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Abstract

Actively traded assets are among the most widely predicted time series in the world.
When it comes to time series predictions, sequence to sequence deep learning mod-
els are particularly effective as they take into account the temporal properties of the
input features. Yet, due to the competitive nature of the market, there is relatively little
publicly available research on deep learning-based financial time series predictions.
Many of the published papers promise excellent results. But most of them lack es-
sential information, which makes the reproduction of their results impossible and thus
highly questionable. With a transparent approach, in this thesis, I try to find out whether
accurate predictions of indices, stocks, or cryptocurrencies are possible. In addition,
I investigate if the predictions can be improved by using macroeconomic data as well
as the volume of specific search terms on Google, which should reflect the general
market sentiment. Neither the queried fundamental data nor the selected sentimental
data could improve the predictions. While for most assets accurate predictions over
the entire test period were not possible, a thoroughly good predictive accuracy could
be observed on the most volatile days. This makes the prediction of high volatility
assets like Bitcoin particularly interesting and provides a potential trading opportunity.
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1. Introduction

Forecasting price movements of financial time series has been of great interest since
the early days of modern economy. Financial time series are highly non-stationary,
noisy, and strongly affected by external influences like market psychology, macroeco-
nomics, natural disasters, and politics, which makes them hard to predict. The efficient
market hypothesis even goes so far as to claim that the market is unpredictable or, ac-
cording to the semistrong form, at least only predictable through insider knowledge
[60]. Yet the Medallion fund, a quantitative trading fund that was started in 1988 by
Jim Simons and James Ax, achieved an impressive annual compound return of 63.3%
in the period from 1988 to 2018 [20]. However, as the mutual fund study [36] by Gruber
shows, it is by no means easy to outperform the market. According to the study, on
average, actively managed funds were unable to outperform index funds such as the
S&P 500 between 1985 and 1994.

In recent years machine learning techniques and mostly deep learning have dis-
rupted many fields of research, such as computer vision, natural language process-
ing, marketing, and robotics. Although machine learning is widely used in finance, be
it for insurance, fraud detection, risk management, anti-money laundering, or trading,
there is relatively little publicly available research on the subject. For financial time
series predictions this is no surprise, since institutional investors and hedge funds are
profit-oriented, disclosing their strategies would mean giving up their advantage over
competitors and private investors.

Financial time series are sequences of multiple features. Sequence to sequence
models are therefore particularly suited for their prediction. Over the last decade, re-
current neural networks (RNNs) and especially long short-term memory (LSTM) have
shown impressive results in sequential problems like machine translation [86]. More
recently, the focus has shifted to non auto-regressive models such as convolutional
sequence to sequence learning [32] and transformers [89]. Although the encoder-
decoder architecture of the transformer model is not particularly suited for financial
time series predictions, some ideas such as the self-observation mechanism could
potentially be used to improve the predictions of other sequence to sequence deep
learning models.

Besides an adequate model that can handle sequential data, a carefully thought-out
feature selection is necessary. Many different factors like technical indicators, patterns,
fundamental data, as well as sentimental data could have an impact on the stock mar-
ket. It would therefore make sense to use those features as inputs for the prediction
task. In the case of few training data, throwing everything into one basket and letting

7



1. Introduction

the model decide which features to use would not work, however, as this would lead to
overfitting on the training data due to the curse of dimensionality. Furthermore, the use
of older observations could reduce the overfitting, but would lead to new complications.
As the stock market continues to evolve, strategies tend to become outdated and stop
working after a while. Therefore it is crucial to find a good compromise between the
number of observations needed for sufficient generalization and how far in time these
observations should date back. This makes the investigation of different preprocessing
methods and the use of appropriate regularization techniques even more important for
the prediction of financial time series.

1.1. Problem Formulation

By the end of this work, this thesis aims to answer the following two research questions:

Research Question 1

“Can machine learning techniques and mostly deep learning, using his-
torical price data and technical indicators, be effectively used to predict
future prices of financial time series?”

Research Question 2

“Can the volume of specific search terms on Google, as well as macroe-
conomic data, improve the accuracy of machine learning-based financial
time series predictions?”

1.2. Thesis Contribution

This thesis analyzes the predictability of financial time series with three different se-
quence to sequence deep learning models, namely long short-term memory (LSTM),
self-attention-based LSTM (ALSTM), and temporal convolutional network (TCN). To
answer the two research questions, six different datasets are constructed which con-
tain at least the base features of the underlying asset. The datasets are then expanded
with either technical indicators, patterns, fundamental data, or sentimental data. The
used features are partly based on the experience of experts and partly selected by
means of causality tests. Besides feature scaling, the impact of time series denois-
ing, dimensionality reduction, and transfer learning is investigated. The evaluation is
done using hyperparameter tuning in a walk-forward nested cross-validation approach.
The mean absolute scaled error (MASE) is used as a scaling and volatility invariant
measurement metric to allow comparisons in different periods and between different
assets. Furthermore, a long/short signal-based trading strategy is implemented and
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1.3. Outline

compared to the simple buy and hold strategy. In order to obtain meaningful results,
different assets are evaluated.

1.3. Outline

In Chapter 2 I introduce the fundamentals of financial time series, machine learning
(ML), and sequential deep learning, which are required for a basic understanding of the
subject. In Chapter 3 I discuss the related work of financial time series prediction with
special focus on deep learning-based approaches. Thereby I examine the limitations
of the individual publications and try to address them in my work. In the first part of
Chapter 4, I introduce six different datasets, whereas in the second part I describe
the detailed deep learning frameworks. The most insightful results are presented and
discussed in Chapter 5. A complete list of all results is provided in Appendix C. Finally,
Chapter 6 concludes my findings.
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2. Fundamentals

In the first section of this chapter, I introduce the basic principles of financial time se-
ries and the traditional analytical methods for their prediction. In Section 2.2 I give
a short introduction to machine learning (ML) with special focus on deep learning for
time series prediction. In the last section of this chapter, I describe three preprocess-
ing techniques, namely data scaling, denoising of a time series, and dimensionality
reduction. I only cover topics that are relevant to this work and recommend the book
Deep Learning by Goodfellow et al. [33] for a deeper ML understanding.

2.1. Financial Time Series

Time series can be considered as sequences of random variables {Xt }t∈T , which are
often referred to as stochastic process in the field of probability theory. For financial
time series the index set T is of discrete-time, resulting in x(t) = {x(t)1 , x(t)2 , . . . x(t)n }
being a set of n input features at the specific sampling points t [83]. Time series
that incorporate multiple input features are called multivariate time series. In his book
[21], De Prado describes various methods of sampling from unstructured financial data
and discusses their advantages and disadvantages. The most common approach is
to sample at fixed time intervals, e.g. once per minute, hour, day, week, or month.
Although this technique is the easiest method to implement, it has the drawback of over-
sampling during periods of low trading activity and under-sampling during periods of
high trading activity. This drawback can be avoided by sampling each time a predefined
trading volume is exchanged.

Now that the basic principles of time series have been introduced, it is important to
mention which input features make up a financial time series. The following five fea-
tures form the basis, on which all further technical input features that will be introduced
in the coming sections are built:

• Open (price of the first trade that happened in the sampling period)

• Close (price of the last trade that happened in the sampling period)

• High (highest price reached during the sampling period)

• Low (lowest price reached during the sampling period)

• Volume (number of shares traded during the sampling period)
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2. Fundamentals

High
Open

Close
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Close
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Figure 2.1: A candlestick chart where each candle corresponds to one sample.

In Figure 2.1 we can see a typical candlestick chart of a financial time series. Each
candlestick corresponds to one sample showing the opening, closing, high and low
price. For orange candlesticks, the closing price is lower than the opening price, in-
dicating that the price has fallen during the sampling period. Conversely, for green
candlesticks, the closing price is higher than the opening price, indicating that the
price has risen during the sampling period.

In this thesis, I will use daily samples due to the limited availability of freely accessible
financial data. This means that the opening and closing prices refer to the first and last
trade that took place during the opening hours of the exchange.

2.1.1. Traditional Prediction Methods

The traditional stock market prediction can be subdivided into three categories, namely
technical analysis, fundamental analysis, and sentimental analysis. Traders usually
rely on these three analytical methods when making a trading decision.

Technical analysis

Technical analysis is the analysis of historical trading data, based solely on data from
a multivariate financial time series. In Figure 2.2 we can see a typical candlestick chart
where the stock price follows a specific trendline. In this case, the blue trendline acts
as resistance, which means that every time the price approaches this trendline, there is
a high chance that the price will fall. Once the price manages to close above the falling
resistance trendline, the chances of a breakout rise. Conversely, trendlines can also
act as support and their breakouts lead to a price drop [2]. Other frequently used tools
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2.1. Financial Time Series

Figure 2.2: A candlestick chart with blue resistance trendline and subsequent breakout of the
price trend.

in technical analysis are technical indicators. Technical indicators are mathematical
and statistical tools used to gain insight into the trend, volatility, volume, and dynamics
of financial time series [19]. In Subsection 4.1.1 several technical indicators used in this
thesis will be introduced. Another common approach in technical analysis is the use
of price patterns. Based on local minima and maxima, a specific pattern is identified,
indicating the possibility of a trend continuation or reversal [81]. The price patterns
used in this thesis will be discussed in Subsection 4.1.2.

Fundamental analysis

Fundamental analysis is the analysis of financial ratios, reports, macroeconomics, and
political events. It is used to determine the true value of a stock [51]. Financial reports
contain data such as revenue, dividend payout, price to earnings ratio, profit, debt, in-
vested capital, expenses, etc. Macroeconomics provide insights into the overall market
and include data such as gross domestic product (GDP), inflation rate, interest rate,
housing, average earnings, and unemployment rate.

Sentimental analysis

Sentiment analysis is the analysis of market sentiment. It is used to capture public
opinions and the feelings of the masses [56]. The market sentiment can be bearish,
neutral, or bullish. A bearish sentiment means that the majority expects the price to
move down, while a bullish sentiment means that the majority expects the price to
move up.
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2. Fundamentals

2.1.2. Efficient Market Hypothesis

The efficient market theory states that stock prices reflect all relevant information and
therefore in the long run it is impossible to outperform the market. The efficient market
hypothesis is categorized in three forms, the weak, the semi-strong, and the strong
form. The weak form implies that past market data is fully reflected in the current
stock prices, therefore technical analysis cannot be used to predict future price move-
ments. The semistrong form suggests that all publicly available information is already
factored into current stock prices, therefore neither technical nor fundamental analy-
sis can be used to predict future price movements. The strong form assumes that all
information is incorporated into the current stock prices, whether public or insider in-
formation, which is why future price movements cannot be predicted at all [60]. Many
economists and traders argue that the stock market is not perfectly efficient and thus
future price movements can be predicted up to a certain degree [22, 27]. Although
there are many active fund managers who have significantly outperformed the market
in recent decades, supporters of the hypothesis claim that this is mainly due to higher
risk exposure. This claim is supported by several studies showing that, on average, the
returns of all actively traded mutual funds failed to outperform the market [11, 30, 36,
61]. One point on which proponents and opponents of the hypothesis tend to agree is
that the market may at some point become irrational [61]. The time needed to restore
its true value could then possibly be used to outperform the market.

Under the assumption that markets are not perfectly efficient, in this thesis I try to find
out whether it is possible to predict financial time series using ML-based approaches,
and if so, what kind of input features contribute to my findings.

2.1.3. Granger Causality

1969 C.W.J. Granger proposed a definition of causality involving two stationary time
series {Xt }t∈T and {Yt }t∈T that can be generalized for weakly stationary time series
[35]. Let XLx

t = (Xt−Lx, Xt−Lx+1, . . . , Xt−1) represent the Lx-lagged vector of Xt and
Y Ly
t =

(
Yt−Ly,Yt−Ly+1, . . . ,Yt−1

)
represent the Ly-lagged vector of Yt with Lx, Ly ∈

N [41]. In addition let P (Xt |Ut−1) be the one-step-ahead least squares predictor of
Xt given the set Ut−1 of past information that, among all available data, includes the
two lagged vectors XLx

t and Y Ly
t . With the variance σ2(A|B) of the predictive error

εt (A|B), Yt is said to Granger cause Xt with lag Ly if and only if:

σ2 (Xt |Ut−1) < σ2
(
Xt |Ut−1 \ Y Ly

t

)
, (2.1)

meaning that the past Ly values of Yt help to predict Xt . To test for causality, the
following vector autoregressive model is estimated by ordinary least squares:

Xt = α0 +

Lx∑
k=1

αk
11Xt−k +

Ly∑
k=1

αk
12Yt−k + u1,t. (2.2)
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2.1. Financial Time Series

Afterwards, a simple hpyothesis test (F-test or χ2-test) is applied with the null hypoth-
esis beeing H0 : α1

12 = α2
12 = ... = α

Ly
12 = 0. If the null hypothesis is rejected, Yt

Granger causes Xt with lag Ly [50].
To remove any seasonality from the data, the Granger causality tests applied in this

thesis are always performed on first-order derivatives.

2.1.4. Financial Ratios

Risk-adjusted return evaluation ratios are commonly used to compare the performance
between different funds.

Sharpe Ratio

The Sharpe ratio describes the excess return of an investment by increasing the risk
and can be computed as follows [82]:

S =
r i − rf
σri

, (2.3)

where r i is the average return of investment and rf the risk-free rate, which can be
set to 0 due to the current interest policy.

Sortino Ratio

The Sortino ratio is similar to the Sharpe ratio, but only factors in the downside standard
deviation, leaving the upside volatility out of the risk calculation [76]:

SR =
r i − rf√

1
m

∑m
j=1

[
min

(
0, r (j)i − rf

)]2 . (2.4)

For highly volatile investments, the Sortino ratio is often preferred to the Sharpe ratio,
since high upward volatility is actually a positive characteristic.

Mar Ratio

The Mar ratio is calculated by dividing the annualized return of an investment by the
maximal drawdown of the investment. The maximal drawdown is the maximum pro-
portional loss from a high of the investment to a low of the investment [59].
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2. Fundamentals

Capital Asset Pricing Model

The capital asset pricing model (CAPM) is a linear regression model that can be used
to measure the return of an investment compared to the risk exposure [72]. Without
interest, the CAPM can be described as follows:

r i = β · rb + α, (2.5)

where r i are the returns of the investment and rb the returns of the benchmark. The
constant α can be interpreted as the excess return of investment that cannot be ex-
plained by the benchmark. A good investment should have a positive α. The factor β
can be interpreted as the risk exposure. A small β indicates a low risk exposure com-
pared to the benchmark, whereas |β| > 1 indicates a higher risk exposure compared
to the benchmark.

2.2. Machine Learning-Based Prediction

Life is a continuous learning process. We educate ourselves through experience.
When we as humans solve a task, we do not follow a mathematical formula, but rather
we try to solve the problem intuitively. Tasks that we are confronted with on a daily
basis will be very easy for us - think of walking, for example. Then there are tasks that
can only be done by people who are specialized in these particular tasks, e.g. flying an
airplane. Assuming you are not a pilot with many hours of experience, could you land a
passenger plane safely? ML develops on the basis of these human-inspired ideas and
combines them with ideas from linear algebra, probability theory, information theory,
and numerical optimization [33]. Based on experience or example data, ML attempts
to solve a specific task without explicitly programming the exact sequence of instruc-
tions. ML should not be confused with Artificial Intelligence (AI). ML is a sub-field of AI
that focuses on solving individual tasks with the help of observations. The features of
those observations should be carefully selected and tailored to the task to be solved.
Just like for humans, a ML algorithm will perform poorly on tasks never experienced
before.
ML is not about identifying the perfect algorithm. Rather, it is about identifying pat-

terns, regularities, and irregularities in the input data and finding an approximation of
the desired output using optimization techniques [3]. ML algorithms can be divided
into three categories, namely supervised learning, unsupervised learning, and rein-
forcement learning. The basic concepts of unsupervised learning will be introduced in
Subsection 2.3, while for reinforcement learning I refer to [87].

2.2.1. Supervised Learning

In supervised learning, the data is labeled, which means that given the input data
we know the desired output. The ML algorithm then tries to approximate a function
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2.2. Machine Learning-Based Prediction

Y = f (X |θ) by mapping the training data X to its corresponding labels Y and by
optimizing the trainable parameters θ of a predefined model. After optimizing all the
trainable parameters, the model is used to perform predictions on new, unseen data.

Classification

By assigning each label Y a certain class code, we obtain a classification problem.
Suppose we want to classify images that contain either a dog or a cat. Labeling all
dog images with a 0 and all cat images with a 1 describes a typical two-class problem.
After training a proper model, the ML-algorithm should be able to distinguish between
new cat and dog images with reasonable accuracy.

