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Abstract

This thesis presents the detection and analysis of Teeth Grinding and Clenching by
using Surface Electromyography (sEMG). The question of the existence of a relation-
ship between data and conscious teeth grinding and clenching is discussed in this
thesis, and will be answered in relation to the relevant research questions. Previous
work has shown that sEMG along with machine learning techniques are suitable for
the detection of medical disorders e. g. gait disorders, for the development of elec-
tronic wheelchairs or even prostheses. Most techniques for the detection of bruxism,
which is defined as extreme teeth grinding and clenching, focus on the determina-
tion of threshold values for automatic detection. In this thesis the focus is set on
finding appropriate machine learning algorithms for the classification of EMG signals
acquired from the temporalis muscle. It is classified whether teeth are being grinded
and clenched or not. The potential of Logistic Regression, Support Vector Machine
and Random Forest classifiers along with different sets of features is evaluated. Addi-
tionally, it is examined whether classifier calibration can improve the model in terms of
generalizability. After evaluation of different techniques it is empirically shown that the
random forest model with a feature set of eight time-domain features works best. It is
also shown, that calibration with Isotonic Regression is better suitable for the detection
of teeth grinding and clenching than calibration using Platt Scaling. However, the cal-
ibration curves presented later in this thesis show that both techniques are not optimal.
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1. Introduction

According to the study conducted by Manfredini et al. in 2013 around 8 − 31% of the
worldwide population suffers from the oral parafunctional activity called bruxism [10].
Bruxism can occur during day and night times i. e. while the person is awake or asleep.
The parasomnia sleep bruxism that is characterized by nocturnal teeth clenching and
grinding is not categorized as a disease. However, it can either be an indicator for
a psychological disorder or have physical impacts on the affected person. Possible
risk factors are craniomandibular disorders (e.g. headache), premature loss of teeth,
dental damages and morning soreness [15].

1.1. Motivation

Countermeasures can be taken quickly if diagnosis ismade promptly, in order to reduce
the risk of consequential health damage. Diagnosis can be achieved by monitoring
and/or analyzing the activity of the masticatory muscles. According to the guideline
for the diagnosis and treatment of bruxism by the German Corporation for Functional
Diagnosis and Therapy (DGFDT) [17] six diagnosis techniques are commonly applied
in science and practice.

The first technique is the anamnestic questionnaire. An anamnestic questionnaire
can be used to asses whether a patient clenches or grinds consciously or uncon-
sciously with their teeth. As this method relies on the patient’s or their relative’s per-
ception, it is not accurate and tends to overdiagnosis. It should therefore be applied
primarily for screening.

Clinical examination, the second diagnosis technique, is similarly to anamnesis
recommended only for screening, because medical symptoms are not reliable for ac-
curate diagnosis.

Moreover, there exist particular splints which gradually change color depending on
the depth of the abrasion due to teeth grinding. The technique has a sensitivity of
79,2% and specificity of 95% for 2900 pixelscores (which are score from abrasion
area and number of layers). However, it can promote neuromuscular changes related
to the changed occlusal height. Moreover, it is important to mention that this technique
does not record jaw clenching.

The third technique which is known as Polysomnography (PSG) is the standard di-
agnosis technique for sleep bruxism. It is conducted in a sleep laboratory, where phys-
iological parameters (e. g. Electroencephalography (EEG), Electromyography (EMG),
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1. Introduction

Electrocardiography (ECG), etc.) are registered. Video or audio may be additionally
recorded. Although it is highly popular due to its precision, it is generally used only on
a small number of participants during studies, because of the high technical, financial
and time expense. Furthermore, the test person could show different habits during the
study when compared to the habits demonstrated in their usual sleep environment.

A good alternative are wearable EMG devices which capture the muscle activity
using the potential difference between muscle and skin. The devices provide good re-
sults and are less expensive than PSG. Moreover, they are not restricted to a particular
location.
Biofeedback is another technique that has been qualified as promising but has not

yet been sufficiently evaluated. It consists of a sensor (usually EMG) and an actuator
(e. g. acoustic signal) for feedback, which makes it not only applicable for diagnosis but
also for therapy. A biofeedback system can be considered an extension of wearable
EMG devices. The aim of this thesis is to develop a concept for a EMG-Biofeedback
device for detection of teeth grinding and clenching. The question whether Biofeed-
back is a robust technique is not discussed.

1.2. Literature and Patent Review

Classification based on surface electromyography (sEMG) has been a popular re-
search topic in the past years. It has found, inter alia, its application in the detection
of gait disorders [3], facial gesture recognition for stress monitoring [16], upper limb
prostheses [20] but also in dentistry, e. g. for the detection of sleep bruxism [13].
Castroflorio et al. [2] used masseter surface EMGs with bipolar concentric elec-

trodes and ECG with monopolar electrodes on the clavicular regions to detect sleep
bruxism episodes in the natural sleep environment (at the patient’s home). If the EMG
signal exceeds the threshold by 10% and the heart rate increases by more than 25%
1 B before the rise of the EMG amplitude, a bruxism episode is detected. An additional
neural network was used to classify the subjects as bruxers and non-bruxers. The
classification error between both classes was 1%.

There has also been some patent applications for the detection of bruxism us-
ing sEMG. Under the application number CN1810319A an electromechanical brux-
ism monitoring and treating equipment is introduced. Detection occured if EMG ex-
ceeds 20 `+ and a period longer than one second [26]. A similar tool was invented by
Stephen H. Ober [14]. The biofeedback apparatus detected bruxism if an adjustable
threshold was exceeded. The number of detection can be stored and stimulus on
the temporo-mandibular joint is applied to open the jaw (biofeedback). In 2007, Mo-
men et al. [11] applied for a patent for an apparatus that classifies signals from user-
selected intentional movements in real-time. Four different types of classifiers have
been proposed, namely linear , Artificial neural networks (ANN), k-Nearest Neighbors
(kNN) and Fuzzy classifiers. Different feature sets were examined here: time-domain
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features and various wavelet transform techniques. In 2009, the Thumedi & Co KG
GmbH applied for a patent for "measuring, analysis and biofeedback device". The de-
vice contains at least one signal amplifier, electrodes and a signal evaluation unit. The
evaluation is software-based and takes into account physiological effects [24].

1.3. Research Questions

As presented in Section 1.2, muscular activity can be measured with the help of elec-
tromyography. Using suitable machine learning algorithms, I endeavour to find a rela-
tion between the measured data and unconscious teeth grinding and clenching. The
following research questions are covered in this thesis:

1. Is there a the dependency between the jaw muscle activity and the EMG sensor
data?

2. Which Machine Learning methods are best suitable for the detection of teeth
grinding and clenching?

3. How does calibration influence the models generalizability?

1.4. Approach

Data is acquired with the help of a 3-channel EMG sensor (see Section 2.1). It is
processed and analysed according to the strategy presented in the section on Experi-
mental Design. The processed data is used to train the classifiers described in Section
2.5. Their performances are compared and evaluated in Chapter 4. The results are
then used to develop a concept for an EMG-Biofeedback device, as presented in Sec-
tion 4.4. The final outcome is critically assessed in the Discussion chapter.
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2. Technical Background

A biofeedback system consists of several elements for the acquisition and processing
of electrical signals recorded from the human body (biosignals). Generally, a sensor
(measurement device) is needed to retrieve the biosignal, which is then processed
such that the data is suitable for the controller unit. The controller is then charged to
control the actuator, which thereafter sends the feedback to the human. Figure 2.1
shows a general block diagram of the components of a biofeedback system. This
chapter provides a theoretical overview of applied methodologies.

Figure 2.1: General block diagram of a biofeedback system.

2.1. Electromyography

The term electromyography (EMG) is composed by the words electro, myo (mys greek
for muscle) and -graphy (grapho greek for something written). It describes the record-
ing of the electrical activity of a muscle. The movement of a muscle or a muscle
group is controlled by "motor neuron signals originating from the central nervous sys-
tem (CNS)" [22]. EMG signals contain anatomical and physiological information of the
muscle. The data can be acquired using EMG devices and can for example be used
to develop a Myoelectric Control System (MCS) for example, a system that uses EMG
to control electrical devices (e. g. electrical wheelchairs) [3]. A distinction is made
between invasive and non-invasive EMG. The former records the electrical activity by
inserting a needle electrode into the respective muscle. Surface Electromyography is a
non-invasive method, where adhesive button electrodes are placed on the skin above
the respective muscle. This section provides an overview on the required elements for
EMG.

5



2. Technical Background

2.1.1. EMG Signal Generation

Due to the ionic difference between inner and outer space of a muscle cell, there exists
a resting potential of approximately −80 C> − 90<+ at the muscle fiber membrane,
when it is not contracted. This difference is sustained by the ion pump resulting in
a negative intra-cellular charge when compared to the skin. During contraction #0+
ions flux through the semi-permeable membrane which changes the action potential
from −80<+ to +30<+ (Depolarization). The potential is restored by a backward ex-
change within the ion pump, i. e. increased influx of  + ions (Repolarization). Figure
2.2 shows an illustration of the depolarization and repolarization cycle. The depolariza-
tion zone is approximately 1−3<<2 and travels along the muscle fiber with a velocity
of 2 − 6</B. For bipolar electrodes, the potential difference during the movement of
the depolarization zones is measured between the electrodes. A motor unit, which is
defined as "the smallest function unit to describe the neural control of the muscular
contraction process", may contain many skeletal muscle fibers. Therefore, the over-
all action potentials are super-positioned to the so called Motor Unit Action Potentials
(MUAP) [8]. Equation 2.1 shows a simple EMG signal model, where �"� (=) is the
sampled EMG signal, UA the MUAP, G(=) the firing impulse, F= white Gaussian noise
and # the number of motor unit firing at a particular time [22].

�"� (=) =
#−1∑
8=1

U8 (A)G8 (= − A) + F= (2.1)

Figure 2.2: Illustration of the depolarization and repolarization cycle of the cell membrane,
according to: [22] Fig. 6, page 7
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2.2. Feature Extraction

2.1.2. Noise Sources and Reduction

For an accurate biofeedback system reliable EMG data is required. Thus, noise
sources in EMG signals need to be considered and possible countermeasures need
to be applied [3].

• Electronic devices produce internal noises ranging from 0 to several thousands
of �I. For the experimental design described in section 3.3, it should be kept
in mind, that electrodes made of silver chloride generally provide an adequate
Signal-to-Noise Ratio (SNR).

• Movement artifacts are another source of noises. They range from 1 − 10�I
and can either originate from the movement sensor cables or the muscle itself.
When activating the muscle its length decreases which leads to the movement
of muscle, skin and electrodes. The use of a conductive gel layer between skin
and electrode is recommended for the reduction of these artifacts.

• The human body has the same properties as an antenna. It is surrounded by
electric and magnetic radiation causing electromagnetic noise. The noise can
be reduced using a high pass filter.

• Cross Talk (CT) is caused by undesired EMG signals from other muscle groups.
Using a bony area as reference point and the use of small electrodes can mini-
mize this.

