this thesis does in fact
contain an overview of information and elaboration on key avenues. Chapters 3 through 6
cover multiple angles such as GPU versus CPU performance gains, pipeline speedups and
varying hardware architectures and their intricacies. The implemented optimizations, while
promising, did not all pan out as expected. Stencil Masking and Multiview Rendering show
clear and tangible improvements in frametimes and were considered a success. Superfrustum
Culling provided a tradeoff to alleviate stress and provide headroom on the CPU in exchange
for higher GPU workloads and required fitting circumstances to pay off in a target scenario.
Finally, Monoscopic Far-Field Rendering was the most interesting of the concepts presented,
but in the practical implementation delivered incorrect and disappointing results.
In the end, valuable insight for deployment of these four optimizations was gained and even
MFFR still shows promise given additional iteration and care to iron out the observed issues.
It is my hope that the presented approaches and demonstrated results are of similar value
to other efforts in the field. After all, every millisecond shaved off is precious in real-time
graphics.

63

List of Figures

1.1 Comparison of common HMD resolutions (from [Vei19], V. Mäkelä. 2019) . . . 2

2.1 VKRenderer’s Update() . 6
2.2 VKRenderer’s RenderFrame() . 6
2.3 VR render target’s RecordCommandBuffers(...) 7
2.4 VR render target’s RenderFrame() . 7

3.1 SceneChunk’s FrustumCull() . 9
3.2 Sample scene with high object density, far draw distance and high degree of

overdraw when rendered without per-frame Z ordering, screenshot taken of
Tachyon’s desktop viewport . 10

3.3 Overlap of stereo view frusta (overlap area hatched in red) 11
3.4 Symmetric Superfrustum (cropped to geometric construction) (from [Eve15a],

C. Everitt. 2015) . 12
3.5 Non-mirrored superfrustum recession (from [Odd17], V. Oddou. 2017) 13
3.6 Point-cone intersection illustration by Hale (from [Hal18], p. 21, J. Hale. 2018) 15

4.1 Simplified graphics pipeline of a modern GPU (from [Ove], A. Overvoorde) . 17
4.2 Simplified flow of standard stereo versus multiview render loops 19
4.3 Comparison of rendered rectangular right eye frame after warp versus pixels

wasted by lens distortion (from [Vla15], pp. 52-54, A. Vlachos. 2015) 22
4.4 Nsight VS capture of stencil buffer as rendered for Valve Index HMD 23
4.5 Material pipeline stencil operation flags . 23
4.6 Stencil pipeline stencil operation flags . 24
4.7 HMD stencil mask query and render flow in rtvklib 24
4.8 Comparison of stencil mask availability (while running SteamVR home) 25
4.9 Per-frame render pass flow of far-first MFFR; Each row represents one im-

age buffer, each column represents the process steps the respective buffer is
subjected to . 27

4.10 Per-frame render pass flow of near-first MFFR; Each row represents one im-
age buffer, each column represents the process steps the respective buffer is
subjected to . 28

4.11 Draw submission and render pass binding timeline of a typical rtvklib MFFR
frame, captured in Nsight VS. (Split after far-field render pass and stacked
vertically for better page fit) On the "Render Pass" row, the blue pass denotes
the far-field pass, orange is the left eye and green is the right eye. Far and near
are each synchronized by a VkSemaphore. 30

64

List of Figures

4.12 Incorrect monoscopic far field distortion (notice the thin center line of distant
geometry shifted up and left in the Left Eye image, but shifted down and right
in the Right Eye image) . 31

4.13 Foveated rendering examples . 34
4.14 Radial Density Masking (2x2 px checkerboard) (from [Vla16], p. 22, A. Vlachos.

