

5th Generation District Heating and Cooling

Daniel Zinsmeister, Orestis Angelidis, Ulrich Ganslmeier

Agenda

- 1. Indroduction of the CoSES laboratory and the district heating and cooling experiment Ulrich Ganslmeier
- Operational designs for District Heating and Cooling Networks with Decentralized Energy Substations: Development and Validation Orestis Angelidis
- Flow direction in district heating and cooling grids with booster heat pumps: Does it make sense to have unidirectional flow?
 Daniel Zinsmeister
- 4. Open discussion

The Laboratory for Combined Smart Energy Systems (CoSES)

Ulrich Ganslmeier

Technical University of Munich

TUM School of Engineering and Design Institute of Integrated Materials, Energy and Process Engineering (MEP)

Munich, 23.08.2023

Smart Energy System with 5 Buildings

V. S. Perić et al., "CoSES Laboratory for Combined Energy Systems At TU Munich" 2020 IEEE PES General Meeting

Center for Combined Smart Energy Systems (CoSES)

Electrical House Emulator

© Stefan Hobmaier / TUM

Electrical Grid

V. S. Perić et al., "CoSES Laboratory for Combined Energy Systems At TU Munich" 2020 IEEE PES General Meeting

Center for Combined Smart Energy Systems (CoSES)

Thermal House Emulator

Air Source Heat Pump

Ground Source Heat Pump

Booster Heat Pump

Control Structure

PHIL Setup of a CHN

Center for Combined Smart Energy Systems (CoSES)

Prosumer Experiment Hardware Setup

Center for Combined Smart Energy Systems (CoSES)

Key message

Experimental and simulative infrastructure for the study of new concepts of 4th and 5th generation district heating and cooling systems and individual heating systems

© Stefan Hobmaier / TUM

Thermal Devices

	House 1	House 2	House 3	House 4	House 5
Heat Generator	CHP (2 kW _{el} , 5,2 kW _{th}) Condensing Boiler	Condensing Boiler (20 kW _{th})	Ground source heat pump (19 kW _{heat})	Stirling Engine (1 kW _{el} , 6 kW _{th})	CHP (5 kW _{el} , 11,9 kW _{th})
	(20 kW _{th}) Solar Thermal (9 kW _{th})	Air source heat pump (19 kW _{heat} , 9 kW _{cold})	Solar Thermal (9 kW_{th})	Integrated auxiliary boiler (20 kW _{th})	CHP (18 kW _{el} , 34 kW _{th})
		Solar Thermal (9 kW _{th})			Condensing Boiler (50 kW _{th})
Thermal Storage	800 I	785 l	1000 I	1000 I	2000 I
Domestic Hot Water	Fresh water storage (500 l)	Fresh water station	Fresh water station	Internal heat exchanger	Fresh water station
Transfer Station	Bidirectional Transfer Station (30 kW _{th})	Bidirectional Transfer Station (30 kW _{th})	Bidirectional Transfer Station (30 kW _{th})	Bidirectional Transfer Station (30 kW _{th})	Bidirectional Transfer Station (60 kW _{th})
	Booster heat pump (19 kW _{heat} , 14 kW _{cold})				
Thermal Load Emulator	30 kW _{heat} , 9 kW _{cold}	$30 \text{ kW}_{\text{heat}}$, $9 \text{ kW}_{\text{cold}}$	$30 \text{ kW}_{\text{heat}}$, $9 \text{ kW}_{\text{cold}}$	30 kW _{heat}	60 kW _{heat}
	ı				Source: [1]

Center for Combined Smart Energy Systems (CoSES)

OPERATIONAL DESIGNS FOR DISTRICT HEATING AND COOLING NETWORKS WITH DECENTRALIZED ENERGY SUBSTATIONS: DEVELOPMENT AND VALIDATION

Date: Aug 2023

Orestis Angelidis, Daniel Zinsmeister, Ganslmeier Ulrich, Alan Thomson, Anastasia Ioannou, Daniel Friedrich, Gioia Falcone

AGENDA

- Background and project aim
- Operational designs
- Experimental Validation
- Results and Discussion
- Conclusion

DISTRICT HEATING AND COOLING NETWORKS WITH DECENTRALIZED ENERGY SUBSTATIONS

DISTRICT HEATING AND COOLING NETWORKS WITH DECENTRALIZED ENERGY SUBSTATIONS

No validated system with controls and detailed operational philosophy is present.