• Moreover, it is recommended to filter frequencies ranging from 0−20�I as they
are unstable. This is primarily due to the quasi-randomness of the firing rate of
the motor units, to whom they are related.

• Electrocardiographic (ECG) artifacts can also induce noise, because the
electrical activity of the heart interfers with the surface EMG. The impact de-
pends on the relative position of the corresponding muscle to the heart.

2.2. Feature Extraction

EMG signals do not usually contain interpretable information individually. Therefore,
it is recommended to work with their representation vectors seen as a whole. This is
done by extracting features from them, which will later be fed to the classifier. The
goal is to find a feature set that maximizes the ability to seperate the data into the
corresponding classes. Feature extraction is possible in different domains. Given
the fact that myoelectric signals are time functions, they can be described in terms
of amplitude, frequency or phase. Consequently, time, frequency and time-frequency
domain features are possible [25]. As frequency domain features do not contain time
information and are preferably used for spectral analysis needed to investigate muscle
fatigue for example, this work will focus on time and time-frequency domain features.
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2. Technical Background

2.2.1. Time Domain Features

The processing of the data in the time domain (TD) is useful as signals are usually
already sampled in the time domain. This voids the need of a conversion and is thus
simpler to extract. Moreover, it is less prone to noise. Nonetheless, myoelectric signal
have non-stationary properties, which lead to time-dependent and varying statistical
properties.

There exists a long list of possible TD features, but only few are compatible for the
classification of EMG signals. Features based on the following statistical values are
not suitable as they provided poor results in the study conducted by Phinyomark et al.
[18], as stated in [3].

• Mean Frequency (MNF)

• Median Frequency (MDF)

• Mean Peak Frequency (MPF)

• Mean Power (MNP)

• Time-to-peak Force (TTP)

• Spectral Moments

• Frequency Ratio (FR)

• Power Spectrum Ratio (PSR) and

• Variance of Central Frequency (VCF)

A selection of the most common TD features [25], that where used in this thesis, and
their representation is shown below.

• Integrated EMG (IEMG)
IEMG is defined as the area under the curve of the rectified EMG signal. It is
calculated as the integral of the absolute value of the signal. Its mathematical
representation is shown in Equation 2.2. Where # is the signal length and G=
an EMG signal segment.

��"� =

#∑
==1

|G= | (2.2)

• Simple Square Integral (SSI)
SSI is the sum of the squared values of the EMG signal amplitude. It corre-
sponds to the signal’s energy. Equation 2.3 shows its mathematical expression.

((� =

#∑
==1

|G= |2 (2.3)
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2.2. Feature Extraction

• Variance of EMG (Var)
Variance is defined as the mean of the squared values of the deviation from the
variable’s mean. It corresponds to power and can be expressed as

+�' =
1

# − 1

#∑
==1

G2= (2.4)

• Root Mean Square Value (RMS)
RMS is calculated as the square root of the mean of the squared values (see
eq. 2.5). It represents the constant force and contraction without fatigue.

'"( =

√√√
1

# − 1

#∑
==1

G2= (2.5)

• Waveform Length (WL)
WL is the accumulated waveform length above a time segment and represents
the complexity of the waveform in each segment. It is expressed as

,! =

#∑
==1

|G= − G=−1 | (2.6)

• Log-Detector (LOG)
The LOG feature corresponds to an estimate of the muscle contraction strength.
It is defined as

!$� = exp
1
#

#∑
==1

;>6 |G= |
(2.7)

• Willson Amplitude (WAMP)
WAMP corresponds to the number of times the amplitude of the absolute differ-
ence between two adjacent samples is higher than a threshold !, which is linked
to the triggering of the action potentials of the motor unit and the muscle con-
traction force. It can be interpreted as the EMG signal frequency and is defined
as

,�"% =

#−1∑
==1

5 |G=+1 − G= | ,

where 5 (G) =

1, if x ≥ threshold,
0, otherwise

(2.8)

• Slope Sign Change (SSC)
Similar to WAMP, SSC provides a description of the EMG signal frequency. It
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2. Technical Background

is defined as the number of times that a slope sign change occurs. This is cal-
culated using three consecutive samples G:−1, G: , G:+1 as depicted in Equation
2.9.

((� =

#−1∑
==2

5 | (G= − G=−1) × (G= − G=+1) |

5 (G) =

1, if x ≥ threshold,
0, otherwise

(2.9)

2.2.2. Time Frequency Domain Features

In [12] Time Frequency Domain (TFD) features are described as a great alternative to
the aforementioned features with the following limits. First, the frequency domain does
not provide any time information, which is needed for classification, and second the
time domain characteristics are comparatively weak. Although TFD features are com-
putationally more costly than TD features, they can still meet real-time requirements.
The problem with TFD features is, that they are highly dimensional which results in a
high resolution of vectors.

A popular example of a TFD feature which is also used in this work, is the Wavelet
Transform (WT). A distinction is made between discrete and concrete wavelet trans-
form (DWT and CWT respectively) [3]. DWT is well suited for non-stationary signals
like sEMG. It has a low processing time and yields high-dimensional feature vectors.
The computation is done by successive low-pass and high-pass filtering in the discrete-
time domain (see eq. 2.10).

G(C) =
∞∑

:=−∞

∞∑
C=−∞

3 (:, ;)2 :
2k(2−: C − 1) (2.10)

where 0 = 2: , 1 = 2:; and 3 (:, ;) is a sampling of, (0, 1) at discrete points k and l.
However, CWT is more consistent and less time consuming compared to DWT, be-

cause the down-sampling step is skipped. Equation 2.11 shows the general expression
of CWT, where 0 is the scale, 1 the time-location and k(C) the "mother wavelet" which
can be interpreted as a band-pass function.

k(0, 1) = 1√
|0 |
k( C − 1

0
) (2.11)
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2.3. Dimensionality Reduction with the Principal Component Analysis

2.3. Dimensionality Reduction with the Principal
Component Analysis

Principal Component Analysis (PCA) is a method for dimensionality reduction. It finds
its application in multivariate classification problems with a high number of correlated
variables. The aim is to reduce the dimensionality of the data set without losing too
much information. The resulting sets are called principal components. The algorithm
is as follows 1.

Let - be a multivariate data matrix with = rows and ? columns. One data row repre-
sents different measurements on a subject.

• Standardize matrix X such that the mean per column is 0 and the variance is 1.
Call this matrix Z. PCA aims to derive a linear function H for each vector variable
zi (column of Z) with maximized variance.

• The linear function y is a component of z. The computation of a single element
for the 9 Cℎ y vector is done by y = zv′ where v′ is a column vector of V and
V the ? × ? eigenvector matrix. z and v′ are of dimension 1 × ? and ? × 1
respectively. The 8Cℎ element of yj, 9 = 1, . . . , ? is:

H8 9 = E
′
1I18 + E′2C28 + · · · + E′?I?8

Which becomes
Y = ZV

for all of the y.

• Because the mean of each column is 0, the mean<() of y ism(y) = V′m(z) =
0

• The dispersion matrix of y is

Dy = V′DzV = V′RV

• The dispersion matrix �I of a standardized variable is a correlation matrix.
Hence ' is the correlation matrix of z.

2.4. Clustering with DBSCAN

Clustering algorithms group data according to their similarity or membership, which is
defined by different criteria, such as the distances between cluster centers or points.

1https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc55.htm
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2. Technical Background

The Density-based spatial clustering of applications with noise (DBSCAN) is based
on the density of the input, i. e. clusters are formed in regions with high density
of data within lower-density regions. The algorithm requires two input parameters.
The minimum number of samples required for a point to be considered a core point
(<8=_B0<?;4B) and the maximum distance between two samples (n ).

Every sample ®G= can be categorized as one of the three types:

• Core point A core point has at least<8=_B0<?;4−1 other points within a circle
of radius n .

• Border point A border point is a point, that is not a core point and has at least
one core point within the distance of n .

• Noise point A point that is neither a border nor a core point is called noise point.

The DBSCAN algorithm is as follows [5]:

1. Label each point as one of the types presented above.

2. Eliminate the noise points

3. Connect all core points that are within the distance of n from each other with
edges.

4. Each connected component becomes one cluster.

5. Border points are assigned to a cluster that is associated with one of its nearby
core points.

2.5. Classification Techniques

After pre processing, the data is used to train a classifier, which will be able to predict
whether a test subject clenches or grinds with their teeth. There are several classi-
fication techniques used in the literature for the classification of EMG signals. Their
performances usually depend on the intended application. This thesis will focus on the
following techniques, which have proven to work well in similar applications. Support
Vector Machines (SVM) for stress monitoring [16], Logistic Regression for the classifi-
cation of diseases [7] and Random Forest for the classification of upper limb motions
[19].

12



2.5. Classification Techniques

2.5.1. Logistic Regression

Logistic regression is a linear classification technique that models the probabilities of
specific outcomes using the logistic function 5 (I) = 1

1+4−I . With I being the linear
sum of the parameter U and the products of the parameters V8 and the independent
variables -8 , we obtain the following logistic model:

5 (I) = %(. = 1|-1, -2, ..., -:) =
1

1 + 4−(U+
∑
V8-8)

(2.12)

The unknown parameters U and V8 are estimated such that the classification error is
minimized. The class of the data is predicted using the resulting probability. This is
done by comparing it to a preset threshold [7].

To prevent the model from overfitting we can apply regularization, which solves the
following optimization problems 2. Where F are the weights, � the regularization pa-
rameter, H8 the target and -8 the data.

• For ℓ1 regularization we minimize the following cost function.

min
F,2
‖ F ‖1 +�

=∑
8=1

log(exp(−H8 (-)8 F + 2)) + 1) (2.13)

• ℓ2 regularization solves the following optimization problem.

min
F,2

1

2
F)F + �

=∑
8=1

log(exp(−H8 (-)8 F + 2)) + 1) (2.14)

• The Elastic-Net regularization (the combination of ℓ1 and ℓ2) optimizes

min
F,2

1 − d
2

F)F + d ‖ F ‖1 +�
=∑
8=1

log(exp(−H8 (-)8 F + 2)) + 1) (2.15)

where d determines the strength of ℓ1 and ℓ2 regularization.

2.5.2. Support Vector Machines

A Support Vector Machine (SVM) is a classification technique with the aim to maximize
themargin between the class border and the samples closest to it (the support vectors).
The borders are entirely determined by the support vectors and are either mapped in a
linear or non-linear space [5]. An example of possible separation lines or hyper-planes
is shown in Figure 2.3.

2https://scikit-learn.org/stable/modules/linear_model.html#logistic
-regression
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2. Technical Background

(a) Linear separation. (b) Non-linear separation.

Figure 2.3:SVM separating the classes bymaximizing the distance between the nearest points
to the border (support vectors) and a) linear and b) non-linear class border.