2016) . 35
4.15 Traditional immediate-mode rendering versus tile-based rendering at Nvidia

GDC 2017 Editors Day presentation (cropped, from [Ngo17], A. Ngo, 2017) . . 37

5.1 Benchmark scene details . 40
5.2 Virtual Reality Pipeline as imagined by Nvidia (from [Cle17], p. 35, S. Cleve-

land. 2017) . 41

6.1 draw call count per frame . 44
6.2 baseline/all OFF performance (10 run average) 44
6.3 SMASK ON performance (10 run average) . 46
6.4 SFRUST ON performance (10 run average) . 47
6.5 MVIEW ON performance (10 run average) . 47
6.6 MFFR ON performance (10 run average) . 48
6.7 MFFR ON whole frame vs draw call count . 48
6.8 comparison (Whole frame time) . 50
6.9 comparison (CPU time) . 51
6.10 comparison (Cull time) . 51
6.11 comparison (GPU time) . 52
6.12 baseline vs MVIEW (CPU sans cull time) . 52
6.13 SMASK & SFRUST ON performance (10 run average) 53
6.14 SMASK & MVIEW ON performance (10 run average) 54
6.15 SFRUST & MVIEW ON performance (10 run average) 54
6.16 SMASK & SFRUST & MVIEW ON performance (10 run average) 55
6.17 comparison (Whole frame time) . 57
6.18 comparison (CPU time) . 58
6.19 comparison (Cull time) . 58
6.20 comparison (GPU time) . 59
6.21 MVIEW only vs SFRUST & MVIEW (Whole frame time) 59
6.22 Best candidates comparison (Whole frame time, excluding MFFR and most

SFRUST configurations due to their negative scaling) 60
6.23 Resources tab of a live Nsight VS frame capture for the baseline test configuration 62

65

List of Tables

6.1 Median/avg timings for frame/gpu/cull for baseline and individual optimiza-
tions . 50

6.2 Median/avg timings for frame/gpu/cull for baseline and combined optimizations 57
6.3 VRAM usage of baseline test configuration . 61

66

Glossary

HMD head mounted display; a display headset for mixed reality applications. 1, 5, 7, 23, 25,
30, 32, 37, 62

MFFR Monoscopic Far-Field Rendering (see section 4.3). vii, 24–28, 30–32, 44, 45, 47, 55, 62,
63

Nsight VS NVIDIA Nsight Visual Studio Edition, a graphics debugging plugin for Microsoft
Visual Studio[13]. 22, 23, 30, 62

Nvidia VRS Variable Rate Shadin, a technology by Nvidia Corporation to decouple raster
resolution and shading resolution for geometry[18c]. 33

OpenVR VR abstraction API developed by Valve Software. 4–6

RTG RTG Echtzeitgraphik GmbH. vi, 3–7, 65

rtvklib Vulkan-based rendering library in development at RTG Echtzeitgraphik GmbH, RTG
Vulkan library. vii, 4, 6, 22, 24, 29–31, 42, 44, 48, 62

SDE screen door effect; the observed pixel grid/pitch of a display panel at close distance. 1

Tachyon (working title) Real-time visualization engine in development at RTG Echtzeit-
graphik GmbH. vi, 3–8, 10, 12–14, 20–23, 27, 29, 30, 62

VR virtual reality; a realtime digital simulation mapping the user’s movements to immerse
them in the virtual environment. 1–7, 14, 20–23, 26, 28, 29, 32, 65

WMR Windows Mixed Reality; a moniker for VR headset specifications introduced by
Microsoft Corporation. 14

67

Bibliography

[Íñi17] Íñigo Quílez. “Efficient Stereo and VR Rendering”. In: GPU Zen. Ed. by W. F.
Engel. Vol. 1. Encinitas, CA: Black Cat Publishing Inc, 2017, pp. 241–251. isbn:
9780998822891.

[Vei19] Veikko Mäkelä. VR headset resolution per eye comparison (CC BY-SA 4.0). 2019. url:
https://commons.wikimedia.org/w/index.php?curid=82765161.

[Vol20] H. Vollmer. RTG Echtzeitgraphik GmbH Homepage. 2020. url: http://www.echtzeitgraphik.
de/.

[The16] The Khronosr Group Inc. Khronos Releases Vulkan 1.0 Specification. 2016. url:
https://www.khronos.org /news/press/khronos- releases- vulkan- 1- 0-

specification.

[Ant18] Antony Vitillo. What is Standalone Virtual Reality, and Why Are Enterprises Betting On
It? 2018. url: https://www.isaca.org/resources/news-and-trends/isaca-now-
blog/2018/what-is-standalone-virtual-reality-and-why-are-enterprises-

betting-on-it.