Regression

In regression the data is labeled with real numbers instead of class codes. The task
is then to find the relation that maps a given input data X =

{
x(1), x(2), . . . , x(N )

}
to its

labeled outputsY =
{
y(1), y(2), . . . , y(N )

}
. In case of a financial time-series prediction,

the input data X consists of a sequence with several features such as open, close,
high, low, volume etc. If our goal is a one-step ahead prediction, we label the outputs
Y with the desired input feature (e.g. the closing price) one time step in the future.

2.2.2. Deep Learning

Deep Learning has its roots in the 1940s. Back then known as cybernetics, the first
mathematical model of a human neuron was introduced in 1943 by McCulloch and
Pitts [62]. Later, in 1958, Rosenblatt introduced the perceptron [77], the first model of
a neuron that could learn the weights in a supervised fashion.

After decades without groundbreaking progress in the field, in the 1980s a second
more successful wave of development called connectionism was underway. In 1979
Fukushima developed the neocognitron, a neural network architecture that uses 2d
convolutions to recognize patterns in images [31]. In 1986 Rumelhart et al. published
their paper [80] in which they successfully used backpropagation to train the weights
of a neural network.

The financial time series prediction applied in this thesis is a special case of se-
quence to sequence learning, called many-to-one learning, where an input sequence
is used to predict a single output. The greatest breakthrough in sequence to sequence
learning was probably achieved by Hochreiter and Schmidhuber in 1997 with the in-
troduction of the long short-term memory (LSTM) network [42].

Inspired by the neocognitron architecture, in 1998 LeCun et al. used backpropa-
gation in a convolutional neural network (CNN) to recognize handwritten characters.
Therefore they released the MNIST database, a database of handwritten digits which
still serves as a benchmark today [54].
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∑
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f (z) a = f (wT x + b)z

Figure 2.3: A single neuron, also called perceptron.

With the arrival of the newmillennium, the secondwave of development disappointed
many investors. The expectations were just too high and could not be fulfilled [33].

During the last decade, deep learning has successfully disrupted many fields of re-
search, such as natural language processing, computer vision, and robotics, and has
become state of the art in many tasks. This was only partially caused by new discov-
eries such as greedy layer-wise training of deep networks [13], generative adversarial
networks (GANs) [34] and transformers [47]. Back in the late 1990s, the main reason
for failure was largely due to the lack of computational resources. The neural networks
were simply too small and backpropagation was too complex for an enlargement of the
nets. Today, some of the best performing deep learning architectures are still using
the samemethods discoveredmany years ago, with backpropagation, LSTM, and CNN
beeing the most popular ones.

In Figure 2.3 we can see a single neuron with four input features x = {x1, . . . , x4},
their respective weights w, the bias term b and the activation function f (z). A neural
network consists of multiple such neurons. Figure 2.4 shows a simple feed-forward
neural network with one hidden layer. Neural networks with more than one hidden
layer are called deep neural networks (DNNs).

Activation Function

The activation function f (z) from Figure 2.3 can be used to transform the linear function
wT x+ b into a non-linear function. By applying a non-linear activation function to each
hidden neuron of a sufficiently large network, it is possible to model any nonlinearity
[55]. Without a non-linear activation function, a single output neural network could not
solve non-linear problems such as the XOR problem.
Table 2.1 lists all activation functions that were used in this thesis. ReLU, which

stands for Rectified Linear Unit, has become the preferred choice over sigmoid and
tanh activation functions in recent years due to its advantageous properties in the learn-
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Input
Layer

Hidden
Layer

Output
Layer
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x(t)1
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Figure 2.4: An exemplar feed-forward neural network with two input features, one hidden layer,
and one output unit in the output layer.

ing process. Sigmoid and tanh are only sensitive to their input when z is close to 0.
For large values of z, they saturate quite quickly, causing the gradient to go to 0. This
makes the learning process with backpropagation very slow and difficult [33]. ReLU
on the other hand does not saturate for positive values of z. The simple and consistent
derivation of ReLU is also computationally more efficient, which usually leads to faster
and better convergence in the training [52, 85]. One drawback is the dying ReLU phe-
nomena, where neurons become inactive and the output of these neurons becomes
0 regardless of the input value [58]. Leaky ReLU and other similar rectified activation
functions tackle this problem by assuring a non-zero gradient for every possible value
of z [92].

Neural networks with one unit in the output layer (see Figure 2.4) can be used for bi-
nary classification or regression. With a properly chosen cost function and the identity
activation function for the output unit, we obtain a regression task.

Cost Function

The cost function J of a neural network is used to measure the deviation from the
actual output value of the model to the target value. In regression we usually chose the
mean squared error (MSE). This choise is supported by a simple maximum likelihood
estimation with the modeling error assumed to be gaussian distributed [33]. The MSE
can be calculated as follows:

JMSE =
1

m

m∑
t=1

ŷ(t) − y(t)
2 , (2.6)
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Name Plot Function Range Derivative

Identity f (z) = z (−∞,∞) f ′(z) = 1

Sigmoid σ(z) = 1
1+e−z (0, 1) σ′(z) = σ(z)(1 − σ(z))

tanh f (z) = ez−e−z

ez+e−z (−1, 1) f ′(z) = 1 − f (z)2

ReLU f (z) = max(0, z) [0,∞) f ′(z) =

{
0 if z ≤ 0

1 if z > 0

Softmax f (z)i = ezi∑K
j=1 e

z j
(−1, 1) ∂ f (zi )

∂z j
=

{
f (zi) (1 − f (zi)) if i = j
− f (zi) f

(
zj

)
if i , j

Table 2.1.: An overview of the activation functions used in this thesis.

where m is the number of observations, ŷ(t) the predicted value and y(t) the target
value at time t.

Gradient Descent

Gradient descent is an iterative optimization technique commonly used in deep learn-
ing to minimize the cost function J. Gradient descent relies on forward propagation
and backpropagation algorithms. In forward propagation, the input data is propagated
through the entire network to the output. Backpropagation, on the other hand, is used
to efficiently calculate the gradients of the cost function with respect to the weights.
For a detailed derivation of the forward propagation and backpropagation algorithms,
I refer to [40], since their introduction would require a lengthy explanation of notation
and therefore affect the reading flow.
The idea of gradient descent is to introduce a learning rate η, a small but positive

scalar that determines the step size at each iteration. By gradually moving the weights
in the opposite direction of the gradient with an adequate learning rate, gradient de-
scent converges to a local minimum. Let θ[l]i = [W [l]i , b[l]i ] be the set of trainable
parameters at layer l and iteration i, then a gradient descent step can be performed
as follows:

θ[l]i+1 = θ[l]i − η · ∇θ[l]i
J
(
θ[l]i , x(t:t+n), y(t:t+n)

)
, (2.7)

while the set x(t:t+n) depends on the gradient descent variant. With batch gradi-
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2.2. Machine Learning-Based Prediction

ent descent, the entire training set is used for each optimization step, whereas with
stochastic gradient descent (SGD) only one sample is used at a time. Mini-batch gra-
dient descent combines the two variants, benefitting from the stable convergence of
batch gradient descent and improved efficiency of SGD due to fewer gradient calcula-
tions [79].

Adam Optimizer

The convergence of gradient descent strongly depends on the choice of the learning
rate. A too small learning rate leads to very slow convergence and assuming the cost
function is non-convex, it can also lead to convergence in suboptimal local minima. On
the other hand, a too large learning rate can lead to a fluctuation around the minimum
or even to divergence.

Adaptive moment estimation (Adam) is an optimization technique that similar to mini-
batch gradient descent is used tominimize the cost function J with the help of a learning
rate. Adam, however, does not use a fixed learning rate. Instead, it adjusts the learning
rate based on estimations of the first moment mi (the mean) and second moment vi
(the uncentered variance) of the gradients [79]:

mi = β1mi−1 + (1 − β1) ∇θJ
(
θi−1, x(t:t+n), y(t:t+n)

)
,

vi = β2vi−1 + (1 − β2) ∇θ � ∇θJ
(
θi−1, x(t:t+n), y(t:t+n)

)
,

(2.8)

with m0 = 0, v0 = 0 and decay rates β1 and β2 usually set to 0.9 and 0.999 respec-
tively. Given the notations for element-wise division �, for element-wise square root
A◦

1
2 and for element-wise addition ⊕, an optimization step to update the parameters

can be computed as follows:

θi+1 = θi − ηm̂i � (v̂
◦ 12
i ⊕ ε), (2.9)

where m̂i and v̂i are the bias-corrected moments:

m̂i =
mi

1 − βi1
,

v̂i =
vi

1 − βi2
,

(2.10)

η is the initial learning rate and ε a very small number for numerical stability [49].

Regularization

With the methods that have been presented so far, we should be able to train a model
that successfully maps some known inputs to the desired output. The goal of deep
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Figure 2.5: Typical U-shaped generalization error curve. The training error decreases as the
model capacity increases. In the underfitting zone, the generalization error decreases until it
reaches its minimum at optimal capacity. In the overfitting zone, the generalization error rises
with increased capacity [33].

learning, however, is not just to achieve good performance on training data, but also
on new unseen data.

In ML it is common practice to split the data into training, validation, and test sets.
The training set is used to update all the trainable model parameters θ. The validation
set is used to fine-tune and update the hyperparameters of the model (e.g. η) based
on estimations of the generalization error (the expected error on a new input). After
evaluating the estimated generalization error of the test set, no further changes to the
model should be made. In Figure 2.5 we can see the typical U-shaped generalization
error curve as a function of model capacity, which illustrates the famous bias-variance
tradeoff in ML.
Regularization strategies aim to reduce the test error by preventing the model to

overfit on the training data. The following are some commonly used regularization
techniques:

• L2 regularization adds a penalty term λ‖θ‖22 to the cost function, where λ is
a fixed regularization parameter. The L2-norm regularization leads to a weight
decay and prevents single weights from exploding.

• Activity regularization can be applied on a per-layer basis, as it adds the L1-
norm or L2-norm as penalty term to the layer output. L1 activity regularization
encourages sparse layer outputs while L2 activity regularization tries to reduce
the output values.

• When using dropout, each neuron has a predefined probability that the output of
the neuron is set to 0. For each input observation, x(t) the neurons to be dropped
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2.2. Machine Learning-Based Prediction

are sampled independently at random. Thus, dropout is a computational very
efficient strategy to prevent overfitting.

• Batch normalization is used to normalize the inputs of a layer at each mini-batch.
As a result, the distribution of the inputs will not change dramatically from batch
to batch. This has the positive effect of stabilizing and speeding up the training
process [46].

• Early stopping is another type of regularization that requires an evaluation of the
validation set after each epoch. As soon as the validation error has not improved
for a predetermined amount of training steps, the training is stopped to prevent
overfitting.

Finding the optimal capacity of a model is by no means easy. Therefore, the use of
regularization techniques is a crucial step to prevent overfitting. Recent results have
shown that once the interpolation point of a model is reached (i.e. the training error
converges to 0), an increase in capacity in combination with adequate regularization
leads to a decrease of the generalization error. A further increase in capacity can then
lead to a lower generalization error than at optimal capacity [12].

2.2.3. Recurrent Neural Networks

In Section 2.1 multivariate financial time series were introduced as sequences with
multiple input features. As input observation for a time series prediction task, it would
therefore make sense to use input sequences as well. Feed-forward neural networks
are not particularly suited for this type of task because they cannot properly capture
the temporal domain of the inputs. Generally speaking, it would be possible to use
sequences in a feed-forward neural network by stacking a predefined amount of τ
vectors to one big input vector x(t:t+τ). Since this would require the training of sep-
arate weights for the same input features at different time steps, the neural network
would have a hard time generalizing on the input data. Recurrent neural networks
(RNNs) were designed to deal with sequential data. Unlike feed-forward neural net-
works, RNNs share their weights across time. In Figure 2.6 we can see a RNN that
uses a τ+1 long sequence as input observation to predict a single output. The hidden
states are defined as:

h(t) = f
(
b +W h(t−1) + U x(t)

)
, (2.11)

where W are the hidden-to-hidden weights, U the input-to-hidden weights and V the
hidden-to-output weights. Because of the recurrent nature of the hidden state compu-
tations, RNNs suffer from the vanishing and exploding gradient problem [33].
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Figure 2.6: Recurrent neural network (RNN) with a single output prediction. For multivariate
time series the inputs x(t) are vectors representing the features at time t [33].

Long Short-Term Memory

Long short-term memory (LSTM) is a special type of RNN that tackles the vanishing
gradient problem by controlling the information flow through three additional gates.
While the outer recurrent structure remains the same as in Figure 2.6, the hidden
states are replaced by so-called LSTM cells (see Figure 2.7).

h(t−1)
σ σ tanh σ

+

tanh

c(t−1)

h(t)

c(t)

h(t)

x(t)

i(t)f (t)
o(t)

c̃(t)

Figure 2.7: The structure of a LSTM cell with forget gate f (t), input gate i(t) and output gate
o(t).

The three sigmoid activation functions are used to ensure a gate value between 0
and 1, whereas the two tanh activation functions introduce the non-linearity. The mem-
ory cell c(t) is computed with the forget gate f (t), which controls how much information
from the previous memory cell should be retained, and with the input gate i(t), which
controls the contribution of new information [68].
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Attention Mechanism

The significance of an input feature can vary depending on its temporal occurrence in
the sequence. The important part, however, may not be in the same position for every
input of a training batch. In natural language processing, for example, a keyword could
appear at the beginning or end of a sentence and still have the same meaning. Self-
attention mechanism performs a softmax operation on the hidden states of the RNN.
This can be understood as a weighting of the hidden states at each time step. In this
way, the model learns to concentrate on the important parts of the sequences, which
in turn means that the complexity of the network can be kept smaller [7].

2.2.4. Temporal Convolutional Network

In recent years convolutional neural networks (CNNs) have shown exceptional re-
sults in image processing tasks, as they are particularly suitable for input data with
translation-invariant properties [48]. With few changes in the basic structure, CNNs
can also be used for time series predictions with sequential data. Temporal convo-
lutional network (TCN) is a special type of CNN that was designed for sequence to
sequence predictions. Similar to DeepMinds WaveNet architecture [69], TCN uses di-
lated causal 1D convolutions for its prediction task as shown in Figure 2.8. The number
of units in each layer corresponds to the length of the input sequence times the total
number of filters. It is basically a 1D fully convolutional network with zero padding,
where only past outputs of previous layers are used for the convolutions. A dilated
convolution is defined as:

z(t) =
k−1∑
i=0

Wi · x
(t−d ·i), (2.12)

where d is the dilation factor, k the kernel size, and Wi the kernel weight which is
shared within the same layer [8].

Figure 2.8: Dilated causal 1D convolution structure applied in TCNs. The dilation factor d is
increased exponentially with the depth of the network. All layers use a fixed kernel size k = 2
[69].
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Residual Learning

The best results in image recognition have been achieved by very deep CNNs and
especially by residual neural networks. Residual neural networks use skip connec-
tions between layers to allow a direct gradient flow through backpropagation. This ad-
dresses the vanishing gradient problem, allowing networks to grow deeper and deeper
[39].

Figure 2.9: A residual block with identity mapping as skip connection [39].

For TCN predictions several residual blocks can be stacked together. Each residual
block has the same structure as shown in Figure 2.8. Thus, for a one-step-ahead pre-
diction with an input sequence length τ = 16, two residual blocks with dilation factors
[1, 2, 4] could be stacked together instead of using a single block with dilation factors
[1, 2, 4, 8]. To deal with different input-output shapes when using skip connections be-
tween residual blocks, TCN uses 1x1 convolutions instead of a direct identity mapping
as shown in Figure 2.9.

2.3. Data Preprocessing

In Section 2.1 different sampling techniques for financial time series were outlined.
The sampling of unstructured data is an essential preprocessing task that must be
performed before the data can be fed into a predictor. While in theory the sampled
data could be directly used for predictions, in practice further preprocessing steps are
necessary to obtain reasonable results.

2.3.1. Feature Scaling

Usually, the input features of observations are of different scale. For a stable learning
process, it is important that all features lie in the same order of magnitude. Espe-
cially in combination with regularization strategies, it is essential to rescale the data so
that all features can be considered equally. The scaling is performed on each feature
independently:

xi =
xi −min(x(1:Ttrain)i )

max(x(1:Ttrain)i ) −min(x(1:Ttrain)i )
∗ (LB −UB) + LB, (2.13)
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where xi is the ith input feature vector and (LB,UB) is the feature range which is
usually set to (0, 1). To prevent data leakage into the validation and test sets, the
scaling factors are performed on the training set and then applied to the validation and
test sets. As an alternative to the "MinMaxScaler" from equation 2.13, it is common
practice to standardize the input features [71].