For non-linear SVMs a small number of support vectors is desired, as it reduces
the computational cost and the complexity of the resulting border, which decreases
the risk of overfitting. To further increase the efficiency, the so called kernel trick is
applied. The term describes the computation of the more efficient kernel function  
instead of the mappingΦ, which is of high importance when working with real data. In
practice it is most common to use either polynomial or Gaussian radial basis function
(RBF) kernels. They are defined as follows

• Polynomial kernels

 = (®G, ®I) = (®G) ®I + 2)%, 2 ≥ 0 (2.16)

where 2 is the influence of higher-order versus lower-order terms in the polyno-
mial. When 2 = 0, the kernel is called homogeneous. % is the degree of the
polynomial.

• RBF kernels

 = exp− ‖ ®G8 − ®G ‖
2

2f2
(2.17)

where f determines the range of the "neighborhood" and thus the support vec-
tors.

New data ®G is predicted according to the following decision rules. Where U8 are the
Lagrange multipliers, H8 the targets and 1 the intercept of the border.

14
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• Linear border ∑
8

U8H8®G)8 ®G + 1 ≥ 0 −→ 2;0BB 1 (2.18)

• Non-linear border with kernel trick∑
8

U8H8 (®G) + 1 ≥ 0 −→ 2;0BB 1 (2.19)

• Special Case of 2.19: Non-linear border with RBF kernel trick∑
8

U8H8 exp−
‖ ®G8 − ®G ‖2

2f2
+ 1 ≥ 0 (2.20)

Generally, the data cannot be perfectly separated into the respective classes. This
is where soft-margin SVM comes into place. A regularization parameter � is intro-
duced, which determines whether data points are allowed to be placed in the margin
or even in the other class. A large � highly penalizes any intrusion into the margin
whereas a small � will prefer having a wide margin with the cost of misclassification.
The optimization problem to be solved is as follows [5].

<8=8<8I4
1

2
‖ ®F ‖2 +�

∑
8

Z8 (2.21)

with
Z8 = max(0, H8 (1 − ®F ) ®G8 + 1)) (2.22)

and
®F =

∑
8

U8H8®G8 (2.23)

where Z8 is the penalty and F the normal to the border.

SVMs are effective for numerous applications. They work well in high dimensional
spaces or in case the number of dimensions exceeds the number of samples. More-
over, they use a subset of the training data in the decision function (support vector),
which makes it memory efficient. Additionally, it is possible to make use of different
kernel functions as decision function 3.

3https://scikit-learn.org/stable/modules/svm.html#svm-classificatio
n
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2. Technical Background

2.5.3. Random Forest

A Random Forest is a classification technique consisting of multiple independent,
random decision trees. Decision trees start at the root node, that represents the
whole data set. They are then built iteratively by asking several yes/no questions,
making them therefore suitable for categorical classification tasks. The data is split
in classes or attributes until a predetermined stop criterion is reached. Owing to its
NP completeness, it is nearly impossible to find the optimal decision tree. Hence,
practically algorithms are based on heuristic algorithms such as the greedy algorithm
taking only the local optimum at each node into consideration [5]. For the creation or
training of a decision tree several algorithms can be used. The algorithms differ only
in their splitting strategy. The most common algorithms are the Hunt’s algorithm, ID3
(Iterative Dichotomiser 3), C4.5 and CART(Classification and Regression Trees) [21].
The latter is utilised in the scikit-learn library which is used in this thesis. Figure 2.4
shows an exemplary of such a decision tree.

Figure 2.4: Example of a Decision Tree with three symptoms of bruxism.

There is also a risk of overfitting decision trees, because there is almost always another
feature that can be used for splitting. To lower the risk, the complexity of the grown
decision tree has to be reduced, e.g. applying one of the following techniques [5].
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• Pre-pruning: Stop splitting if the information gain (Δ) is less than a threshold

• Post-pruning: Replace smaller sub-trees with leaves, e. g. if the number of
samples is lower than a threshold

• Minimum Description length (MDL) principle: Select between trees of differ-
ent complexity. The aim here is to minimize complexity.

Information gain can be calculated using the Gini index or Entropy criterion, which
represent the impurity of a node. A node with only one class is considered a pure
class. The existence of multiple classes make a node impure. Gini and entropy are
defined as follows

�8=8 = 1 −
#∑
8=1

?2(28) (2.24)

�=CA>?H =

#∑
8=1

−?2(28) log2(?(28)) (2.25)

where ?(28) is the probability of class 28 in a node.

Random Forest aims at building an ensemble of decision trees with high variance and
low bias, which combined build a forest with low bias and low variance. This is done
by:

1. Growing multiple trees from resampled training data.

2. Choosing only a subset of = out of # attributes (= << #) at each node for
splitting

3. No pruning, i. e. allowing the risk of overfitting

New samples are predicted using a majority vote of the whole forest. The quality of the
forest depends on whether the decision trees are independent (highly correlated trees
will perform worse, because the prediction will be nearly the same) and the number of
features (a small number cannot model the complexity of the data correctly) [5].

2.6. Evaluation of Classifiers

The quality of a classifier can be quantified using different metrics or scores. Typical
metrics are accuracy, classification error, recall, precision and F1-score [23]. These
can be derived from the so called confusion matrix. Table 2.1 shows the confusion
matrix for a binary classification problem. The mathematical representation of the
metrics are presented in Equation 2.26 to 2.30.
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2. Technical Background

predicted classes
positive negative

positive True Positive (TP) False Negative (FN)
negative False Positive (FP) True Negative (TN)

Table 2.1.: Confusion Matrix for binary classification problem.

Although, accuracy and error are considered as standard metrics, they are not suit-
able for imbalanced data sets. They tend to classify according to the majority class,
which can lead to wrong results and conclusions. As a result, the other scores (eq.
2.28 and 2.29) are preferred for applications where the performance of both classes
(positive or negative samples) are equally important. The F1-score (eq. 2.30) en-
hances one of the classes, i. e. determines relevant elements. Another score used in
machine learning is the ROC-AUC score. The metric computes the Area Under the
Receiver Operating Characteristic Curve (ROC AUC). The ROC plots the fraction of
TP out of the positives (TPR = true positive rate) against the fraction of FP out of the
negatives (FPR = false positive rate) at different thresholds 4.

�22DA02H =
)% + )#

)% + �# + )# + �% (2.26)

�AA>A =
�% + �#

)% + �# + )# + �% (2.27)

'420;; =
)%

)% + �# (2.28)

%A428B8>= =
)%

)% + �% (2.29)

�1 − (2>A4 = 2 · %A428B8>= × '420;;
%A428B8>= + '420;; (2.30)

Cross-Validation (CV) is a procedure applied to overcome overfitting by splitting the
training set into training and validation set. :-Fold CV is the basic approach. The
training set is split into : folds (subsets). The model is trained using : − 1 of the folds
as training data. The derived model is then validated with the remaining fold. The
performance metric of the :-fold CV is the average of the computed validation scores
per split.

4https://scikit-learn.org/stable/modules/model_evaluation.html#ro
c-metrics
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2.7. Calibration of Classifiers

2.7. Calibration of Classifiers

Calibration comes into place, when it is important to assure the generalizability of a
classifier. Medical applications, as investigated in this thesis, are great examples of
this. It is crucial for the classifier to accurately predict on a new subject or patient. There
exist multiple methods for calibration, whereas Platt Scaling and Isotonic Regression
are the most common. They work well for Logistic Regression as well as Support Vec-
tor Machines [4]. Literature on calibration methods for Random Forests is ambiguous.
While some papers claim that they are relatively well calibrated, others acknowledge
that they may be improved [6]. Relevant calibration techniques are described in the
following.

2.7.1. Platt Scaling

Platt scaling, often referred to as sigmoid scaling, is a calibrationmethodmostly applied
on SVM. It consists of optimizing the parameters of a sigmoid function, such that the
likelihood of the training set is maximized [1, 6]. The function is given by Equation
2.31.

?̂(2 |B) = 1

1 + exp (�B + �) (2.31)

Where ?̂(2 |B) corresponds to the probability that a sample is part of class 2, given
that it has achieved a score of B. � and � are the parameters of the function and are
fitted using gradient descent to minimize

<8={−
∑
8

H8 log (?8) + (1 − H8) log (1 − ?8)} (2.32)

where ?8 = ?̂(2 |B).

2.7.2. Isotonic Regression

Isotonic Regression is a calibration technique that can be interpreted as "a general
form of binning that does not require presetting of a specific number of bins or any
limits of the size of each bin" [1]. The calibration function is supposed to be isotonic,
i. e. non-decreasing. Given 58 , the predictions of the applied classifier, and the true
labels H8 , the isotonic regression is

H8 = <( 58) + n8 , (2.33)

where < is an isotonic function and n is an observation error. Given a training set
( 58 , H8), where 58 is the prediction made by the model and H8 the true targets. The
objective of the Isotonic Regression is to find the non-decreasing function <̂ as follows.
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2. Technical Background

<̂ = argmin
I

∑
(H8 − I( 58))2 (2.34)

This increases not only the flexibility, but also the risk to overfit. Hence, Isotonic
regression yields better performance than Platt scaling only if there is enough data to
avoid overfitting [6].

2.7.3. Calibration of Random Forests

In [1], a method based on the finding that the squared error of probabilities predicted
by forests of classification trees are lower compared to those predicted by forests of
probability estimation trees (PET), is presented. The technique consists of correcting
the averaged probability distribution. The estimated probability for the most probable
class is increased by parametrizing the increase as follows:

?̂8 =

{
?8 + A (1 − ?8) if ?8 = max {?1, . . . , ?: },
?8 (1 − A) otherwise

(2.35)

where ?1, . . . ?: are the uncorrected probability estimates for the : classes and
A, 0 ≤ A ≤ 1, is the correction parameter that pushes the estimated probability of
the most probable class to a specific value by reducing the other probabilities. For
example, pushing it to 1 with A = 1 will push the other classes to 0.

Dankoswki and Ziegler [4] propose a method where the random forest is first trans-
formed into logistic regression models. This is done by estimating the relative frequen-
cies of all subjects having the event in the terminal node. Logistic regression can be
used to estimate the conditional probabilities. Let %(H = 1|G1 ≤ 21, G2 ≤ 22) be
the conditional probability at a terminal node C, then the dummy variable is defined as
follows

31 =

{
1 if G1 ≤ 21, G2 ≤ 22
0 else

(2.36)

Dummy variables are defined for each terminal node. The one with the largest
amount of samples in the terminal node is chosen as reference category. A logis-
tic regression model is fitted for every former tree. In case that the tree consists of
three terminal nodes, the model to be fitted is

%(H = 1|31, 32) = U + V131 + V232 (2.37)

if 33 is the reference category. This is done for all trees in the forest. The random
forest is then updated using re-calibration of each logistic regression model.
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2.7.4. Evaluation of the Calibration

In general, the performance of probability estimation models or calibration is mea-
sured using the Brier score (BS). The score is defined as the mean-squared difference
between the patient status and the predicted probability [4].