This work, explores a complete thermofluid operational philosophy for and presents its experimental validation.

Prosumer interaction, thermofluid behaviour and control regime are included.

OPERATIONAL DESIGN DEVELOPMENT

HYDRAULIC SETUP – THE IDEAL WORLD

HYDRAULIC SETUP – THE IDEAL WORLD

HYDRAULIC SETUP – BALANCING UNIT

THE UNIVERSITY of EDINBURGH ПΠ

HYDRAULIC SETUP – BALANCING UNIT

HYDRAULIC SETUP – PASSIVE BALANCING UNIT

GRID PUMP CONTROLS: FLEXIBLE GRID AT

GRID PUMP CONTROLS: CONTROLLED GRID AT

PROPOSED DESIGN AND ITS KEY ELEMENTS

- Large passive balancing unit for thermodynamic and hydraulic balance.
- Low hydraulic resistance of the network to not oversize pumps.
- Controller setup to allow for decentralised controls without overarching controllers.

SIMULATION MODELS IN MODELICA

Operational and control philosophy

Hydraulic interface

Digital twins of CoSES prosumers

EXPERIMENTAL VALIDATION

EXPERIMENTAL SETUP – MAIN IDEA

CONTROLS IN LAB VIEW

RESULTS AND DISCUSSION

RESULTS

RESULTS

energy technology partnership

COMPARISON OF OPERATIONAL STRATEGIES

- Flexible grid ΔT harder to control & prosumers units' efficiency varies.
- Controlled ΔT BHP operation with varying flowrate.
- None is designed to have both heating and cooling at the same time.
- Multiple starts and stops of BU.
- Hydraulic basis for future bespoke solutions.

- This work presented two operational strategies for the operation of district heating and cooling grids with decentralised energy substations that could allow for energy trading.
- Both operational strategies can facilitate the most common hydraulic and thermodynamic issues that arise in bidirectional grids by utilising novel control approaches.
- More details on the exact setups, a thorough discussion of the results and an analysis of different scenarios with the validated Modelica models is to follow.
- Information about the develop simulation models and the Power Hardware in the Loop methodology will be presented at the 15th International Modelica conference and published as a conference paper. The preprint is available on ResearchGate.

THANK YOU FOR YOUR TIME.

QUESTIONS?

Flow direction in district heating and cooling grids with booster heat pumps: Does it make sense to have unidirectional flow?

Daniel Zinsmeister, Orestis Angelidis, Thomas Licklederer, Peter Tzscheutschler, Vedran Perić, Christoph Goebel

Technische Universität München

TUM School of Engineering and Design

Professur für Energy Management Technologien

Daniel Zinsmeister | Technische Universität München

Booster Heat Pump Transfer Station

Components:

- Booster heat pump
- Direct heat exchanger

Modes:

- Active heating (Booster heat pump)
- Active cooling (Booster heat pump)
- Direct cooling (Direct heat exchanger)
- Direct heating (Direct heat exchanger)

Prosumer Integration - No Pressure in DHC grid

 $\Delta p_{pump} = \Delta p_{res}$

Prosumer Integration - High Pressure at Supply Line

Bidirectional Grid Setup

Advantages

- Higher efficiency due to balancing of heating and cooling
- Lower volume flows
- Simpler to extend

Disadvantages

- Grid islands
- Additional grid pump at each house
- More complex control

Unidirectional Grid Setup

Disadvantages

- Lower efficiency due to no balancing of heating and cooling
- Higher volume flows

Advantages

- Similar to state of the art heat grids
- Central grid pump
- Simple control

Unidirectional Grid Setup

Disadvantages

- Lower efficiency due to no balancing of heating and cooling
- Higher volume flows

Advantages

- Similar to state of the art heat grids
- Central grid pump
- Simple control

Simulation Analysis

CoSES ProHMo

[O. Angelidis et al.: 5th Generation District Heating and Cooling Modelica Models for Prosumer Interaction Analysis, 2023]

Daniel Zinsmeister | Technische Universität München

Szenarios

- Unidirectional / Bidirectional
- Heating / Cooling Demand:
 - Seasonally balanced
 - Daily balanced
- Number of Prosumer
- Thermal storage size in the balancing unit
- Grid temperature

Key message

- Unidirectional flow for prosumers might be beneficial
- Simulation library is ready scenario analysis still pending
- Open access FMUs will be provided to allow analysis of individual cases