2.3.2. Denoising a Time Series

The most intuitive way to denoise a signal is probably to use the Fourier transform with
subsequent filtering in the frequency domain. The Fourier transform decomposes a
signal into a sum of sinusoids:

x(t)
F
−→ X(ω) :=

∫ ∞

−∞

x(t)e−jωtdt. (2.14)

The transformed signal X(ω) can then be denoised with an adequate filter and af-
terwards transformed back into the time domain. This procedure is suited for signals
whose frequency does not change over time, e.g. for images or audio signals. For
signals without a constant frequency over time (e.g. non-stationary time series), the
so-called short-time Fourier transform (STFT) was introduced:

X(τ, ω) :=
∫ ∞

−∞

x(t)w(t − τ)e−jωtdt, (2.15)

where w(t− τ) is the window function with time index τ. Basically, the signal is divided
into segments of equal length, and the Fourier transform is applied to each segment
separately. Although this method solves a limitation of the Fourier transform by intro-
ducing a time resolution, it has the disadvantage of having a fixed time and frequency
resolution. Limited by the Heisenberg–Gabor uncertainty, the Fourier transform can
either have a good time resolution or a good frequency resolution, but not both [37].

The wavelet transform partially overcomes the resolution limitations by introducing
a multi-resolution structure:

X(a, b) :=
1
√

a

∫ ∞

−∞

Ψ

(
t − b

a

)
x(t)dt, (2.16)

where Ψ represents the wavelet function, a the scale parameter, and b the position
parameter. A small scaling factor a compresses the wavelet, resulting in a good time
resolution, but at the same time in a poor frequency resolution at high frequencies.
Conversely, a large scaling factor a stretches the wavelet, resulting in a good frequency
resolution, but at the same time in a poor time resolution at low frequencies [4].

Based on the discrete wavelet transform, a continuous noisy signal x(t) can be de-
noised as follows:

Wj,k =

∫ +∞

−∞

xd(t)ψj,k(t)dt ( j = 1, 2, ..., J), (2.17)
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where xd(t) is the derivate of x(t) and Wj,k are the wavelet coefficients with j, k ∈
N beeing the scaling factor and position respectively. The basis function ψj,k(t) =
2j/2ψ

(
2j t − k

)
is calculated with the mother wavelet ψ(t). There exist different mother

wavelets that applied to the same signal may produce different results [64]. One of
these mother wavelets is the Haar wavelet:

ψ(t) =


1 0 ≤ t < 1
2

−1 1
2 ≤ t < 1

0 otherwise.
(2.18)

Since small scaling factors j represent high frequencies, the signal can be denoised by
setting the first j0 wavelet coefficientsWj,k to zero. The threshold j0 can be determined
with the universal thresholding method:

j0 = σ
√
2 log n, (2.19)

where σ is the estimated standard deviation from the median absolute deviation of the
wavelet coefficients at the finest frequency resolution level J [25].

Afterwards, the denoised signal is reconstructed by inverse transforming the wavelet
coefficients Wj,k :

x̂d(t) =
1

cψ

J∑
j=0

∞∑
k=0

Wj,kψj,k(t), (2.20)

with the wavelet admissible constant:

cψ =
∫ +∞

−∞

|ψ̂(ω)|2

|ω |
dω, (2.21)

where ψ̂ is the Fourier transform of the mother wavelet.
Finally, the reconstructed signal x̂d(t) is integrated, and we obtain the denoised sig-

nal x̂(t) [78].
Similar to the fast Fourier transform, there exists a fast wavelet transform for discrete

signals [18].

2.3.3. Dimensionality Reduction Using Autoencoders

Autoencoders (AEs) are neural networks, where the desired output Y is an identical
copy of the input X. Since there is no labeling involved, AEs are part of unsupervised
learning. Unlike supervised learning, where we have labels that link the input data X to
a desired output Y , in unsupervised learning we try to find regularities and patterns in
the input data. Among other things, unsupervised learning techniques are commonly
used for clustering [93], dimensionality reduction [88], parameter estimation [63] and
generative modeling [24].
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Figure 2.10: Exemplar undercomplete autoencoder with one hidden layer.

While AEs are capable of all the above mentioned tasks, here we are interested in
the undercompleted AE for dimensionality reduction (see Figure 2.10). In the encoder
part, the input features are encoded into a latent lower-dimensional representation.
On the other side, the decoder tries to reproduce the original input data from the latent
representation as accurately as possible. The latent representation can then be used
to generate new lower-dimensional observations for the prediction task.

Deep autoencoders (DAEs) have more than one hidden layer. In the encoder part,
the number of neurons in each layer is gradually reduced until the desired dimension
is reached. Conversely, the decoder reconstructs the input in a mirrored fashion.

With linear activation functions and the MSE as cost function, the undercomplete
AE will approximately span the same orthogonal subspace as the principal component
analysis (PCA). By using non-linear activation functions, undercomplete AEs should
be able to learn a more powerful non-linear representation of the input data [33].
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To be profitable, trading with the analytical methods described in Section 2.1.1 requires
lots of experience and the right mindset. Most traders lose money due to emotional
trading decisions [26]. Quantitative trading consists of trading strategies that rely on
mathematical models and statistical analysis. The trading decisions are no longer
made by humans, which excludes any involvement of emotions.

In this chapter, I review several papers that have investigated financial time series
predictions. Note that due to the different evaluation approaches, no true state of the
art could be explored.

3.1. Traditional Financial Time Series Prediction

Autoregressive moving average (ARMA) models make predictions based on combi-
nations of an autoregressive model (AR) and a moving average model (MA). The MA
model requires the time series to be stationary. For non-stationary time series like for
stock predictions, Box and Jenkins introduced the autoregressive integrated moving
average (ARIMA) process [15]. Although ARIMAmodels are used for stock predictions
[5], their use is limited by their inability to model nonlinearities. Therefore, several hy-
brid models have been proposed that combine the linear ARIMA model with nonlinear
ML algorithms. Zhang’s hybrid model [95] combines ARIMA with a feed-forward neu-
ral network. Pai and Lin [70] used a hybrid ARIMA and support vector machine (SVM)
model to predict several stocks. Other ML models that were used to predict the stock
market are ensemble methods (Random Forest, AdaBoost, XGBoost) [9, 67] and SVR
[94]. Although these ML methods have the advantage of requiring fewer observations
for sufficient generalization, they are not able to capture the temporal characteristics
of sequential data as RNNs do.

3.2. Deep Learning-Based Financial Time Series Prediction

The extraordinary results from deep learning models in the areas of computer vision
and natural language processing have shifted researchers’ interest from traditional
stock predictions to deep learning-based predictions. Hsieh et al. [44] applied a
wavelet transformation to denoise financial time series containing fundamental data
and technical indicators. The predictions were performed with a RNN and artificial
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bee colony algorithm for hyperparameter tuning. Surprisingly, the authors only consid-
ered input features from the previous day instead of sequential observations. Because
of the advantages of LSTMmodels compared to classical RNN, recent studies on deep
learning-based stock predictions have focused on LSTM models (e.g. [17] and [28]).
Both publications showed promising results, but unfortunately, their results can hardly
be reproduced due to an incomplete description of their methodology. Fischer and
Krauss [29], on the other hand, provided a very detailed description of their LSTM stock
predictions. They used the daily return of 240 consecutive trading days from several
stocks to predict whether a stock would be undervalued or overvalued. Even though
they only used daily returns as input features, they managed to outperform the market.
Nguyen et al. [66] used transfer learning with an LSTM model to address the problem
of having too few observations for their predictions. They concluded that using stocks
from a similar field would increase the accuracy of their predictions, but did not specify
how the stocks were selected. Bao et al. [10] used wavelet denoising and stacked
autoencoders to preprocess the financial time series before feeding the data into an
LSTM model. The preprocessing steps drastically increased their predictive accuracy.
The precise preprocessing and parameter optimization procedure was not specified,
however, which makes it impossible to reproduce their results. Hollis et al. [43] and
Qiu et al. [74] enhanced their LSTM stock predictions with an attention mechanism.
Both papers concluded that an attention mechanism could improve LSTM-based stock
predictions. Wan et al. [90] compared the performance of LSTM and TCN-based time
series predictions, highlighting the training efficiency of the latter. Wiese et al. [91]
introduced a generative adversarial network (GAN) that uses TCNs. The GAN could
potentially be used to address the overfitting problem that often occurs with too few
observations.

3.3. Predictions Based on Sentimental Analysis

The sentimental data used for stock predictions are usually obtained from the analysis
of newspapers, social media, or search engines. Ding et al. [23] used structured
events with Bloomberg and Reuters articles to classify whether the price would move
up or down when a relevant article was published. They achieved good accuracy
on their test data. If such an implementation would work with real-time data remains
questionable, since stock prices usually react quite quickly to relevant news. In 2018
the hedge fund Two Sigma started a Kaggle competition1 to predict stock movements
based on technical data and Reuters news. Unfortunately, the competition is closed
and the datasets are no longer accessible. Bollen et al. [14] used two Google mood
tracking tools (OpinionFinder and GPOMS) on daily Twitter feeds and combined them
with historical price data to predict the Dow Jones (DJI) closing price. Their results
were evaluated on a single test set of just 15 trading days (December 1 to December

1https://kaggle.com/c/two-sigma-financial-news
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19, 2008). Due to the limited availability of the Twitter API, it is not easy to verify
whether their approach would be successful for longer test periods. Nguyen et al. [65]
used the SentiWordNet opinion mining tool on the Yahoo finance message board to
improve the average prediction accuracy on 18 different stocks. They used SVM as
their base model, which in other publications like [66] turned out to be inferior to LSTM-
based stock predictions. Price et al. [73] analyzed the predictive power of 98 different
Google Trends search terms on the DJI closing price. They used a rather simple model
that gave buy and sell signals based on the relative change in the search volume of
a keyword. With several Google Trends search terms, they managed to outperform
the market in the period from January 2004 to February 2011. Abraham et al. [1]
analyzed the sentiment of tweets that included the hashtags #bitcoin and #ethereum to
predict the daily closing price of the two cryptocurrencies. They concluded that using
the volume of the two search terms instead of a bearish/neutral/bullish sentimental
analysis gave better results for their cryptocurrency predictions. Their predictions were
carried out using a simple linear regression model.

33





4. Methods

In this chapter, I describe the methods and the way in which experiments were con-
ducted. To ensure the credibility of the results, the procedure is described in as much
detail as necessary to facilitate a possible reproduction of the results.

4.1. Feature Selection

To check whether technical indicators, patterns, sentimental data, or fundamental data
could improve my financial time series predictions, I created six different datasets for
each asset. All six datasets include at least the daily sampled features open, close,
high, low, and volume (OCHLV) of the underlying asset, which were fetched through
the yfinance1 API. The following subsections describe the remaining five datasets that
were evaluated in addition to the OCHLV dataset.

4.1.1. Technical Indicators

The technical indicators used for the predictions were calculated using ta2, the tech-
nical analysis library in python. I created two different technical indicator datasets,
one dataset based on the experience of several traders (TA-experience) and a second
dataset that uses all indicators of the ta library that passed the causality test (TA-
causality). The technical indicators used in the TA-experience dataset are:

• E M At =

{
x(1)close if t = 1
2

T+1 · x
(t)
close + (1 −

2
T+1 ) · E M At−1 if t > 1

, for T = 12, 26

• M ACD = E M A12 − E M A26

• RSIT = 100 −

[
100

1+ avg. gain last T days
avg. loss last T days

]
, for T = 3, 7, 14

• Bollinger bands =
∑20

t=1 x
(t )
close

20 ± 2σ

• OBVt = OBVt−1 +


volume ifx(t)close > x(t−1)close

0 ifx(t)close = x(t−1)close
- volume ifx(t)close < x(t−1)close

1https://github.com/ranaroussi/yfinance
2https://github.com/bukosabino/ta
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• ROC12 =
x
(t )
close−x

(t−12)
close

x
(t−12)
close

The technical indicators used for the TA-causality dataset are listed in Appendix A.

4.1.2. Patterns

For the TA-patterns dataset, eight different technical analysis patterns were identified,
which are described in Lo et. al’s paper [57]:

• HS ≡


E1 is a maximum
E3 > E1, E3 > E5

E1 and E5 are within 1.5 percent of their average
E2 and E4 are within 1.5 percent of their average

• IHS ≡


E1 is a minimum
E3 < E1, E3 < E5

E1 and E5 are within 1.5 percent of their average
E2 and E4 are within 1.5 percent of their average

• BTOP ≡


E1 is a maximum
E1 < E3 < E5

E2 > E4

• BBOT ≡


E1 is a minimum
E1 > E3 > E5

E2 < E4

• TTOP ≡


E1 is a maximum
E1 > E3 > E5

E2 < E4

• TBOT ≡


E1 is a minimum
E1 < E3 < E5

E2 > E4

• RTOP ≡


E1 is a maximum
tops are within 0.75 percent of their average
bottoms are within 0.75 percent of their average
lowest top > highest bottom

• RBOT ≡


E1 is a minimum
tops are within 0.75 percent of their average
bottoms are within 0.75 percent of their average
lowest top > highest bottom
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E1 to E5 are five consecutive extrema which can be found using the trendln3 library. If
extrema E1 to E5 were not detected within 35 consecutive trading days, the patterns
were not considered. If a pattern was detected within 35 consecutive trading days,
the corresponding feature was set to 1 with a one-day delay. The delay is necessary
because, in real-time, extrema can only be detected one day after their occurrence.
Additionally, the following indicators from the ta library were used:

• Parabolic stop and reverse up/down indicator (PSAR)

• Bollinger higher/lower band indicator

• Keltner higher/lower indicator

4.1.3. Google Trends

Google Trends is an analytical tool that tracks the search volume of all keywords in the
Google search engine. For the SA-trends dataset, a set of keywords that I believe could
reflect the overall market sentiment was fetched with the pytrends4 library. Google
Trends restricts the query period for daily data from a single API call to 9 months. In
addition, the fetched data is always scaled between 0 and 100. In order to obtain
the search volume for a period of 10 years, I thus had to iteratively query multiple
periods. These periods must partially overlap because the individual queries need to
be rescaled [75].

The set of keywords that passed the Granger causality tests is listed in Appendix A.

4.1.4. Fundamental Data

The FA-fundamentals dataset (see Appendix A) uses the Federal Reserve Economic
Data database FRED5 that was retrieved from Quandl6. In addition, fundamental data
fromWharton’s Compustat North America - Daily database7 was queried. When using
fundamental data, we are interested in long-term dependencies and not short-term
signals. Therefore, a resampling from the monthly and quarterly updated fundamental
data to daily samples was performed.

4.2. Measurement Metrics

MSE is a good loss function for regression tasks, but it is quite meaningless as a mea-
surement metric for evaluation purposes. A more intuitive metric is the mean absolute

3https://github.com/GregoryMorse/trendln
4https://github.com/dreyco676/pytrends
5https://fred.stlouisfed.org/
6https://github.com/quandl/quandl-python
7https://wrds-web.wharton.upenn.edu/wrds/
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error (MAE):

MAE =
1

m

m∑
t=1

���ŷ(t) − y(t)
��� , (4.1)

as it describes the average prediction error. Another very intuitive metric is the mean
absolute percentage error (MAPE):

MAPE =
1

m

m∑
t=1

���� ŷ(t) − y(t)

y(t)

���� . (4.2)

The MAPE is not defined for actual values y(t) equal to zero and very sensitive to small
values. But since the values get scaled back before the metrics are evaluated, this is
not a problem. Although MAPE represents a percentage error, it is not particularly
suited for comparisons of stock predictions. When comparing a highly volatile stock
with a very stable currency, for example, a MAPE of 1% could represent a thoroughly
positive result for the stock prediction. On the other hand, it would be a very bad
prediction for a currency that on average fluctuates only 0.1% per day.
A measurement metric that is scaling and volatility invariant is the mean absolute

scaled error (MASE) for non-seasonal time series:

MASE =
1

m

m∑
t=1

��ŷ(t) − y(t)
��

1
m−1

∑m
j=2 | y

(j) − y(j−1) |
. (4.3)

MASE can be interpreted as the ratio of the MAE from the actual prediction to the MAE
of a naive prediction [45].