� =
1

#

#∑
8=1

( ?̂8 − .8)2, (2.38)

Where ?̂8 is the estimated probability of the observation 8 and .8 is the observed
value. The calibration is considered to be better, the smaller the Brier score.
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3. Materials and Methodology

The previous chapters focused on introducing the main concepts necessary for the
design of a biofeedback system. An overview on the functionality of electromyogra-
phy, the importance of feature extraction and the selection of classification techniques
were presented. In this chapter the preliminaries to develop a concept for a EMG
biofeedback prototype are presented. The first step consists of the conduction of sev-
eral experiments as described in Section 3.3, to explore EMG data and to examine the
previously determined research questions. The results will be presented in Chapter 4
and summarized in the section "Conception of an EMG-Biofeedback System".

3.1. Materials

The main components utilized for the conduction of the experiments are described in
the following. An EMG sensor with surface electrodes connected to a microcontroller
has been used for data acquisition.

3.1.1. EMG Sensor

To obtain the EMG data I used the MyoWare Muscle Sensor (AT-04-001), an elec-
tromyography sensor for microcontroller applications. As a result of its wearable design
data acquisition was facilitated. The sensor features several input and output pins, two
electrode snaps and a reference electrode cable (see Figure 3.1a). It provides two out-
put types, the raw EMG signal (Figure 3.1a (7) RAW) and the EMG Envelope (Figure
3.1a (3) SIG). In this work, the latter was used, which is in essence the amplified, rec-
tified and integrated signal and thus suitable for the analog-to-digital converter (ADC)
of a microcontroller 1. Figure 3.1b depicts the difference between the output types.

3.1.2. Electrodes

For every recording three electrodes were required. One for themidmuscle, one for the
end muscle and the last for the reference bone or muscle (compare with Figure 3.1a).
The sensor kit used in this thesis came along with Kendall™ ECG Electrodes Product
Data SheetArbo™ H124SG electrodes. The electrodes have a sensor area of 80<<2

1 https://cdn.sparkfun.com/assets/learn_tutorials/4/9/1/MyoWareDatas
heet.pdf

23

https://cdn.sparkfun.com/assets/learn_tutorials/4/9/1/MyoWareDatasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/4/9/1/MyoWareDatasheet.pdf


3. Materials and Methodology

(a) Layout of the MyoWare Muscle Sensor AT-04-001

(b) Difference between RAW EMG Signal and EMG Envelope

Figure 3.1: Characteristics of the MyoWare Muscle Sensor Source: 1
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3.2. Data Acquisition

which maximizes the electrode distance that should range between 10 and 40<<. As
stated in Section 2.1.2 the use of a conductive gel and silver-chloride electrodes were
recommended for noise reduction. These requirements are met by the electrodes 2.
This promises good recordings with low noise, which has been confirmed by initial
experiments and tests.

3.1.3. Microcontroller

As mentioned before, the sensor is designed for microcontroller applications. For
this work an Arduino Leonardo board, that is based on the 8-bit AVR microchip AT-
mega32u4, has been chosen. The board features various input/output pins and a
micro USB connection. The latter is used to connect the device with the computer for
data collection and setup. The former are used to connect the sensor, the actuator
and the battery. The test setup will be presented in Section 3.2.3.

3.1.4. Vibration Motor

A 5+ vibration motor suitable for Arduino has been used as an actuator for the biofeed-
back device. The module has three pins (IN, VDD, GND). The input pin (IN) can be
connected to one of the PWM pins of the Arduino. Figure 3.2 shows a depiction of the
module.

Figure 3.2: Figure of the vibration motor module used in section 4.4.

3.2. Data Acquisition

Data is acquired from three subjects. This section describes how and where the data
is collected.

2https://www.mouser.com/datasheet/2/813/H124SG-1022817.pdf
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3.2.1. Jaw Muscles Activity while Sleeping (Scenarios)

It is known that human perform multiple jaw muscle activities throughout the day. How-
ever, their activities are not only restricted to the time of day. In the following section
the most common jaw muscles activities that occur while sleeping (oral parasomnias)
are listed. The list is used to derive a collection of movements to be recorded during
data acquisition.

• The subject sleeps calmly without activation of the jaw muscles. (resting)

• The subject yawns while sleeping. (yawning)

• The subject clenches his/her teeth while sleeping. (teeth clenching)

• The subject grinds his/her teeth while sleeping. (teeth grinding)

• The subject chews while sleeping. (chewing)

• The subject swallows while sleeping. (swallowing)

• The subject talks while sleeping. (talking)

• The subject makes other movements while sleeping.

For this study I decided to opt for the following movements: resting, yawning, teeth
clenching, teeth grinding and chewing.

3.2.2. Muscle Choice

The performance of jaw activities is related to different muscles. However, the mas-
seter and the temporalis muscle are most commonly used for surface EMG recording
as they are easily accessible [9]. Figure 3.3 depicts their location 3.
Table 3.1 shows that the data acquired at the temporalis muscle has a higher distri-

bution than the masseter muscle. This can be seen on the standard deviation of the
recorded signals for grinding and clenching, calculated using the DataFrame structure
from the Python library Pandas.

f6A8=38=6,C4<?>A0;8B = 98.8905 > f6A8=38=6,<0BB4C4A = 14.3937

or
f2;4=2ℎ8=6,C4<?>A0;8B = 26.8950 > f2;4=2ℎ8=6,<0BB4C4A = 15.3723

This relation is also true for other movements than yawning. Since this thesis focuses
on the detection of teeth grinding and clenching, ’yawning’ is negligible. Moreover,
3 http://what-when-how.com/dental-anatomy-physiology-and-occlusion/t
he-temporomandibular-joints-teeth-and-muscles-and-their-functions
-dental-anatomy-physiology-and-occlusion-part-3/
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3.2. Data Acquisition

Figure 3.3: Location of Masseter and Temporalis Muscle. Source: 3

the max values, describing the intensity of the muscle activation, show that the EMG
device is more sensitive at the temporalis muscle than at the masseter muscle.

<0G6A8=38=6,C4<?>A0;8B = 453.0 > <0G6A8=38=6,<0BB4C4A = 93.0

and
<0G2;4=2ℎ8=6,C4<?>A0;8B = 195.0 > <0G2;4=2ℎ8=6,<0BB4C4A = 111.0

For clenching no significant difference can be obtained, however 25% of the temporalis
data is above 55 which is Δ = 9 unities more compared to the data measured at the
masseter muscle. Additionally, placing the EMG sensor at the temple does not require
any further measures e. g. shaving in case of a placement at masseter muscle. Thus,
all the following measurements will only be conducted on the temporalis muscle.

3.2.3. Test Setup

For the acquisition of the EMG data a computer, an Arduino Leonardo and the My-
oWare muscle sensor were used. The test setup is depicted in Figure 3.4. Some parts
of the figure were taken from 4

The sensor is connected to the person by placing the M electrode to the mid, the E
electrode to the end of the respective muscle and the R electrode to a bony area as
far away as possible from the muscle. + and − are connected to the 5+ and �#�
pins of the Arduino respectively. The signal pin ((��) of the sensor is connected to
one of the analog pins of the Leonardo, here: �0. The board itself is connected to
a computer via micro USB. The computer can be replaced by any device able to run
Python scripts. The script used for data acquisition is described in Section 3.2.4.
4 https://store.arduino.cc/arduino-leonardo-with-headers
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3. Materials and Methodology

resting yawning chewing clenching grinding
count 55 334 54 718 55 045 54 771 55 334
mean 10.538 19.664 21.448 30.981 38.609
std 0.508 41.924 16.433 14.394 15.372
min 9 9 9 9 9
25% 10 11 11 21 28
50% 11 11 14 27 36
75% 11 12 25 38 46
max 12 548 135 93 111

(a) Masseter Muscle.

resting yawning chewing clenching grinding
count 55 043 54 534 55 041 54 988 55041
mean 22.501 41.535 34.007 98.900 40.538
std 29.150 40.652 26.492 98.900 26.895
min 8 8 9 9 8
25% 9 13 16 19 20
50% 11 28 26 59 34
75% 17 57 44 159 55
max 193 357 310 453 195

(b) Temporalis Muscle.

Table 3.1.: Statistics describing the distribution of the data acquired from both, masseter and
temporalis muscle.

28



3.2. Data Acquisition

Figure 3.4: Block diagram of the test setup. Parts from 4

3.2.4. Data Collection Procedure

The EMG data has been collected performing the following steps.

1. Connect Arduino to computer.

The board is connected according to the test setup presented in Section 3.2.3.
The Arduino Sketch for communication is already batched.

2. Find the right position to place the Electrodes.

The subject is asked to tense the jaw muscle in order to locate the temporalis
muscle.

3. Start the script.

a) Select the right port and choose a file name (optionally).

b) Perform the following tasks sequentially.

i. Grind your teeth for 4 B straight. Relax for another 4 B. Repeat five
times.

ii. Clench your teeth for 4 B straight. Relax for another 4 B. Repeat five
times.

iii. Chew for 4 B straight. Relax for another 4 B. Repeat five times.

iv. Yawn for 4 B straight. Relax for another 4 B. Repeat five times.
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v. Rest for 60 B.

An Excel File containing the time series for each movement was received. The data
is of numerical type. The values range from theoretically 0 to 1023 which is the output
range of the Arduino. The exact value range depends on the subject and the amplitude
of his or her masticatory activity.

3.3. Experimental Design

The experiments are divided into three categories.

1. Experiments of Type 1

The first experiments consist of pre-analysis and the familiarization with the EMG
sensor device and its output. The objective is to obtain a workflow for EMG data
acquisition.

2. Experiments of Type 2

The second type of experiments focus on the analysis of EMG data from subject
1. The acquired data is used as reference data. It is analyzed, processed and
then fed to the classifiers.

3. Experiments of Type 3

Type 3 contains experiments to check whether classifier calibration can be used
to generalize the classifier obtained from training with only subject 1. It is vali-
dated with data acquired from subject 2 and 3.

3.3.1. Experiment 1: Data Pre-Analysis

The experiments are aimed at getting an impression of whether the individual move-
ments can be differentiated. This is done by

a) visually analyzing the different patterns for each recorded movement. The in-
tention is to identify differences and similarities in shape, period and value range
(intensity) of the time series representing the EMG signals.

b) performing a cluster analysis. In order to do so, the dimensionality of the sam-
pled data needs to be reduced first. Therefore, the different time series are
brought to equal length by cutting off samples exceeding the length of the record-
ing with the lowest amount of samples. The Principal Component Analysis
(PCA) explained in the previous chapter has been used for dimensionality re-
duction. The goal is to verify whether the assumption, that the problem can
be formulated as a binary classification problem, is correct. The results will be
presented in Section 4.1.
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3.3.2. Experiment 2: Signal Processing and Data Analysis

Experiment 2 can be divided into several sub-experiments.

a) Data Preprocessing

As mentioned in section 3.2.4, data is stored in an Excel file. The file is composed of
six spreadsheets containing the time series (EMG signals) for each movement. The
Excel file is loaded into a DataFrame (data structure from the Python library Pandas)
of size: 6 × # , where # is the length of the shortest time series. Samples exceeding
this length are cut off.

