
1

Approximation of Weight Matrices using
Hierarchical Matrices

Till Hülder
Chair of Data Processing, Technical University of Munich

till.huelder@tum.de

Abstract—Deep neural networks have shown their high perfor-
mance accuracy in many areas such as image and speech recog-
nition. Further they are also associated with high computational
costs. In this paper, the approximation of a weight matrices is
investigated in terms of time and prediction accuracy. Hierar-
chical matrices (H-matrices) are used for the approximation. In
order to find a suitable H-matrix approximation, submatrices
which are approximately low rank must be found in the original
matrix. Various variations in algorithm such as the low-rank
approximation method and the rank were investigated. From
Pre-trained Pytorch models such as ResNet, GoogLeNet and
MobileNetV2 the last layers were extracted and approximated.
The ImageNet dataset was used for testing. For all tested models
it was shown that the time required for a matrix vector operation
is be significantly smaller for an approximated matrix. By using
GoogLeNet with an approximation rank of 30, 43.89 % of the
computing time was saved with a percentage accuracy loss of
5.69 %.

Keywords—Neural Network, Deep Learning, Hierarchical Ma-
trices, Weight Matrices, Compression

I. INTRODUCTION

Over the past few years, machine learning has become a
powerful tool in various application areas such as image and
speech recognition. Since the possibilities of this technology
are promising, many researchers worked on developing better
algorithms [5],[6]. Deep neural networks and overparame-
terised networks have commonly played a major role in this
process, as they are of great use for diverse applications [7],
[8]. As a result of this trend, weight matrices have also become
larger. For computing the output of a layer, the matrix-vector
product between the weight matrix of the layer with the outputs
of the previous layer must be computed. Since a matrix-vector
multiplication of quadratic n × n matrices requires a compu-
tational cost of O(n2) and this is very laborious with large
matrices, solutions are sought to reduce the computational
effort. There are some approaches to tackle this problem.
Among others, weight matrices with low displacement rank
[9] or block-circulant matrices [10] were used to reduce the
computational effort. The concept of approximating matrices
using hierarchical matrices (H-matrices) was introduced by
Hackbusch [11], [12]. This method allows matrix operations
to be performed in O(n log(n)) operation effort with an
approximation error and to reduce the memory space. Due
to these properties, hierarchical matrices have been applied
in some areas such as solving the helmholtz equation [13]
or the numerical analysis of multi-crack large-scale plane

problems [14]. The aim of this method is to divide a matrix
into submatrices and, if possible, to approximate them with
matrices of lower rank. If this is not possible, the submatrix is
further subdivided or, if the submatrices are small enough, the
submatrices are left in full rank. This paper investigates how
far this method is applicable to weight matrices of deep neural
networks. In addition, it will be investigated how the trade-off
between reduction of computational operations versus loss of
accuracy is when using the approximated weight matrix. The
method is tested on known weight matrices from trained neural
networks such as ResNet [1], GoogLeNet [2] or MobileNetV2
[3], which are provided by Torchvision 1.
The paper is organized as follows. First, I give an overview
over the state of the art in literature. The following chapter
presents problems and questions that will be answered in
the course of this paper. The subsequent chapter presents the
approach used to answer the questions. In the final chapters,
the experiments are presented, the results are discussed and a
Conclusion is given.

II. STATE OF THE ART – PREVIOUS WORK

Since large neural networks are used in a wide range of
applications and are often accompanied by a large amount of
data, it is important to work on efficiency in terms of time and
computing capacity. There are several approaches to compress
neural networks such as pruning [15] or quantization [16].
Nevertheless, large neural networks are often used with cor-
respondingly large weight matrices. These matrices should be
represented compactly in order to keep the computational effort
as low as possible. A popular method for the compression of
such matrices is a low-rank approximation. This can be done in
various ways such as singular value decomposition (SVD) [17]
or sparse low-rank factorization [18]. A combination of the
different methods mentioned can also be used. Depending on
the application, different methods come into account and have
different characteristics. Since the use of hierarchical matrices
(H-matrices) in the approximation of weight matrices has not
yet been investigated in detail, this paper will discuss whether
this method is an alternative to the existing methods.

III. RESEARCH QUESTIONS

Since H-matrices can reduce the complexity of matrix
vector multiplication, the question arises to what extent this
method can help to approximate weight matrices of deep

1Torchvision, Software Libary, https://pytorch.org/vision/stable/models.html



2

neural networks and how accurate such approximated weight
matrices are. In the following it will be explored which
methods are available to represent a weight matrix by an
H-matrix and see how these methods work in this specific
case. The Neuronal Network of Pre-trained pytorch models
(ResNet [1], GoogLeNet [2], MobileNetV2 [3]) were used as
weight matrices. From these models, the last dense layer of the
neural network was extracted and used. In addition, it should
be determined how computationally intensive and accurate the
matrix vector multiplication is.

