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Abstract

This thesis pays attention to the scenarios where the user data are distributed among
multiple parties (e.g., companies and institutes). Each party possesses a different set
of attributes of the same individuals. The parties aim to collaborate with others to pub-
lish a private joint dataset for better decision-making or data-driven analysis. Motivated
by the challenge of prohibition of illegal collection of private data, this thesis intends
to provide a novel deep-learning-based solution for the privacy-preserving publication
of vertically partitioned data. More specifically, this study proposes a so-called Verti-
cally Distributed General Adversarial Network (VDGAN) framework, which would be
trained jointly among multiple parties and generate synthetic joint data to replace the
integrated real one for data mining tasks. What’s more, two Differential Privacy (DP)
protocols are introduced to the framework to provide strong privacy guarantees. Ex-
tensive experiments are conducted to evaluate the proposed framework in terms of
data utility and privacy preservability with the help of four public datasets with differ-
ent attribute domains. The results present an apparent improvement compared with
the state-of-the-art tree-based models, while some limitations for practical applications
should also be considered.
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1. Introduction

The past decade has seen the rapid development of digitization technologies. "Data"
has become an essential strategical resource like "oil". The big-data-driven analysis
plays a vital role for a wide range of industries to make decisions, detect anomalies,
and power products. Companies and organizations are able to collect a huge amount
of data from their customers. It is common for many users or parties to hold their
personal private data, and the local information can be integrated into a huge database.
In another view, the valuable dataset is distributed among multiple partitions.

According to the characteristics of the joint database, there are two kinds of partition
strategies as shown in Fig. 1.1. In horizontal partition, the local datasets are collected
from different individuals while they share the same attributes, which define categories
and characteristics of the data. An example is that a car manufacturer collected mas-
sive driving trajectory data. The data are recorded by the same types of sensors, while
the samples come from different drivers. In contrast, the vertically partitioned data hold
identical user IDs while the attributes are distributed among local parties. The study in
this thesis aims to focus on the circumstance of vertical partition. It is of great value to
aggregate these attributes together and use the joint database for better data mining
and decision-making performance. For example, a medical researcher wants to study
a potential correlation between travel experiences and certain types of illnesses, so
they need to collect data from hospital and airline companies.

Figure 1.1: Partitioned Data

However, the aggregation of the local databases faces a dilemma. As shown in
Fig. 1.2, the private databases cannot be directly shared with a third-party curator
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1. Introduction

Figure 1.2: Publication of Vertically Distributed Data

due to the potential leakage of sensitive personal information. Moreover, even if each
party can publish its privatized database via some protection techniques, it may break
the cross-attribute correlations and reduce the utility of the joint database. To solve the
above problems, I proposed to use synthetic data for data analysis work instead of real
data. Specifically, I will design an effective generative model in vertically distributed
settings so that the third-party curator can get thousands of synthetic data that preserve
the joint attributes’ statistical distribution and can be utilized for data mining tasks.
However, there are still inevitable risks of leaking sensitive information from the real
data because they have to be involved in the optimization process of the generative
model. So the model should be trained in a safe manner with the help of some privacy
techniques.
So far, very little attention has been paid to a generative model in vertical settings.

Previous studies [28, 40, 41, 49] are almost restricted to the taxonomy- tree model,
which aims at approximating the statistical distribution of the real data directly. The
performances would decline drastically with the increasing dimensions of attributes.
Besides, they suffer from an overload of computation for complicated datasets. So
this thesis intends to investigate a Generative Adversarial Network (GAN) in vertical
settings, which as a deep-learning-based framework would learn the cross-correlations
among the high dimensional attributes automatically, and has achieved outstanding
performance for image synthesis [27, 36].

Differential Privacy (DP), as one of the state-of-the-art privacy-enhancing technolo-

8



1.1. Research Questions

gies, has been widely applied in privacy-preserving data publication. It provides strong
theoretical guarantees against various kinds of attacks. It seeks to limit the influence
of each individual and prevent the model from memorizing the sensitive information of
the input data. The term DP will be implemented in each local party so that its private
data are protected during the collaborated training with others.

The objective of this approach is set out as follows: Using the proposed framework,
the third-party curator can get synthetic data that preserves the distribution and utility
of the vertically partitioned real one as well as does not reveal sensitive information.

1.1. Research Questions

This work focuses on the following issues in light of the background and motivations
above.

• Framework Realization

– How to deploy the GAN model into the vertically distributed settings?

– How to implement DP into the model training process? Can we try multiple
protocols of DP?

• Framework Evaluation

– How to evaluate the synthetic data comprehensively in terms of the similar
utility as the real one and the privacy strength against attackers?

– What are the advantages, limitations, and suggested scenarios of applica-
tion of our framework compared with the state-of-the-art solutions?

1.2. Thesis Contribution

The contributions of this thesis can be summarized as follows:

• I propose Vertically Distributed GAN (VDGAN), a practical generative framework
constructed among multiple local parties and a third-party curator and is able to
publish synthetic data with all local attributes.

• I modify the framework to approaches VDGAN-DPSGD and VDGAN-PATE with
two DP protocols to provide privacy guarantees. DP will be applied locally to
avoid privacy leakages from local model updates.

• I use several public datasets and extensive metrics to evaluate the performance
in both utility and privacy aspects. The results show that the proposed frame-
works outperform in utility for complicated datasets and strike an excellent utility-
privacy balance compared with the published works.
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1. Introduction

1.3. Thesis Outline

The thesis is composed of five themed chapters. Chapter 2 presents an overview of the
previous studies for publishing vertically distributed data under privacy and the state-
of-the-art methods of generating synthetic data with DP. Chapter 3 begins by clarifying
the core concepts of DP and GAN as the preparation knowledge for this thesis, and
also demonstrates the main principle of the work [41], which will be implemented as a
baseline for comparison. Chapter 4 consists of the critical methodologies to construct
the proposed framework VDGAN-DPSGD and VDGAN-PATE as well as the related
algorithms in detail. Chapter 5 is concerned with a series of experiments to exten-
sively evaluate the proposed frameworks’ performance and address findings. Lastly,
in Chapter 6 a summary of the whole work is given.
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2. Related Works

This chapter first reviews the previous works for publishing vertically partitioned data
under some privacy strategies in Sec. 2.1, then it gives an overview of the studies to
generate synthetic data under Differential Privacy (DP), which includes approaches
of vanilla machine learning models in Sec. 2.2.1 and neuron-network-based General
Adversarial Networks (GAN) in Sec. 2.2.2.

2.1. Vertical Data Publication under Privacy

To publish vertically partitioned data safely, Jiang et al. [18] and Mohammed et al. [29]
realize privacy guarantee via the k-anonymitymodel [39], which refers that an individual
cannot be distinguished from the group with a size smaller than k. However, their
works are limited to two parties, and these models are susceptible to multiple privacy
attacks and thus provide weak privacy protection. Wang et al. [48] propose a hybrid DP
framework to learn generalized linear models from vertically partitioned data. Chen et
al. [3] use autoencoders [30] and upload latent features under privacy at each party;
then they train a global classifier at the server side. Xu et al. [51] collect and analyze
data jointly from multiple parties under local DP [7]. However, these works only focus
on aggregating and analyzing VPD instead of generating synthetic data.

Mohammed et al. [28] propose a taxonomy-tree framework called DistDiffGen, the
first solution to generate differentially private VPD. Wang et al. [49] propose an im-
proved framework called arbDistDP that can release arbitrarily partitioned data. How-
ever, these frameworks are limited to two parties and apply only to classification tasks
for small value domains because of the top-down specialization algorithm during train-
ing. Tajeddine et al. [40] train a mixture model on VPD using differentially private
variational inference, which can calculate the posterior joint probability distribution of
VPD and generate synthetic data from the derived distribution. However, this frame-
work lacks experimental results for the quality of synthetic data and is limited to low-
dimensional datasets. Tang et al. [41] propose a hierarchical model called differentially
private latent tree (DPLT) to analyze the joint distribution among attributes frommultiple
parties under DP. However, this framework also struggles with worse cross-attribute
correlation and higher computational costs for high-dimensional datasets.
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2. Related Works

2.2. Synthetic Data Generation with DP

2.2.1. Non-Neural-Network Approach

An intuitive idea is to calculate the statistical distribution approximating the given real
data under privacy and sample synthetic data based on that. Zhang et al. [52] pro-
pose the framework PrivBayes that uses a Bayesian Network to model the correlation
of high-dimensional attributes. Qardaji et al. [35] construct marginal contingency ta-
bles. Hardt et al. use the multiplicative weights framework to maintain and improve
the approximated distribution for a set of counting queries. However, these methods
consume too much privacy budget during model construction andmake the distribution
approximation inaccurate and thus leading to synthetic data with low utility. Moreover,
the computation complexity increases fast on high-dimensional data.