4.3. Sliding Window

As input for my predictors, I used daily sampled sequential observations with sequence
length τ. The procedure to obtain the observations is described in Figure 4.1. For one-
step ahead closing price predictions, the target value y(t) of the sequential observation
o(t) is the closing price x(t+τ)close .
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Original
Time Series

o(t=1)

o(t=N-τ)x(t−1+τ) y(t)

o(t=2)

x(1) x(2) x(3) . . . x(τ−1) x(τ) x(τ+1) . . . x(N )

x(t) x(t+1) x(t+2) x(t+3) . . . x(t−1+τ) y(t)

x(t) x(t+1) x(t+2) x(t+3) . . . x(t−1+τ) y(t)

x(t) x(t+1) x(t+2) x(t+3) . . .

Figure 4.1: The sliding window procedure to extract sequential observations o(t) of length τ
from the original time series x(1:N ).

4.4. Cross-Validation

For small datasets, a hard split into train validation and test set is not feasible. As the
number of input features increases, the predictors require more andmore observations
to generalize on the available data. On the other hand, we would like to have a large
test set so that the generalization error can be estimated as accurately as possible.
Cross-validation (CV) addresses this problem, which occurs with small datasets at the
expense of computing time. k-fold CV splits the data into k subsets of the same length.
The training is performed k times, leaving out one subset at a time for evaluation. The
generalization error is then estimated by averaging the test errors that were computed
on the left out folds [33].

4.4.1. Nested Cross-Validation for Hyperparameter Optimization

The intuitive way to optimize hyperparameters with CV is to fix a set of hyperparame-
ters, perform CV, and then repeat the process with a new set of hyperparameters. In
the end, the set of hyperparameters that yields the lowest averaged error on all test
folds is selected. This procedure however has two limitations. Firstly, a wide set of
hyperparameters will inevitably lead to overfitting on the test data, since the set of hy-
perparameters that minimize the error on the test folds is chosen. Secondly, even if
the optimal set of hyperparameters is found, this could be caused by the data leak that
occurs with this method [16]. To prevent an over-optimistic estimation of the gener-
alization error when performing hyperparameter optimization, one should use nested
CV.

In k-fold nested CV an additional inner loop is used to tune the hyperparameters.
As with k-fold CV, the outer loop consists of k training iterations in which one fold is
always left out for evaluation. In the inner loop, the k − 1 training folds are again split
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into ki subsets of the same length. The training is performed ki times, leaving out
one fold for validation. The best set of hyperparameters is found by iterating through
all sets of hyperparameters and selecting the set that minimizes the average error on
the validation folds. Afterward, this set of hyperparameters is used to evaluate the test
error on the left-out fold of the outer loop. After the k-th iteration in the outer loop, the
generalization error is estimated by averaging all test errors. This method provides a
better estimate of the generalization error but has the disadvantage that no global set of
hyperparameters is found [53]. For online predictions, one would perform an additional
inner loop step with all available data to find the global set of hyperparameters. The
global set of hyperparameters is therefore not used to estimate the generalization error,
but solely to make new predictions.

4.4.2. Walk-Forward Nested Cross-Validation

When performing CV, it is important that no information is leaked from the training into
the test sets. Since time series are serially dependent, the test set of a time series
must always follow the training set to avoid data leaks from the future to the past.
Walk-forward nested CV enforces this by successively assigning one fold to the test
set and only previous folds to the training set. The outer loop is executed until the
entire dataset has been used for CV.
Figure 4.2 shows the walk-forward nested CV procedure that was used for my ex-

periments. Since I used data from the last 10 years (from 11. May 2010 to 11. May
2020), the financial time series were split into 40 folds (Q1. . .Q40), each representing
one quarter. With four iterations in the outer loop, I thus got one year (Q37. . .Q40)
of test data for evaluation purposes. Instead of evaluating the generalization error by
averaging the test errors among the four test folds, I decided to evaluate all test folds
independently. This has two reasons. Firstly, the volatility of some stocks varies sig-
nificantly from quarter to quarter. This may mean that a MAPE of 1%, for example,
might be a very good result in one quarter and a very bad result in the next quarter.
Secondly, the evaluation of a model with exactly the same hyperparameters can some-
times lead to significantly different predictions due to the random weight initializations.
Financial time series are particularly affected by this phenomenon due to their partly
unpredictable characteristics. Therefore, I decided to perform each outer loop iteration
10 times in order to calculate the mean and standard deviation of the measurement
metrics. This resulted in a generalization error estimate for each of the four test quar-
ters individually.

In each inner loop iteration, the respective training set was split into 10 folds. In the
first inner loop iteration, 8 folds were used for training and the 9th fold for validation.
Consequently, in the second inner loop iteration, 9 folds were used for training and the
10th fold for validation. The set of hyperparameters that minimized the average MSE
on the two validation sets was then applied to the respective iteration of the outer loop.

To prevent data leakage from the training into the validation/test sets, the sliding
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window procedure (see Section 4.3) was always applied after the CV splitting into
subfolds.

Figure 4.2: The walk-forward nested CV approach used for the experiments. Q1. . .Q40 are
the 40 folds obtained by splitting 10 years of data into quarters.

4.5. Hyperparameter Tuning Using Bayesian Optimization

Tuning a set of hyperparameters requires considerable computational effort. Espe-
cially for models with multiple hyperparameters, tuning with grid search or random
search may become impracticable as the number of possible combinations grows ex-
ponentially.

Bayesian optimization uses past experiences to determine the hyperparameter com-
bination that should be evaluated next. An objective function (also called surrogate
model) is successively approximated after a new combination of hyperparameters has
been evaluated. This is commonly done by a gaussian process regression [71]. To
decide which hyperparameters should be evaluated next, an acquisition function is
optimized. The acquisition function uses the posterior distribution of the gaussian pro-
cess regression and makes a tradeoff between exploration and exploitation [84].

For the experiments, I used the Bayesian optimization implementation of the python
library scikit-learn8. The number of calls (i.e. the total number of different hyperparam-
eter combinations that are evaluated) was set to 50.

4.6. Predictive Models and Their Hyperparameters

In this section, I give an overview of the three sequential deep learning models (LSTM,
attention-based LSTM, and TCN) that were used for the predictions. Table 4.1 lists
the hyperparameters and the corresponding boundaries of the parameter optimization.
For all three models, I used the Keras9 interface with Tensorflow backend. Additionally,

8https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
9https://keras.io/api/
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the keras-tcn10 library was used for the TCN predictions. The attention-based LSTM
(ALSTM) model was evaluated as a stand-alone model because of the interest in com-
paring the LSTMmodel with and without attention mechanisms. For the ALSTMmodel,
I used the same hyperparameters as for the LSTM model but added a self-attention
layer with sigmoid activation function between the LSTM layers. Figure 4.3 visualizes
the three predictive models for an exemplary set of hyperparameters that lies within
the optimization range.

LSTM / ALSTM TCN
Hyperparameter Range Dimension Range Dimension
Observation length τ [2,30] Integer [8,32] Power of 2
Mini-batch size 256 fixed 256 fixed
Learning rate 1e-04 fixed [1e-5,1e-4] log-uniform
Adam optimizer Default fixed Default fixed
Num. epochs 3000 fixed 3000 fixed
Num. hidden layers [3,6] Integer
Num. input units [8,128] Integer
Num. hidden units [8,128] Integer
Num. residual blocks 2 fixed
Num. filters [8,128] Power of 2
Kernel size 2 fixed
Activity regularization L2(0.01) fixed
Batch normalization True/False Boolean
Dropout [0,0.5] Real

Table 4.1.: Overview of the hyperparameters that were used in combination with the three
predictive models (LSTM, ALSTM, and TCN). The "fixed" in column "Dimension" means that
the hyperparameter in column "Range" was applied without further parameter optimization.
The number of hidden layers and the corresponding dilation factors of the TCN model depend
on the observation length τ (see Figure 2.8). An observation length τ = 32 corresponds to
8 hidden layers. With 2 residual blocks, this translates into two dilation factors of [1, 2, 4, 8]
each.

10https://github.com/philipperemy/keras-tcn

42



4.7. Transfer Learning

(a) LSTM

(b) ALSTM

(c) TCN

Figure 4.3: Exemplar LSTM model (a), ALSTM model (b) and TCN model (c). The input layers
are basically tensors of shape (batch size, observation length, features). Both LSTM (a) and
ALSTM (b) have 3 hidden layers with 8 units in the first LSTM layer (input units) and 128 hidden
units in the consecutive LSTM layers. The TCN model (c) has 2 residual blocks with 4 hidden
layers each. For the first two LSTM layers and the first TCN residual block, the argument
return_sequence was set to true (returns (batch size, timesteps, units/filters)), while for the
last LSTM layer and the second TCN residual block it was set to false (returns (batch size,
units/filters)). The output layers are simple dense layers with a single unit and linear activation
function.

4.7. Transfer Learning

Transfer learning (TL) is typically associated with the re-training of a pre-trained DNN.
In computer vision, this is commonly done by loading a well-performing model (e.g.
ResNet, InceptionV3, Xception, etc.) that has been trained on a large image database
(e.g ImageNet). By fixing all weights except the weights from the last few layers,
the model can be re-trained to classify new objects that were not part of the original
database.

Instead of re-training an already existing model that solves a similar task, I used
several indices and stocks to pre-train my own models. In this way, I tried to address
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the problem of having too few observations, which inevitably leads to overfitting on
the training data. The stocks and indices in question were selected based on volume
and market capitalization. Only stocks issued more than 10 years ago were consid-
ered (see Appendix B). I used 70% of each time series as training data and 10% for
validation, leaving the last 20% unused to avoid any data leaks from the future to the
past. The pre-training was performed as follows: The selected time series were initially
rescaled using only the training data of the respective time series. Then the sequential
observations of each time series were extracted using the sliding window procedure
described in Section 4.3. Finally, the pre-training dataset was obtained by aggregat-
ing the sequential observations of all the time series. The pre-training was performed
over 300 epochs and was stopped early if the validation loss had not improved over 50
consecutive epochs. After completion of the pre-training, the weights of the first LSTM
layer (or the first TCN residual block for the TCN model) were fixed and the model was
re-trained for another 100 epochs. The re-training used only the time series that were
to be predicted (i.e. the training set in Figure 4.2) and the same hyperparameters that
were used for the pre-training (except for the number of epochs). Apart from an addi-
tional pre-training step in each CV iteration, the procedure described in 4.4.2 remained
exactly the same.

Preprocessing methods usually refer to the preparation of data prior to the actual
predictions. In the following chapters, I will treat TL as a preprocessing method for a
simpler and more understandable illustration of the results.
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While the setups of the experiments were discussed in the previous chapter, in this
chapter I present the results. Only the most insightful results are presented and dis-
cussed here. A complete list of all results can be found in Appendix C.

5.1. Overview

Before presenting the results, here is a short summary of the experiments that were
conducted:

Financial Time Series

• I used 10 years of data (from 11. May 2010 to 11. May 2020).

• Six different datasets (see 4.1) with daily features were created for each evalu-
ated asset.

• χ2 Granger causality tests with significance level α = .05were performed on the
training data for feature selection. The tests were performed using the statsmod-
els1 package.

Preprocessing Methods

• All features were rescaled with lower bound LB = 0 and upper bound UB = 1,
using the MinMaxScaler2 from scikit-learn.

• The discrete wavelet transformation was performed with the Haar wavelet and
smoothing factor set to 2, using the PyWavelets3 library.

• Autoencoder parameters were originally part of the hyperparameter optimiza-
tion. To reduce the computational effort, they were fixed to a simple undercom-
plete autoencoder with linear activation function and a latent representation with
half the original feature size.

1https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.grangercausalitytests.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler
3https://github.com/PyWavelets/pywt
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• The preprocessing steps wavelet transformation (WT), autoencoder (AE), and
transfer learning (TL) were only applied to the setups marked as such. Setups
that only used feature scaling as a preprocessing method are marked with (NA).

Predictions

• I performed one-step-ahead predictions of the closing price.

• LSTM, ALSTM, and TCN models were evaluated.

• I used a walk-forward nested cross-validation approach (see 4.4.2).

• The hyperparameters were tuned using bayesian optimization (see 4.5).

• Table 4.1 gives an overview of all hyperparameters.

• The mean value and standard deviation of the measurement metrics were cal-
culated by performing 10 independent training runs with random weight initial-
ization.

• MASE was used as a scaling and volatility invariant measurement metric.

5.2. Predicting the Dow Jones Industrial Average

First of all, I wanted to see whether the three preprocessing methods could improve my
Dow Jones Industrial Average (DJI) LSTM predictions. Table 5.1 shows the evaluated
measurement metrics for the OCHLV dataset. Both WT and AE disappointed with
overall worse results than NA. In quarter Q40, however, the AE setups managed to
achieve the smallest errors. The only preprocessing method that could lead to an
overall improvement was TL. This finding suggests that even for the OCHLV dataset
with only five input features there were too few observations for a decent generalization.
In summary, WT and AE preprocessing could not improve the predictions, while TL
successfully contributed to reduce overfitting.
Comparing the measurement metrics in the four quarters shows how essential a

volatility invariant metric is. In Q40, the MAE and MAPE were significantly higher than
in the other three quarters, while the MASE was lower. Looking at the DJI chart in
Figure 5.1, we can recognize significantly higher volatility in Q40. The fact that the
best results in terms of MASE were achieved in Q40 could not only be seen for the
setups in Table 5.1 but for almost all setups (see Appendix C.1). This suggests that
the forecasting accuracy is better in highly volatile periods.

Since the WT and AE setups for the DJI LSTM predictions were not completely con-
vincing, in the following the different predictive models and datasets will be discussed
exclusively for the preprocessing methods NA and TL. Figure 5.2 compares the LSTM,
ALSTM and TCN models for the OCHLV dataset. The ALSTM NA setup outperformed
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Model: LSTM, Dataset: OCHLV, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 206.68 21.87 0.78 0.08 1.15 0.12
38 203.4 22.04 0.77 0.08 1.36 0.15
39 180.78 32.63 0.63 0.11 1.26 0.23
40 681.92 20.96 2.96 0.09 0.95 0.03
µ 318.19 1.29 1.18

X 37 247.52 16.36 0.94 0.06 1.38 0.09
X 38 203.12 18.14 0.76 0.07 1.36 0.12
X 39 182.77 16.92 0.64 0.06 1.27 0.12
X 40 783.44 19.02 3.38 0.08 1.09 0.03
X µ 354.21 1.43 1.27

X 37 197.7 11.98 0.76 0.04 1.24 0.07
X 38 237.43 30.68 0.89 0.11 1.59 0.21
X 39 156.27 6.04 0.55 0.02 1.09 0.04
X 40 640.52 6.05 2.78 0.02 0.89 0.01
X µ 307.98 1.25 1.2

X 37 171.19 10.0 0.66 0.04 1.07 0.06
X 38 190.54 32.32 0.72 0.12 1.27 0.22
X 39 181.67 25.72 0.63 0.09 1.05 0.15
X 40 689.19 11.72 3.0 0.05 0.96 0.02
X µ 308.15 1.25 1.09

X X 37 221.04 4.23 2.92 0.01 1.38 0.03
X X 38 251.27 29.17 2.11 0.06 1.68 0.2
X X 39 175.33 18.85 2.02 0.01 1.22 0.13
X X 40 646.23 10.04 12.15 0.03 0.9 0.01
X X µ 323.47 4.8 1.3
X X 37 201.46 7.48 2.96 0.01 1.26 0.05
X X 38 149.62 13.51 1.7 0.02 1.05 0.09
X X 39 180.49 24.74 2.07 0.02 1.27 0.17
X X 40 719.0 9.42 12.24 0.07 1.0 0.01
X X µ 312.64 4.74 1.14

X X 37 235.52 33.39 2.91 0.04 1.47 0.21
X X 38 208.68 43.7 2.07 0.04 1.4 0.29
X X 39 158.55 12.48 2.03 0.01 1.11 0.09
X X 40 661.31 5.29 12.1 0.02 0.92 0.01
X X µ 316.02 4.78 1.23

X X X 37 224.89 4.99 3.02 0.01 1.41 0.03
X X X 38 217.64 13.65 2.12 0.03 1.46 0.09
X X X 39 244.41 59.47 2.06 0.03 1.7 0.41
X X X 40 657.72 10.55 12.24 0.04 0.92 0.01
X X X µ 336.16 4.86 1.37

Table 5.1.: Measurement metrics for eight different preprocessing combinations.
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13. May 2019 14. Aug 2019 11. Nov 2019 11. Feb 2020 11. May 2020

Q37 Q38 Q39 Q40

Figure 5.1: Dow Jones Industrial Average (DJI) chart in the quarters Q37 to Q40.

the LSTM and TCN NA setups in all quarters except Q39 where TCN performed best.
A different situation was found with TL, where TCN outperformed both LSTM models
in all quarters except Q40. Comparing the NA setups with the TL setups in Figure
5.2, we can see how the preprocessing method TL improved the predictive accuracy
of all three models. But why had TL the strongest impact on the TCN model? With-
out TL, the hyperparameter optimization in the LSTM setups almost always chose the
shortest observation length which was set to 2. Since the minimum observation length
for the TCN model was set to 8, the TCN setups without TL were overfitting more on
the training data than the LSTM setups without TL. To summarize, the ALSTM model
performed best in the setup without TL, while with TL both the LSTM and TCN models
performed better.