[20] IDC - AR & VR Headsets Market Share. 2020. url: https://www.idc.com/promo/
arvr.

[Gri19] L. Gritz. OpenImageIO. 2019. url: https://github.com/OpenImageIO/oiio.

[Vla15] A. Vlachos. “GDC2015: Advanced VR Rendering”. In: (2015), pp. 51–65. url:
http://media.steampowered.com/apps/valve/2015/Alex_Vlachos_Advanced_

VR_Rendering_GDC2015.pdf.

[Por17] T. Porter. VR Optimization Tips from Underminer Studios. 2017. url: https://
software.intel.com/en-us/articles/vr-optimization-tips-from-underminer-

studios.

[Car16] J. Carmack. Avoiding aliasing in VR. 2016. url: https://www.facebook.com/
permalink.php?story_fbid=1818885715012604&id=100006735798590.

[18a] Was Sie über VR Performance-Guides für Unity-Projekte wissen sollten. | 3D Konfigurator
3D Animationen 3D Renderings. 2018. url: https://viscircle.de/was-sie-ueber-
vr-performance-guides-fuer-unity-projekte-wissen-sollten/.

[Pet17] N. Pettit. VR Performance Guidelines for New Unity Projects. 2017. url: https :

//blog.teamtreehouse.com/vr-performance-guidelines-new-unity-projects.

[GJ+10] G. Guennebaud, B. Jacob, et al. Eigen v3: a C++ template library for linear algebra.
2010. url: http://eigen.tuxfamily.org.

68

https://commons.wikimedia.org/w/index.php?curid=82765161
http://www.echtzeitgraphik.de/
http://www.echtzeitgraphik.de/
https://www.khronos.org/news/press/khronos-releases-vulkan-1-0-specification
https://www.khronos.org/news/press/khronos-releases-vulkan-1-0-specification
https://www.isaca.org/resources/news-and-trends/isaca-now-blog/2018/what-is-standalone-virtual-reality-and-why-are-enterprises-betting-on-it
https://www.isaca.org/resources/news-and-trends/isaca-now-blog/2018/what-is-standalone-virtual-reality-and-why-are-enterprises-betting-on-it
https://www.isaca.org/resources/news-and-trends/isaca-now-blog/2018/what-is-standalone-virtual-reality-and-why-are-enterprises-betting-on-it
https://www.idc.com/promo/arvr
https://www.idc.com/promo/arvr
https://github.com/OpenImageIO/oiio
http://media.steampowered.com/apps/valve/2015/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
http://media.steampowered.com/apps/valve/2015/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf
https://software.intel.com/en-us/articles/vr-optimization-tips-from-underminer-studios
https://software.intel.com/en-us/articles/vr-optimization-tips-from-underminer-studios
https://software.intel.com/en-us/articles/vr-optimization-tips-from-underminer-studios
https://www.facebook.com/permalink.php?story_fbid=1818885715012604&id=100006735798590
https://www.facebook.com/permalink.php?story_fbid=1818885715012604&id=100006735798590
https://viscircle.de/was-sie-ueber-vr-performance-guides-fuer-unity-projekte-wissen-sollten/
https://viscircle.de/was-sie-ueber-vr-performance-guides-fuer-unity-projekte-wissen-sollten/
https://blog.teamtreehouse.com/vr-performance-guidelines-new-unity-projects
https://blog.teamtreehouse.com/vr-performance-guidelines-new-unity-projects
http://eigen.tuxfamily.org

Bibliography

[HA15] U. Haar and S. Aaltonen. “SIGGRAPH 2015: Advances in Real-Time Rendering
in Games: GPU-Driven Rendering Pipelines”. In: (2015), pp. 10–25. url: http:
/ / advances . realtimerendering . com / s2015 / aaltonenhaar _ siggraph2015 _

combined_final_footer_220dpi.pdf.

[Eve15a] C. Everitt. single combined camera matrix. 2015. url: https://scontent-dus1-1.xx.
fbcdn.net/v/t31.0-8/11334168_10154006919426632_2185539868454578065_

o.jpg?_nc_cat=107&_nc_ohc=QEbGuUs7xiIAX_q3hjC&_nc_ht=scontent-dus1-

1.xx&oh=4c8cb329ef851d5ab51161943910fed9&oe=5ECFE2F1.