2.2.2. Neural-Network Approach

Deep-learning-based model is widely used for generating synthetic data. Instead of
calculating the probability distribution of given data, the neural-network-based mod-
els [2, 12, 30] are trained to produce synthetic data directly, which have high similarity
with the real one. The Autoencoder-based model is hard to be modified into a vertically
distributed setting, so we focus on GAN-based frameworks.
Xie et al. [50] propose the DP-GAN framework, which firstly provides DP strategies

during training the GAN framework. They use the algorithm DPSGD[1], which applies
gradient clipping and noise injection while updating the discriminator model. Zhang
et al. [54] improve the framework using WGAN-GP[14] as well as several optimization
strategies, e.g. adaptive clipping and warm starting. Torkzadehmahani et al. [44] ap-
ply DPSGD on conditional GAN [27] to privately generate synthetic data with specific
labels. For distributed training, Augenstein et al. propose the DP-FevAvg-GAN frame-
work, which has one global generator on the server side and multiple local discrimina-
tors on the clients side. The real data is preserved locally and only the parameters of
each discriminator need to be uploaded. Chen et al. modify the training process and
upload fake data instead of model parameters to the server and realize the differential
privacy for the generator. However, most of these frameworks only focus on image
data and use Convolutional Neural Networks(CNN) inspired by DCGAN [36] because
of the outstanding performance of GAN on high-structured data.
For generating tabular data, Harder et al. [15] and Liew et al. [21] train the generator

by optimizing the random feature representation of Maximum Mean Discrepancy [13]
between real and synthetic data and use vanilla Gaussian Mechanism of DP instead of
DPSGD. However, these models aim to minimize the distance on a private embedding
space instead of the original high-dimensional space. Tantipongpipat et al. [42] use
an auxiliary Autoencoder [30] to convert discrete attributes into continuous space to fit
the training process of GAN. Torfi et al. [43] use a similar Autoencoder with 1D-CNN
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2.2. Synthetic Data Generation with DP

to capture correlated input attributes. However, to get synthetic data, the output of
the generator must be decoded by the decoder, which is hard to be applied in vertical
settings. Zhao et al. [55, 56] use multiple strategies, e.g., using an auxiliary classifier,
modifying generator loss inspired by [34] to fit the tabular input. However, those tricks
are also hard to be used in vertically distributed settings.

Apart from DPSGD, there are also some works based on Privacy Aggregation of
Teacher Ensembles (PATE) [32, 33] to provide privacy protection. Jordon et al. [19]
propose the PATE-GAN framework, which consists of multiple teacher discriminators
and one student discriminator as well as one generator. The student discriminator is
only trained on records that are produced by the generator and labeled by the teacher
discriminators. However, it relies on the assumption that the generator would be able
to generate the entire real records space to bootstrap the training process. If most of
the synthetic records are labeled as fake by the teacher discriminators, the student
discriminator would be trained on a biased and fail to learn the true data distribution.
Long et al. [22] propose G-PATE that applies a private gradient aggregation on the
information that flows from the teacher discriminators to the single generator. Further-
more, it implements random projection and discretization before aggregation to reduce
the privacy budget consumed by each step. Wang et al. improve the framework by
compressing gradients. However, it is challenging to analyze the convergence of these
two frameworks, and a large number of teachers leads to low training efficiency.
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3. Background

This chapter will recall the concepts and definitions of the preliminaries related to the
proposed framework in this thesis. Section 3.1 introduces the fundamentals of DP, in-
cluding features, mechanisms, and applications in deep learning. Section 3.2 demon-
strates the principle of the GAN model as well as a state-of-the-art variant. Lastly,
Section 3.3 clarifies the methodology of the baseline [41].

3.1. Differential Privacy

Differential Privacy (DP) [9] is a privacy-preserving algorithm introduced by Dwork et
al. in 2006. It aims at randomizing the answers of querying on dataset so that avoids
the information leakage of each record of the dataset even if the adversaries have
enough background knowledge.

Definition 1 ((ε, δ)-differential privacy [8, 9]) A randomized mechanismM guaran-
tees (ε, δ)-DP for every set of outputs Ω, and for any neighbouring datasets D and D′

differing in one record, ifM satisfies

Pr[M(D) ∈ Ω] ≤ exp(ε) · Pr[M(D′) ∈ Ω] + δ (3.1)

Two datasets D and D′ are called neighbouring datasets if they differ only in one
record. The parameter ε denotes the privacy budget in this mechanism. If ε is small,
the probabilities of the same output from a pair of neighbouring datasets are similar,
Which means the mechanismM masks the differences between two queries if one
record is deleted from or added to the dataset. The lower ε , the stronger the privacy
level. The parameter δ allows some freedom to violate the strict inequality by a small
probability. If δ = 0, the mechanismM guarantees ε − DP.

3.1.1. Vanilla Mechanisms

Generally, differential privacy is achieved by adding some noise to the querying output.
A specific amount of noise over a given privacy budget is calculated to perturb the
difference between the neighbouring datasets in the worst case.

Definition 2 (Sensitivity [9]) Given a query function f : D → R, for any neighbour-
ing datasets D and D′, the sensitivity of f is defined as

S( f ) = max
D,D′
‖ f (D) − f (D′)‖1 (3.2)
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3. Background

Here ‖·‖1 represents the L1-norm. The sensitivity denotes the maximal change of
magnitude between two queries on neighbouring datasets. It differs in various query
functions. The higher sensitivity, the more noise needs to be added to realize the same
privacy guarantee.

There are three fundamental mechanisms: the Laplace mechanism [9] and Gaussian
mechanism [11] for numeric queries, and the exponential mechanism [11] for non-
numeric queries. Here only the Gaussian mechanism related to our work is shown.

Definition 3 (Gaussian Mechanism [11]) Given a query function f : D→ R over a
dataset D, a randomized mechanismM satisfies (ε, δ)-differential privacy if

M(D) = f (D) + N(0, σ2) (3.3)

where N(0, σ2) denotes the noise sampled from a Gaussian distribution with a mean

of 0 and a standard deviation of σ = S2( f )
√
2 ln(1.25/δ)

ε . Here the L2-distance S2( f ) =
‖ f (D) − f (D′)‖2 is used to describe the sensitivity.

3.1.2. Composition Theorem

When a dataset is accessed multiple times via different DP mechanisms, each of them
has its own privacy guarantee. The ultimate privacy budget consumed is calculated
according to the following composition theorems.

Theorem 1 (Sequential Composition [24]) Given a set of privacymechanismsM =
M1, · · · ,Mm, M will provide (

∑
εi,

∑
δi)-differential privacy guarantee if M is se-

quentially performed on a dataset, and eachMi satisfies (εi, δi)-differential privacy.

Theorem 2 (Parallel Composition [24]) Given a set of privacy mechanisms M =

M1, · · · ,Mm,M will provide max εi-differential privacy guarantee if eachMi satis-
fies (εi, δi)-differential privacy on a disjointed subset of the entire dataset.

Sequential composition is used when a series of mechanisms access the same
dataset repeatedly. The final privacy budget equals the sum of each budget. In com-
parison, the parallel composition is applied when the querying targets are disjointed
subsets for several mechanisms. The final privacy budget equals the maximum of their
budgets. However, the two elemental compositions are valid only when each query is
conducted independently. If the adversary can adaptively affect the input dataset of
the queries, the mechanisms dependent on each other should follow the Strong Com-
position theorem [10].
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3.1. Differential Privacy

3.1.3. Rényi Differential Privacy

Mironov et al. proposed a variant of differential privacy based on the concept of Rényi
Divergence [37]. It provides a tighter bound of required noise to satisfy the privacy
intensity. Compared with the standard definition, Rényi differential privacy mitigates
the parameter explosion after the budget adding-up by composition theorems.

Definition 4 ((α, ε)-Rényi differential privacy [25]) A randomized mechanism M
gives ε -Rényi differential privacy of order α for any neighbouring datasets D and D′

differing only in one record, ifM satisfies

Dα(M(D) ‖ M(D′)) =
1

α − 1
logEx∼M(D)

(
Pr[M(D) = x]

Pr[M(D′) = x]

)α−1
≤ ε (3.4)

Here Dα(P ‖ Q) refers to the Rényi divergence [37] for two probability distributions
P and Q and the parameter α denotes the order of the divergence. When α = ∞,
the (α, ε)-RDP is equivalent to the strict ε -DP with δ = 0. And the Rényi differential
privacy with a finite α implies (ε, δ)-DP with δ > 0. The relationship between them is
as follows:

Theorem 3 (From RDP to DP [25]) If a privacy mechanism M guarantees (α, ε)-
RDP, thenM guarantees (ε ′, δ)-DP for any δ ∈ (0, 1) where ε ′ = ε + log 1/δ

α−1

After the transform from RDP to DP, the consumed privacy budget decreases by log δ
α−1 ,

which implies a tighter upper bound from a certain amount of noise.

The Gaussian Mechanism under Rényi differential privacy has a much simpler version.

Theorem 4 (Gaussian Mechanism in RDP [25]) Given a query function f : D→ R
over a dataset D, a randomized mechanismM satisfies

(
α, s

2α
2σ2

)
-RDP if

M(D) = f (D) + N(0, σ2) (3.5)

where s refers to the L2-sensitivity.

Given the sensitivity s and the distribution parameter σ of the injected noise, the con-
sumed privacy budget ε can be calculated over different orders α.

Similar to the standard notion, the Rényi differential privacy also satisfies sequential
composition when a series of mechanisms access the same dataset. However, the
adding-up property works not only for independent mechanisms but also when the
latter mechanism depends on the output of the formal one adaptively.

Theorem 5 (Composition in RDP [25]) Given a sequence of m adaptive mecha-
nisms M = M1, · · · ,Mm, if each each Mi satisfies (α, εi)-RDP, M will provide
(α,

∑
εi)-RDP guarantee.
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3. Background

3.1.4. Deep Learning with Differential Privacy

Deep neuron networks are widely used for solving machine learning tasks. It con-
sists of several layers with many parameters and non-linear active functions. With the
training data as input, a loss function describes the difference between the outputs
and the target results. By minimizing the loss values via back-propagation and gra-
dient descent iteratively, the optimal parameters can be found, and the networks are
well-trained. When training a deep-learning network with differential privacy, the con-
sumed privacy budget ε for each iteration should be accumulated together according
to the composition theorem, which leads to a dramatic increase in the total budget. So
searching for the appropriate methods to apply differential privacy protocols into deep
neuron networks has been a popular area in recent years. The proposed frameworks
in this thesis are based on the following two protocols.