Finally, Figure 5.3 shows the errorbar plots that compare the different datasets for
the LSTM and TCN models with TL. SA-trends and FA-fundamentals datasets per-
formed very poorly in almost all quarters. The TA-causality TCN TL setup performed
really well in the first three quarters, but extremely bad in Q40. This is the exact
opposite of what we have seen in almost all other TA-based setups, where the best
results were achieved in Q40. TA-experience performed well with the LSTM prediction
but had a clear outlier in Q39 with the TCN prediction. The divergence occurred only
once during the 10 evaluation iterations and would therefore not affect a long/short
signal-based trading strategy in case of an ensemble decision. Overall, the OCHLV
and TA-patterns datasets performed best for both LSTM and TCN predictions with TL.
In summary, both fundamental data and sentimental data led to significantly worse
results than simply using the OCHLV dataset. Technical indicators achieved similar
results to the simple OCHLV dataset but could not improve overall predictions. For the
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5.2. Predicting the Dow Jones Industrial Average

TCN model with TL, TA-patterns slightly improved the predictions.

Dataset: OCHLV, Preprocessing: NA (blue) / TL (orange), Ticker: DJI
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Figure 5.2: Errorbar plot with the MASE mean and standard deviation in the y-axis and the
three predictive models LSTM, ALSTM, and TCN along the x-axis. Blue are the setups with-
out further preprocessing (NA) and orange the setups with transfer learning (TL). In all four
quarters, the ALSTM NA setup had a smaller mean error than the LSTM NA setup. The TCN
NA setup performed worse than the ALSTM NA setup in all quarters except Q39. With TL, the
ALSTM model performed worse than the LSTM model in the first three quarters, whereas it
clearly outperformed the other setups in Q40. The TCN model with TL achieved a very stable
MASE mean value around 1.0 in each quarter.
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Model: LSTM (blue) / TCN (orange), Preprocessing: TL, Ticker: DJI
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Figure 5.3: Errorbar plot for the LSTM model (blue) and TCN model (orange) with TL: with the
MASE mean and standard deviation in the y-axis and the different datasets along the x-axis.
Both SA-trends and FA-fundamentals datasets performed worse than the other datasets, which
only contain technical analysis features. SA-trends and FA-fundamentals datasets performed
very poorly for the TCN setup. They were omitted in the errorbar plot so as not to affect the visi-
bility of the other datasets (see Appendix C.1 for the detailed results). In Q39 the TA-experience
TCN setup had a clear outlier (µ-MASE=10.87, σ-MASE=29.65). In Q37 the LSTM SA-trends
setup performed very poorly and in Q40 the TA-causality TCN setup performed significantly
worse than the other setups. Overall, the OCHLV and TA-patterns datasets performed best.
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With these findings, I decided to evaluate several other assets based on the following
setups:

• Model: LSTM, Dataset: OCHLV, Preprocessing: TL

• Model: ALSTM, Dataset: OCHLV, Preprocessing: NA

• Model: TCN, Dataset: TA-patterns, Preprocessing: TL

5.2.1. Ensemble Trading Strategy

To better interpret the results, I created a simple long/short signal-based trading strat-
egy. Since 10 independent training iterations were used to evaluate the metrics, I
decided to use the resulting predictions for an ensemble strategy. If 7 out of 10 one-
step-ahead closing price predictions ŷ(t+1) were higher than the last known closing
price y(t), the strategy went long. Conversely, the strategy went short if 7 out of 10
predictions were lower than the last known closing price. Figure 5.4 shows the long
and short signals that were given for the TCN DJI predictions in quarters Q37 to Q40.
Taking a closer look at the daily predictions, we can see how the predicted price ŷ(t+1)
closely follows the last actual known price y(t). In fact, a MASE greater than 1.0 sug-
gests that a naive prediction ŷ(t+1) = y(t) would result in an overall smaller predictive
error in terms of MAE. So why even bother training a neural network that leads to an
overall MASE of more than 1.0? When making stock predictions for trading purposes,
the most important thing is not about being right all the time or more than 50% of the
time. It is about the risk/reward ratio, about getting it right on the trades that have
the most impact. It is therefore crucial to achieve a small MASE in the highly volatile
periods, and this is exactly what we could observe in the previous DJI predictions.

Table 5.2 compares the quarterly returns of the buy and hold strategy versus the
long/short signal-based strategies for the DJI predictions. In quarters Q37 to Q39,
when volatility was low, the three models were not really able to outperform the market.
In Q40 on the other hand, all three models achieved impressive returns.

LSTM OCHLV TL ALSTM OCHLV NA TCN TA-Patterns TL
Q τ Buy & Hold Pred. τ Buy & Hold Pred. τ Buy & Hold Pred.
37 2 -1.54% -3.86% 2 -1.54% -2.58% 32 3.08% 10.10%
38 2 5.95% -3.83% 2 5.95% -0.60% 8 2.91% -5.69%
39 30 2.29% -2.23% 2 5.38% 3.38% 8 5.29% 6.26%
40 2 -17.99% 69.76% 2 -17.99% 35.22% 8 -11.84% 94.36%

Table 5.2.: Quarterly returns of the DJI long/short signal-based strategies (without trading fees
and slippage) versus simple buy and hold strategy. τ is the observation length that was in-
troduced in Section 4.3. The reason for the partially different buy and hold returns between
the three models is the varying observation length which is determined by the nested cross-
validation.
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Figure 5.4: Long and short signals for the TCN TA-patterns TL setup predicting the DJI.
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5.2. Predicting the Dow Jones Industrial Average

Finally, Figure 5.5 shows the cumulative return of the long/short signal-based strate-
gies compared to the simple buy and hold strategy for the DJI. A trading fee of 3 USD
was applied to each trade, slippage was not considered.
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Figure 5.5: Cumulative return of the long/short signal-based strategies from Q37 to Q40. Note
that at the beginning of each quarter no trades were made for τ days while buy and hold reflects
the whole test period.

5.2.2. Risk Exposure

To check whether the models perform well in relation to the risk exposure, I evaluated
the financial ratios that were introduced in Subsection 2.1.4.

Table 5.3 shows the α and β values from the capital asset pricing model (CAPM)
that were calculated using the ordinary least squares implementation from statsmodel4.
The small R2 values indicate a low correlation between the buy and hold returns and
the returns of the long/short signal-based ensemble strategy. Power analysis, which
determines the probability of correctly rejecting a false null hypothesis, shows that the
CAPM is fundamentally unsuitable for modeling the returns of the presented trading
strategies. With a given sample size of m = 236, a statistical power of .95, and a
significance level of α = .05, one would need a coefficient of determination of R2 =

.053 for a model of overall significance.
Figure 5.6 shows three annualized risk-adjusted return ratios in combination with the

corresponding denominators in the x-axis and the total return in the y-axis. A Sharpe
ratio above 1.0 indicates a positive excess return relative to risk. The Sharpe ratio can
be translated into a t-statistic with the following formula [38]:

tri = Sy ·
√

m
252

, (5.1)

4https://www.statsmodels.org/dev/examples/notebooks/generated/ols.html
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α β R2 m
LSTM OCHLV TL 0.0024 0.1860∗∗ 0.040 208

(0.001) (0.063)
ALSTM OCHLV NA 0.0015 0.1240∗ 0.016 236

(0.001) (0.063)
TCN TA-Patterns TL 0.0040∗ −0.0139 0.000 204

(0.002) (0.067)
∗p < .05, ∗∗p < .01, ∗∗∗p < .001

Table 5.3.: CAPM evaluation of the DJI using ordinary least squares. The standard deviations
are shown in brackets.

where Sy is the annualized Sharpe ratio and m the sample size. If we consider the three
different trading strategies as three tests against the null hypothesis of 0 profitability,
we have to apply a correction in order to account for any random significance that
could arise due to multiple testing. From the multiple testing corrections, Bonferroni is
among the most conservative, so the false-negative rate could be very high [6]. With
an annualized Sharpe ratio Sy = 2.84 and a sample size m = 204 we obtain a t-
statistics tri = 2.56. With a significance level of α = .05 and the Bonferroni correction,
this is sufficient to reject the null hypothesis.
The high Sortino ratios in comparison to the Sharpe ratios indicate a good predictive

accuracy on the most volatile days. Since only one year was used for the evaluation,
the Mar ratio is the ratio of the total return to the maximum drawdown in the test period.

(a) Sharpe ratio (b) Sortino ratio (c) Mar ratio

Figure 5.6: Risk-adjusted return ratios for the DJI trading strategies. The Sharpe and Sortino
ratios have been annualized (multiplied by

√
252). The ratios are shown in the bubbles. The

volatility in (a), downside volatility in (b), and maximal drawdown in (c) are related to the daily
long/short strategy returns.
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5.3. Predicting Several Indices and Stocks

Although I did not choose the three setups that performed best on the DJI predic-
tions, selecting a small subset of setups and highlighting their results can definitely
lead to an over-optimistic evaluation. Therefore, I considered it crucial to evaluate the
three setups on different indices and on several stocks of companies operating in the
largest financial sectors. The setup choice only involved the preprocessing method
and dataset selection. Since the hyperparameter optimization for the different assets
was carried out independently with the walk-forward nested cross-validation approach,
the evaluation of the following assets is unbiased.

Table 5.4 shows the results of the evaluated assets. For a clear and compact rep-
resentation, the results from the quarters Q37 to Q40 are shown in aggregated form.
These results show once again how stock predictions with an overall MASE > 1.0 can
effectively be used for a successful trading strategy.

LSTM OCHLV TL ALSTM OCHLV NA TCN TA-Patterns TL
Ticker5 MASE Buy & Hold Pred. MASE Buy & Hold Pred. MASE Buy & Hold Pred.
ˆGSPC 1.08 -2.17% 45.37% 1.10 -2.17% 40.10% 1.00 6.72% 86.01%
ˆGDAXI 1.06 -17.59% 34.47% 1.04 -12.10% -22.37% 1.05 -1.16% -2.19%
ˆHSI 1.06 9.31% -5.37% 1.03 -10.66% 4.84% 1.04 -6.26% -14.60%
AAPL 1.20 59.74% -31.09% 1.10 59.74% 11.67% 1.10 82.35% 5.03%
BA 1.01 -64.90% 7.70% 1.06 -64.90% -17.98% 1.06 -56.11% 86.27%
DIS 1.05 -25.44% 28.39% 1.07 -25.44% -5.32% 1.03 -1.81% 27.30%
V 1.01 3.96% 104.64% 1.02 3.96% 55.07% 0.99 26.50% 177.22%
KO 1.10 -12.87% -3.04% 1.07 -8.23% 17.50% 1.18 -12.45% 3.62%
MCD 1.01 -11.81% 80.34% 1.04 -9.84% 85.93% 1.00 -2.54% 60.67%
RDS-B 1.00 -49.96% 45.52% 1.02 -49.96% 173.28% 1.01 -20.55% 17.81%
BMW 1.05 -23.86% 46.79% 1.02 -23.86% -0.32% 1.02 -9.57% 10.06%
WMT 1.04 12.17% 51.76% 1.05 12.17% 26.80% 1.04 11.30% -21.26%
JPM 1.04 -18.74% 26.57% 1.06 -18.74% 8.87% 1.03 13.21% 52.50%

GOOG 1.10 11.23% -2.50% 1.09 15.38% 5.16% 1.07 71.11% 4.33%
JNJ 1.06 11.52% 28.28% 1.11 11.52% 41.59% 1.04 14.70% 51.03%

Table 5.4.: Aggregated results of several indices and stocks. The returns include a trading fee
of 3 USD per trade.

While for most stocks the long/short signal-based trading strategies outperformed
simple buy and hold by a large margin, there are a few exceptions such as Apple
(AAPL) and Alphabet (GOOG) where this was not the case. As we can see in Figure
5.7, the Apple stock had very little downside volatility in the quarters Q37 to Q39. Dur-
ing this period all threemodels performed poorly, highlighting a bad predictive accuracy
in extremely bullish markets.

As for the poor performance on the DAX (ˆGDAXI) and Hang Seng Index (ˆHSI), this
is probably related to them being indices outside the US markets. The full results of
all evaluated indices and stocks are shown in Appendix C.2.

5https://finance.yahoo.com/
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Figure 5.7: Cumulative return of the long/short signal-based strategies predicting the Apple
stock versus simple buy and hold.

5.4. Predicting Bitcoin

Compared to the stock market, the cryptocurrency market is very immature and spec-
ulation driven. If the previously observed predictive accuracy in highly volatile periods
holds true for all types of assets, the cryptocurrency market and its high volatility should
offer ideal market conditions for the implemented models.
Since the historical Bitcoin trading data (BTC-USD) on Yahoo only dates back to

late 2014, I used 5 years of historical data instead of 10 years. The data was split
into 20 equal sized quarters, maintaining the same walk-forward nested CV approach
as before with one year of test data (Q17 to Q20). A pre-training of the weights with
several stocks and indices like was done before with TL makes no sense for Bitcoin,
since the cryptocurrency market is fundamentally too different from the stock market.
Therefore, I decided to evaluate the LSTM and TCNmodels without TL and only on the
OCHLV dataset. Table 5.5 shows the corresponding quarterly results. As expected,
the three models benefited strongly from the high volatility and outperformed a simple
buy and hold by a large margin.

LSTM OCHLV NA ALSTM OCHLV NA TCN OCHLV NA
Q τ Buy & Hold Pred. τ Buy & Hold Pred. τ Buy & Hold Pred.
17 2 -27.87% 86.90% 2 -27.87% 50.62% 8 -27.50% -9.10%
18 2 -12.55% 16.06% 2 -12.55% 0.34% 32 -16.21% -14.29%
19 2 -8.33% 38.16% 2 -8.33% 70.71% 32 -21.97% 109.50%
20 2 35.51% 24.69% 2 35.51% 19.12% 32 34.17% 7.62%

Table 5.5.: Quarterly returns of the long/short signal-based strategies predicting Bitcoin (with-
out trading fees and slippage) versus simple buy and hold.

Unlike the evaluated indices and stocks, Bitcoin had relatively high volatility over the
entire test period. As a result, the LSTM and ALSTM models achieved consistently
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5.4. Predicting Bitcoin

good returns (see Figure 5.8). With fewer observations for training and the elimination
of TL, the models had a hard time generalizing on the data. The TCN model was most
affected by overfitting due to the minimum observation length in the hyperparameter
optimization.
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Figure 5.8: Cumulative return of the long/short signal-based strategies predicting Bitcoin in
quarters Q17 to Q20.

Taking a look at the Sharpe ratios in 5.9a, we can see how part of the returns can
be related to a high risk exposure due to Bitcoins volatility. Since the Sharpe ratio
penalizes positive volatility, the Sortino ratio (see Figure 5.9b) is better suited for highly
volatile assets such as Bitcoin. According to the Sortino ratio, the ALSTM strategy
should be favored over the LSTM strategy because of the lower downside volatility
while providing similar returns. With an almost identical annualized return of 205% and
a similar maximum drawdown of approximately 24%, the LSTM and ALSTM models
performed almost equally according to the Mar ratio (see 5.9c).

(a) Sharpe ratio (b) Sortino ratio (c) Mar ratio

Figure 5.9: Risk-adjusted return ratios for the long/short trading strategies predicting Bit-
coin. As BTC-USD is traded every day, the ratios were annualized by multiplying the daily
Sharpe/Sortino ratios with

√
365.
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Both the LSTM and ALSTMmodels had a sample size m = 352, which translates into
the t-statistics trLSTM = 2.18 and trALSTM = 2.12. With a significance level of α = .05 the
null hypothesis of 0 profitability would be rejected in both cases without the Bonferroni
correction. But since we consider the trading strategies as three tests against the null
hypothesis of 0 profitability, we fail to reject the null hypothesis and strive for more
observations. At this point, we should keep in mind that the Bonferroni correction is
quite conservative. Therefore the false-negative rate can be very high.