[Whi17] N. Whiting. Oculus Connect 4 | The Road to Shipping: Technical Postmortem for Robo
Recall: Superfrustum culling. 2017. url: https://www.youtube.com/watch?v=
BZhOUGG45_o&feature=youtu.be&t=46m12s.

[Odd17] V. Oddou. VR and frustum culling - Computer Graphics Stack Exchange. 2017. url:
https://computergraphics.stackexchange.com/a/4765.

[Eve15b] C. Everitt. asymmetric eye matrix normalization. 2015. url: https://scontent-dus1-
1.xx.fbcdn.net/v/t31.0-8/10460839_10154007978676632_3794989256420316318_

o.jpg?_nc_cat=110&_nc_ohc=JuTLkrDwfT0AX_uUssk&_nc_ht=scontent-dus1-

1.xx&oh=a3837266309d26af90584470482a1fea&oe=5EC2AD91.

[BHP16] D. Beeler, E. Hutchins, and P. Pedriana. Asynchronous Spacewarp | Oculus De-
veloper Blog. 2016. url: https://developer.oculus.com/blog/asynchronous-
spacewarp/.

[18b] Steam :: SteamVR :: Introducing SteamVR Motion Smoothing. 2018. url: https://
steamcommunity.com/games/250820/announcements/detail/1705071932992003492.

[Hal18] J. Hale. “Dual-Cone View Culling for Virtual Reality Applications”. Bachelor’s
Thesis. Squareys, 10.04.2018. url: https://squareys.de/downloads/bachelors-
thesis-dual-cone-view-culling-for-vr.pdf.

[Von19] V. Vondruš. Magnum Engine. 30.10.2019. url: https://magnum.graphics/.

[Vhi20] Vhite Rabbit. Vhite Rabbit Website. 8.01.2020. url: https://vhiterabbit.org/
#about.

[Ove] A. Overvoorde. Vulkan Tutorial: Introduction. url: https://vulkan-tutorial.com/
Drawing_a_triangle/Graphics_pipeline_basics/Introduction.

[Lin+08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. “NVIDIA Tesla: A Unified
Graphics and Computing Architecture”. In: IEEE Micro 28.2 (2008), pp. 39–55. issn:
0272-1732. doi: 10.1109/MM.2008.31.

[Som07] R. Sommefeldt. AMD R600 Architecture and GPU Analysis. 2007. url: https://www.
beyond3d.com/content/reviews/16/5.

[Can16] I. Cantlay. Pascal VR Tech. 2016. url: https://developer.nvidia.com/pascal-vr-
tech.