Differentially Private Stochastic Gradient Descent

The Differentially Private Stochastic Gradient Descent (DPSGD) proposed by Abadi [1]
is the most common method at present to train a differential private neuron network.
It aims to privatize the model parameters by adding gaussian noise to the gradients
during back-propagation. In common cases of complex networks, for each iteration,
only a mini-batch of data is involved in performing the stochastic gradient descent for
faster convergence. So in each epoch of DPSGD, a batch of training data is randomly
selected without replacement for computing the loss values. Moreover, before adding
noise, all gradients would be clipped within a threshold so that the influence of any
neuron is bounded. It aims to control the global sensitivity and limit the required noise
in the worst case. It ensures that for each epoch, the harmful impact of noise on the
model training process is within some degree. Finally, the clipped gradients in this
batch are added with some noise and then averaged to perform the gradient descent.
The distribution of the sampled noise is decided by a given scaling parameter σ and
the clipping threshold. The details of DPSGD are described in Alg. 1.
The training dataset is accessed once for each epoch, so the consumed privacy bud-

get is accumulated using some accountingmethod during the iterative training process.
A primary method is to use the Strong Composition Theorem [10] to calculate the up-
per bound of the budget. Considering the particular noise distribution, the authors of
DPSGD also invented a more advanced method called moments accountant [1], which
provides a tighter bound and saves more privacy budgets. In the open-source library
Tensorflow [23], DPSGD is implemented as the module Tensorflow-Privacy, where
RDP is used as an improved privacy accounting method [26].

18



3.1. Differential Privacy

Algorithm 1 Outline of DPSGD
Require: L: loss function; T : training round; m: batch size; γ: learning rate; σ: noise

scale; C: clipping bound;
for t = 1, · · · ,T do

Sample a batch of data Mt randomly from training data {x1, ..., xN } without re-
placement in size m
for xi ∈ Mt do

gt (xi) ← ∇θtL(θt, xi)

ḡt (xi) ← gt (xi)/max
(
1,
‖gt (xi )‖2

C

)
end for
g̃t ←

1
L

∑
i

(
ḡt (xi) +N(0, σ

2C2I )
)

θt+1 ← θt − γ g̃t
end for

Private Aggregation of Teacher Ensembles

In contrast to adding noise on gradients, Papernot et al. proposed a method called Pri-
vate Aggregation of Teacher Ensembles (PATE) [32, 33]. Fig. 3.1 shows the overview
of the PATE workflow. The framework consists of an ensemble of teacher models
and a student model. The sensitive data are split into several disjoint subsets with-
out overlapping, each used to train a teacher model independently. After training, an
agreement can be achieved for a given input by voting among all teacher models,
which would predict the label independently. To avoid the case that the voting results
of two classes differ only by one and the final agreement would be changed by one
teacher, the calculated Laplacian or Gaussian noise should be carefully added to the
voting counts. Apart from the sensitive dataset and the ensemble of teacher models,
which are not accessible by an adversary, a public student model will be trained by
knowledge distillation from the ensemble side. There are some incomplete public data
lacking ground-truth labels. A limited number of queries on the teacher ensemble are

Figure 3.1: Overview of PATE [32]
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3. Background

conducted using the public dataset to get aggregated predictions. The public data
and corresponding predictive labels are used to train a student model, which can be
queried by adversaries freely.

3.2. Data Generative Models

3.2.1. GAN

Generative Adversarial Nets (GAN) proposed by Goodfellow et al. [12] is a deep-
learning-based framework for generating synthetic data which has a similar distribution
to the given real data. It consists of two neural networks—generator and discriminator
as shown in Fig. 3.2. The generator would produce synthetic records from sampled
noise, and the discriminator would discriminate synthetic inputs from the real ones.
The two models would be trained simultaneously as an adversarial game with the min-
imax objective:

min
G

max
D
Ex∼Pr [log(D(x))] + Ez∼Pz [log(1 − D(G(z)))] (3.6)

where the input x is sampled from the real data distribution Pr and the input z is
sampled from a random noise distribution Pz . The generator G would transfer the
sampled noise z to synthetic data x̃ = G(z). The discriminator D would transfer
either real input x or synthetic input x̃ to a single scalar. D is trained to maximize the
classification accuracy between the two kinds of inputs. In contrast, G is trained to
minimize the probability that its output G(z) is assigned with the right label by D. By
updating the parameters of the two models alternatively, GAN will get to an optimal
equilibrium so that the distribution of synthetic data Pg will converge to the real one Pr .

An unlimited amount of high-utility data can be sampled via forward propagation from
a well-trained GAN framework. Furthermore, only backward propagation is needed
during the training process to obtain gradients. No approximate inference or Markov
chains are necessary. However, the disadvantages are primarily that there is no explicit
representation of Pg, and that D must be synchronized well with G during training. In

Figure 3.2: Overview of GAN
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practice, the discriminator learns very quickly to distinguish between real and fake
and becomes saturated, which leads to gradient vanishing and training difficulty of the
generator.

3.2.2. WGAN-GP

The work [12] proves that the optimizing process of GAN is equivalent to minimizing the
symmetrical Jensen-Shannon(JS) divergence between the real and synthetic distribu-
tions JS(Pr, Pg). Arjovsky et al. [2] argue that the complex training process of GAN is
due to the potentially discontinuous JS divergence. They propose a modified frame-
work Wasserstein GAN (WGAN), which uses the Wasserstein-1 (also called Earth-
Mover) distance W(Pr, Pg) as the optimizing objective instead of the JS divergence.
The Wasserstein-1 distance refers to the "cost" of the optimal transport plan from the
distribution Pr into distribution Pg. Given a fixed Pr , it is continuous everywhere and
differentiable almost everywhere if the feedforward neural networkG is locally Lipschitz
and satisfies regularity assumption 1. With the help of the Kantorovich-Rubinstein du-
ality [45], the value function of WGAN is:

min
G

max
D∈D

Ex∼Pr [D(x)] − Ex̃∼Pg [D(x̃)] (3.7)

where D is the set of 1-Lipschitz functions. It indicates that under an optimal dis-
criminator, the optimizing process of the generator is to minimize the Wasserstein-1
distance W(Pr, Pg). The work realizes the Lipschitz constraint by clipping gradients of
the discriminator.

Although the WGAN framework is proven to have better theoretical properties than
the vanilla one, Gulrajani et al. [14] argue that the implementation of weight clipping
leads to some training difficulties. First, the optimizing critic of the discriminator is
simplified so that it is harder to capture higher moments of the data distribution. Then
the clipping value must be carefully tuned to avoid exploding or vanishing gradients.
Thus they propose an alternative solution called Gradient Penalty (GP) to enforce the
Lipschitz constraint.

The work [14] proves that a sufficient condition of a discriminator D being 1-Lipschitz
is that it has gradients along the straight lines connecting coupled points from Pr and
Pg with norm 1. Given Eq. 3.7 the new loss function of D is:

LD = Ex̃∼Pg [D(x̃)] − Ex∼Pr [D(x)] + λ · Ex̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2] (3.8)

where the random record x̂ ∼ Px̂ is sampled uniformly along the straight line between
x̃ and x. with the help of the penalty coefficient λ, the corresponding gradients are
updated towards 1 from two sides. Because the real samples are not used for training
the generator, the loss function of G is:

LG = −Ez∼Pz [D(G(z))] (3.9)

The details of the training process of WGAN-GP are illustrated in Alg. 2
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Algorithm 2 Outline of WGAN-GP
Require: nd: number of iterating steps of D for each iterating step of G; T : training
round; m: batch size; γ: learning rate; λ: gradient penalty coefficient
for t = 1, · · · ,T do

for j = 1, · · · , nd do
for i = 1, · · · ,m do

Sample real data x ∼ Pr , noise z ∼ Pz , a random number α ∼ U[0, 1]
x̃ ← G(z)
x̂ ← αx + (1 − α)x̃

Li
D = Dθd (x̃) − Dθd (x) + λ

(∇x̂Dθd (x̂)

2
− 1

)2
end for
LD ←

1
m

∑
i Li

D

θ
j+1
d
← θ

j
d
− γ∇θdLD

end for
Sample a batch of noise

{
zi

}m
i=1
∼ Pz

LG ←
1
m

∑
i −D(Gθg (z

i))

θt+1g ← θtg − γ∇θgLG

end for

3.3. Baseline Method

There are many approaches in centralized and horizontally distributed settings for dif-
ferentially private synthetic data generation, but the state-of-the-art researches in ver-
tically distributed settings are limited. One is DistDiffGen [28], which is only suitable for
two-parties settings and specific datasets. So we select the other one called DPLT [41]
as our baseline. The framework is not published as open-source, so we implement the
corresponding algorithms by ourselves.

The DPLT framework represents the joint distribution of given random variables
based on a latent tree model. The random noise is injected during model building
in the vertical setting to satisfy DP, and the synthetic data are sampled according to
the calculated statistical distribution.

3.3.1. Data Preparation

The algorithm of DPLT assumes that all attributes are binary, so each non-binary at-
tribute should be converted into a set of binary attributes. In contrast to the one-hot
encoding widely used in neural networks, a specific encoding method [52] is adopted.
It encodes each state value of a categorical attribute into a binary representation with
multiple bits, and each encoded attribute denotes one bit of the binary number. Such
an encoded dataset has lower dimensions than one-hot encoding and provides a high
level of flexibility in constructing the tree model. However, the binary output of the
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DPLT model should also be decoded to get decimal synthetic data so that the domain
size might be enlarged compared with the real one.

3.3.2. Generation of Latent Tree Model

Figure 3.3: Latent Tree Model

The latent tree model [53] shown in Fig. 3.3 is a hierarchical probabilistic graphical
model where all internal nodesY are latent variables and all leaf nodes X are observed
variables. Each node is associated with its parent node via the conditional distribution.
The approximate joint probability for all variables can be calculated by the set of all
conditional distributions. An overview of the DPLT framework is shown in Fig. 3.4.
There are four steps to building a latent tree.