5.5. Limitations

The MASE was used as a scaling and volatility invariant measurement metric, but
as we have seen, the predictive accuracy is strongly affected by the volatility of the
underlying asset. Since τ observations are needed for the first prediction, the varying
observation length led to slightly different test periods. This limits the comparability of
the three models, even if they are used to predict the same asset. For larger test sets
this difference would be negligible, but unfortunately, the publicly available historical
data on stocks is very limited.
The DJI experiments have shown how TL improved the predictive accuracy by re-

ducing the overfitting. According to Nguyen et al. [66], the predictive accuracy of a
certain stock can be improved if only closely related stocks are used for pre-training.
Therefore, more attention should be paid to the selection of pre-training assets.

Since overfitting could even be observed on the OCHLV dataset with only five input
features (see Figure 5.2), giving up training data for more or larger test folds was not
taken into consideration. For Bitcoin, the relatively small number of test samples led to
a failed rejection of the corrected 0 profitability null hypothesis. Therefore, even if the
LSTM and ALSTM Bitcoin trading strategies look promising, further testing is required
for a high statistical significance.

The ensemble trading strategy provided long/short signals when 7 out of 10 one-
step-ahead closing price predictions ŷ(t + 1) were higher/lower than the last known
closing price y(t). Besides choosing a more sophisticated ensemble strategy (e.g.
using a simple neural network), additional predictions would be required for a robuster
filtering of noisy predictions.

In quantitative trading, it is common practice to evaluate an investment with linear
regression models that include various factors such as beta and momentum. However,
the CAPM evaluation in 5.2.2 has shown that a simple linear regression is incapable
in modeling the returns of the presented trading strategies. This makes it somewhat
difficult to understand what the models learn, but at the same time, it shows how non-
linear relations between input features and predicted output are identified.
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6. Conclusion

The aim of this thesis was to investigate whether financial time series relating to publicly
traded assets can be predicted with sequential deep learning models. Furthermore, it
should be analyzed what kind of input features are best suited for the predictions.

To this end, six different datasets based on technical indicators, patterns, fundamen-
tal data, or sentimental data were constructed for each asset. In addition to the different
datasets, the effects of the wavelet transformation for noise reduction, autoencoder for
data compression, and transfer learning to prevent overfitting were explored. Three
different deep learning models for sequential learning, namely long short-term mem-
ory (LSTM), self-attention-based LSTM (ALSTM), and temporal convolutional network
(TCN) were used for the predictions. The models were evaluated using a walk-forward
nested cross-validation approach with Bayesian hyperparameter optimization.

In a first experiment, I predicted the Dow Jones Industrial Average (DJI) index, con-
sidering several possible combinations of deep learningmodel, preprocessingmethod,
and dataset. While wavelet transformation and autoencoder preprocessing methods
failed to improve predictions, transfer learning successfully reduced overfitting in most
setups. Regarding the different datasets, both fundamental data and sentimental data
led to significantly worse results than simply using the open, close, high, low, and vol-
ume (OCHLV) as input features. Technical indicators achieved similar results to the
simple OCHLV dataset but could not improve overall predictions. For the TCN predic-
tions, adding patterns to the OCHLV dataset resulted in a small improvement.

With these results in mind, I conducted a second experiment in which I predicted
several assets using one LSTM, one ALSTM, and one TCN setup. Thereby it became
apparent that the chosen models are unable to accurately predict future price move-
ments of indices, stocks, or cryptocurrencies. Since for most assets the predictions led
to an overall mean absolute scaled error (MASE) greater than 1.0, even a naive pre-
diction ŷ(t + 1) = y(t) would result in an overall lower mean absolute error (MAE). On
the other hand, the models achieved very good results in highly volatile periods. This
observation makes perfect sense, as the loss was calculated using the mean squared
error (MSE), which gives greater significance to samples that lie further away from the
mean value.

While accurate predictions were not possible, the models turned out to be particu-
larly suited for trading purposes. Several indices and stocks, as well as Bitcoin, have
been evaluated. Long/short signal-based trading strategies that used the predictions
of the implemented models managed to outperform simple buy and hold on most as-
sets. Since highly volatile trading days have the biggest impact on returns, the poor
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6. Conclusion

performance during periods of low volatility only slightly affected the cumulative re-
turns. However, under extremely bullish market conditions with almost no downside
volatility, buy and hold performed significantly better than the implemented strategies.
Therefore, the strategies are unsuited for tech stocks. But on the other hand, due to
the high volatility, the strategies performed particularly well on Bitcoin.

In a future work, it would be interesting to see whether classification with binary
cross-entropy loss function could improve the predictive accuracy in periods of low
volatility and how this would affect the accuracy on highly volatile days. Intraday pre-
dictions could be evaluated, as more observations should improve generalization and
reduce overfitting. To assess the impact of slippage, the trading strategies should be
tested on exchanges in real-time trading.

60



List of Acronyms

AE Autoencoder

AI Artificial Intelligence

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

CAPM Capital Asset Pricing Model

CV Cross-Validation

DAE Deep Autoencoder

DJI Dow Jones Industrial Average

CNN Convolutional Neural Network

DNN Deep Neural Network

FA Fundamental Analysis

GAN Generative Adversarial Network

GDP Gross Domestic Product

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MASE Mean Absolute Scaled Error

ML Machine Learning

MSE Mean Squared Error

NA No Additional Preprocessing

OCHLV Open Close High Low Volume

61



6. Conclusion

PCA Principal Component Analysis

Q Quarter

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SA Sentimental Analysis

SGD Stochastic Gradient Descent

SVM Support Vector Machine

SVR Support Vector Regression

TA Technical Analysis

TCN Temporal Convolutional Network

TL Transfer Learning

WT Wavelet Transform

62



List of Figures

2.1 A candlestick chart where each candle corresponds to one sample. . . 12
2.2 A candlestick chart with blue resistance trendline and subsequent

breakout of the price trend. . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 A single neuron, also called perceptron. . . . . . . . . . . . . . . . . 18
2.4 An exemplar feed-forward neural network with two input features, one

hidden layer, and one output unit in the output layer. . . . . . . . . . . 19
2.5 Typical U-shaped generalization error curve. . . . . . . . . . . . . . . 22
2.6 Recurrent neural network (RNN) with a single output prediction. . . . . 24
2.7 The structure of a LSTM cell with forget gate f(t), input gate i(t) and

output gate o(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Dilated causal 1D convolution structure applied in TCNs. . . . . . . . . 25
2.9 A residual block with identity mapping as skip connection [39]. . . . . . 26
2.10 Exemplar undercomplete autoencoder with one hidden layer. . . . . . 29

4.1 The sliding window procedure to extract sequential observations o(t)
of length τ from the original time series x(1:N ). . . . . . . . . . . . . . 39

4.2 The walk-forward nested CV approach used for the experiments. . . . 41
4.3 Exemplar LSTM model (a), ALSTM model (b) and TCN model (c). . . . 43

5.1 Dow Jones Industrial Average (DJI) chart in the quarters Q37 to Q40. . 48
5.2 Errorbar plot with the MASE mean and standard deviation in the y-axis

and the three predictive models LSTM, ALSTM, and TCN along the x-axis. 49
5.3 Errorbar plot for the LSTM model (blue) and TCN model (orange) with

TL: with the MASE mean and standard deviation in the y-axis and the
different datasets along the x-axis. . . . . . . . . . . . . . . . . . . . 50

5.4 Long and short signals for the TCN TA-patterns TL setup predicting the
DJI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Cumulative return of the long/short signal-based strategies from Q37
to Q40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Risk-adjusted return ratios for the DJI trading strategies. . . . . . . . . 54
5.7 Cumulative return of the long/short signal-based strategies predicting

the Apple stock versus simple buy and hold. . . . . . . . . . . . . . . 56
5.8 Cumulative return of the long/short signal-based strategies predicting

Bitcoin in quarters Q17 to Q20. . . . . . . . . . . . . . . . . . . . . . 57

63



List of Figures

5.9 Risk-adjusted return ratios for the long/short trading strategies predict-
ing Bitcoin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.1 Dow Jones (ˆDJI) predictions. . . . . . . . . . . . . . . . . . . . . . . 89
C.2 S&P500 (ˆGSPC) predictions. . . . . . . . . . . . . . . . . . . . . . . 91
C.3 DAX (ˆGDAXI) predictions. . . . . . . . . . . . . . . . . . . . . . . . 92
C.4 Heng Seng Index (ˆHSI) predictions. . . . . . . . . . . . . . . . . . . 93
C.5 Apple (AAPL) predictions. . . . . . . . . . . . . . . . . . . . . . . . . 94
C.6 Boeing (BA) predictions. . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.7 Disney (DIS) predictions. . . . . . . . . . . . . . . . . . . . . . . . . 96
C.8 Visa (V) predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
C.9 Coca-Cola (KO) predictions. . . . . . . . . . . . . . . . . . . . . . . . 98
C.10 McDonald’s (MCD) predictions. . . . . . . . . . . . . . . . . . . . . . 99
C.11 Shell (RDS-B) predictions. . . . . . . . . . . . . . . . . . . . . . . . . 100
C.12 BMW predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
C.13 Walmart (WMT) predictions. . . . . . . . . . . . . . . . . . . . . . . . 102
C.14 JPMorgan (JPM) predictions. . . . . . . . . . . . . . . . . . . . . . . 103
C.15 Alphabet (GOOG) predictions. . . . . . . . . . . . . . . . . . . . . . 104
C.16 Johnson & Johnson (JNJ) predictions. . . . . . . . . . . . . . . . . . 105
C.17 Bitcoin (BTC-USD) predictions. . . . . . . . . . . . . . . . . . . . . . 106

64



List of Tables

2.1 An overview of the activation functions used in this thesis. . . . . . . . 20

4.1 Overview of the hyperparameters that were used in combination with
the three predictive models (LSTM, ALSTM, and TCN). . . . . . . . . 42

5.1 Measurement metrics for eight different preprocessing combinations. . 47
5.2 Quarterly returns of the DJI long/short signal-based strategies (without

trading fees and slippage) versus simple buy and hold strategy. . . . . 51
5.3 CAPM evaluation of the DJI using ordinary least squares. . . . . . . . 54
5.4 Aggregated results of several indices and stocks. . . . . . . . . . . . . 55
5.5 Quarterly returns of the long/short signal-based strategies predicting

Bitcoin (without trading fees and slippage) versus simple buy and hold. 56

C.1 Measurement metrics for the DJI LSTM TA-causality setups. . . . . . . 79
C.2 Measurement metrics for the LSTM TA-experience setups. . . . . . . . 80
C.3 Measurement metrics for the DJI LSTM TA-patterns setups. . . . . . . 80
C.4 Measurement metrics for the DJI LSTM SA-trends setups. . . . . . . . 81
C.5 Measurement metrics for the DJI LSTM FA-fundamentals setups. . . . 81
C.6 Measurement metrics for the DJI ALSTM OCHLV setups. . . . . . . . 82
C.7 Measurement metrics for the DJI ALSTM TA-patterns setups. . . . . . 82
C.8 Measurement metrics for the DJI ALSTM TA-experience setups. . . . . 83
C.9 Measurement metrics for the DJI ALSTM SA-trends setups. . . . . . . 83
C.10 Measurement metrics for the DJI ALSTM TA-causality setups. . . . . . 84
C.11 Measurement metrics for the DJI ALSTM FA-fundamentals setups. . . 84
C.12 Measurement metrics for the DJI TCN OCHLV setups. . . . . . . . . . 85
C.13 Measurement metrics for the DJI TCN SA-trends setups. . . . . . . . . 85
C.14 Measurement metrics for the DJI TCN TA-experience setups. . . . . . 86
C.15 Measurement metrics for the DJI TCN TA-causality setups. . . . . . . 87
C.16 Measurement metrics for the DJI TCN TA-patterns setups. . . . . . . . 88
C.17 Measurement metrics for the DJI TCN FA-fundamentals setups. . . . . 88

65





Bibliography

[1] J. Abraham, D. Higdon, J. Nelson, and J. Ibarra. “Cryptocurrency price prediction
using tweet volumes and sentiment analysis”. In: SMU Data Science Review 1
(2018), p. 1.

[2] S. B. Achelis. Technical Analysis from A to Z. McGraw Hill New York, 2001.

[3] E. Alpaydin. Introduction to machine learning. MIT press, 2020.

[4] R.M. Alrumaih and M.A. Al-Fawzan. “Time Series Forecasting Using Wavelet
Denoising an Application to Saudi Stock Index”. In: Journal of King Saud
University-Engineering Sciences 14 (2002), pp. 221–233.

[5] A. A. Ariyo, A.O. Adewumi, and C.K. Ayo. “Stock price prediction using the
ARIMA model”. In: 2014 UKSim-AMSS 16th International Conference on Com-
puter Modelling and Simulation. IEEE. 2014, pp. 106–112.

[6] R. A. Armstrong. “When to use the B onferroni correction”. In: Ophthalmic and
Physiological Optics 34 (2014), pp. 502–508.

[7] D. Bahdanau, K. Cho, and Y. Bengio. “Neural machine translation by jointly
learning to align and translate”. In: 3rd International Conference on Learning
Representations, ICLR 2015. 2015.

[8] S. Bai, J. Z. Kolter, and V. Koltun. “An empirical evaluation of generic con-
volutional and recurrent networks for sequence modeling”. In: arXiv preprint
arXiv:1803.01271 (2018).

[9] M. Ballings, D. Van den Poel, N. Hespeels, and R. Gryp. “Evaluating multiple
classifiers for stock price direction prediction”. In: Expert Systems with Applica-
tions 42 (2015), pp. 7046–7056.

[10] W. Bao, J. Yue, and Y. Rao. “A deep learning framework for financial time se-
ries using stacked autoencoders and long-short term memory”. In: PloS one 12
(2017), e0180944.

[11] L. Barras, O. Scaillet, and R. Wermers. “False discoveries in mutual fund per-
formance: Measuring luck in estimated alphas”. In: The journal of finance 65
(2010), pp. 179–216.

[12] M. Belkin, D. Hsu, S. Ma, and S. Mandal. “Reconciling modern machine-learning
practice and the classical bias–variance trade-off”. In: Proceedings of the Na-
tional Academy of Sciences 116 (2019), pp. 15849–15854.

67



Bibliography

[13] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. “Greedy layer-wise training
of deep networks”. In:Advances in neural information processing systems. 2007,
pp. 153–160.

[14] J. Bollen, H. Mao, and X. Zeng. “Twitter mood predicts the stock market”. In:
Journal of computational science 2 (2011), pp. 1–8.

[15] G. E. Box, G.M. Jenkins, and G.C. Reinsel. Time series analysis: forecasting
and control. John Wiley & Sons, 2011.

[16] G.C. Cawley and N. L. Talbot. “On over-fitting in model selection and subsequent
selection bias in performance evaluation”. In: The Journal of Machine Learning
Research 11 (2010), pp. 2079–2107.

[17] K. Chen, Y. Zhou, and F. Dai. “A LSTM-based method for stock returns predic-
tion: A case study of China stockmarket”. In: 2015 IEEE international conference
on big data (big data). IEEE. 2015, pp. 2823–2824.

[18] M. A. Cody. “The fast wavelet transform: Beyond Fourier transforms”. In: Dr.
Dobb’s Journal 17 (1992), pp. 16–28.

[19] R.W. Colby and T. A. Meyers. The encyclopedia of technical market indicators.
Dow Jones-Irwin Homewood, IL, 1988.

[20] B. Cornell. “Medallion Fund: The Ultimate Counterexample?” In: The Journal of
Portfolio Management 46 (2020), pp. 156–159.