Noise Cancelling

Surface EMG signals range from 0 to 500�I, whereby frequencies between 0 and
20�I are unstable. In order to cancel these noises two Butterworth filter, i. e. a high-
pass and a low-pass filter, were applied. This has been done through the functions
butter and lfilter from the python library Scipy Signal. The butter-method accepts vari-
ous input parameters, which were set as follows.

• # is the order of the filter. The common value for EMG applications was chosen,
which is 6.

• ,= is the critical frequency that needs to be eliminated. It is defined as

,= =
2 · 5
5B
,

where 5 is the frequency to be eliminated (here: 20�I for the low-pass and
500�I for the high-pass) and 5B is the sampling frequency.

• The filter type can be set to ’high’ or ’low’ using the parameter 1CH?4.

• The sampling frequency is described by 5 B. The typical sampling frequency is
1 :�I and is also applied in this thesis.

The method returns the numerator and the denominator polynomials of the IIR filter
that are used by the lfilter-method to compute the filtered signal. The filtered signal is
stored as a dictionary with the movement as keys and the filtered signal in list format
as values.
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Framing and Labelling

The next step is to rearrange the signal by dividing it into frames of equal size. The
frame size is determined by the frame duration and the sampling frequency.

5 A0<4_B8I4 = 5 A0<4_3DA0C8>= · B0<?;8=6_ 5 A4@D4=2H

In this thesis a frame duration of 3 B ≈ 3144 samples was chosen, which corre-
sponds to the typical duration of nocturnal teeth grinding or clenching. Due to the high
number of noise in the recorded EMG curves, the frames were selected and labelled
manually. This was done by joining the individual recordings and detecting the sig-
nificant peaks of the respective movements. Signals that lasted longer than 3 B were
covered using overlapping, i. e. a signal of 5 B ranging from e. g. 150 : to 155 : was
represented by two frames from 150 : − 153.1 : and 152 : − 155 :. The values listed
before are the sample numbers. Frames corresponding to the movements grinding
and clenching were labelled as 1. Chewing, yawning and resting were labelled as 0.

b) Feature Selection and Extraction

The following sub-experiments are closely connected to the sub-experiments c). The
aim is to verify how classification performance changes when classifying either with or
without feature selection. In the time domain, features presented in Section 2.2.1 are
examined. They were implemented in Python. For the time-frequency domain features
the method dwt from the pywt library was used.
The function returns the approximation and detail coefficients, i. e. the features. It

takes the following input arguments.

• The 30C0 to process,

• The F0E4;4C-function to apply. Here the Daubechie function was chosen, as it
has proven its application for surface EMG.

• And finally, the signal extrapolation <>34, which was set to the ’constant’ mode,
where borders are replicated.

c) Training and Evaluation of Classifiers

In this thesis the focus is on three classifiers of different types. A linear classification
model was applied, the Logistic Regression, a Support Vector Machine and a
Random Forest Classifier. Before training the data set was split into a training and
testing set using the B:;40A=.<>34;_B4;42C8>=.CA08=_C4BC_B?;8C function. A splitting
ratio of 1 : 3 was chosen.
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For training the processed training data was used. The processing steps described
in the above paragraphs were followed. To obtain the best parameters the Grid-
SearchCV function was used, which optimizes the parameter of an estimator applying
a cross-validated grid-search over a parameter-grid 5. The function requires the esti-
mator and the parameter-grid as input arguments. Additionally, it takes optional input
arguments. For this thesis only the number of folds for cross-validation (2E) and the
B2>A8=6-function are of interest. Considering, that the classifier should be reliable
when detecting "bruxism", the ’recall’-score was chosen as objective function.

The parameter-grids used for each classifier are shown below.

• Logistic Regression

The norm used for penalization is defined by using the term ?4=0;CH. The pa-
rameter C specifies the regularization. A smaller value specifies a stronger regu-
larization. Theweights associated with each class are defined by 2;0BB_F486ℎC.
If #>=4 is given, all classes have weight one. If 10;0=243 is chosen, it "uses
the values of y to automatically adjust weights inversely proportional to class
frequencies in the input data as"

#

" · 1H
(3.1)

where # is the number of samples, " the number of classes and 1H the number
of occurrences of each value in an array of Integers 6.

Parameter Grid
The combination of the following parameters are tried

– ℓ1 and ℓ2 penalty

– Regularization value � of 0.1, 1 and 10

– Class weights of 1 for each class, 2 for Class 1 and 1 for Class 0 as well
as balanced class weights

• Support Vector Machine

The parameters for the linear SVM are the same as for the Logistic Regression.
For the non-linear SVM a kernel-function using the keyword :4A=4; can addi-
tionally be determined. The W-parameter is the kernel-coefficient used for ’poly’,

5https://scikit-learn.org/stable/modules/generated/sklearn.model_se
lection.GridSearchCV.html?highlight=gridsearch%20cv%23sklearn.mod
el_selection.GridSearchCV

6https://scikit-learn.org/stable/modules/generated/sklearn.linear_m
odel.LogisticRegression.html?highlight=logistic%20regression#skle
arn.linear_model.LogisticRegression
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’rbf and ’sigmoid’7. It can either be a given float or the keywords ’scale’ and
’auto’. If W is set to ’scale’, which is the default value,

W =
1

# ∗ f2(-) (3.2)

is used as value of gamma. Where # is the number of samples and f2 the
variance of the signal - . ‘auto’ uses

W =
1

#
(3.3)

Parameter Grid
For the linear SVM the following parameters were tried.

– ℓ1 and ℓ2 penalty
– Regularization value � of 0.1, 10 and 100

– Class weights of 1 for each class and balanced class weights

For the non-linear SVM the parameter grid looked as follows.
– Polynomial, RBF and sigmoid kernels
– Regularization value � of 0.1, 10 and 100

– Gamma values W of 0.01 and 10

– Class weights of 1 for each class and balanced class weights

• Random Forest Classifier
The Random Forest Classifier parameters tested are shown below.

– The number of trees in the forest =_4BC8<0C>A = [10, 100 1000]
– The splitting criterion, the Gini index or entropy
– The minimum number of samples required to split an internal node
[0.5, 2, 10]

– The minimum number of samples required at a leaf node [2, 5, 12]
– Class weights of 1 for each class and balanced class weights

It is common to apply dimensionality reduction before classifying. In order to inves-
tigate the necessity in the application, the best estimator was fitted with and without
PCA.
7https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.
html?highlight=svc#sklearn.svm.SVC
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3.3. Experimental Design

3.3.3. Experiment 3: Calibration

As mentioned previously, surface EMG data is non-stationary. The amplitude of the
EMG signal varies for different persons. They also change for one person during the
day. It is thus necessary to calibrate the prediction model before performing classifi-
cation, in order to improve the detection performance. This section contains a com-
parison of the calibration techniques presented in Section 2.7. The standard methods
Plott Scaling and Isotonic Regression will be evaluated. Calibration will be tested with
data acquired from subject 2 and 3.

Platt Scaling and Isotonic Regression

Calibration was done using the CalibratedClassifierCV function from the Scikit Learn
calibration library. The function applies Platt Scaling and Isotonic regression on the
model with the best score presented in Section 4.2. Calibration is validated using 5-
fold cross validation.

Evaluation with Brier Score

The Brier Score has been obtained using the brier_score_loss function from the Scikit
Learn metrics library. The probabilities are calculated using the classifier method pre-
dict_proba. The score is computed from the true labels and the probabilities of the
positive class for each label. It is interpreted as follows. The lower the Brier score, the
better the calibration performance.

Data Preparation

Unlike for the training of the model, as described in Section 3.3.2, calibration data is
not framed and labelled manually. It is done by automatically dividing the recorded
signals into frames of equal size. The frame size is determined by the frame duration
and the sampling frequency. In this thesis a frame duration of 3 B, the typical duration
of nocturnal teeth grinding or clenching, is chosen. In order to increase the number of
samples, the windows are overlapped. Each half of the window appears in two frames.

In this work a binary classification problem has been defined. The positive class con-
tains the movements ’grinding’ and ’clenching’, the negative one contains the other
movements. 100 frames, or precisely the features extracted from them, were utilized
to fit the calibrated classifier. The remaining 60 and 70 samples for Subject 1 and
Subject 2 respectively, were used to evaluate the calibration using the Brier Score.
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4. Results

In Chapter 3 several experiments were conducted to investigate the defined research
questions. The experiments have been divided into three categories, each with dif-
ferent objectives. First, pre-analysis has been done to evaluate whether the different
movements were generally distinguishable. Second, the performance of the machine
learning algorithms SVM, Random Forest and Logistic Regression were examined.
Lastly, classifier calibration using Platt Scaling and Isotonic Regression was tested on
two further subjects. The obtained results are presented in this chapter.

4.1. Experiment 1: Data Pre-Analysis

Pre-Analysis consisted of a visual analysis of early recordings on the reference subject
and the execution of a cluster analysis using DBSCAN. The following findings were
made.

4.1.1. Visual Analysis of the Recordings

Figure 4.1 shows an excerpt from an EMG signal used to identify similarities and differ-
ences between the jaw movements. By roughly examining the excerpt, we can detect
one movement that particularly strikes out, which is the red curve. It depicts the unpro-
cessed signal for ’clenching’. The graph shows, that clenching has the highest intensity
among all jaw movements. Contrary to the others, it is an aperiodic signal. The pulse
width is around 1000 samples, which corresponds approximately to 1 B.
The blue curve shows the signal recorded while ’resting’. This is considered the

reference signal for noise. There is a low amplitude showing that ECG artifacts are
not a concern for the task at hand. Moreover, the amplitude is almost always lower
than the other amplitudes, showing that the recorded signals are valid, i. e. that data
is being recorded.

At first glance, the other signals have similar patterns. They are periodic and have
about the same amplitudes. However, they have different periods. While ’chewing’
and ’grinding’ appear to be square signals, ’yawning’ appears to be of sine-shape. The
similarity between chewing and grinding can be explained by the similar execution of
both jaw movements.
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Figure 4.1: Excerpt from the EMG Signal

4.1.2. Cluster Analysis

The classification of a disease is usually a binary classification problem – whether it
is positive (e. g. bruxism) or not (e. g. no bruxism). In order to check whether this
classification type was also applicable for the data set as presented in this thesis,
clustering on the pre-processed data with the DBSCAN algorithm has been performed.
The resulting classes were compared to the real labels. Figure 4.2 shows the results
of the DBSCAN with a maximum distance between two samples of 4?B = 0.4 and
the minimum number of samples required for a point to be considered a core point of
<8=_B0<?;4B = 8 (in the left) and the true labels on the right side. It can be seen that
the samples of class 0 (grinding and clenching) are separable from those of class 1
containing chewing, yawning and resting. However, as expected, there is a small error
when compared to the actual labels.

4.2. Experiment 2: Signal Processing and Data Analysis

This section contains a presentation of the results obtained from the data analysis
made on the reference subject. In order to classify the quantitative results qualitatively,
the data structure is first introduced. Moreover, the significant patterns of the EMG
signals for each movement are analysed. Finally, the performances of the classifiers
are presented and compared to each other.