1. Generation of Latent Attributes Each latent attribute is obtained based on a
sub-group of observed attributes with higher correlations. Each client would
generate its local latent attributes and send them to the server.

2. Correlation Quantification The server and clients calculate the mutual infor-
mation of latent-attribute pairs together, including local and cross-client pairs.

3. Construction of Tree Structure The server generates a maximum spanning
tree with the gathered mutual information as edge weights.

4. Quantification of Tree Parameters The conditional distribution of each parent-
child-node pair in the tree is calculated by the cooperation of the server and
clients.

The local datasets participate in step 1, 2 and 4, so to satisfy ε -DP, the total privacy
budget ε is divided into three portions and assigned to each step. In step 1, the Expo-
nential Mechanism is implemented during the grouping of observed attributes; In the
other two steps, the Laplace Mechanism is implemented by adding noise to statistical
distributions.
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3. Background

Figure 3.4: Overview of DPLT

3.3.3. Data Synthesis

For categorical data, The domain size of all attributes would increase exponentially
with higher dimensions. So in practice, instead of calculating the approximated joint
distribution directly, the value of each attribute is sampled one by one from root to leaf
according to the known conditional distributions as edges. Finally, the values of all
observed attributes would be gathered together as synthetic records.
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This chapter is concerned with the methodology used for the thesis. It first states the
problems for dealing with in Sec. 4.1, then illustrates the structures of the proposed
framework in Sec. 4.2. Section 4.3 addresses the steps of training VDGAN in detail,
and Sec. 4.4 clarifies the novel implementation of DP protocols as well as the accu-
mulation policy of the privacy budget.

4.1. Problem Statement

We assume a scenario where several local parties called clients holding private
databases. The local private datasets are aligned with the same individuals while
having different attributes, which satisfies the definition of vertically partitioned data.
There is an untrusted server that tries to estimate the joint distribution of all attributes.
The server is "honest-but-curious", which means it would follow the rules and proto-
cols strictly but intend to gather private information with high sensitivity. So once a
model is dispatched among the server and client sides, an attacker is able to infer the
membership of training data by querying the published model on the server. Besides,
the real data must be kept on the local client safely and only involved in the local part
of the optimization. They are not allowed to be passed to the outside directly. After
the training process, the synthetic data, which have similar distributions to real ones,
would be published and accessed at will.

The proposed situation are formulated as follows: There are N clients {Ck}
N
k=1

, each
holds a local dataset Xk(ID, dk) over a same set of individuals ID. dk indicates the
set of local attributes and satisfies di ∩ d j = � for any two local datasets Xi and Xj .
In another view, there is a high-dimensional private dataset X with attributes ∪N

k=1
dk

vertically distributed among N clients. The server aims to generate a synthetic dataset
X̃ which has the integrated attributes and similar joint distribution with the real one as

PX̃(d1, ..., dN ) ≈ PX(d1, ..., dN ) (4.1)

4.2. Method Overview

Fig. 4.1 demonstrates the overview of our proposed framework. A distributed GAN
model would be constructed among the server and client sides and optimized by the
joint training among multiple parts. Here we use the algorithm of WGAN-GP [14] as

25



4. Methodology

Figure 4.1: Overview of the Whole Framework

the optimization strategy. There is a global generator G on server and N local discrim-
inators {Dk}

N
k=1

on each client. All the models consist of Multi-Layers-Perceptrons for
the tabular dataset. In Alg. 2 the real data participate in the training process only of
the discriminator, so on each client, the corresponding real dataset Xk is always stored
on the local side and has never been uploaded. On the server, the training process of
generator needs noise sampled from Gaussian distribution and some parameters from
clients. The local parameters would be privatized by DP algorithms before uploading.
The privacy budgets would be consumed gradually in this process. Here we incor-
porate two different DP protocols, DPSGD and PATE, into the training scheme. We
will illustrate the details and compare their principles in the following sections. Once
the global generator is well-trained, we can draw a set of noise samples from a latent
space and feed them to the generator. Then we can obtain the synthetic joint data,
which can be further used for data analysis and training AI models.

4.3. Vertically Distributed GAN

4.3.1. An Iteration Process

The so-called Vertically Distributed GAN (VDGAN) is proposed as the generative
model. If we ignore the DP module temporarily, an iteration consists of the following
steps: (1).data synthesis and downloading; (2). optimization of local discriminators;
(3). gradients computation and uploading; (4). optimization of the global generator.
Step (1) and step (4) are executed on the server side, and the other two are on each
client side. For each iteration t, a batch size of real data Xdk

k
would be sampled ran-

domly from each private dataset. The parameters θg of the global generator would
be updated one time while θdk of the local discriminators on each client Ck would be
updated multiple times. The details are illustrated in Alg. 3.
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4.3. Vertically Distributed GAN

Figure 4.2: Overview of VDGAN

Step 1: Data synthesis and downloadingHere we assume that the attributes infor-
mation from all clients {d1, · · · , dN } are public while their corresponding distributions
are private. A global generator G on the server side takes noise samples as input
and outputs synthetic data. The noise inputs are sampled from a multi-dimensional
Gaussian distribution. The generated data X̃ hold attributes

∑N
k=1 dk , which would

be vertically spilt to {X̃d1
1 , · · · , X̃dN

N } as shown in Fig. 4.2 and downloaded to differ-
ent clients so that on each client the received synthetic data X̃dk

k
have the identical

attributes dk with the real private data Xdk
k

.
Step 2: Optimization of local discriminators For the method of VDGAN, each

client Ck holds a local discriminator Dk , which takes either real data Xdk
k

or synthetic
data X̃dk

k
as input and gives a scalar value for each sample as the discrimination

result. To meet the requirements of WGAN-GP [14], the neurons in the output layer of
Dk should take no activate function so that the range of the output would not be limited
within (0,1). The network size of Dk is proportional to the dimension of attributes dk .
After the forward propagation, the loss LDk

would be calculated according to Eq. 3.8,
and the parameters θdk would be updated by gradient descent.

Step 3: Gradients computation and uploading According to Eq. 3.9, the loss of
generator derives from the output of discriminator w.r.t. the synthetic input data. So at
each client Ck , partial loss of the global generator G can be calculated from the local
Dk and X̃dk

k
, which comes from the output of G in step (1). Then the gradients of the

partial loss w.r.t. synthetic data ∇LG

X̃k
are calculated and would be uploaded back to

the server side. During the execution of all clients the total uploaded gradients have
the same size and dimensions as the downloaded synthetic data.

Step 4: Optimization of the global generatorOn the server side, the Jacobianma-
trix of each partitioned synthetic data X̃dk

k
w.r.t. the parameters of the global generator
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G is calculated as ∇θg X̃k . When the server collects the gradients {∇LG

X̃1
, · · · ,∇LG

X̃N
}

from all clients, according to the chain rule of backpropagation, the final gradients of
G w.r.t. its parameters are calculated as:

∇θgLG =

N∑
k=1

∇θg X̃k · ∇
LG

X̃k
(4.2)

This approach avoids collecting the local models {D1, · · · ,DN } from all clients directly
and reconstructing them on the server side. Finally, the parameters of G are updated
for one round by the gradient descent.

Algorithm 3 An iteration of training VDGAN
Require: N : number of clients; {Xdk

k
}N
k=1

: local real datasets sampled in batch size;
s: number of iterating steps of D for each iterating step of G; N : multi-dimensional
Gaussian distribution; t: current iterating epoch; γ: learning rate;

Step 1 (server):
Sample noise records z ∼ N in size m
Generate synthetic joint data in size m: X̃ ← G(z)
Split X̃ to N datasets {X̃d1

1 , · · · , X̃dN

N }

for k = 1, · · · , N do
Step 2 (client):
for i = 1, · · · , s do

Compute loss of discriminator:
LDk

←
∑m

j=1 Dk(x̃ j) − Dk(x j) + GP(Dk, x̃ j, x j) for x j, x̃ j in Xdk
k
, X̃dk

k

Update local discriminator θi+1
dk
← θi

dk
− γ∇θdkLDk

end for
Step 3 (client):
Compute partial loss of generator: LG ←

∑m
j=1 −Dk(x̃ j) for x̃ j in X̃dk

k

Compute gradients: gX̃k
← {∇

LG

x̃1
, · · · ,∇LG

x̃m
} for x̃ j in X̃dk

k
end for

Step 4 (server):
Aggregate gradients: ∇θgLG ←

∑N
k=1 ∇θg X̃k · gX̃k

Update generator G: θt+1g ← θtg − γ∇θgLG

4.3.2. Warm-Up before Training

Figure 4.3 shows a warm-up process before optimizing VDGAN. It is an optional pro-
cess only on the client side, aiming to increase the converging speed and improve
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Figure 4.3: Warm-Up for Local Discriminators

the model quality. Because the work [14] proposed that using a stronger discrimi-
nator would provide more meaningful gradients information to the generator. So the
discriminators are proposed to be initialized in some steps before training VDGAN in
distributed mode. On each client, a complete GAN including a generator and a dis-
criminator would be constructed and trained as Alg. 2 in some epochs with the help
of its private data. After the warm-up the discriminator model Dk would participate in
the co-training with other modules. However, the effects of the local pretraining dif-
fer among various datasets, and a robust improvement has not been realized in this
thesis.

4.4. DP Protocols

The previous VDGAN framework realizes the data synthesis with high-dimensional
joint attributes on the server. However, an adversary still has the ability to recover the
personal information of the real data given synthetic ones via some inference attacks.
Here two kinds of DP protocols are employed in the training process on the client side
to ensure that the gradients have been privatized before leaving. One method is based
on the DPSGD [1] approach, and the other one, which is inspired by Wang et al. [47],
is a variant of PATE [32] framework. Both of them compute the accumulated privacy
budgets via RDP [25] over the Gaussian Mechanism.