[21] M. L. De Prado. Advances in financial machine learning. John Wiley & Sons,
2018.
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A. Datasets

Dataset Considered Features Final Features
OCHLV yfinance: Open, Close, High,

Low, Volume
yfinance: Open, Close, High,
Low, Volume

TA-experience yfinance: Open, Close, High,
Low, Volume; ta: EMA12,
EMA26, Bollinger l, Bollinger
h, RSI3, RSI7, RSI14, MACD,
OBV, ROC

yfinance: Open, Close, High,
Low, Volume; ta: EMA12,
EMA26, Bollinger l,
Bollinger h, RSI3, RSI7,
RSI14, MACD, OBV, ROC

TA-causality yfinance: Open, Close, High,
Low, Volume; ta: ta.volume:
adi, obv, fi, em, vpt, nvi, cmf,
sma_em, vwap; ta.volatility:
atr, bbp, kcl, kcw, kcp, kcli, dcl,
dch, bbm, bbh, bbl, bbw, bbhi,
bbli, kcc, kch, kchi; ta.trend:
macd, macd_signal, adx_pos,
adx_neg, adx, vortex_ind_pos,
vortex_ind_diff, cci, trix, dpo,
ichimoku_b, macd_diff, kst,
kst_sig, kst_diff, sma_fast,
sma_slow, psar_up,
psar_down, psar_up_indicator,
psar_down_indicator,
aroon_up, aroon_down,
aroon_ind, ema_fast,
ema_slow, vortex_ind_neg,
mass_index, ichimoku_conv,
ichimoku_base, ichimoku_a,
visual_ichimoku_a,
visual_ichimoku_b;
ta.momomentum: mfi, rsi, tsi,
uo, stoch, stoch_signal, wr, ao,
roc, kama; others_dr,
others_dlr

yfinance: Open, Close, High,
Low, Volume; ta: ta.volume
adi, obv, fi, em, vpt, nvi;
ta.volatility: atr, bbp, kcl, kcw,
kcp, kcli, dcl, dch; ta.trend:
macd, macd_signal, adx_pos,
adx_neg, vortex_ind_pos,
vortex_ind_diff, cci, dpo,
ichimoku_b; ta.momentum:
mfi, rsi, tsi, uo, stoch,
stoch_signal, wr, ao, roc;
others_dr,others_dlr
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A. Datasets

Dataset Considered Features Final Features
TA-patterns yfinance: Open, Close,

High, Low, Volume; Lo et. al
[57]: HS, IHS, BBOT, TTOP,
TBOT, RTOP, RBOT; ta:
ta.trend: psar_up_indicator,
psar_down_indicator, bbhi,
bbli, kchi, kcli

yfinance: Open, Close,
High, Low, Volume; Lo et. al
[57]: HS, IHS, BBOT, TTOP,
TBOT, RTOP, RBOT; ta:
ta.trend: psar_up_indicator,
psar_down_indicator, bbhi,
bbli, kchi, kcli

SA-trends yfinance: Open, Close,
High, Low, Volume;
keywords: Stocks, Dow
Jones, Bear market, Bull
market, crisis, recession, buy
stocks, sell stocks, rate cut,
FED, unemployment rate,
capital gains, stocks to buy,
how to short, how to long,
stock exchange, nasdaq

yfinance: Open, Close, High,
Low, Volume; keywords:
Stocks, Dow Jones, Bear
market, Bull market,
recession, buy stocks, rate
cut, FED, capital gains,
stocks to buy,stock exchange

FA-fundamentals yfinance: Open, Close,
High, Low, Volume; FRED:
CPIAUCSL, DFF, DPRIME,
UNRATE, PCE, PSAVERT,
RRSFS, HOUST; WRDS
Compustat: gicdesc,
indret_ew, indret_vw,
PEG_trailing_Mean,
CAPEI_Mean,
divyield_Mean, pcf_Mean,
pe_inc_Mean, ptb_Mean,
gpm_Mean, roa_Mean,
roce_Mean,
capital_ratio_Mean,
totdebt_invcap_Mean,
cash_debt_Mean,
int_totdebt_Mean,
sale_invcap_Mean,
sale_nwc_Mean,
rd_sale_Mean,
adv_sale_Mean,
staff_sale_Mean

yfinance: Open, Close,
High, Low, Volume; FRED:
DFF, DPRIME, UNRATE,
PSAVERT, PCE, RRSFS,
HOUST; WRDS Compustat:
CAPEI_Mean, pe_inc_Mean
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B. Transfer Learning Tickers

All stocks and indices were fetched through the yfinance API. Only stocks that were
publicly listed before 11. May 2010 and are still actively trading were used for pre-
training. The following is the list of tickers from Yahoo finance that was used for the
transfer learning pre-training:

• N225

• HSI

• FTSE

• DJI

• GDAXI

• FCHI

• GSPC

• AMZN

• GOOG

• NFLX

• TSLA

• BRK-B

• FCAU

• ADDYY

• IFNNY

• AMD

• VOW

• SAP

• BMW

• RDS-B

• TM

• CVX

• NTDOY

• WMT

• RBGLY

• BAYRY

• PEP

• MCD

• SIE

• BAS

• SNE

• MA

• DIS

• BCS

• BA

• V

• DAI

• KO

• ALV

• JPM

• MSFT

• VOD

• AAPL

• NVDA

• LHA

• INTC

• ENEL
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C. Additional Results

C.1. DJI Predictions

Model: LSTM, Dataset: TA-causality, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 243.42 48.18 0.92 0.18 1.32 0.26
38 203.86 80.23 0.76 0.3 1.51 0.59
39 247.14 39.88 0.86 0.14 1.69 0.27
40 777.63 45.68 3.44 0.22 1.07 0.06
µ 368.01 1.5 1.4

X 37 168.0 5.06 0.64 0.02 1.05 0.03
X 38 164.23 14.56 0.62 0.05 1.13 0.1
X 39 163.72 16.93 0.57 0.06 1.12 0.12
X 40 814.76 35.18 3.66 0.17 1.12 0.05
X µ 327.68 1.37 1.1

X 37 179.34 2.09 0.69 0.01 1.12 0.01
X 38 189.98 24.02 0.71 0.09 1.32 0.17
X 39 201.5 23.79 0.7 0.08 1.38 0.16
X 40 911.86 194.92 4.03 0.95 1.25 0.27
X µ 370.67 1.53 1.27
X X 37 165.29 3.57 2.99 0.01 1.03 0.02
X X 38 201.06 46.2 2.02 0.05 1.38 0.32
X X 39 198.74 26.75 2.1 0.03 1.36 0.18
X X 40 1010.98 50.09 10.51 0.08 1.39 0.07
X X µ 394.02 4.41 1.29

X 37 206.35 10.03 0.79 0.04 1.29 0.06
X 38 193.32 12.52 0.73 0.05 1.34 0.09
X 39 176.14 14.76 0.62 0.05 1.2 0.1
X 40 828.0 62.37 3.7 0.31 1.14 0.09
X µ 350.95 1.46 1.24
X X 37 207.12 19.36 0.79 0.07 1.29 0.12
X X 38 191.99 20.08 0.72 0.07 1.33 0.14
X X 39 178.29 10.84 0.62 0.04 1.22 0.07
X X 40 1290.48 249.32 5.92 1.18 1.75 0.34
X X µ 466.97 2.01 1.4

Table C.1.: Measurement metrics for the DJI LSTM TA-causality setups.
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C. Additional Results

Model: LSTM, Dataset: TA-experience, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 182.33 12.86 0.7 0.05 1.14 0.08
38 181.16 5.64 0.68 0.02 1.24 0.04
39 183.89 19.04 0.64 0.07 1.26 0.13
40 725.61 27.28 3.23 0.13 1.0 0.04
µ 318.25 1.31 1.16

X 37 177.0 16.96 0.68 0.06 1.1 0.11
X 38 173.87 24.26 0.65 0.09 1.21 0.17
X 39 156.99 14.44 0.55 0.05 1.07 0.1
X 40 678.03 14.83 2.98 0.07 0.94 0.02
X µ 296.47 1.21 1.08

X 37 178.63 22.35 0.68 0.08 1.11 0.14
X 38 195.08 40.6 0.73 0.15 1.35 0.28
X 39 198.12 27.57 0.69 0.1 1.35 0.19
X 40 750.12 41.06 3.36 0.19 1.04 0.06
X µ 330.49 1.37 1.22

X 37 204.81 5.64 0.78 0.02 1.28 0.04
X 38 192.87 22.73 0.72 0.08 1.34 0.16
X 39 176.06 21.05 0.62 0.07 1.2 0.14
X 40 742.49 33.56 3.28 0.16 1.03 0.05
X µ 329.06 1.35 1.21
X X 37 216.57 6.03 0.83 0.02 1.35 0.04
X X 38 193.07 13.67 0.72 0.05 1.34 0.09
X X 39 193.87 35.54 0.68 0.12 1.33 0.24
X X 40 768.64 14.51 3.44 0.07 1.06 0.02
X X µ 343.04 1.42 1.27

Table C.2.: Measurement metrics for the LSTM TA-experience setups.

Model: LSTM, Dataset: TA-patterns, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 190.85 7.69 0.73 0.03 1.19 0.05
38 216.83 33.01 0.81 0.12 1.48 0.23
39 217.44 26.44 0.76 0.09 1.5 0.18
40 642.89 7.92 2.79 0.04 0.89 0.01
µ 317.0 1.27 1.27

X 37 198.15 34.66 0.76 0.13 1.24 0.22
X 38 181.08 22.46 0.68 0.08 1.24 0.15
X 39 191.92 66.97 0.67 0.23 1.33 0.46
X 40 707.44 16.01 3.08 0.08 0.98 0.02
X µ 319.65 1.3 1.2

X 37 225.49 17.48 0.86 0.06 1.41 0.11
X 38 274.41 43.12 1.03 0.16 1.87 0.29
X 39 172.1 12.36 0.6 0.04 1.19 0.09
X 40 656.13 9.95 2.86 0.04 0.91 0.01
X µ 332.03 1.34 1.35
X X 37 179.73 13.78 3.01 0.02 1.12 0.09
X X 38 160.9 3.79 2.06 0.01 1.1 0.03
X X 39 226.49 44.65 1.32 0.09 1.25 0.25
X X 40 679.27 4.92 11.32 0.03 0.93 0.01
X X µ 311.6 4.43 1.1

Table C.3.: Measurement metrics for the DJI LSTM TA-patterns setups.
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C.1. DJI Predictions

Model: LSTM, Dataset: SA-trends, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 345.38 76.76 1.31 0.29 2.16 0.48
38 212.44 57.88 0.8 0.22 1.42 0.39
39 185.46 25.03 0.65 0.09 1.29 0.17
40 1452.92 277.95 6.5 1.29 2.02 0.39
µ 549.05 2.31 1.72

X 37 398.66 129.26 1.51 0.49 2.49 0.81
X 38 200.01 51.47 0.75 0.19 1.34 0.34
X 39 169.69 27.66 0.59 0.1 1.18 0.19
X 40 955.12 179.66 4.29 0.85 1.33 0.25
X µ 430.87 1.79 1.58

X 37 381.99 119.26 1.45 0.45 2.39 0.75
X 38 205.75 29.34 0.77 0.11 1.38 0.2
X 39 204.18 38.23 0.72 0.13 1.42 0.27
X 40 1109.51 276.05 4.92 1.3 1.54 0.38
X µ 475.36 1.96 1.68
X X 37 464.57 252.76 3.96 0.87 2.9 1.58
X X 38 234.15 41.13 2.2 0.12 1.57 0.28
X X 39 166.16 13.51 2.04 0.02 1.16 0.09
X X 40 1634.01 172.96 12.71 0.33 2.27 0.24
X X µ 624.72 5.23 1.97

Table C.4.: Measurement metrics for the DJI LSTM SA-trends setups.

Model: LSTM, Dataset: FA-fundamentals, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 179.94 10.54 2.9 0.06 1.12 0.07
38 368.11 112.66 2.18 0.18 2.46 0.75
39 241.84 52.1 2.03 0.05 1.68 0.36
40 1059.31 213.73 12.67 0.62 1.47 0.3
µ 462.3 4.95 1.69

X 37 190.68 18.16 0.73 0.07 1.19 0.11
X 38 199.6 36.71 0.75 0.14 1.33 0.25
X 39 154.41 19.97 0.54 0.07 1.07 0.14
X 40 1075.79 267.67 4.63 1.12 1.5 0.37
X µ 405.12 1.66 1.27

X 37 338.43 47.86 1.29 0.18 2.12 0.3
X 38 679.23 124.5 2.53 0.46 4.54 0.83
X 39 326.07 83.05 1.14 0.29 2.27 0.58
X 40 1578.75 597.52 6.78 2.52 2.2 0.83
X µ 730.62 2.93 2.78

Table C.5.: Measurement metrics for the DJI LSTM FA-fundamentals setups.
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C. Additional Results

Model: ALSTM, Dataset: OCHLV, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 167.7 4.53 0.64 0.02 1.05 0.03
38 195.9 33.86 0.74 0.13 1.31 0.23
39 166.71 43.31 0.58 0.15 1.16 0.3
40 679.22 7.6 2.95 0.03 0.95 0.01
µ 302.38 1.23 1.12

X 37 176.35 16.19 0.67 0.06 1.1 0.1
X 38 198.94 26.07 0.75 0.1 1.33 0.17
X 39 163.34 22.62 0.57 0.08 1.14 0.16
X 40 661.73 13.44 2.89 0.06 0.92 0.02
X µ 300.09 1.22 1.12

X 37 194.65 7.43 0.74 0.03 1.22 0.05
X 38 158.16 12.78 0.59 0.05 1.06 0.09
X 39 169.84 17.63 0.6 0.06 1.18 0.12
X 40 645.69 6.92 2.81 0.03 0.9 0.01
X µ 292.08 1.19 1.09
X X 37 184.32 15.22 2.98 0.01 1.15 0.1
X X 38 173.41 13.38 2.02 0.03 1.16 0.09
X X 39 158.18 14.03 2.07 0.02 1.1 0.1
X X 40 659.84 9.87 12.09 0.04 0.92 0.01
X X µ 293.94 4.79 1.08

X 37 225.43 25.87 0.86 0.1 1.41 0.16
X 38 211.84 28.5 0.8 0.11 1.42 0.19
X 39 187.36 27.01 0.66 0.09 1.32 0.19
X 40 770.53 8.82 3.33 0.04 1.07 0.01
X µ 348.79 1.41 1.3

Table C.6.: Measurement metrics for the DJI ALSTM OCHLV setups.

Model: ALSTM, Dataset: TA-patterns, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 176.46 5.14 0.68 0.02 1.1 0.03
38 201.66 25.98 0.76 0.1 1.38 0.18
39 186.86 24.76 0.65 0.09 1.29 0.17
40 663.34 7.72 2.88 0.03 0.92 0.01
µ 307.08 1.24 1.17

X 37 178.3 8.36 0.68 0.03 1.11 0.05
X 38 173.99 13.37 0.65 0.05 1.19 0.09
X 39 216.88 117.13 0.76 0.41 1.5 0.81
X 40 679.08 16.53 2.96 0.07 0.94 0.02
X µ 312.06 1.26 1.19

X 37 237.67 31.7 0.9 0.12 1.49 0.2
X 38 284.5 38.31 1.07 0.14 1.94 0.26
X 39 176.76 16.44 0.62 0.06 1.22 0.11
X 40 655.03 15.56 2.86 0.07 0.91 0.02
X µ 338.49 1.36 1.39

Table C.7.: Measurement metrics for the DJI ALSTM TA-patterns setups.
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C.1. DJI Predictions

Model: ALSTM, Dataset: TA-experience, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 170.46 33.89 0.65 0.13 1.06 0.21
38 177.86 10.21 0.67 0.04 1.23 0.07
39 203.02 42.42 0.71 0.15 1.39 0.29
40 714.88 19.73 3.17 0.09 0.99 0.03
µ 316.56 1.3 1.17

X 37 174.23 10.32 0.67 0.04 1.09 0.06
X 38 170.87 26.51 0.64 0.1 1.17 0.18
X 39 161.87 14.58 0.57 0.05 1.11 0.1
X 40 679.67 36.09 2.97 0.17 0.94 0.05
X µ 296.66 1.21 1.08

X 37 169.62 4.28 0.65 0.02 1.06 0.03
X 38 189.78 23.94 0.71 0.09 1.32 0.17
X 39 180.65 14.08 0.63 0.05 1.24 0.1
X 40 801.47 47.91 3.59 0.24 1.11 0.07
X µ 335.38 1.4 1.18

X 37 203.47 16.15 0.78 0.06 1.27 0.1
X 38 182.78 6.63 0.69 0.02 1.27 0.05
X 39 179.05 17.69 0.63 0.06 1.22 0.12
X 40 728.2 12.0 3.2 0.06 1.01 0.02
X µ 323.37 1.32 1.19
X X 37 199.84 4.82 0.76 0.02 1.25 0.03
X X 38 188.2 34.52 0.71 0.13 1.31 0.24
X X 39 176.81 23.7 0.62 0.08 1.19 0.16
X X 40 697.07 33.11 3.04 0.14 0.96 0.05
X X µ 315.48 1.28 1.18

Table C.8.: Measurement metrics for the DJI ALSTM TA-experience setups.