4.2.1. Data Set

Table 4.1 shows the structure of the data used for training and testing of the different
classifiers. Data has been acquired during 7 recording sessions, resulting in a data
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Figure 4.2: True labels compared with labels obtained from DBSCAN on PCA-reduced data

set of shape (384394, 5). Where the former is the number of samples and the latter
corresponds to the number of movements. After framing and labelling according to
the method described in the section on a) Data Preprocessing, 88 frames – 44 for
each label – are obtained. Each frame is of length 3144, representing a signal of
approximately 3 B. Training and testing is done with a 33% split. Hence, 58 frames
are used for training and 30 for testing, respectively.

Number of Recordings 7
Train, Test Split Ratio 3:1
Shape of Training Data (58, 3144)
Shape of Testing Data (30, 3144)
Frame Duration [s] 3
Frame Duration [samples] 3144
Number of Frames 88
Labels 0: resting, chewing, yawning 1: grinding, clenching

Table 4.1.: Data Set Structure

4.2.2. EMG Signals

EMG signals of five different jaw movements have been recorded in the course of this
work. The following figures show the unprocessed EMG signals, that are rectified, am-
plified and integrated by the sensor (see Section 3.1.1). The frames of the respective
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movements are depicted in Figure 4.1, illustrating the significant trends of each signal
type.

(a) Grinding (b) Clenching

(c) Yawning (d) Chewing

(e) Resting

Figure 4.3: Excerpt from EMG Signal Recordings of each Jaw Movement.

Different patterns can be perceived from visual analysis. The depicted signal for
grinding lasts for approximately 3000 B0<?;4B. It has three consecutive peaks at
172.5:, 172.8: and 173.2: with amplitudes of about 400, 450 and 360 respectively.
The maximal achievable amplitude is 1023, which is related to the output range of the
Arduino (0 . . . 1023). The area under the curve (AUC) is greater than for clenching
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and resting, but smaller than for yawning and chewing. Moreover, its main peak has
the largest width (1500 B0<?;4B) amongst all.

Clenching has a less distinctive peak. It starts with a parabolic section with an
amplitude of 180 and increases to almost 500 after approximately 1000 B0<?;4B or
1 B. It then decreases roughly linearly. The width of the peak is about 800 B0<?;4B.
The highest amplitude, with 1000, is achieved through yawning. This value remains

constant for circa 1 B, making the AUC for yawning the highest. The peak’s width is
similar to clenching. However, the actual signal or movement does not last for 3 B but
rather for 1.6 B.

Chewing has the smallest width of approximately 300 B0<?;4B. It reaches an am-
plitude of 800.
The resting signal depicted in this frame is very noisy. The amplitude ranges from

20 to 210. The AUC of this signal is nevertheless the smallest.

Signal Amplitudes

The figures described above where only representative frames. However, there are
some deviations in the pattern of each signal type. The signals primarily differ in their
amplitude values. Table 4.2 summarizes the maximum amplitude +̂<0G , the average
maximum amplitude per frame +̂ and the mean amplitude overall + , for each move-
ment. The amplitudes are described in +>;CB. Conversion is done using the following
equation, where 5+ is the operation voltage and B�"� the value obtained by the
sensor. The division with 1024 is relates to the output range of the Arduino.

+ = B�"� · 5+

1024
(4.1)

Jaw Movement +̂<0G [+] +̂ [+] + [+]
Grinding 4.228516 2.067755 0.874313

Clenching 3.076172 2.256284 1.025473

Chewing 3.789062 1.769456 0.442737

Yawning 4.799805 2.508042 0.795651

Resting 1.005859 0.483398 0.170472

Table 4.2.: Maximum and average amplitude of EMG signal for each jaw movement.

The table confirms that the highest peak with 4.8+ is achieved yawning. It is
closely followed by grinding (4.23+ ). Chewing presents the third highest amplitude
with 3.79+ . Clenching is around 3+ . The resting signal achieves a maximum of 1+ .
The average peak values however change the ranking to yawning, clenching, grind-
ing, chewing and resting, in descending order. The mean values per signal are even
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lower for the movements labelled as ’0’ (no bruxism) as they contain more noise. This
is due to the fact, that the frame size was chosen according to the duration of teeth
grinding and clenching, which does not correspond to the signal length of yawning and
chewing.

4.2.3. Logistic Regression

Parameters

As previously mentioned, different feature sets for training were tried. The model was
trained with the raw data obtained from the sensor – in the following referred to asNone
–, the different time-domain features presented in Section 2.2.1, their combinations and
the DWT coefficients retrieved according to Section 3.3.2 b). The highest score during
training was achieved using a classifier with the parameters listed below. The results
obtained while testing the trained models are summarized in Table 4.3.

• Regularization parameter � = 0.1

• Balanced class weights

• Maximum 10000 iteration steps allowing the classifier to converge

• ℓ2 penalty

Performance

Logistic Regression performed on the raw signal provides overall a low performance.
An accuracy of 53.33% and a recall of 58.82% are achieved. The application of
time-domain features slightly increases the accuracy value to 56.67%. The recall
increases to the maximum (100%). The time-frequency domain feature DWT delivers
the worst performance with values between 41.18% (A420;;) and 50% (?A428B8>=).
The accuracy is at 43%. However, performance can be increased applying PCA for
dimensionality reduction. For =_2><?>=4=CB = 5, 10, 15 an accuracy of 80% and a
recall value of 100% was reached.

4.2.4. Support Vector Machine

Parameters

Highest training score with Support Vector Classification was achieved with the follow-
ing parameters.

• The strength of regularization was set to � = 0.1.

• Classes are considered to be equally important, class weights are balanced.
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PCA Training Score Test Score
Feature(s) N Accuracy [%] Accuracy [%] Precision [%] Recall [%] F1 [%] ROC-AUC [%]
None – 86.21 53.33 58.82 58.82 58.82 52.49

None 5 77.59 80 73.91 100 85 76.92

None 10 77.59 80 73.91 100 85 76.92

None 15 77.59 80 73.91 100 85 76.92

IEMG – 46.55 56.67 56.67 100 72.34 50

SSI – 46.55 56.67 56.67 100 72.34 50

Var – 46.55 56.67 56.67 100 72.34 50

RMS – 46.55 56.67 56.67 100 72.34 50

WL – 46.55 56.67 56.67 100 72.34 50

LOG – 46.55 56.67 56.67 100 72.34 50

SSC – 46.55 56.67 56.67 100 72.34 50

RMS, SSC, WL, Var – 46.55 56.67 56.67 100 72.34 50

IEMG, SSI, Var,
RMS, WL, LOG – 46.55 56.67 56.67 100 72.34 50

IEMG, SSI, Var,
RMS, WL, WAMP,
LOG, SSC

– 46.55 56.67 56.67 100 72.34 50

DWT – 89.66 43 50 41.18 45.16 43.37

Table 4.3.: Test scores of the Logistic Regression model obtained for different feature sets.

• A polynomial kernel function with 346A44 = 4 was chosen.

• The best suitable kernel coefficient was W = 0.01.

Table 4.4 summarizes the testing results received with this classifier.

Performance

Classification with SVM gives the following results. The model trained with the unpro-
cessed data provides an accuracy of 80% and a recall and precision of 82.35%, which
means that the probability of correctly classifying a signal is at 82.35%. The results
are the same for DWT. Dimensionality reduction with PCA reduces the test scores to
022DA02H = ?A428B8>= = 56.67%. Recall however increases to 100%, indicating
that all positive samples are labelled as such (�# = 0). The same scores are gotten
from IEMG, SSI, the combination of IEMG, SSI, Var, RMS, WL, LOG and the com-
bination of all time-domain features. The best test score is achieved training a SVM
model with the Waveform Length representing the complexity of the waveform in each
segment.
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PCA Training Score Test Score
Feature(s) N Accuracy [%] Accuracy [%] Precision [%] Recall [%] F1 [%] ROC-AUC [%]
None – 100 80 82.35 82.35 82.35 79.63

None 5 46.55 56.67 56.67 100 72.34 50

None 10 46.55 56.67 56.67 100 72.34 50

None 15 46.55 56.67 56.67 100 72.34 50

IEMG – 46.55 56.67 56.67 100 72.34 50

SSI – 46.55 56.67 56.67 100 72.34 50

Var – 37.93 53.33 57.14 70.59 63.16 50.69

RMS – 70.69 66.67 73.33 64.71 68.75 66.97

WL – 89.66 83.33 80 94.12 86.49 81.67

LOG – 36.21 33.33 42.86 52.94 47.37 30.32

SSC – 74.14 80 92.31 70.59 80 81.45

RMS, SSC, WL, Var – 77.59 43.33 50 11.76 48.19 78.51

IEMG, SSI, Var,
RMS, WL, LOG – 46.55 56.67 56.67 100 72.34 50

IEMG, SSI, Var,
RMS, WL, WAMP,
LOG, SSC

– 46.55 56.67 56.67 100 72.34 50

DWT – 100 80 82.35 82.35 82.35 79.64

Table 4.4.: Test scores of the SVM model obtained for different feature sets.

4.2.5. Random Forest Classifier

Parameters

Hyperparameter Tuning with GridSearchCV resulted in a classifier with the following
parameters. The test scores obtained for the Random Forest Classifier can be re-
trieved from Table 4.6.

• Classes are considered equal, class weights are balanced.

• Splitting is done using the Gini index criterion.

• Minimum 5 samples are required at the leaf node.

• Minimum 13 samples are required for splitting.

• 5 trees are contained in the forest.

Feature Importance

The impurity based feature importances extracted from the correspondant attribute
of the scikit-learn Random Forest Classifier are illustrated in Table 4.5. The highest
impact is achieved by theWL (33.83%), followed by IEMGwith 31.99% and RMS with
21.62%. Together they make up 87.44%. The LOG detector adds 12.36% to obtain
almost 100%. The remaining features are negligable.
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Feature IEMG SSI Var RMS WL LOG SSC WAMP
Feature Importance [%] 31.99 0.21 0 21.62 33.83 12.36 0 0

Table 4.5.: The impurity based feature importances

Performance

PCA Training Score Test Score
Feature(s) N Accuracy [%] Accuracy [%] Precision [%] Recall [%] F1 [%] ROC-AUC [%]
None – 89.66 80 86.67 76.47 81.25 80.54

None 5 82.76 76.67 72.73 94.12 82.05 73.98

None 10 93.10 83.33 80.00 94.12 86.49 81.67

None 15 84.48 63.33 66.67 70.59 68.57 62.22

IEMG – 82.76 80 76.19 94.12 84.21 77.83

SSI – 82.76 80 76.19 94.12 84.21 77.83

Var – 82.76 80 76.19 94.12 84.21 77.83

RMS – 82.76 80 76.19 94.12 84.21 77.83

WL – 91.38 83.33 87.50 82.35 84.85 83.48

LOG – 81.03 83.33 77.27 100 80.77 80.77

SSC – 81.03 86.67 93.33 82.35 87.50 87.33

RMS, SSC, WL, Var – 93.10 83.33 87.50 82.35 84.84 83.48

IEMG, SSI, Var,
RMS, WL, LOG – 89.66 76.67 75.00 88.24 81.08 74.89

IEMG, SSI, Var,
RMS, WL, WAMP,
LOG, SSC

– 93.10 86.67 84.21 94.12 88.89 85.52

DWT – 86.21 76.67 91.67 64.71 75.86 78.51

Table 4.6.: Test scores of the Random Forest model obtained for different feature sets.