4.4.1. DPSGD-Based Approach

Fig. 4.4 demonstrates the modification of the VDGAN framework over DPSGD. The
Alg. 1 is introduced into the step 2 of Alg. 3 so that the local discriminator is trained
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Figure 4.4: Integration of DPSGD in VDGAN

under differential privacy. Because of the post-processing principle of DP, the updated
gradients and the global generator would satisfy differential privacy in some budgets.
In Alg. 1, the clipping parameter C should be determined carefully to limit the sensitivity
s. Recalling that the WGAN-GP algorithm is adopted as the optimization strategy of
VDGAN, the gradients’ L2-norm in each discriminator have been bounded around 1
due to the gradient penalty. So the optimal parameter C = 1 is chosen analytically
instead of an intensive grid search. For each pair of input samples {xi, x̃i}, the gradient

gi = ∇θdLD(xi, x̃i, θd) (4.3)

would be clipped to

ḡi = gi/max

(
1,
‖gi ‖2

C

)
(4.4)

so that its L2-norm is less equal to C. The clipped gradients ḡi would be added with a
bounded Gaussian noise as

ḡ∗i = ḡi +N(0, σ
2C2I ) (4.5)

All of the clipped gradients with noise in batch size m would be gathered together to
update the parameters of the discriminator D:

θt+1d = θtd − γ

m∑
i=1

ḡ∗i (4.6)
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4.4.2. PATE-Based-Approach

From Fig. 3.1 we see that the PATE framework consists of the private module, includ-
ing sensitive data and an ensemble of teacher models, as well as the public module,
including some public data and a student model. Compared with the VDGAN frame-
work, the server can be regarded as the public module, while the clients are private
modules. Here a PATE-based VDGAN framework is proposed to realize differential
privacy guarantees. On the public server, the global generator G works as the stu-
dent model and the synthetic data as the public data of PATE, which would flow to
the private modules. While the variant holds some differences on the private clients
compared with the original PATE framework.

First is the number of private modules. There are N clients working as private mod-
ules in this approach, each holding a sensitive personal dataset. Each real dataset Xdk

k

would be split horizontally to E subsets Xdk
k,1
, · · · , Xdk

k,E
without overlapping. As shown

in Fig. 4.5, those subsets maintain the same attributes dk and would be utilized to train
E discriminators as the ensemble of teachers. The discriminators Dk,1, · · · ,Dk,E on
one client Ck have identical structures but are trained with different real datasets.

The second difference is the aggregated object via teachers. In the original PATE
framework, the predicted results from teacher models would be aggregated into a one-
dimensional label, which would be sent to train the student model. However, in the
VDGAN framework, the required information from local discriminators to the global
generators are high-dimensional gradients. The drastically increasing size of data
would consume much more privacy budgets because of a more significant sensitiv-
ity. What’s more, it leads to a higher communication overhead during the distributed
training. Inspired by the work [47], this thesis performs gradient compression during
the aggregation process. The details are illustrated in Alg. 4, which consists of two
steps and would replace the step 3 in Alg. 3.

Figure 4.5: Integration of PATE in VDGAN

Step 1: Gradients compression in top-K. There are E teacher discriminators on
one client Ck . For any synthetic sample x̃i, a number of gradients would be calculated
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from the teacher ensemble {Dk, j}
E
j=1 For each gradient

gi, j = ∇x̃iL
j
G

(4.7)

K entries would be selected as the K-largest absolute values in the gradient vector and
the others would be set to 0 as

hi, j = arg-topK(|gi, j |,K) (4.8)

gdi, j = 0 if d < hi, j (4.9)

In this way, the dense vector is transformed into a sparsified one so that the consump-
tion speed of the privacy budget would be reduced drastically. Then to bound the
sensitivity, each of the K nonzero entries would be clipped within a parameter c so that

− c ≤ gdi, j ≤ c (4.10)

It should be noted that the clipping is performed along each dimension in contrast to
clipping the L2-norm of gradients in DPSGD. Then we perform normalization

gdi, j = gdi, j/‖gi, j ‖∞ (4.11)

of the sparsified gradient so that its values are limited within (-1,1). In the last we assign
the sign values {1, -1} in the way of

ḡdi, j =

 1 with probability
1+gd

i, j

2

−1 with probability
1−gd

i, j

2

(4.12)

for each nonzero dimension to replace the real values in the gradient vector. After the
sparsification, normalization, and quantization above the complex gradient gi, j would
be replaced by a low-rank vector ḡi, j with values only in {-1,0,1}.

Step 2: Gradients aggregation with DP. After the last step, each teacher discrim-
inator Dk, j holds a compressed gradient ḡi, j with K nonzero entries of either 1 or -1.
In another view, each teacher model can vote for K dimensions, either in the positive
direction (ḡdi, j = 1) or the negative direction (ḡdi, j = −1). During the voting process the
sum of all gradients should be added with a bounded Gaussian noise which plays the
key role of differential privacy as

g∗i =
E∑
j=1

ḡi, j +N(0, σ
2I ) (4.13)

Then we perform quantization on the aggregated noisy gradient g∗i with sign values
{-1,0,1} in the way of

ĝdi =


1 i f g∗di ≥ β · E
−1 i f g∗di ≤ −β · E
0 else

(4.14)
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With the help of a threshold parameter β, an entry ĝdi would be assigned as 1 or -1
only if the majority of teachers vote for this dimension in a positive or negative direction
respectively. This method improves the robustness of the aggregated result against
the outlier votes.

At the end of Alg. 4 for a batch of synthetic input samples, the aggregated gradients
in sign values {ĝ1, · · · , ĝm} would be aligned together as the final gradient matrix
ĝX̃k

. Although in this approach, we modify the single local discriminator to a number
of teacher discriminators, the final uploading data holds the identical shape to that
when training the VDGAN framework without DP.
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Algorithm 4 Gradients Compression with DP
Require: X̃dk

k
: a batch of synthetic data; m: batch size; E : number of teachers;

{Dk, j}
E
j=1: an ensemble of discriminators; K : top-K dimensions; c: clipping pa-

rameter; β: voting threshold;
for Dk, j, j = 1, · · · , E do

compute partial loss of generator: L j
G
← LG(X̃

dk
k
,Dk, j)

end for
for x̃i in X̃dk

k
do

Step 1: Gradients Compression in Top-K
for Dk, j, j = 1, · · · , E do

compute gradient: gi, j ← ∇x̃iL
j
G

select top-K dimensions: hi, j ← arg-topK(|gi, j |,K)
Clip each dimension d in gi, j : gdi, j ← min(max(gdi, j, c), c)
normalize gradient: gi, j ← gi, j/‖gi, j ‖∞
for each dimension d in gi, j do

assign sign values:
if d ∈ hi, j then

ḡdi, j ←

 1 with probability
1+gd

i, j

2

−1 with probability
1−gd

i, j

2
else

ḡdi, j ← 0
end if

end for
ḡi, j ← {ḡ

1
i, j · · · ḡ

d
i, j · · · }

end for

Step 2: Gradients aggregation with DP
inject Gaussian noise into aggregated gradient: g∗i ←

∑E
j=1 ḡi, j +N(0, σ

2I )
for each dimension d in g∗i do

assign sign values over threshold:

ĝdi ←


1 i f g∗di ≥ β · E
−1 i f g∗di ≤ −β · E
0 else

end for
ĝi ← {ĝ

1
i · · · ĝ

d
i · · · }

end for
get gradients for all samples: ĝX̃k

← {ĝ1, · · · , ĝm}
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4.4.3. Analysis of Privacy Budgets

Both the VDGAN-DPSGD and VDGAN-PATE frameworks utilize the Gaussian Mech-
anism to provide DP guarantees. The former injects noise to the gradients w.r.t. the
model parameters of the local discriminator. However, the latter injects noise to the
gradients w.r.t. the synthetic data prepared for the global generator. Compared with
the two methods, the former adopts DP when training the local discriminator (step 2 in
Alg. 3), while the latter adopts DP when training the global generator (step 3 in Alg. 3).
Because of the iterative optimization of the two parts and the post-processing principle
of DP, the whole framework satisfies differential privacy.

To compute the consumed privacy budgets via Theorem 4, the L2-sensitivity of the
Gaussian Mechanism should be specified for both approaches, where the target sam-
ples randomized by the noise hold different features. In VDGAN-DPSGD, the L2-norm
of target gradient is clipped with C, so for any two different gradients ḡi, ḡ j , the sensi-
tivity is

sDPSGD = ‖ ḡi − ḡ j ‖2 ≤ 2C (4.15)

according to the triangle inequality. In VDGAN-PATE, we should consider a pair of
compressed gradients ḡi, ḡ j from two different teacher models. In the worst case, ḡi
and ḡ j hold the identical indices for the top-K nonzero dimensions, and all of the sign
values are opposite. So the sensitivity is

sPATE = ‖ ḡi − ḡ j ‖2 ≤
√

22 · K =
√

2K (4.16)

After the sensitivity specification, given a loose parameter σ, we can calculate the
consumed privacy budget every time we inject a Gaussian noise with scale σ. For
the whole training process the consumed εk at each client Ck is calculated as Alg. 5
according to Theorems 4, 5, 3. It should be noted that We a series of RDP-budgets
over a set of α in range (0, αmax) would be computed and the minimum would be
selected as the optimal DP budget εk for client Ck . The clients {C1, · · · ,CN } hold
parallel private data {X1, · · · , XN } without overlapping, so according to Theorem 2,
the final privacy budgets ε for the distributed framework is the maximal consumed
budgets among all clients as

ε = max{ε1, · · · , εN } (4.17)
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Algorithm 5 Accumulation of Privacy Budget
ComputeDP(σ, s,T,m, αmax, δ):
for α = 1, · · · , αmax do
ε iRDP,α =

s2α
2σ2

εRDP,α = ε iRDP · T · m
εDP,α = εRDP,α +

log 1/δ
α−1

end for
εDP = max{εDP,α}

αmin

α=1
Return εDP
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This chapter demonstrates the results of practical experiments and discusses the re-
lated findings. It begins by introducing the adopted dataset in Sec. 5.1 and metrics in
Sec. 5.2, then addresses the setup of the proposed frameworks and some baselines
in Sec. 5.3, finally presents the results in plots and analyze the characteristics and
relative merits of different approaches in Sec. 5.4 and Sec. 5.5.