IV. METHODOLOGY

The scope of this paper is approximating weight matrices
with H-matrices. To evaluate the method the accuracy and
computational cost (time) of matrix vector multiplication are
used.

A. Weight Matrix Approximation
The HLIBpro C++ software library2 is used to approximate

the weight matrices. It is free available for academic purposes.
To represent a matrix by an H-matrix, the following main
steps are necessary:

• Clustering
The matrix is to be decomposed into subareas that are
suitable for the approximation. To define sub-areas,
tree structures are used for reasons of efficiency.
The tree structure can be determined by different
methods like the geometrically balanced method or
cardinality balanced method. In this paper the method
TAutoBSPPartStrat, that analyses the coordinates data
and selects an appropriate strategy is used. Separate
cluster trees must be built for rows (T i) and columns
(T j). The leaves of the tree are therefore row or column
index sets. It divid the index sets in a way that the
index set is halved. In addition, it is possible to define
how small the minimum size of a leaf of the cluster
tree can be.

• Blockclustering
During block clustering, the sub matrices are formed
from the columns and row indices. For these sub areas
it is checked whether they can be approximated by a low
rank matrix. For this purpose, the admissibility condition
is introduced:

max(diam(s), diam(t)) ≤ η·dist(s, t) s, t ∈ T j, T i

The method diam() indicates the diameter of a cluster
and dist() the distance between two clusters [11]. The
parameter η determines the structure of the H-matrices.
The more the parameter approaches 0, the smaller
the blocks become. If the admissibility condition is
fulfilled, the matrix can be approximated. If this is not
fulfilled, the block is further subdivided and if the size

2Max Planck Institute for Mathematics in the Sciences (MiS) in Leipzig,
Software Libary for H-matrices, https://www.hlibpro.com/doc/2.9/index.html

of the block is equal to the minimum leaf size, it is
saved completely.

• Matrix Construction
Here a matrix is formed based on the block cluster
tree. Various low-rank approximation methods for the
permissible blocks can be used. For example, singular
value decomposition (SVD) [19], adaptive cross approxi-
mation (ACA) [20] or rank revealing QR-Decomposition
(QR) [21] can be used, as well as variations of these.
It is important to note that each method has its own
characteristics. Additionally, the desired rank of the ap-
proximated matrix must be specified. The specified rank
has a direct influence on how accurately the submatrices
are approximated and how computationally intensive the
further use of the H-matrix is. The higher the rank, the
more accurately the submatrix can be approximated and
the more computationally intensive is the further use of
the matrix. An example illustration of an approximated
matrix with hierarchical structure is depicted in Fig. 1.

Fig. 1. Weight matrix of GoogLeNet [2] approximated by SVD and accu-
racy=0.5 . The green blocks represent the approximated low rank submatrices
and the red blocks represent the non-approximated, full-rank submatrices.
The numbers in the green submatrices indicate the rank of the approximated
submatrix.

B. Analysis of the approximated Matrix
In my experiments, I compared the approximated matrices

with the original matrices in terms of the time needed for
performing a matrix-vector product and the prediction accuracy
of the model in which the matrix was embedded. For the
measurment, 100000 matrix-vector multipilations were per-
formed in the script for different approximation levels of the



3

submatrices and the time was stopped. These measurements
were carried out using different approximation methods (SVD,
ACA, QR) and different weight matrices (ResNet, GoogLeNet,
MobileNetV2). Alternating with the measurements of the H-
matrices vector- Matrix multiplication, the non-approximated
weight matrices were multiplied 100000 times and the time
was measured. This value was used as a comparison value. In
order to produce comparable results, all measurements were
carried out on the same computer (Intel(R) Core(TM) i7-
8550U CPU).
For the accuracy analysis, I embedded the approximatd H-
matrices into the original pre-trained neural network. This
Model was tested using the validation data set of the ImageNet
[4].This process was again repeated out with different weight
matrices (ResNet, GoogLeNet, MobileNetV2), different ap-
proximation methods (SVD, ACA, QR) and various approx-
imations ranks. The error of the original pre-trained neural
network over the same data set was used as a comparison
value for the accuracy.