The best accuracy score is firstly obtained with the Random Forest Classifier is
86.67%, which was achieved once using a combination of all time-domain features,
further called )��_�;;, and secondly using the EMG signal frequency feature SSC.
The combined feature set, however, provides a better recall score with 94.12% com-
pared to 82.35% for SSC. Hence, its probability to correctly classify grinding and
clenching is higher. The same recall score is received for IEMG, SSI, Var and RMS
features alone. However, with a lower accuracy, of 80%. The utilization of PCA for
dimensionality reduction of the unprocessed data to a set of 10 components, yielded
a performance of 83.33% accuracy and 94.12% precision.

4.2.6. Summary Classification Performances

The feature sets that returned the three best test scores for each classifier are sum-
marized in Table 4.7. Their confusion matrices are depicted in Figure 4.4-4.6.
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Highest Accuracy Score
Classifier #1 #2 #3

Logisitic Regression %��5 : 80% %��10 : 80% %��15 : 80%

Support Vector Machine ,! : 83.33% #>=4 : 82.35% �,) : 82.35%

Random Forest TDF_All : 86.67% ((� : 86.67% %��10 : 83.33%

Table 4.7.: Summary of the best classifiers.

The table shows that the best classification performance with Logistic Regression
was achieved using PCA. Figure 4.4 indicates that all samples for grinding and clench-
ing were classified correctly. However, 6 samples of �;0BB 1 are falsely predicted as
�;0BB 0. 53.8%. which corresponds to 7 correctly classified samples.

Principal Component Analysis also provided good results for Random Forest. The
third best Random Forest classifier has been in fact modelled with PCA-reduced data.
Out of 17 samples 16 have been correctly classified as grinding or clenching. 10 out
of 13 have been rightly predicted as another movement. Although providing the same
accuracy score, the second best classifier, obtained less )% = 14, but more )# = 12
(compare to Figure 4.6). Hence, SSC focusses more on the other movements and is
therefore less suitable for this thesis’ objective.

Figure 4.5 shows that classification with Support Vector Machine is best using the
Waveform Length. 94.12% of the positive samples have been correctly predicted.
However, 9 out of 13 negative samples were true negatives. 4 have been falsely clas-
sified as samples of �;0BB 1. For the second best classifier using the time-frequency
domain feature DWT, the following values for )%, �#, �%, and )# are obtained.
)% = 14, �# = 3, �% = 3, and )# = 10, respectively. The numbers are the same
for the third best model trained with unprocessed data.

The best classifier overall, which will be used for the conception of the biofeedback
system prototype introduced in Section 4.4, has been achieved combining all the time-
domain features presented in Section 2.2.1 and with Random Forest as classification
technique.

predicted classes
GC (1) R (0)

GC (1) 17 0
R (0) 6 7

Figure 4.4: Confusion Matrices of the feature set with the highest accuracy for Logistic Re-
gression.
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predicted classes
GC (1) R (0)

GC (1) 16 1
R (0) 4 9

(a) Best performance (WL)

predicted classes
GC (1) R (0)

GC (1) 14 3
R (0) 3 10

(b) 2nd best performance (DWT)

predicted classes
GC (1) R (0)

GC (1) 14 3
R (0) 3 10

(c) 3rd best performance (None)

Figure 4.5: Confusion Matrices of the three best feature sets with the highest accuracy for
SVM.

predicted classes
GC (1) R (0)

GC (1) 16 1
R (0) 3 10

(a) Best performance (TDF_All)

predicted classes
GC (1) R (0)

GC (1) 14 3
R (0) 1 12

(b) 2nd best performance (SSC)

predicted classes
GC (1) R (0)

GC (1) 16 1
R (0) 4 9

(c) 3rd best performance
(PCA_10)

Figure 4.6: Confusion Matrices of the three best feature sets with the highest accuracy for
Random Forest.

4.3. Experiment 3: Calibration

In the previous section different classifiers trained on data acquired from the reference
subject have been compared to each other. In order to test the generalizability of
the classifier graded as best, calibration was tested on two additional subjects not
represented in the training data set. The results are presented below.

4.3.1. Data Set

Calibration was tested on two subjects. The initial DataFrames were of shape
(54518, 5) and (52921, 5) for Subject 1 and Subject 2, respectively. After framing
170 and 160 frames with 3144 samples were obtained. This corresponds to a 3 B
excerpt. Table 4.8 illustrates the structure of the data used.

Subject 1 Subject 2
Number of Frames 170 160
Shape of DataFrame (54518, 5) (52921, 5)
Frame Duration [s] 3
Number of Samples per Frame 3144

Table 4.8.: Data Structure per Subject
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4.3.2. EMG-Signals

The scaled distributions per movement of the extracted features for each subject are
illustrated in Figure 4.7. Due to the lack of space, only the statistics for grinding, clench-
ing and chewing are depicted, the distributions of the other movements are attached
in Appendix A.

(a) Subject 1 - Grinding (b) Subject 1 - Clenching (c) Subject 1 - Chewing

(d) Subject 2 - Grinding (e) Subject 2 - Clenching (f) Subject 2 - Chewing

(g) Subject T - Grinding (h) Subject T - Clenching (i) Subject T - Chewing

Figure 4.7: Distribution of the extracted features for grinding, clenching and chewing deter-
mined for all subjects.

The figure shows that the lowest variance is achieved by WAMP for all movements.
For grinding SSI and VAR also yield low deviations. The subplots 4.7d and 4.7g show
overall a similar distribution for Subject 2 and the reference Subject T. It can be retrieved
from 4.7e and 4.7h that the features have a large value range. This speaks for a
heterogeneous data set. The ranges are smaller for Subject 1, which could explain
the low performance of the model without calibration presented in Section 4.3.3. The
subplots on chewing show that chewing differs for all the subjects. The results are
similar for the attached figures.
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4.3.3. Performance Results

Table 4.9 shows the results obtained when classifying the data presented in section
4.3.1 with and without calibration.

Subject 1 Subject 2
Accuracy [%] Brier Score [%] Accuracy [%] Brier Score [%]

Without calibration 60.59 37.42 83.13 11.13
Platt Scaling 61.43 23.06 91.67 7.10
Isotonic Regression 70 23.47 93.33 6.08

Table 4.9.: Performance of classification with and without calibration for new observations
obtained from subjects, that were not represented in the training set of the classifier.

For classification the Random Forest classifier with the feature set consisting of the
eight time-domain features IEMG, SSI, VAR, RMS, WL, LOG, SSC and WAMP has
been chosen. The choice was made considering the classification performances pre-
sented in Section 4.2. It has been empirically shown that this combination yield best
results over all combinations. The table shows that for each subject the performance
of the classifier was improved using calibration. Subject 1, which showed different
patterns compared to Subject 2 and Subject T (the subject on which the classifier
has been trained), see Section 4.3.2 and 4.2.2, achieves overall a low performance.
Without calibration, accuracy is at 022DA02H1 = 60.59%. The Brier score obtained is
�( = 37.42%, which is relatively high and can be interpreted as low performant. Platt
Scaling, however, slightly increases the accuracy (Δ = 0.84%). The BS decreased
to 23.06%, corresponding to an improvement of around Δ = −14.36%. The Isotonic
Regression had a greater impact on the accuracy, which was increased to 70%.
The improvement w.r.t. the BS was about the same magnitude as for Platt Scaling.
However, it is a bit higher and thus less performant.

The uncalibrated random forest was relatively suitable for the samples recorded from
Subject 2. The prediction score amounted to 022DA02H = 83.13%. With 11.13%, the
Brier score was also significantly lower than for Subject 1. Platt Scaling improved both
accuracy (91, 67%) and BS (7.10%). The best results were also obtained applying
Isotonic Regression. An improvement of Δ = +10.2% for accuracy and Δ = −5.05%
for BS respectively, compared to the classifier without calibration, has been achieved.
The trend is, that Isotonic Regression is better suitable for the classification with a
Random Forest Classifier.

Reliability of the Calibrated Classifiers

The previous results become also apparent when comparing the "reliability" curves of
the calibrated classifiers, depicted in Figure 4.8.
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(a) Subject 1 (b) Subject 2

Figure 4.8: Reliability curves of the classifier tested with data from Subject 1 and Subject 2

A binary classifier is considered as well calibrated or "reliable", if amongst the sam-
ples with a predicted probability of ?, approximately ? ·100% of the samples belong to
the positive class 1. This corresponds to the linear curve in the illustration. Figure 4.8a
shows that the classifier without calibration is only reliable for probabilities ? ≥ 0.7.
Using Platt Scaling the predicted probabilities are closer to the fraction of positives,
compared to the case without calibration, for probabilites of 0 ≤ ? ≤ 0.6. Isotonic
Regression yields similar results. Between 0.05 ≤ ? ≤ 0.2 the calibration is however
worse than the uncalibrated case.
FromFigure 2.3b we can see, that the classifier without calibration is better calibrated

for Subject 2 than the one for Subject 1. Platt Scaling and Isotonic Regression improve
the reliability of the classifier, especially around 0 ≤ ? ≤ 0.3 for Isotonic Regression
and 0 ≤ ? ≤ 0.4 for Isotonic Regression respectively. From 0.4 ≤ ? ≤ 0.7 Isotonic
Regression outperforms the other cases. Starting from ? = 0.7 Platt Scaling is again
more reliable than the case without calibration. To conclude, the figure has shown, that
calibration can be improved using the standard calibration techniques Platt Scaling and
Isotonic Regression. However, none of them was able to calibrate the classifier such
that a nearly linear curve was achieved.

1https://scikit-learn.org/stable/auto_examples/calibration/plot_com
pare_calibration.html#sphx-glr-auto-examples-calibration-plot-com
pare-calibration-py
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4.4. Conception of an EMG-Biofeedback System

From above results all necessary components for the development of a biofeedback
system could be retrieved. As stated in the beginning of Chapter 2, the system must
contain the following elements.

1. Measurement Device

A measurement device is needed to extract the biosignal from the subject. In
this work the MyoWare Muscle Sensor (AT-04-001) has been employed. The
sensor provides pre-processed data. The signal that can be retrieved from it is
already amplified, rectified and integrated.