5.1. Datasets

The details of the four chosen public tabular datasets are present as follows.

• Adult The Adult dataset [4] contains 48842 records extracted from the 1994 U.S.
Census database. Each record consists of 15 categorical or integer attributes
describing the personal information, e.g., age, education, and native country. It
aims to predict whether a person makes over 50K a year. 14 of them are chosen
to discretize the numerical attributes into categorical ones.

• Vehicle The Vehicle dataset [6] has 98528 records extracted from a real-life
vehicle tracking sensor network. It consists of 101 binary attributes from acoustic
and seismic sensors, which are used to classify the vehicle type into two classes.

• Census The Census dataset [5] has 2458285 records collected from the 1990
U.S. Census and consists of 68 categorical attributes. It contains personal infor-
mation like gender, marriage status, and income which are used for classifying
the duration of people’s active duty service into three classes. 60 attributes are
chosen for the setup.

• Twitter The Twitter dataset [20] contains 583250 records of buzz events from
the social network Twitter. It consists of 78 numerical attributes such as number
of created discussions, author increase, and average discussion length. The
purpose of this dataset is to predict the number of active discussions. All of the
numerical attributes are discretized into categorical ones.

After the pre-processing, all attributes of each dataset are categorical, in which one
attribute can be regarded as the class label and applied to classification tasks. To
be applied to neural networks, the attributes are encoded in one-hot mode, which de-
scribes their domain size. The corresponding original and one-hot dimensions are
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Dataset Sampling Type Discretization Dimensions One-Hot Dimensions

Adult up-sampling yes 14 135
Vehicle up-sampling no 101 202
Census down-sampling no 60 282
Twitter down-sampling yes 78 369

Table 5.1.: Pre-processing of Datasets

listed in Tab. 5.1. The Adult dataset is the simplest one with the lowest dimension,
then the Vehicle dataset. The other two are more complicated. Although they have
different numbers of original records, all the datasets are resampled randomly to the
same size. Each consists of 103 testing data and 105 training data.

5.2. Metrics

To evaluate the quality of a data-generative model efficiently, this thesis investigates
the performance of its generated synthetic data via black-box tests. It comprehen-
sively compares the utility of synthetic data in contrast with the real one from diverse
aspects. Additionally, the privacy preservability of published synthetic data should also
be considered.

5.2.1. Utility

The server aims at generating high-dimensional synthetic data, which preserves the
joint-distributional characteristics as the real ones and replaces the role of real data
in data mining work. The utility of synthetic data refers to its capability to reproduce
properly the behavior observed in the real one. That indicates not only the similarity
of distributions between the synthetic and real data but also its performance in data
mining tasks in place of the real one.

Statistical Distribution

The Average Variance Distance (AVD) is utilized to quantify the distance between two
high-dimensional statistical distributions. For a pair of real and synthetic datasets, the
k-AVD is defined as

k-AVD =
1

m

m∑
i=1

[
1

2

∑
ωi ∈Ω

|Pr (ωi) − Ps(ωi)|

]
(5.1)

where {ωi} denotes a set of attribute combinations in k dimensions and m the number
of the combinations. Pr (ωi) and Ps(ωi) refer to the k-dimensional marginal distribu-
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tions of real and synthetic data for a given attribute combination ωi. The accumulation
inside is along all possible values of one combination to get the corresponding variance
distance, while the accumulation outside is along the different combinations to get an
average result. The k-AVD value is bounded by [0,1], and a lower value represents
that the synthetic data can better simulate the joint distributions of the real one.

Cross-Attributes Correlation

The Pearson Correlation Matrix can measure the linear correlations of all pairs of ran-
dom variables for each distribution. It can be visualized as a heat map. This thesis
evaluates howwell the synthetic data can preserve the internal correlations of the given
real distribution by comparing the two maps. For a quantitative method, the Distance
of Correlation Matrix (DCM) [16] is defined as

DCM = 1 −
tr{RrRs}

‖Rr ‖2 ‖Rs ‖2
(5.2)

where Rr and Rs refer to the Pearson Correlation Matrix of real and synthetic data,
tr(·) the matrix trace and | | · | |2 the L2 norm. If the Correlation Matrices are flattened
to two vectors, the value of DCM is equivalent to the cosine angle between them. So
it ranges from 0 to 1, and a lower value means a higher similarity of the correlations
between two distributions.

AI Training Performance

This thesis employs Machine Learning models to evaluate the utility of synthetic data
in data analysis work. Here we assume that Dr−train is the real training data that
participate in the training process of the generative model, Dr−test the real test data,
andDs the synthetic data generated from the well-trained model. The Train Real Test
Real (TRTR) test is adopted firstly by training a classifier on Dr−train and testing on
Dr−test , then the Train Synthetic Test Real (TSTR) test by training a new classifier on
Ds and testing onDr−test . Intuitively the TRTR score should be better than the TSTR
score. Moreover, if the TSTR score is very close to the TRTR one, the synthetic data
would be considered valid as the real one in AI training tasks.
Here two kinds of models as classifiers are exploited:

• The Multi-Layers Perceptrons (MLP), which has one hidden layer with 100 neu-
rons using activation function ReLU and optimizer Adam.

• The AdaBoost Ensemble, which is built based on the Decision Tree Classifier
with the maximum boosting steps of 50.

Two kinds of scores are utilized for the classification:

• The mean accuracy of the given test data.
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• The Area Under the Receiver Operating Curve (AUC). If the predicted label is
not binary, it is calculated by averaging the AUC scores of all possible pairwise
combinations of the classes.

Overall, there are four approaches (MLP-Accuracy, MLP-AUC, AdaBoost-Accuracy,
ADB-AUC) for measuring the classification precision.

5.2.2. Privacy Preservability

The privacy preservability of given data is assessed by the Membership Inference At-
tack (MIA) [38], which is launched to identify the participation of a particular target
record or a set of records in training a generative model. It considers an honest-but-
curious adversaryA. The adversary only has access to a black-box generative model
and tries to determine whether the target records belong to the training set Dr−train

of the given model or not. Inspired by Hilprecht et al. [17], the attack is employed as
follows.

1. m real records {xi}mi=1 from training dataset Dr−train and m real records
{xi}

2m
i=m+1 from testing dataset Dr−test are sampled as target records;

2. The adversary A samples a sufficiently large amount of synthetic records
{ x̃ j}

n
j=1 from the given generative model G

3. A value function d(x, x̃) is adopted to measure the pairwise distance between
real and synthetic records;

4. For each target record xi, the average probability that the distance between
itself and each synthetic record x̃ j is smaller than threshold t is approximated
via Monte Carlo integration [31] as

ft (x) =
1

n

n∑
j=1

1x̃ j ∈Ut (x) (5.3)

where Ut (x) = { x̃ | d(x, x̃) ≤ t} denotes the t-neighborhood of x and the

threshold t is heuristically chosen as median
1≤i≤2m

(
min

1≤ j≤n
d(xi, x̃ j)

)
5. The adversaryA labels m target records with highest values ft (xi) as predicted

training set {xA
i }

m
i=1. And the MIA-Accuracy is the proportion of actual training

data in this set:
MIA-ACC =

1

m
·
��{i | xA

i ∈ {xi}
m
i=1

}�� (5.4)

To measure the degree of difference among categorical data significantly, the Ham-
ming distance [46] is adopted as the value function d(x, x̃), which is the number of
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positions at which the corresponding values are different for a pair records. For a
target record xi, the estimation ft (xi) describes the density of synthetic data located
at its neighborhood, so this function attains higher values for training data records.
Therefore, a higher MIA-Accuracy score means that the adversary would easily iden-
tify the training data, and the sensitive information might be disclosed easily by the
given generative model.

5.3. Setup

The experiments are conducted over five approaches.

• Center-NoDP: the GAN model in centralized settings without DP

• VD-NoDP: the GAN model in vertically distributed settings without DP

• VDGAN-DPSGD: the vertically distributed GAN with DPSGD protocol

• VDGAN-PATE: the vertically distributed GAN with PATE protocol

• DPLT: the vertically distributed LTM with DP from the work [41]

There are four GAN-based approaches implemented during evaluation. The first two
are deployed without privacy strategies as benchmarks. The other two are the critical
approaches of this thesis. The state-of-the-art DPLT framework is implemented as the
baseline, which would publish joint synthetic data via a vertically distributed LTMmodel
with vanilla DPmechanisms. The experiments in this section are conducted over a two-
client setting for the four approaches in distributed settings. Here the training dataset is
partitioned equally into two parts as local datasets. The neuron size of the GAN model
for different datasets would be adjusted proportionally to their dimension of attributes.
For a better comparison, a fixed random-seed is set when initializing models. And the
evaluation results derive from the average values of repeated tests in a fixed set of
seeds. The optimal hyper-parameters are set via grid search.

5.4. Evaluation and Discussion

This section presents the experimental results using the mentioned metrics and dis-
cusses the findings. After the optimization process, synthetic data are sampled in the
same size as the training set from corresponding generative models. Only data instead
of models are involved in the evaluation work.
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5.4.1. Results of Utility

Statistical Distribution

The k-AVD tests with k = {2, 3, 4, 5, 6} w.r.t different privacy budgets ε =

{0.5, 1.0, 2.0, 4.0, 8.0} are implemented on each approach over all four datasets.
The parameter m in Eq. 5.1 is set to 100 so that the k-AVD value denotes the average
result of 100 different combinations in k-dimensions.