69

http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
http://advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/11334168_10154006919426632_2185539868454578065_o.jpg?_nc_cat=107&_nc_ohc=QEbGuUs7xiIAX_q3hjC&_nc_ht=scontent-dus1-1.xx&oh=4c8cb329ef851d5ab51161943910fed9&oe=5ECFE2F1
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/11334168_10154006919426632_2185539868454578065_o.jpg?_nc_cat=107&_nc_ohc=QEbGuUs7xiIAX_q3hjC&_nc_ht=scontent-dus1-1.xx&oh=4c8cb329ef851d5ab51161943910fed9&oe=5ECFE2F1
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/11334168_10154006919426632_2185539868454578065_o.jpg?_nc_cat=107&_nc_ohc=QEbGuUs7xiIAX_q3hjC&_nc_ht=scontent-dus1-1.xx&oh=4c8cb329ef851d5ab51161943910fed9&oe=5ECFE2F1
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/11334168_10154006919426632_2185539868454578065_o.jpg?_nc_cat=107&_nc_ohc=QEbGuUs7xiIAX_q3hjC&_nc_ht=scontent-dus1-1.xx&oh=4c8cb329ef851d5ab51161943910fed9&oe=5ECFE2F1
https://www.youtube.com/watch?v=BZhOUGG45_o&feature=youtu.be&t=46m12s
https://www.youtube.com/watch?v=BZhOUGG45_o&feature=youtu.be&t=46m12s
https://computergraphics.stackexchange.com/a/4765
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/10460839_10154007978676632_3794989256420316318_o.jpg?_nc_cat=110&_nc_ohc=JuTLkrDwfT0AX_uUssk&_nc_ht=scontent-dus1-1.xx&oh=a3837266309d26af90584470482a1fea&oe=5EC2AD91
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/10460839_10154007978676632_3794989256420316318_o.jpg?_nc_cat=110&_nc_ohc=JuTLkrDwfT0AX_uUssk&_nc_ht=scontent-dus1-1.xx&oh=a3837266309d26af90584470482a1fea&oe=5EC2AD91
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/10460839_10154007978676632_3794989256420316318_o.jpg?_nc_cat=110&_nc_ohc=JuTLkrDwfT0AX_uUssk&_nc_ht=scontent-dus1-1.xx&oh=a3837266309d26af90584470482a1fea&oe=5EC2AD91
https://scontent-dus1-1.xx.fbcdn.net/v/t31.0-8/10460839_10154007978676632_3794989256420316318_o.jpg?_nc_cat=110&_nc_ohc=JuTLkrDwfT0AX_uUssk&_nc_ht=scontent-dus1-1.xx&oh=a3837266309d26af90584470482a1fea&oe=5EC2AD91
https://developer.oculus.com/blog/asynchronous-spacewarp/
https://developer.oculus.com/blog/asynchronous-spacewarp/
https://steamcommunity.com/games/250820/announcements/detail/1705071932992003492
https://steamcommunity.com/games/250820/announcements/detail/1705071932992003492
https://squareys.de/downloads/bachelors-thesis-dual-cone-view-culling-for-vr.pdf
https://squareys.de/downloads/bachelors-thesis-dual-cone-view-culling-for-vr.pdf
https://magnum.graphics/
https://vhiterabbit.org/#about
https://vhiterabbit.org/#about
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://vulkan-tutorial.com/Drawing_a_triangle/Graphics_pipeline_basics/Introduction
https://doi.org/10.1109/MM.2008.31
https://www.beyond3d.com/content/reviews/16/5
https://www.beyond3d.com/content/reviews/16/5
https://developer.nvidia.com/pascal-vr-tech
https://developer.nvidia.com/pascal-vr-tech

Bibliography

[Smi16] R. Smith. The NVIDIA GeForce GTX 1080 & GTX 1070 Founders Editions Review:
Kicking Off the FinFET Generation. 2016. url: https : / / www . anandtech . com /

show/10325/the- nvidia- geforce- gtx- 1080- and- 1070- founders- edition-

review/11.

[BS18] S. Bhonde and M. Shanmugam. Turing Multi-View Rendering in VRWorks | NVIDIA
Developer Blog. 2018. url: https://devblogs.nvidia.com/turing-multi-view-
rendering-vrworks/.

[Gal16] L. Gallagher. “Radeon Software Crimson ReLive”. In: (2016), p. 19. url: https:
//awesome.nwgat.ninja/crimson/Radeon_Software_Crimson_ReLive_%5BNDA_

Only_-_Confidential%5D_v4.pdf.

[Jez17] K. Jez. GPUOpen: AMD LiquidVR MultiView Rendering in Serious Sam VR. 2017. url:
https://gpuopen.com/amd-liquidvr-multiview-rendering-in-serious-sam-

vr/.

[Wil20] S. Willems. Vulkan Hardware Database by Sascha Willems: Reports (extension fea-
ture multiview). 2020. url: http://vulkan.gpuinfo.org/listreports.php?
extensionfeature=multiview.

[Wil19] S. Willems. Getting a Vulkan application up and running on a low-spec device with buggy
drivers. 2019. url: https://www.saschawillems.de/blog/2019/03/08/getting-
a-vulkan-application-up-and-running-on-a-low-spec-device-with-buggy-

drivers/.

[JMC18] JMC47. The Current State of Dolphin on Android: Running Dolphin on Android in 2018.
2018. url: https://dolphin-emu.org/blog/2018/08/14/state-of-android/.

[And16] W. Andermahr. Nvidia Pascal: 21 Prozent mehr Leistung in iRacing durch SMP.
2016. url: https://www.computerbase.de/2016- 09/pascal- smp- iracing-
benchmark/.