Model: ALSTM, Dataset: SA-trends, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 303.68 69.71 1.15 0.26 1.9 0.44
38 191.2 23.59 0.72 0.09 1.28 0.16
39 207.75 27.46 0.73 0.1 1.45 0.19
40 2416.22 644.34 11.03 3.03 3.32 0.88
µ 779.72 3.41 1.99

X 37 463.54 143.59 1.76 0.54 2.9 0.9
X 38 227.92 30.57 0.86 0.11 1.52 0.2
X 39 170.13 23.88 0.6 0.08 1.18 0.17
X 40 1387.63 609.13 6.29 2.9 1.93 0.85
X µ 562.31 2.37 1.88

X 37 693.14 317.23 2.62 1.2 4.33 1.98
X 38 211.97 29.28 0.8 0.11 1.42 0.2
X 39 178.83 36.57 0.63 0.13 1.24 0.25
X 40 1217.98 211.9 5.43 0.99 1.69 0.29
X µ 575.48 2.37 2.17

Table C.9.: Measurement metrics for the DJI ALSTM SA-trends setups.
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C. Additional Results

Model: ALSTM, Dataset: TA-causality, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 194.46 18.77 0.75 0.07 1.21 0.12
38 181.96 35.05 0.68 0.13 1.26 0.24
39 249.07 42.02 0.87 0.15 1.7 0.29
40 784.33 44.65 3.46 0.21 1.08 0.06
µ 352.46 1.44 1.31

X 37 167.07 4.71 0.64 0.02 1.04 0.03
X 38 168.02 12.15 0.63 0.04 1.17 0.08
X 39 199.65 43.35 0.7 0.15 1.35 0.29
X 40 759.41 48.72 3.34 0.24 1.04 0.07
X µ 323.54 1.33 1.15

X 37 186.75 11.49 0.72 0.04 1.16 0.07
X 38 180.4 40.45 0.68 0.15 1.24 0.28
X 39 239.64 41.1 0.84 0.14 1.64 0.28
X 40 829.21 78.33 3.7 0.38 1.14 0.11
X µ 359.0 1.48 1.3

X 37 200.19 9.83 0.77 0.04 1.25 0.06
X 38 194.25 16.95 0.73 0.06 1.35 0.12
X 39 172.5 5.83 0.6 0.02 1.18 0.04
X 40 928.83 91.03 4.13 0.41 1.26 0.12
X µ 373.94 1.56 1.26
X X 37 231.65 27.24 0.88 0.1 1.45 0.17
X X 38 223.06 25.77 0.84 0.1 1.55 0.18
X X 39 183.69 18.15 0.64 0.06 1.26 0.12
X X 40 846.28 64.62 3.75 0.31 1.16 0.09
X X µ 371.17 1.53 1.35

Table C.10.: Measurement metrics for the DJI ALSTM TA-causality setups.

Model: ALSTM, Dataset: FA-fundamentals, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 201.06 20.32 0.77 0.08 1.26 0.13
38 264.81 56.92 0.99 0.21 1.77 0.38
39 261.75 73.93 0.91 0.26 1.82 0.51
40 843.75 111.57 3.68 0.47 1.17 0.16
µ 392.84 1.59 1.51

X 37 178.52 15.65 0.68 0.06 1.12 0.1
X 38 192.77 45.58 0.72 0.17 1.29 0.3
X 39 182.05 29.71 0.64 0.1 1.27 0.21
X 40 905.95 308.12 3.93 1.28 1.24 0.42
X µ 364.82 1.49 1.23

X 37 426.45 103.22 1.62 0.39 2.67 0.65
X 38 360.55 56.77 1.35 0.21 2.41 0.38
X 39 326.93 54.16 1.14 0.19 2.28 0.38
X 40 1152.75 207.88 5.01 0.87 1.6 0.29
X µ 566.67 2.28 2.24

Table C.11.: Measurement metrics for the DJI ALSTM FA-fundamentals setups.
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C.1. DJI Predictions

Model: TCN, Dataset: OCHLV, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 207.66 26.81 0.78 0.1 1.13 0.15
38 229.73 40.66 0.86 0.15 1.66 0.29
39 149.93 8.58 0.52 0.03 1.0 0.06
40 413.45 12.08 1.79 0.05 0.99 0.03
µ 250.19 0.99 1.2

X 37 161.77 5.15 0.62 0.02 1.01 0.03
X 38 143.79 6.8 0.54 0.03 1.04 0.05
X 39 143.41 2.39 0.5 0.01 0.97 0.02
X 40 750.57 10.79 3.3 0.05 1.0 0.01
X µ 299.88 1.24 1.0

X 37 177.2 4.15 0.68 0.02 1.11 0.03
X 38 164.47 3.29 0.62 0.01 1.19 0.02
X 39 155.36 16.08 0.54 0.06 1.05 0.11
X 40 690.67 7.19 3.03 0.03 0.92 0.01
X µ 296.93 1.22 1.07
X X 37 176.17 4.98 2.82 0.02 1.1 0.03
X X 38 208.85 60.78 1.92 0.18 1.51 0.44
X X 39 244.6 135.9 1.33 0.33 1.37 0.76
X X 40 686.74 2.23 9.87 0.01 0.91 0.0
X X µ 329.09 3.99 1.22

X 37 189.34 9.02 0.72 0.03 1.25 0.06
X 38 209.95 15.73 0.78 0.06 1.65 0.12
X 39 167.64 6.13 0.59 0.02 1.13 0.04
X 40 727.77 27.47 3.2 0.13 0.97 0.04
X µ 323.67 1.32 1.25

Table C.12.: Measurement metrics for the DJI TCN OCHLV setups.

Model: TCN, Dataset: SA-trends, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 998.95 634.62 3.79 2.39 6.26 3.98
38 230.2 32.17 0.87 0.12 1.66 0.23
39 180.34 13.6 0.62 0.05 1.01 0.08
40 848.05 371.25 3.68 1.61 2.04 0.89
µ 564.39 2.24 2.74

X 37 1117.49 410.17 4.25 1.56 7.01 2.57
X 38 169.75 35.01 0.64 0.13 1.22 0.25
X 39 1708.02 3127.59 5.95 10.9 11.44 20.94
X 40 2929.38 1373.17 13.48 6.29 3.9 1.83
X µ 1481.16 6.08 5.89

X 37 1025.78 336.93 3.88 1.27 6.43 2.11
X 38 199.56 37.78 0.75 0.14 1.44 0.27
X 39 157.68 12.52 0.55 0.04 1.06 0.08
X 40 3644.59 1531.65 16.79 7.09 4.87 2.05
X µ 1256.9 5.49 3.45
X X 37 2091.53 1513.37 8.87 5.44 13.77 9.96
X X 38 187.57 30.49 1.89 0.13 1.35 0.22
X X 39 645.08 597.1 2.85 1.69 4.32 4.0
X X 40 1120.41 373.02 10.31 0.65 1.49 0.5
X X µ 1011.15 5.98 5.23

Table C.13.: Measurement metrics for the DJI TCN SA-trends setups.
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C. Additional Results

Model: TCN, Dataset: TA-experience, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 162.86 12.94 0.62 0.05 1.03 0.08
38 181.21 48.12 0.68 0.18 1.4 0.37
39 170.08 13.83 0.59 0.05 1.13 0.09
40 1187.83 426.62 5.46 2.08 1.61 0.58
µ 425.49 1.84 1.29

X 37 162.45 6.51 0.62 0.02 1.01 0.04
X 38 171.28 22.25 0.64 0.08 1.32 0.17
X 39 1939.1 5286.41 6.69 18.25 10.87 29.65
X 40 780.85 105.47 3.49 0.5 1.06 0.14
X µ 763.42 2.86 3.57

X 37 164.38 12.74 0.63 0.05 1.02 0.08
X 38 131.61 9.19 0.49 0.03 1.1 0.08
X 39 202.91 16.68 0.7 0.06 1.14 0.09
X 40 1315.48 368.25 6.07 1.72 1.79 0.5
X µ 453.59 1.97 1.26
X X 37 161.62 4.92 2.63 0.03 1.01 0.03
X X 38 172.53 21.63 1.8 0.05 1.33 0.17
X X 39 207.48 17.47 1.27 0.02 1.16 0.1
X X 40 923.84 137.57 8.92 0.56 1.25 0.19
X X µ 366.37 3.65 1.19

X 37 201.37 12.0 0.77 0.05 1.26 0.07
X 38 159.69 8.15 0.6 0.03 1.3 0.07
X 39 185.89 17.06 0.64 0.06 1.04 0.1
X 40 1052.66 224.73 4.9 1.09 1.53 0.33
X µ 399.9 1.73 1.28
X X 37 199.97 4.82 0.76 0.02 1.25 0.03
X X 38 145.63 6.56 0.54 0.02 1.19 0.05
X X 39 176.23 16.59 0.61 0.06 0.99 0.09
X X 40 865.15 109.42 3.88 0.53 1.17 0.15
X X µ 346.74 1.45 1.15
X X 37 212.33 12.16 0.81 0.05 1.32 0.08
X X 38 193.83 37.24 0.73 0.14 1.5 0.29
X X 39 157.54 10.47 0.55 0.04 1.04 0.07
X X 40 2264.67 1384.97 10.66 6.78 3.07 1.88
X X µ 707.1 3.19 1.73

Table C.14.: Measurement metrics for the DJI TCN TA-experience setups.
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C.1. DJI Predictions

Model: TCN, Dataset: TA-causality, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 216.3 31.06 0.82 0.12 1.13 0.16
38 153.88 18.22 0.58 0.07 1.19 0.14
39 182.7 12.93 0.64 0.05 1.21 0.09
40 1873.34 812.28 8.71 3.89 2.69 1.17
µ 606.56 2.69 1.55

X 37 156.89 2.36 0.6 0.01 0.98 0.01
X 38 138.23 6.78 0.52 0.02 1.07 0.05
X 39 179.11 4.92 0.62 0.02 1.0 0.03
X 40 1740.36 706.3 8.03 3.4 2.34 0.95
X µ 553.65 2.44 1.35

X X 37 147.94 7.08 2.65 0.03 0.92 0.04
X X 38 122.96 7.1 1.88 0.03 1.03 0.06
X X 39 339.06 240.15 1.6 0.63 1.9 1.35
X X 40 1051.43 394.49 9.95 2.11 1.42 0.53
X X µ 415.35 4.02 1.32

X 37 182.96 25.07 0.7 0.1 1.14 0.16
X 38 183.06 29.77 0.68 0.11 1.42 0.23
X 39 217.41 30.14 0.75 0.1 1.22 0.17
X 40 2319.71 1113.68 10.72 5.31 3.12 1.5
X µ 725.79 3.21 1.73
X X 37 257.31 149.04 0.97 0.56 1.63 0.94
X X 38 142.88 16.0 0.53 0.06 1.19 0.13
X X 39 188.67 18.52 0.65 0.06 1.06 0.1
X X 40 3154.78 1149.06 14.64 5.54 4.25 1.55
X X µ 935.91 4.2 2.03

Table C.15.: Measurement metrics for the DJI TCN TA-causality setups.
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C. Additional Results

Model: TCN, Dataset: TA-patterns, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 201.82 13.39 0.76 0.05 1.09 0.07
38 139.63 13.1 0.52 0.05 1.11 0.1
39 228.65 28.97 0.8 0.1 1.53 0.19
40 668.34 8.57 3.02 0.04 0.94 0.01
µ 309.61 1.28 1.17

X 37 161.22 3.4 0.62 0.01 1.04 0.02
X 38 126.49 3.49 0.47 0.01 1.01 0.03
X 39 147.33 3.22 0.52 0.01 0.98 0.02
X 40 715.67 10.41 3.15 0.05 0.95 0.01
X µ 287.68 1.19 1.0

X 37 232.83 13.67 0.88 0.05 1.51 0.09
X 38 283.54 12.25 1.06 0.05 2.12 0.09
X 39 190.5 22.5 0.67 0.08 1.27 0.15
X 40 678.59 4.49 3.0 0.02 0.9 0.01
X µ 346.36 1.4 1.45
X X 37 166.73 9.62 2.75 0.04 1.08 0.06
X X 38 227.9 56.47 1.88 0.15 1.7 0.42
X X 39 303.83 156.2 1.53 0.41 1.64 0.84
X X 40 681.89 10.65 9.46 0.04 0.9 0.01
X X µ 345.09 3.9 1.33

X 37 218.38 8.15 2.82 0.03 1.41 0.05
X 38 186.95 19.75 1.88 0.05 1.55 0.16
X 39 166.22 4.53 2.02 0.01 1.11 0.03
X 40 668.79 5.94 9.39 0.03 0.88 0.01
X µ 310.09 4.03 1.24

Table C.16.: Measurement metrics for the DJI TCN TA-patterns setups.

Model: TCN, Dataset: FA-fundamentals, Ticker: DJI, Period: 10y, Sampling: Daily
Preprocessing Measurement Metrics
WT AE TL Q µ-MAE σ-MAE µ-MAPE σ-MAPE µ-MASE σ-MASE

37 340.05 291.02 1.27 1.08 2.24 1.92
38 482.92 368.05 1.8 1.36 3.48 2.66
39 280.76 177.18 0.98 0.62 1.88 1.19
40 1348.75 358.49 5.92 1.51 1.8 0.48
µ 613.12 2.49 2.35

X 37 181.07 44.44 0.68 0.16 1.19 0.29
X 38 204.32 103.28 0.76 0.38 1.47 0.75
X 39 528.97 392.75 1.83 1.36 2.96 2.2
X 40 1506.11 707.55 6.46 2.97 2.0 0.94
X µ 605.12 2.43 1.91

X 37 423.85 137.3 1.6 0.51 2.31 0.75
X 38 446.14 161.92 1.67 0.61 3.22 1.17
X 39 413.95 154.56 1.44 0.54 2.77 1.04
X 40 2107.23 828.78 9.02 3.5 2.8 1.1
X µ 847.79 3.43 2.78
X X 37 195.49 15.33 2.08 0.02 1.06 0.08
X X 38 343.86 544.62 2.36 1.85 2.48 3.93
X X 39 206.19 52.07 1.79 0.03 1.38 0.35
X X 40 3538.35 4518.19 17.21 19.0 8.49 10.84
X X µ 1070.97 5.86 3.35

Table C.17.: Measurement metrics for the DJI TCN FA-fundamentals setups.
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C.1. DJI Predictions
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Figure C.1: Dow Jones (ˆDJI) predictions.
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Figure C.2: S&P500 (ˆGSPC) predictions.
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Figure C.3: DAX (ˆGDAXI) predictions.
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Figure C.4: Heng Seng Index (ˆHSI) predic-
tions.

93
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Figure C.5: Apple (AAPL) predictions.
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C.2. Indices, Stocks and Bitcoin
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Figure C.6: Boeing (BA) predictions.

95
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Figure C.7: Disney (DIS) predictions.
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C.2. Indices, Stocks and Bitcoin
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Figure C.8: Visa (V) predictions.
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C. Additional Results
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Figure C.9: Coca-Cola (KO) predictions.

98



C.2. Indices, Stocks and Bitcoin
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Figure C.10: McDonald’s (MCD) predictions.
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(e) CAPM

(f) Risk-adjusted return ratios

Figure C.11: Shell (RDS-B) predictions.
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C.2. Indices, Stocks and Bitcoin
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(f) Risk-adjusted return ratios

Figure C.12: BMW predictions.
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C. Additional Results
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(d) Cumulative return
α β R2 m

LSTM OCHLV TL 0.0018 0.2054∗∗ 0.050 236
(0.001) (0.059)

ALSTM OCHLV NA 0.0009 0.3549∗∗∗ 0.152 236
(0.001) (0.055)

TCN TA-Patterns TL −0.0012 −0.0215 0.001 156
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∗p < .05, ∗∗p < .01, ∗∗∗p < .001

(e) CAPM

(f) Risk-adjusted return ratios

Figure C.13: Walmart (WMT) predictions.
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C.2. Indices, Stocks and Bitcoin
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Figure C.14: JPMorgan (JPM) predictions.
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C. Additional Results
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Figure C.15: Alphabet (GOOG) predictions.
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C.2. Indices, Stocks and Bitcoin
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Figure C.16: Johnson & Johnson (JNJ) predic-
tions.
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C. Additional Results
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(0.002) (0.059)

∗p < .05, ∗∗p < .01, ∗∗∗p < .001

(e) CAPM

(f) Risk-adjusted return ratios

Figure C.17: Bitcoin (BTC-USD) predictions.
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