(a) 2-AVD (b) 4-AVD

(c) 6-AVD

Figure 5.1: k-AVD of Census Dataset over Various Privacy Budgets

Figure 5.1 shows the results of Census dataset for k = {2, 4, 6}. The values along
the x-axis represent privacy budgets ε , and the y-axis the k-AVD values. In each sub-
plot, each line refers to one approach, as shown in the legends at the bottom. Addition-
ally, the horizontal lines without markers denote the approaches without DP protocol.
Obviously, the AVD value decreases with a larger ε . That verifies that the synthetic
data have better similarity in statistical distribution with the real one given more privacy
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budgets. What’s more, the results from approaches without DP are always better than
those with DP. That is because the DP protocols affect the optimization process neg-
atively. Furthermore, the red lines denoting Center-NoDP are better than the yellow
line of VD-NoDP, which reflects that the vertical partition harms the model training.
Compared with the three subplots together, the k-AVD value increases with a larger
k, which means that the simulation of joint distribution would become harder in higher
dimensions.

Figure 5.2 compares the results of different datasets on the same 4-AVD. For the
three approaches with DP, the baseline DPLT performs better in Adult dataset, while
ours perform better in the other three datasets, especially under a larger k. That indi-
cates that the proposed frameworks are more suitable for a high-dimensional dataset.
For Twitter and Vehicle datasets, the results of VDGAN-DPSGD/PATE in large ε are
almost same with or even better than VD-NoDP.

(a) Adult (b) Vehicle

(c) Census (d) Twitter

Figure 5.2: 4-AVD of Different Datasets
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Cross-Attributes Correlation

Figure 5.3 exhibits the maps of Twitter dataset over real data as well as synthetic ones
w.r.t. the same privacy budget ε = 1.0. Each map visualizes the Pearson Correlation
Matrix of a specific dataset. The subfigure 5.3(a) denotes the results from the real
dataset, while the other three ones show the results of synthetic datasets sampled
from three different approaches with DP. The maps of the two approaches without DP
look almost the same as the real ones, so they are not shown here. It is obvious
that the maps of two VDGAN frameworks are much more similar to the real one than
DPLT, which confirms that the synthetic data from the proposed approaches can more
successfully preserve the real data’s correlation features among different attributes
than the baseline.

(a) Real (b) DPLT

(c) VDGAN-PATE (d) VDGAN-DPSGD

Figure 5.3: Heatmaps of Pearson Correlation Matrix for Twitter Dataset

Figure 5.4 presents the DCM w.r.t different privacy budgets ε over all datasets and
all frameworks. Each subfigure denotes the results of one dataset. The x-axis repre-
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sents different privacy budgets, and the y-axis the DCM values. Each line represents
the results from one approach. In each subfigure, the DCM value declines with the
increase of privacy budget ε . Besides, the red lines of Center-NoDP indicate the best
results with almost 0, then the results from VD-NoDP in yellow lines. However, For
Twitter Dataset in Fig. 5.4(d), the results of VDGAN-PATE are better than VD-NoDP.
There is a significant improvement over all datasets for the results of VDGAN-DPSGD
compared with DPLT. For Adult dataset, the one in lower dimensions, and the dataset
Vehicle, the one with binary attributes, the VDGAN-PATE approach performsworse un-
der some privacy budgets. Contradictorily, for more complicated datasets with higher
dimensions and larger domain sizes like Census and Twitter, if comparing the y-axis’s
ranges from different subplots, DPLT suffers from a decreasing performance while
VDGAN-based approaches do not have this problem. It is concluded again that the
proposed VDGAN framework is more suitable for high-dimensional datasets.

(a) Adult (b) Vehicle

(c) Census (d) Twitter

Figure 5.4: DCM under Different Privacy Budgets
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AI Training Performance

Figure 5.5 depicts the classification scores w.r.t. different privacy budgets ε for Twitter
dataset. Each subfigure illustrates the results of specific classification metrics. The x-
axis represents different privacy budgets, and the y-axis is the value of corresponding
metrics. The black-dash line denotes the results of TRTR tests as a benchmark, while
others TSTR tests, where the real test data are the same but the synthetic data are
sampled from different approaches. For each subplot, the classification score on the
y-axis does not increase strictly with ascending privacy budgets, which is unanticipated
from the theoretic assumption. Even though each test has been repeated five times
to get an average result, the randomness of Machine Learning models is still non-
negligible compared with traditional metrics like k-AVD and DCM. However, In most
cases, the classification scores under large privacy budgets are better than those under
small ones. Besides, the TSTR results of Center-NoDP are close to those of TRTR
and sometimes even better, as shown in Fig. 5.5(d). That confirms the strong ability
of data synthesis for the GAN model without DP so that the synthetic data is almost
equivalent to the real one.
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(a) MLP-Accuracy (b) AdaBoost-Accuracy

(c) MLP-AUC (d) AdaBoost-AUC

Figure 5.5: Classification Scores for Twitter Dataset

Figure 5.6 shows the results of four different datasets according to the AUC score
of the MLP classifier. In each subfigure, the TSTR results of VDGAN-DPSGD are
generally the best among the three approaches with DP. What’s more, for Vehicle
dataset, they are even better than those of VD-NoDP. It is possible to hypothesize
that the DPSGD protocol can improve the robustness during training a GAN model in
vertically distributed settings. However, the results of VDGAN-PATE are complicated.
For the most straightforward Adult dataset, the scores in all privacy budgets are worse
than the baseline DPLT. In contrast, the Twitter dataset with the highest dimensions
performs better. As for the other two datasets, it wins against DPLT when holding a
larger privacy budget.

47



5. Experiments

(a) Adult (b) Vehicle

(c) Census (d) Twitter

Figure 5.6: AUC Scores of MLP Classifier for Different Datasets

5.4.2. Results of Privacy Preservability

General Comparison

The MIA tests are implemented following the methods in Sec. 5.2.2 with m = 100
and n = 105. To comprehensively consider the protection of different kinds of data,
the tests are employed in three modes, where the percentage of outliers in m target
training data are 0%, 50% and 100%. Because of the severe randomness, the tests
are conducted multiple times.
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(a) 0%Outliers (b) 50%Outliers

(c) 100%Outliers

Figure 5.7: MIA-Accuracy with Different Target Data for Adult Dataset

Figure 5.7 demonstrates the boxplots of different approaches. All approaches with
DP are implemented with the same privacy budget ε = 1.0. Each subfigure represents
the MIA-Accuracy in a given mode for Adult dataset. A higher value of MIA-Accuracy
denotes a weaker privacy intensity. The four boxplots in vertical arrangement indicate
the results from different approaches with or without DP. There is no distinct tendency
for Fig. 5.7(a), which depict the results in 0% outliers mode. Whether the DP protocol
is adopted, the accuracy scores are mostly around 0.5. That means the adversary
cannot identify the records that participated in model training from a set of records with
a similar distribution. The value of MIA-Accuracy rises with an ascending proportion
of outliers, as shown in Fig. 5.7(b) and Fig. 5.7(c). According to this, it can be inferred
that there is severer information leakage for outliers with more distinctive distributions.
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Figure 5.8: MIA-Accuracy with Different Target Data for Census Dataset

Comparing the results of the two approaches without DP shows that themodel in ver-
tically distributed settings has better privacy preservability than the centralized one. An
exception is the Census Dataset, as shown in Fig. 5.8, where the accuracy of Center-
NoDP is much lower than that of all the other approaches. A possible explanation is
that the mode collapse phenomenon of the GAN model happens in the centralized
setting so that it does not learn the distributions of outliers.

Figure 5.9: MIA-Accuracy with Different Target Data for Twitter Dataset

The MIA-Accuracy of DPLT is sometimes even higher than those of VD-NoDP, for
example, the results in Fig. 5.9. That might indicate that the latent tree model of DPLT
is more vulnerable under MIA than the GAN-based model.

In general, the proposed VDGAN-DPSGD framework has lower accuracy than other
approaches. However, the results still need to be more stable. Sometimes it has
apparent advantages, while sometimes just a slight improvement.
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Trade-Off between Utility and Privacy

As is known, training a model with DP protocol is to provide privacy protection by sacri-
ficing the utility of its output. Amore effective method to investigate the privacy preserv-
ability of a given dataset is comparing the trade-off between utility and privacy. Fig-
ure 5.10 presents the accuracy of privacy attacks against the utility over all datasets.
The MIA-Accuracy in 50%-outliers mode is used to describe the privacy intensity, and
the 4-AVD score is adopted to represent data utility in multiple perspectives. For each
subfigure, the x-axis denotes values of a specific utility metric, and the y-axis the val-
ues of MIA-Accuracy. The dots with the same color derive from one given approach
under different privacy budgets. The red star points to the ideal direction where the
data have a low attack accuracy while keeping good utility.

(a) Adult (b) Vehicle

(c) Census (d) Twitter

Figure 5.10: MIA-Accuracy against AVD Score for Different Datasets

For the most complex Twitter dataset shown in Fig. 5.10(d), the dots of DPLT and
VDGAN approaches are distinctly located far and near the star, which means that the
results of VDGAN approaches are better than the baseline in both privacy strength
and utility. For the relatively complicated Census dataset, the dots of two VDGAN
approaches are still located at the front part of the arrow compared with DPLT. In
Fig. 5.10(c), the dots of VDGAN-PATE and DPLT are horizontal while the former lo-
cation at the left side, which means the results of VDGAN-PATE have better utility
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than the baseline under the same privacy strength. The dot distributions for the sim-
pler datasets Adult and Vehicle are approximately perpendicular to the ideal direction.
That is consistent with the trade-off between privacy and utility.