[Ser19] F. Serrano. Multiview on WebXR. 2019. url: https://blog.mozvr.com/multiview-
on-webxr/.

[de 14] J. de Vries. Learn OpenGL: Stencil testing. 2014. url: https://learnopengl.com/
index.php?p=Advanced-OpenGL/Stencil-testing.

[DPV17] D. Di Donato, R. Palandri, and R. Vance. High quality mobile VR with Unreal Engine
and Oculus. 1.03.2017.

[PG16] R. Palandri and S. Green. Oculus Developer Blog: Hybrid Mono Rendering in UE4
and Unity. 2016. url: https://developer.oculus.com/blog/hybrid- mono-
rendering-in-ue4-and-unity/.

[16a] Monoscopic Far Field Rendering. 2016. url: https://docs.unrealengine.com/en-
US/Platforms/VR/DevelopVR/MonoFarFieldRendering/index.html.

[Lap17] P. Lapinski. Vulkan cookbook: Work through recipes to unlock the full potential of the next
generation graphics API–Vulkan / Pawel Lapinski. Birmingham, UK: Packt Publishing,
2017. isbn: 9781786468154.

70

https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/11
https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/11
https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/11
https://devblogs.nvidia.com/turing-multi-view-rendering-vrworks/
https://devblogs.nvidia.com/turing-multi-view-rendering-vrworks/
https://awesome.nwgat.ninja/crimson/Radeon_Software_Crimson_ReLive_%5BNDA_Only_-_Confidential%5D_v4.pdf
https://awesome.nwgat.ninja/crimson/Radeon_Software_Crimson_ReLive_%5BNDA_Only_-_Confidential%5D_v4.pdf
https://awesome.nwgat.ninja/crimson/Radeon_Software_Crimson_ReLive_%5BNDA_Only_-_Confidential%5D_v4.pdf
https://gpuopen.com/amd-liquidvr-multiview-rendering-in-serious-sam-vr/
https://gpuopen.com/amd-liquidvr-multiview-rendering-in-serious-sam-vr/
http://vulkan.gpuinfo.org/listreports.php?extensionfeature=multiview
http://vulkan.gpuinfo.org/listreports.php?extensionfeature=multiview
https://www.saschawillems.de/blog/2019/03/08/getting-a-vulkan-application-up-and-running-on-a-low-spec-device-with-buggy-drivers/
https://www.saschawillems.de/blog/2019/03/08/getting-a-vulkan-application-up-and-running-on-a-low-spec-device-with-buggy-drivers/
https://www.saschawillems.de/blog/2019/03/08/getting-a-vulkan-application-up-and-running-on-a-low-spec-device-with-buggy-drivers/
https://dolphin-emu.org/blog/2018/08/14/state-of-android/
https://www.computerbase.de/2016-09/pascal-smp-iracing-benchmark/
https://www.computerbase.de/2016-09/pascal-smp-iracing-benchmark/
https://blog.mozvr.com/multiview-on-webxr/
https://blog.mozvr.com/multiview-on-webxr/
https://learnopengl.com/index.php?p=Advanced-OpenGL/Stencil-testing
https://learnopengl.com/index.php?p=Advanced-OpenGL/Stencil-testing
https://developer.oculus.com/blog/hybrid-mono-rendering-in-ue4-and-unity/
https://developer.oculus.com/blog/hybrid-mono-rendering-in-ue4-and-unity/
https://docs.unrealengine.com/en-US/Platforms/VR/DevelopVR/MonoFarFieldRendering/index.html
https://docs.unrealengine.com/en-US/Platforms/VR/DevelopVR/MonoFarFieldRendering/index.html

Bibliography

[PGP18] R. Palandri, S. Gosselin, and C. Pruett. Oculus Developer Blog: Optimizing Oculus
Go for Performance. 2018. url: https://developer.oculus.com/blog/optimizing-
oculus-go-for-performance/.

[19] Foveated Rendering on the VIVE PRO Eye. 2019. url: https://zerolight.com/news/
tech/foveated-rendering-on-the-vive-pro-eye.