V. EXPERIMENTS

In order to obtain different parameters for the analysis of the
H-matrix, different low rank approximation algorithms (SVD,
QR, ACA) of the subblocks were considered. These methods
were each measured with the same rank approximation of the
sub-blocks to obtain a comparable result.
The time measurement Figure 2 carried out for matrix vec-
tor multiplications concluded that the SVD method (dotted
green line) is the most time-efficient method, followed by
the QR method (dashed orange line) and the ACA method
(dashdoted blue line). The red line in Figure 2 indicates
the reference and is the multiplication with the same vector
and the unapproximated matrix. Another effect is that the

Fig. 2. Time measurement 100 000 matrix vector mulitplications with
different approximation methods (SVD, QR, ACA) using MobileNetV2. [3]

memory requirements for the matrices become smaller with
the approximation, as illustrated in Figure 3. The SVD- and
QR method can compress the matrix to the same memory size.
The ACA method (dashdoted blue line) provides the smallest
compression. Afer a rank of 70, it has no memory advantages
compared to the non-approximation (red line).

Fig. 3. Storage capacity for different approximation for ResNet [1] and
various approximation methods (SVD, QR, ACA).

A difference between the chosen methods is also visible in
the accuracy analysis using the GoogLeNet Fig.4. In this case
the SVD turns out to be the most accurate method, followed
by the QR method. This behavior was also seen with the other
models (ResNet, MobileNetV2), as shown in Table 1.
In terms of accuracy and time analysis, it can be seen that

Fig. 4. Accuracy measurement using pre-trained neural network GoogLeNet
[2] and various approximation methods (SVD, QR, ACA). The validation
dataset of ImageNet [4] was used.

the SVD performs better than the other methods (QR, ACA) .
The performance of the SVD with different models (ResNet,
GoogLeNet, MobileNetV2) is shown in Table I. The tendency
for lower rank to result in higher time savings and greater
accuracy loss is confirmed here for the various models. it can
also be seen that the time savings and accuracy loss can vary
depending on the model.

VI. DISCUSSION

From the experiment results in Section 5 it can be seen that
an approximation of the weight matrix of a neural network
with an H-matrix can save a significant time in matrix-vector
multiplication. This could be demonstrated in all three weight
matrices used, as shown in Table 1. How much time is saved
depends on the type of low rank approximation of the subma-
trices, the chosen rank of the approximation and the underlying



4

modell rank time saving in % accuracy loss in %
MobileNet V2 30 54,56 % 8,56 %
MobileNet V2 50 37,54 % 4,27 %
MobileNet V2 70 21,64 % 2,55 %

GoogLeNet 30 43,89 % 5,69 %
GoogLeNet 50 26,09 % 2,62 %
GoogLeNet 70 13,72 % 2,19 %

ResNet 30 36,43 % 16,46 %
ResNet 50 19,11 % 7,43 %
ResNet 70 4,02 % 3,85 %

TABLE I. TIME SAVING AND ACCURACY PERFORMANCE OF THE SVD
WITH DIFFERENT MODELS (RESNET [1], GOOGLENET [2],

MOBILENETV2 [3])

matrix. The smaller the low rank approximation chosen, the
more time could be saved. In terms of approximation, the QR
and SVD methods were found to be close in terms of time
savings. SVD proved to be slightly faster. In contrast to the
other methods, the ACA method had a rather choppy curve
showing a tendency to save less time. It can be seen in the Fig.
2 that all three approximation algorithms are very close to each
other up to approximation rank 20 and only then the different
trend of time saving become visible. In general, one can clearly
see that the lower the aproximation rank was chosen, the more
time could be saved.
Similar findings to the time savings can be derived from the
examination of the storage capacitz in Fig. 2. Here, however,
it can be seen that the SVD and QR achieve equal results. As
with the time analysis, the ACA method has a similarly choppy
course and, from a rank of 70, virtually no more advantages
over the non-approximated matrix.
In the accuracy analysis, the low rank approximation method
SVD turned out to be the most accurate of the examined
methods. The second most accurate was the QR method
followed by the ACA method. With all methods it can clearly
be seen that with a lower approximation rank the accuracy
decreases strongly see Fig.4. With a higher approximation rank
the accuracy remains relatively constant and is only slightly
worse than without approximation. Each approximation curve
begins to fall off at a different rank order. The SVD manages to
remain stable for the longest time and provides more accurate
results than QR and ACA methods. This might be due to the
the Eckart-Young-Mirsky theorem [22], which states that the
best possible low rank approximation takes place using SVD.
The results of the time and accuracy analysis show that the
time savings and loss of accuracy are proportional to each
other. The lower the rank of the submatrices, the more time is
saved and the accuracy decreases. This leads to a trade off in
which, depending on the application, one has to decide how
much decrease in the accuracy can be tolerated.
Furthermore, the experiments show that it is difficult to make
general statements. Table I shows that the approximation
results in different amounts of time gain and accuracy loss
depending on the neural network used. This could have to
do with the fact that the size of the weight matrix can vary
depending on the hyperparameter of the neural network.