5.5. Ablations

In this section, more experiments are conducted by adjusting the settings that greatly
influence the results.

5.5.1. Extension to Multiple Clients

Apart from Center-NoDP, the other four approaches in vertical settings are feasibly
extended to the multiple-client setting. Figure 5.11 exhibits the utility results using the
metric 4-AVD over multiple clients in {2, 3, 4}. The three approaches with DP are
implemented with the same privacy budget ε = 8.0. Each subfigure shows the results
from a specific metric of a given dataset. The x-axis represents the various number
of clients, and the y-axis represents the utility metrics value. The bars in different
colors denote the results of various methods, and the horizontal line represents the
values from Center-NoDP as a baseline. For all datasets, the 4-AVD values increase
with more clients, indicating the increasing difficulty of publishing synthetic data over
more parties. The results of GAN-based frameworks are much more sensitive to the
increase in client numbers than those of DPLT, which seems to be a disadvantage of
VDGAN. However, despite the varying results for complicated datasets like Census
and Twitter, the proposed VDGAN approaches still have better behaviors than DPLT in
most cases. Besides, there are some expectations for Vehicle dataset in Fig. 5.11(b).
There is no distinct discrepancy between the lines of VD-NoDP and the other three
approaches with DP. That might account for a relatively large privacy budget ε = 8.0,
which does not harm the utility performance too much.
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(a) Adult (b) Vehicle

(c) Census (d) Twitter

Figure 5.11: 4-AVD with Different Number of Clients

5.5.2. Extension to Different Number of Teachers for VDGAN-PATE

The number of teachers is a critical hyper-parameter in the VDGAN-PATE approach.
Figure 5.12 shows the utility results of VDGAN-PATE w.r.t various numbers of teachers
for Twitter dataset. Each subplot demonstrates the results of one metric (4-AVD, DCM,
MLP-AUC) under different privacy budgets. The y-axis refers to the metric values. Two
groups of bars denote the results under a large privacy budget ε = 8.0 and a small
one ε = 1.0 respectively. In each group, the four bars with different colors show the
results with different numbers of teachers. The straight lines denote results from the
two approaches without DP as benchmarks. In one subplot, the results get worse if the
number of teachers is too small (1000) or too large (4000). If the number is too small,
the noise with a large amplitude has to be added to fulfill the same privacy budget,
which is harmful to the optimization process. If the number is too large, each teacher
has too few records as its local dataset, so its discriminator cannot converge very well.
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If we compare the two groups of different privacy budgets in one subplot, the ideal
number for large ε is less than that for small ε . For example, in Fig. 5.12(a), the ideal
number for ε = 1.0 is 3125 while the ideal one for ε = 8.0 is 2000. This is because
when the target privacy budget gets smaller, more noise should be added during the
optimization process, so more teachers are required to resist the influence of noise.

(a) AVD (b) DCM

(c) MLP-AUC

Figure 5.12: Utility Results of VDGAN-PATE with Different Number of Teachers for Twitter
Dataset

The optimal number of teachers for different datasets can be found by comparing
the results in Fig 5.13. This thesis adopts 3125 as the ideal number of teachers for
complicated datasets Census and Twitter, which is larger than the ideal number of
2000 for simpler datasets Adult and Vehicle. This discrepancy might be because more
teachers are required to improve the training process for complicated datasets.
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(a) Adult (b) Vehicle

(c) Census (d) Twitter

Figure 5.13: DCM Scores of VDGAN-PATE with Different Number of Teachers for All Datasets
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Databases held by different parties are usually vertically partitioned with different at-
tributes of the same group of users. In light of the challenge that the private partitioned
data cannot be collected by an untrusted curator, this thesis proposes a GAN-based
framework for vertically partitioned data generation. Besides, DP protocols are inte-
grated into the framework to resist the potential inference attack from adversaries. This
work firstly deals with the following research questions for the framework realization:

• How to deploy a GAN model into the vertically distributed settings? - I construct
a global generator on the server side and a local discriminator on each client
side, which are trained alternatively during the optimization. In each iteration,
the server would pass the partitioned synthetic data to clients according to their
local attributes, and the client would upload the gradients of synthetic data, which
carries the useful information from discriminators to improve the model quality
of the global generator.

• How to implement DP into the model training process? - I introduce two existing
DP protocols, DPSGD and PATE, which are designed for deep-learning models
specifically, to the client part of our VDGAN framework. The formal protocol is
integrated into training local discriminators, which would perturb the gradients
with noise during backpropagation. The latter variant consists of an ensemble of
teacher discriminators on each client, as well as data compression techniques
during gradients aggregation with noise.

Then the proposed frameworks are evaluated in terms of utility and privacy perspec-
tives with multiple metrics. Compared with the baselines, the following findings can be
concluded:

• The existing works, e.g. DPLT [41], use tree-based models to publish syn-
thetic data from vertical partitions, which limits the data type to categorical. The
proposed neuron-network-based VDGAN model can easily adapt multiple data
types by changing the activation functions of the output layer in the generator.

• For the data utility, a number of tests are conducted to measure the similari-
ties between synthetic and real data as well as the different performances in AI
training tasks. The results show that the quality of models decreases to some
degree after employing DP algorithms from that without DP. While under the
same privacy budget, the approaches VDGAN-DPSGD/PATE performs better
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than tree-based DPLT generally, especially for the complicated datasets with
higher dimensions.

• The MIA tests are employed to evaluate the privacy intensity quantitatively. The
proposed models are promising for a balance of privacy-utility trade-off. How-
ever, the problem of how to keep the synthetic data in high quality even if the
target privacy budgets decrease to a low value still requires further considera-
tion.

• In some exceptions, the approaches VDGAN-DPSGD/PATE have disappointing
performances compared with tree-based DPLT for the simpler datasets in rel-
atively low dimensions. Because of this limitation, the proposed frameworks in
this thesis are suggested to be utilized for complicated datasets.
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A. Additional Results

(a) Adult, 2-AVD (b) Adult, 4-AVD (c) Adult, 6-AVD

(d) Census, 2-AVD (e) Census, 4-AVD (f) Census, 6-AVD

(g) Twitter, 2-AVD (h) Twitter, 4-AVD (i) Twitter, 6-AVD

(j) Vehicle, 2-AVD (k) Vehicle, 4-AVD (l) Vehicle, 6-AVD

Figure A.1: k-AVDs under Different Privacy Budgets
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(a) Adult, Real (b) Adult, VDGAN-PATE (c) Adult, VDGAN-DPSGD (d) Adult, DPLT

(e) Census, Real (f) Census, VDGAN-PATE (g) Census, VDGAN-DPSGD (h) Census, DPLT

(i) Twitter, Real (j) Twitter, VDGAN-PATE (k) Twitter, VDGAN-DPSGD (l) Twitter, DPLT

(m) Vehicle, Real (n) Vehicle, VDGAN-PATE (o) Vehicle, VDGAN-DPSGD (p) Vehicle, DPLT

Figure A.2: Maps of Correlation Matrix over Real Data and Synthetic Data from Different Ap-
proaches with 1.0-DP
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A. Additional Results

(a) Adult, MLP-Accuracy (b) Adult, AdaBoost-Accuracy (c) Adult, MLP-AUC (d) Adult, AdaBoost-AUC

(e) Census, MLP-Accuracy (f) Census, AdaBoost-Accuracy (g) Census, MLP-AUC (h) Census, AdaBoost-AUC

(i) Twitter, MLP-Accuracy (j) Twitter, AdaBoost-Accuracy (k) Twitter, MLP-AUC (l) Twitter, AdaBoost-AUC

(m) Vehicle, MLP-Accuracy (n) Vehicle, AdaBoost-Accuracy (o) Vehicle, MLP-AUC (p) Vehicle, AdaBoost-AUC

Figure A.3: Classification Scores of TSTR Tests with Different Privacy Budgets
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(a) Adult, 0%Outliers (b) Adult, 50%Outliers (c) Adult, 100%Outliers

(d) Census, 0%Outliers (e) Census, 50%Outliers (f) Census, 100%Outliers

(g) Twitter, 0%Outliers (h) Twitter, 50%Outliers (i) Twitter, 100%Outliers

(j) Vehicle, 0%Outliers (k) Vehicle, 50%Outliers (l) Vehicle, 100%Outliers

Figure A.4: MIA-Accuracy with Different Target Data
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A. Additional Results

(a) Adult, Privacy-AVD (b) Adult, Privacy-DCM (c) Adult, Privacy-AUC

(d) Census, Privacy-AVD (e) Census, Privacy-DCM (f) Census, Privacy-AUC

(g) Twitter, Privacy-AVD (h) Twitter, Privacy-DCM (i) Twitter, Privacy-AUC

(j) Vehicle, Privacy-AVD (k) Vehicle, Privacy-DCM (l) Vehicle, Privacy-AUC

Figure A.5: MIA Accuracy against Scores of Different Utility Metrics
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(a) Adult, AVD (b) Adult, DCM

(c) Census, AVD (d) Census, DCM

(e) Twitter, AVD (f) Twitter, DCM

(g) Vehicle, AVD (h) Vehicle, DCM

Figure A.6: Utility Results with Different Number of Clients
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A. Additional Results

(a) Adult, AVD (b) Adult, DCM (c) Adult, MLP-AUC

(d) Census, AVD (e) Census, DCM (f) Census, MLP-AUC

(g) Twitter, AVD (h) Twitter, DCM (i) Twitter, MLP-AUC

(j) Vehicle, AVD (k) Vehicle, DCM (l) Vehicle, MLP-AUC

Figure A.7: Utility Results of VDGAN-PATE with Different Number of Teachers
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