[Vla16] A. Vlachos. “GDC2016: Advanced VR Rendering Performance”. In: (2016), pp. 18–
24. url: https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_
Rendering_Performance_GDC2016.pdf.

[Kan16] D. Kanter. Tile-based Rasterization in Nvidia GPUs. 2016. url: https://www.realworldtech.
com/tile-based-rasterization-nvidia-gpus/.

[16b] VRWorks - Multi-Res Shading. 2016. url: https : / / developer . nvidia . com /

vrworks/graphics/multiresshading.

[Ngo17] A. Ngo. GDC 2017: Nvidia GTX 1080 Ti promises 35 percent performance boost over
GTX 1080. 2017. url: https://www.notebookcheck.net/Nvidia-GTX-1080-Ti-
promises-35-percent-performance-boost-over-GTX-1080.199804.0.html.

[Cle17] S. Cleveland. “NVIDIA FCAT VR Reviewer’s Guide”. In: (2017), p. 35. url: https:
//international.download.nvidia.com/geforce-com/international/pdfs/

NVIDIA_FCAT_VR_Reviewer's_Guide_Public.pdf.

[13] NVIDIA Nsight Visual Studio Edition. 2013. url: https://developer.nvidia.com/
nsight-visual-studio-edition.

[18c] VRWorks - Variable Rate Shading (VRS). 2018. url: https://developer.nvidia.
com/vrworks/graphics/variablerateshading.

71

https://developer.oculus.com/blog/optimizing-oculus-go-for-performance/
https://developer.oculus.com/blog/optimizing-oculus-go-for-performance/
https://zerolight.com/news/tech/foveated-rendering-on-the-vive-pro-eye
https://zerolight.com/news/tech/foveated-rendering-on-the-vive-pro-eye
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_Performance_GDC2016.pdf
https://www.realworldtech.com/tile-based-rasterization-nvidia-gpus/
https://www.realworldtech.com/tile-based-rasterization-nvidia-gpus/
https://developer.nvidia.com/vrworks/graphics/multiresshading
https://developer.nvidia.com/vrworks/graphics/multiresshading
https://www.notebookcheck.net/Nvidia-GTX-1080-Ti-promises-35-percent-performance-boost-over-GTX-1080.199804.0.html
https://www.notebookcheck.net/Nvidia-GTX-1080-Ti-promises-35-percent-performance-boost-over-GTX-1080.199804.0.html
https://international.download.nvidia.com/geforce-com/international/pdfs/NVIDIA_FCAT_VR_Reviewer's_Guide_Public.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/NVIDIA_FCAT_VR_Reviewer's_Guide_Public.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/NVIDIA_FCAT_VR_Reviewer's_Guide_Public.pdf
https://developer.nvidia.com/nsight-visual-studio-edition
https://developer.nvidia.com/nsight-visual-studio-edition
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://developer.nvidia.com/vrworks/graphics/variablerateshading

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	The goal
	Industry collaboration
	Technical foundation

	The RTG Tachyon Engine
	Render setup
	Render loop
	VR render loop

	Stereo Rendering Optimization - Input reduction
	(Hierarchical) Frustum culling
	Frustum (& distance) culling in Tachyon
	Superfrustum Culling
	Estimated impact
	Implementation specifics

	Round Robin Culling
	Conical Frustum Culling
	Merging approaches

	Stereo Rendering Optimization - Effort reduction
	Multiview stereo rendering
	Estimated impact
	Implementation specifics

	HMD Stencil Mask
	Estimated impact
	Implementation specifics

	Monoscopic Far-Field Rendering
	Estimated impact
	Far-first approach
	Near-first approach
	Implementation specifics
	rtvklib MFFR failure
	MFFR Variant: Depth Shift
	MFFR Variant: Alternate eye

	Foveated Rendering
	Fixed versus True Foveated Rendering
	Radial Density Mask
	Relevancy of GPU architecture

	Performance testing setup
	Benchmark scene
	Timing code & metrics
	Compilation parameters
	System specifications

	Performance benchmark results
	Individual impact
	Comparison of individual optimizations

	Combined impact
	Comparison of combined optimizations

	Viable Combinations Comparison
	Memory Usage

	Outlook
	List of Figures
	List of Tables
	Glossary
	Bibliography