2. Data Processing Unit

The data processing unit focuses on the transformation of the data into a suit-
able format for the controller. Incoming data is stored in buffers of size 3144
corresponding to signals of approx. 3 B with a sampling frequency of 1048�I.
The IEMG, SSI, Var, RMS,WL, LOG, SSC and theWAMP features are extracted
from these buffers. This feature set is fed into the random forest model trained
in the course of this work. For generalizability the classifier is calibrated using
Isotonic Regression.

3. Controller

The calibrated classifier is the core component of the controller. It returns predic-
tions on the incoming data and sends a signal to the actuator signalling whether
teeth grinding or clenching has been detected or not.

4. Actuator

A vibration motor similar to the ones implemented in smartphones can be used
for the feedback. On rising edge a pulse is send until a signal, indicating that
the subject stopped clenching or grinding his or her teeth, is received.
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5. Discussion

As stated in the Introduction chapter, bruxism, which is defined as excessive teeth
grinding and clenching, is a sleeping disorder that can bring several health risks. In the
course of this work different experiments were conducted to retrieve suitable method-
ologies for the detection of teeth grinding and clenching. In this chapter the obtained
results presented in Chapter 4 are discussed with regard to the research questions
formulated at the beginning of this thesis.

5.1. Research Question 1: Dependency between Jaw
Muscle Activity and EMG Sensor Data

The first question to be discussed is whether there exists a dependency between the
jaw muscle activity and the data obtained from the EMG sensor. Early experiments
have shown that differences in the signal shape and amplitude can be determined
visually when executing different movements. Further examinations have confirmed
this hypothesis. However, the methodology applied for data acquisition presents some
weaknesses.

When trying to train the classifiers, it was noticed that automatic extraction of pat-
terns was slightly more difficult. The visual analysis of the training data set showed
that the recorded signals contained longer episodes of noise, which made it harder to
distinguish the movements between each other. To counteract this problem instead
of automatically generating the frames and labels, framing and labelling were done
manually by visual inspection. This was however only possible, because the models
to be trained where supervised learning algorithms. Whether this problem also arises
for unsupervised techniques was not investigated due to the small amount of data.

Although the problem only occurred for one of the three subjects, long term mea-
sures have to be considered. The data collection could be for example improved using
electrode cables employed in medicine for more accurate signals. The use of shielded
data cables instead of wires for data transmission could also reduce the noise level.
On the software side, the recording length could be modified as follows. The time for
one sample to be recorded and the pause between two recordings could be increased
to 5 B and 10 B respectively. The samples should be saved in a DataFrame format,
where the row corresponds to one signal sample or frame. Each movement should be
stored in an individual DataFrame. An automatic script could then modify the samples
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cutting out the noise, taking into consideration that frame size should be 3144 for each
frame. These measures are for instance not only important when collecting data for a
larger study, but also for the collection of the calibration data set.

To sum up, one can conclude that there is in fact a dependency between the activity
of the temporalis muscle, which is the jaw muscle investigated in this thesis, and the
amplitude values received from the EMG sensor data. Different patterns were detected
for the varying movements. Hence, Surface Electromyography is a suitable technique
for the measurement of muscle activity, with the objective of detection of teeth grinding
and clenching. However, it should be taken into account that results are hypothetically
less accurate than with invasive EMG.

5.2. Research Question 2: Comparison of Machine
Learning Techniques

The second research question deals with the determination of the best suitable ma-
chine learning method for the detection of teeth grinding and clenching. Relying on
applied algorithms for the detection of other disorders in medicine, three methods
were chosen for evaluation of their applicability for the detection of teeth grinding and
clenching. Several papers have shown that Support Vector Machines(SVM) are a
great basis to start from. SVM is a classification technique that aims to maximize the
margin between the class borders and the samples closest to it. The method accepts
linear and non-linear borders. Non-linear SVM are for example the Gaussian radial
basis function (RBF), the sigmoid function or polynomial functions. They differ in the
shape of their class borders. Parameter Tuning has shown that a polynomial function
of 4Cℎ degree was best suited for the discrimination of both classes (1: teeth grinding
and clenching, 0: other movements). The training of a SVM model however is very
cost intensive, especially with a polynomial of 4 and yields lower performance than its
contractor Random Forest.

Random Forest is a classification technique based on independent and random de-
cision trees. The risk of overfitting is reduced by the fact that new classes are predicted
following amajority vote of the whole forest and is minimal in case of independent trees,
which is probably the reason why this technique worked best for the thesis’ use case. It
has been found that the classifiers are most performant when using feature extraction.
Hence a model with a (1, 8) feature set consisting of IEMG, SSI, Var, RMS, WL, LOG,
SSC and WAMP has been used. The time-domain features provided better results
than its time-frequency opponent DWT. The utilization of the uncompressed signals
of size (1, 3144) yielded acceptable results for SVM and Random Forest. They were
however outperformed by the model with the reduced feature set.
Surprisingly, the third classification technique Logistic Regression, that was chosen
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to evaluate the performance of a linear classification method, has shown its best result
using PCA for dimensionality reduction. The accuracy changed from 53.33% to 80%.
Nevertheless, the performance was lower than Random Forest.

To conclude, differences between the performances of the classifier were identified.
A model achieving 86.67% of accuracy and 94.12% of recall is obtained. However,
it is important to take into consideration that the manual labelling of the training set
could bring biased results. The small size of the training data set might also affect the
results.

5.3. Research Question 3: Impact of Classifier Calibration

The last research question covers the impact of model calibration with regard to its
generalizability. The aim was to check, whether calibration was necessary regarding
the fact that above mentioned algorithms were trained using one subject only and if
it could improve performance. The study has shown that calibration of classifiers is
indeed necessary. This is mainly due to variants of the EMG signal for each person
and circumstance. Although the trained model was also relatively well suitable for one
subject 022DA02H = 83.13% and �( = 11.13%, it performed poorly on the other
(022DA02H = 60.59% �( = 37.42%).

For calibration the standard methods Platt Scaling and Isotonic Regression were
tested. The former, which is also known as sigmoid scaling, provided improvements
for both subjects. The BS of the more diverse subject decreased from 37.42% to
23.06% which corresponds to a better calibration. However, the accuracy did not
show much improvement (Δ < 1). Better results were obtained using Isotonic Re-
gression. With this technique the accuracy in the data set for Subject 1 increased
from 60.59% to 70%. The calibration score showed also an improvement compared
to the case without calibration. The accuracy on the data of Subject 2 could even be
increased to 93.33% without neglecting the BS which reached amongst all options
the lowest value of 6.08%.

The trend is that Isotonic Regression works best for the calibration of a random
forest for teeth grinding and clenching detection. Compared to Platt Scaling it does
not only focus on the enhancement of the calibration as measured by the Brier score,
but also significantly improves the classification accuracy. This trend could however be
misleading as calibration was only tested on 2 subjects. Hence, it should be evaluated
on more persons. The results obtained from the reliability curves show that none of
the techniques was able to achieve a nearly linear curve and thus a well calibrated
model. Hence, calibration might be enhanced using other methods. The applicability
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of the calibration methods of Dankowski and Ziegler [4] and/or Boström [1], presented
in Section 2.7.3, might be interesting to investigate in the future.
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6. Conclusion and Future Work

The objective of this thesis was the examination of possible techniques for the detec-
tion of bruxism using sEMG. Regarding the fact, that the term defines excessive teeth
grinding and clenching, the focus was set on the detection of the common execution
of these movements, to avoid health consequences.

The study has been conducted using the MyoWare Muscle Sensor (AT-04-001)
with three silver-chloride electrodes. Experiments have shown that better signals
were obtained when placing two electrodes on the temporalis muscle, situated on the
temple, and the third one, the reference electrode, on the forehead. Although, visual
inspection has revealed that all movements apart from resting showed similarities,
slight differences in amplitude, period and pulse width could be found. A cluster
analysis of the PCA reduced data with DBSCAN however showed that the two classes
bruxism and no bruxism are distinguishable.

In order to evaluate, which machine learning algorithm is best suitable for the detec-
tion of teeth grinding and clenching, Logistic Regression, Support Vector Machine and
Random Forest classifiers with different inputs were trained and tested. The data has
been acquired from one subject on different days and at different times. Significant sig-
nals of the recordings have been manually detected and labelled. Varying patterns for
each movement have been recognized visually. Statistical confirmation has been ob-
tained analyzing the signal amplitudes. The highest amplitudes were found in yawning,
grinding, chewing and clenching, in descending order. The average maximum peak
for each movement showed that yawning, clenching and grinding showed the highest
amplitudes.

Logistic Regression achieved best performance in terms of accuracy using PCA-
reduced data. The dimensionality has been reduced to 5, 10 and15 principal compo-
nents, all yielding an accuracy of 80%. With SVM slightly better results were obtained.
The highest score with 83.33% was achieved using the accumulated waveform length
above a time segment (WL) as input. Even better results were perceived with the Ran-
dom Forest algorithm. Most of the tested inputs provided accuracy values higher than
75%. The best score of 86.67% was obtained using a 1 × 8 feature set composed of
the time domain features IEMG, SSI, Var, RMS, WL, WAMP, LOG and SSC.

The generalizability of the Random Forest model graded as best was evaluated
using data acquired from two further subjects, that was not represented in the training
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set of the classifier. Without calibration the model was able to classify the samples
from the first subject with an accuracy of 60.59%. For the second subject the value
was at 83.13%. Calibration using Platt Scaling improved the Brier score. It has nev-
ertheless been outperformed by Isotonic Regression, which additionally optimized the
accuracy. However, calibration might be enhanced using other calibration techniques
specialized in the calibration of random forests. To sum up, the detection of teeth
grinding and clenching using surface EMG works best using a calibrated Random For-
est classifier with 5 trees and the Gini index as splitting criterion. Isotonic Regression
showed promising results. However, it has to be evaluated on further subjects to get
solid results.

This thesis has shown that a relation between jaw movement and EMG data exists
and that this relation can be used to detect teeth grinding and clenching. Owing to
the the inability to conduct a study due to the pandemic an univariate classification
problem was faced. A study with a larger set of features (multivariate classification
problem) could be of interest to find additional information and relations between teeth
grinding and clenching and other variables such as gender, age or even a subject’s
health condition. Moreover, the study should aim to have a larger number of subjects.
The subjects should be chosen such that there can be a variety of study variables.
To maximize the variance the subjects should be recorded twice with a certain time
difference. This may lead to a more generalized detector and to more accurate results.
Another point of interest is the examination of the effect of biofeedback. This will re-
quire to develop the concepted biofeedback system into a wearable device, which will
ease the EMG recording at home. The data acquired by this can additionally be used
to correct and update previous detectors. The study should be conducted in close co-
operation with specialists in the field of sleep bruxism to assure that the results are in
coherence with their knowledge.
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A. Scaled Distributions per Movement

Depicted are the scaled distributions for the remaining movements (yawning and rest-
ing) for each subject.

(a) Subject 1 - Yawning (b) Subject 1 - Resting

(c) Subject 2 - Yawning (d) Subject 2 - Resting
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(e) Subject T - Yawning (f) Subject T - Resting

Figure A.0: Distribution of the extracted features for yawning and resting determined for all
subjects.
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