VII. CONCLUSION

The test results showed that the approximation of hierar-
chical matrices is suitable for approximating weight matrices
of neural networks. It can lead to a reduction of computa-
tional cost. However, accuracy is always decreasing with an
approximation. The gain in computational speed and the loss
in accuracy cannot be expressed in general terms. They vary
depending on the weight matrix. It is therefore important to
take a close look at the application. In the experiments, the
SVD turned out to be the most suitable low rank approximation
of the subblocks. The QR method follows the SVD with a
little performance loss. The low rank approximation method
ACA can only reduce the computational effort in places with
low performance compared to SVD. There is a trade-off
between the time gain and the loss of accuracy. The lower
the approximated rank of the submatrix, the higher the time
gain and the lower the accuracy.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
2014.

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2019.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[5] C. Langlotz, B. Allen, B. Erickson, J. Kalpathy-Cramer, K. Bigelow,
T. Cook, A. Flanders, M. Lungren, D. Mendelson, J. Rudie, G. Wang,
and K. Kandarpa, “A roadmap for foundational research on artificial in-
telligence in medical imaging: From the 2018 nih/rsna/acr/the academy
workshop,” 2019.

[6] Z. Tüske, G. Saon, and B. Kingsbury, “On the limit of english
conversational speech recognition,” 2021.

[7] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine learning practice and the bias variance trade off,” 2019.

[8] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in
overparameterized neural networks, going beyond two layers,” 2020.

[9] L. Zhao, S. Liao, Y. Wang, J. Tang, and B. Yuan, “Theoretical properties
for neural networks with weight matrices of low displacement rank,”
2017.

[10] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan,
“Circnn: Accelerating and compressing deep neural networks using
block-circulantweight matrices,” CoRR, vol. abs/1708.08917, 2017.

[11] W. Hackbusch, Hierarchische Matrizen : Algorithmen und Analysis,
2009.

[12] W. Hackbusch, L. Grasedyck, and S. Börm, “An introduction to hier-
archical matrices,” Mathematica Bohemica, v.127, 229-241 (2002), vol.
127, 2002.

[13] O. Z. Boris Dilba, Otto von Estorff, “Hierarchische matrizen für die
helmholtzgleichung,” DAGA, 2014.

[14] T. Grytsenko and A. Galybin, “Numerical analysis of multi-crack large-
scale plane problems with adaptive cross approximation and hierarchical
matrices,” Engineering Analysis with Boundary Elements, vol. 34, no. 5,
pp. 501–510, 2010.



5

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2016.

[16] J. O’Neill, “An overview of neural network compression,” CoRR, vol.
abs/2006.03669, 2020.

[17] J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition,” in INTERSPEECH,
2013.

[18] S. Swaminathan, D. Garg, R. Kannan, and F. Andres, “Sparse low rank
factorization for deep neural network compression,” Neurocomputing,
vol. 398, pp. 185–196, 2020.

[19] K. Fernando and B. Parlett, “Accurate singular values and differential
qd algorithms,” Numerische Mathematik, vol. 67, pp. 191–229, 1994.

[20] Y. Liu, W. Sid-Lakhdar, E. Rebrova, P. Ghysels, and X. S. Li, “A parallel
hierarchical blocked adaptive cross approximation algorithm,” 2019.

[21] J. J. Dongarra, M. Faverge, T. Hérault, J. Langou, and Y. Robert, “Hi-
erarchical QR factorization algorithms for multi-core cluster systems,”
2011.

[22] G. Golub, A. Hoffman, and G. Stewart, “A generalization of the eckart-
young-mirsky matrix approximation theorem,” Linear Algebra and its
Applications, vol. 88-89, pp. 317–327, 1987.

Till Hülder recieved his Bachelor’s degree in Elec-
trical and Computer Engineering from the Karlsruhe
Institute of Technology (KIT), Germany, in April
2020. He is currently pursing his Master’s degree
in Electrical and Computer Engineering at the Tech-
nical University of Munich (TUM), Germany, with
a specialization in communications engineering and
data science.


